Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-1331-RC2, 2019 © Author(s) 2019. This work is distributed under the Creative Commons Attribution 4.0 License.

Interactive comment

Interactive comment on "Light absorption property and potential source of particulate brown carbon in the Pearl River Delta region of China" by Zhujie Li et al.

Anonymous Referee #2

Received and published: 4 February 2019

In this work the authors try to quantify the brown carbon contribution to the atmospheric energy budget with a combination of instruments deployed during a multi-month campaign in the Pearl River Delta region. Using measured aerosol size/composition information together with optical constants derived from the literature and a radiative transfer model, the brown carbon radiative forcing efficiency is estimated for a range of single-scattering albedos. The coordinated effort to combine these measurements is impressive and many of the justifications for calculations are well-supported. However, the uncertainty in AAE_BC is replaced by a calculation in which the number size distribution of the BC core is assumed to be a scaled fraction of the overall number size distribution. Also as pointed out by the other reviewer, this seems to be a questionable

Printer-friendly version

Discussion paper

assumption; in addition, the scaling factor is derived as a volume fraction - so if applied, it would be the volume size distribution that should be scaled by this number. Given the large uncertainty in black carbon forcing based on actual size distribution and particle morphology (core-shell or not - e.g., Cappa et al., doi:10.1126/science.1223447, 2012), it's unclear whether the BrC forcing can be satisfactorily constrained, even with this accomplished suite of instruments, without additional information from an SP2 or chemical transport modeling simulations. I believe that there is good data for a paper, but the question to be answered may have to be more restricted in scope. For this reason, I propose that the manuscript not be accepted for publication in its present form, but encourage the authors to resubmit with a different hypothesis.

Interactive comment on Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-1331, 2019.

ACPD

Interactive comment

Printer-friendly version

Discussion paper

