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Abstract

Understanding new particle formation and growtimiportant because of the strong impact
of these processes on climate and air quality. Measents to elucidate the main new particle
formation mechanisms are essential; however, thesghanisms have to be implemented in
models to estimate their impact on the regional ghlabal scale. Parameterizations are
computationally cheap ways of implementing nuctgaichemes in models but they have their
limitations, as they do not necessarily includeralevant parameters. Process models using
sophisticated nucleation schemes can be usefuh&generation of look-up tables in large-
scale models or for the analysis of individual n@anticle formation events. In addition, some
other important properties can be derived fromac@ss model that implicitly calculates the
evolution of the full aerosol size distributionge.the particle growth rates. Within this study,
a model (SANTIAGO, Sulfuric acid Ammonia NucleaTland GrOwth model) is constructed
that simulates new particle formation starting friim@ monomer of sulfuric acid up to a particle
size of several hundred nanometers. The small#stisuacid clusters containing one to four
acid molecules and varying amount of base (ammam&gpllowed to evaporate in the model,
whereas growth beyond the pentamer (5 sulfuric avidecules) is assumed to be entirely
collision-controlled. The main goal of the presstoidy is to derive appropriate thermodynamic
data needed to calculate the cluster evaporaties es a function of temperature. These data
are derived numerically from CLOUD (Cosmics Leavi@@tdoor Droplets) chamber new
particle formation rates for neutral sulfuric agidter-ammonia nucleation at temperatures
between 208 K and 292 K. The numeric methods ircArdoptimization scheme to derive the
best estimates for the thermodynamic datd &hd & and a Monte Carlo method to derive
their probability density functions. The derivedalare compared to literature values. Using
different data sets forHland & in SANTIAGO detailed comparison between model ltssu
and measured CLOUD new particle formation rateissussed.
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1. INTRODUCTION

The formation of new aerosol particles from the ghase (nucleation) is the most important
source of cloud condensation nuclei (CCN) in tle=fand upper troposphere (Dunne et al.,
2016; Gordon et al., 2017). Binary new particlerfation (NPF) from sulfuric acid and water
is thought to be an important mechanism at coldltimms that can be enhanced by ions (Lee
et al., 2003; Kirkby et al., 2011; Duplissy et @016). The ternary system involving ammonia
besides sulfuric acid and water can yield signifttaenhanced NPF rates (Ball et al., 1999;
Benson et al., 2009; Glasoe et al., 2015; Kirkbglet2011; Kirten et al., 2016). The addition
of only a few pptv of ammonia can increase NPFsrhteseveral orders of magnitude compared
with the pure binary system (Kurten et al., 20T®)e importance of ammonia in terms of NPF
is highlighted by recent modeling studies, wheerge fraction of CCN originates from ternary
H>SQO-H20-NHz nucleation (Dunne et al., 2016; Gordon et al., 20TThe detection of
ammonia above several pptv in the upper troposgherecent satellite measurements supports
these findings (Hopfner et al., 2016). Furthermareaircraft campaign up to ~5 km altitude
measured elevated Nidoncentrations over Texas (Nowak et al., 2010grétore, it is likely
that ammonia plays an important role in new patidrmation in the free troposphere. An
expected future increase in the anthropogenic amanemissions could even increase the
significance of ammonia in terms of NPF (Clarissalg 2009).

At cold conditions, NPF from ¥$Qu-H>-O-NH;3 is efficient enough to explain NPF at
atmospherically relevant concentrations of sulfraed and ammonia (Kirkby et al., 2011;
Dunne et al., 2016; Kirten et al., 2016). Howetlez involvement of ammonia in the formation
of new particles at the relatively warm conditimhsse to the surface is not clear yet. A recent
study indicates that ion-induced ternary nucleatian explain some new particle formation
events in the boreal forest in Finland (Yan et 2018); evidence that NHs important in
polluted boundary layer environments has been ptedeearlier (Chen et al., 2012). Most
recently, Jokinen et al., (2018) showed that iahioced ternary nucleation is important in
coastal Antarctica. The importance of ammonia imaecing boundary layer nucleation in the
presence of highly-oxygenated molecules (HOM) fnmmonoterpenes and sulfuric acid has
recently been described (Lehtipalo et al., 2018).

In order to model nucleation, knowledge abouttelugvaporation rates is required. This can
either be gained by measurements in a flow tubagbiaand Eisele, 2002; Jen et al., 2014; Jen
et al., 2016; Hanson et al., 2017) or in a charsbheh as CLOUD (Cosmics Leaving OUtdoor
Droplets, Kirten et al., 2015a). Another possipilis to apply quantum chemical (QC)
calculations (Kurtén et al., 2007; Nadykto and 2007; Ortega et al., 2012; EIm et al., 2013;
Elm and Kristensen, 2017; Yu et al., 2018). Congmaribetween experimental data measured
at the CLOUD chamber and modeled formation ratesgutie ACDC (Atmospheric Cluster
Dynamics Code) model (McGrath et al., 2012) withmwation rates from quantum chemistry
(Ortega et al., 2012) yielded good agreement foresoonditions (208 and 223 K). For higher
temperatures> 248 K) the model generally overestimated the fdionarates up to several
orders of magnitude. A more recently developedeatan model, also relying on evaporation
rates from QC calculations, yields good agreemattt the CLOUD data for some conditions
(Yu et al., 2018).
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For the global modeling studies by Dunne et &16) and Gordon et al. (2017) CLOUD
data have been parameterized to yield nucleatites ror four different channels (binary
neutral and ion-induced, and ternary neutral andnduced). The parameterization works well
and describes the nucleation rates over a wideerahgonditions (Dunne et al., 2016) but it
also has its limitations. First, it does not givey ansights on the stability of individual sulfuric
acid-ammonia clusters. Second, the influence oéroffarameters on nucleation (e.g., the
condensation sink) cannot be tested, while the iMmd¥u et al. (2018) considers the effect of
the condensation sink on the nucleation rate. Thivd parameterization provides only the
nucleation rate, while a full nucleation modeliatilg size bins over a wide diameter range can
also yield the particle growth rates (Li and McMyr2018).

In the present study a model covering the aersigel distribution over a wide size range,
i.e., from the monomer of sulfuric acid up to sadrundred nanometers, is constructed. The
model simulates acid-base nucleation and consed@soration rates for the clusters containing
one to four sulfuric acid molecules and variablenber of base molecules. The model allows
calculating new particle formation and growth raaeslifferent sizes and considers sinks like
wall loss, dilution and coagulation. SANTIAGO (Swit acid Ammonia NucleaTlon And
GrOwth model) is an extension of a previous simpiedel version used to simulate acid-base
nucleation involving dimethylamine (Kirten et &014; Kirten et al., 2018). The model
extension in the present study is a prerequisitéhi® main goal to derive the thermochemical
parameters (d and &) for the sulfuric acid-ammonia system from CLOUDamber data
(Dunne et al., 2016; Kirten et al., 2016). The dateer electrically neutral conditions for the
clusters up to the tetramer (containing four sudf@cid molecules and up to four ammonia
molecules). First, a model has been developedutes molecular and geometric size bins to
cover a wide particle size range (starting with thenomer of sulfuric acid). Second, two
numeric algorithms yield a best fit for théddand & values and their probability density
functions (pdf). The pdf are obtained by using ankaCarlo method introduced by Kupiainen-
Maatta (2016). In total, CLOUD data from 125 expents are considered; these cover the
range from 208 K to 292 K and a wide range of aprhescally relevant sulfuric acid and
ammonia concentrations. The results of the modetampared to the measured CLOUD data
and further comparison regarding the thermochendiatd from literature (Ortega et al., 2012;
Hanson et al., 2017; Yu et al., 2018) is presented.

2.METHODS

The aim of the present study is to find valuesdférand & of selected clusters (11 different
clusters) such that modeled new particle formafdRF) rates represent measured NPF rates
from the CLOUD experiment with a small error. Imler to perform this task, a model has been
developed that calculates the NPF rates basedwam gioncentrations of sulfuric acid and
ammonia, relative humiditygH, and temperaturd, (Section 2.2). The data set from Kirten et
al. (2016) for 125 neutral NPF rates is used tovdadH and & A best-fit thermodynamic data
set is obtained by using an optimization methodt{Se 2.4). Moreover, the distributions of
the probability density functions for each clustéee explored with a Monte Carlo method
(Kupiainen-Maatta, 2016 and Section 2.5). The tloelynamic parameters (enthalpy change
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dH and entropy changeSaiue to the addition or removal of a molecule)ragired in order
to obtain the evaporation rate of a cluster. Théheraatical relationship betweer ddS and
the evaporation rate are provided in the suppleangmiformation (SI Text S2).

2.1 Experimental data from the CLOUD experiment

The experimental data used to develop the modet waken at the CLOUD (Cosmics
Leaving OUtdoor Droplets) chamber at CERN (Europ@aganization for Nuclear Research).
The 26.1 m stainless steel chamber allows conducting nucieaind growth experiments
under atmospherically relevant conditions regardiegtrace gas concentrations, temperature,
relative humidity and ion concentrations (Kirkbya¢t 2011). The chamber and the results for
different chemical systems have been describedvbtse in the literature (e.g., Kirkby et al.
2011; Almeida et al., 2013; Duplissy et al., 2016}the present study no new data are presented
from CLOUD; instead the data from the Dunne e{2016) and Kirten et al. (2016) studies
are used. Whereas in the previous publicationsirtfieence of the ion concentration on
nucleation was also discussed, this study focuseseatral nucleation only. The parameter
space covers temperatures between 208 K and 282eKd{fferent temperatures) and a wide
range of atmospherically relevant sulfuric acid amimonia concentrations. No systematic
investigation of the relative humidity was carriedt; for most experiments, the relative
humidity was at 38%. The new particle formatioresatre reported for a mobility diameter of
1.7 nm (1.4 nm geometric diameter, see Ku and lRelemde la Mora, 2009).

2.2 Acid base model

The model used in the present study solves afsdifferential equations describing the
concentrations of clusters and particles (McMudr§80; Kiirten et al., 2014; Kirten et al.,
2015a; McMurry and Li, 2017; Kurten et al., 2018he model from Kurten et al. (2018)
describes nucleation for the system of sulfuricdeemnd dimethylamine, where the formed
clusters are stable against evaporation at a textyserof 278 K. For this reason, thdfuric
acid-dimethylaminesystem can be treated as quasi-unary and the &iapgiroach (all cluster
evaporation rates equal zero) yields very goodeagemt between modeled and measured
particle concentrations and formation rates owside range of particle diameters. The model
treats the smallest clusters in molecular size,bo@sed on the number of sulfuric acid
molecules in a cluster, while geometric size birns ased for the larger clusters/particles
(Karten et al., 2018). In the present study 12 mar bins and 25 geometric bins with a
geometric growth factor of 1.25 result in a maximpanticle diameter of 295 nm. Choosing a
larger number of bins and/or geometric factor waelsllt in a larger upper size limit, which
was, however, not necessary in the present stumiyp@red with the earlier study by Kirten et
al. (2018) the number of bins is reduced in ordeetiuce computation time; the simulation of
one new particle formation event (several hourswatleation) takes ~0.1 s on a personal
computer with a 3.4 GHz processor.

While the approach of using a quasi-unary systetn »ero evaporation worked well for
sulfuric acid-dimethylamine, this assumption canbetused for sulfuric acid and ammonia
because some small clusters evaporate rapidly @fta@yd Yu, 2007; Ortega et al., 2012; Jen
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et al., 2014). In the following, the number of suif¢ acid molecules denotes the clusters as
monomers (1 sulfuric acid), dimers (2 sulfuric @}jdrimers (3 sulfuric acids), etc. The clusters
from the monomer to the tetramer can contain diffenumbers of ammonia molecules, where
the maximum number of ammonia molecules is notwadth to exceed the number of acid
molecules. The assumption that no clusters arevatlothat contain more base than acid is
based on fast evaporation rates that have beewnl foursuch clusters from quantum chemical
calculations (Schobesberger et al., 2015; EIm @04al7; Yu et al., 2018); the assumption is
further supported by mass spectrometric measurantbat could not identify such clusters
(Kirkby et al., 2011; Schobesberger et al., 20I8)s results in the acid-base reaction scheme
shown in Figure 1, where j;Adenotes the sulfuric acid monomer concentraticth Binthe
ammonia concentration. For the larger clustersarticles (starting with the pentamer), no
differentiation regarding the base content is aapliThe full set of differential equations used
in SANTIAGO (Sulfuric acid Ammonia NucleaTlon AndGwth model) is listed in SI Text1.
Compared with its previous version SANTIAGO can enaccurately describe nucleation from
sulfuric acid and ammonia because of the consideraf clusters with different amounts of
acid and base that are allowed to evaporate.

While a mixed acid-base cluster can in principlaske either acid or base, the following rule
was implemented in the model: clusters containimgenacid than base can only evaporate an
acid molecule, while clusters containing equal nembof acid and base can loose a base
molecule only. While this is a simplification ofehreality, quantum chemical calculations
support that this assumption generally considersittiminant evaporation processes (Yu et al.,
2018). In principle, acid and base evaporation ¢dad implemented for each cluster in the
model but this would increase the number of frempaters from 22 (with the simplification)
to 40 (with all possible evaporations) which wogldbably not lead to better results but
increase the computation time significantly. This&nce of clusters containing more base than
acid is excluded in SANTIAGO, which is also suppdrby quantum chemical calculations
(Ortega et al., 2012; Yu et al., 2018).

The thermodynamic parameters for the two smatlest acid clusters (Pand A) are taken
from a study where the parameters were derived ffom tube measurements (Hanson and
Lovejoy, 2006). Ehrhart et al. (2016) showed thatuaneric model for sulfuric acid-water
binary nucleation using those data can well refdiceew particle formation rates measured at
CLOUD. In their study, Hanson and Lovejoy reporpeledencies of the dimer and trimer
evaporation rates regarding the relative humidityich are also adopted in the present study
(evaporation rate proportional to (20R%&t)° for the dimer and (20%H)*® for the trimer).
The same dependency was used here and the evapawe for the pure tetramer fAvas
scaled by the sanfRH-dependent factor as for the pure acid trimer. Haarhumidity effects
are not applied; therefore, the results for thentteelynamic data can be interpreted as a
weighted average over the range of the differetém@ontents for each cluster. The equations
for calculating an evaporation rate frotd dnd Gare given in Sl Text2 (see also Ortega et al.,
2012). In general, slower evaporation rates rdsuth more negative values oHdand from
less negative values oBthe evaporation rate varies exponentially withathd 6. How strong
the evaporation rate varies with temperature, isrdgned by the value ot

Forward reaction rates are calculated based oredu@ations for the collision frequency
function by Chan and Mozurkewich (2001) with a eafifi 6.4102° J for the Hamaker constant

5
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(Hamaker, 1937). An enhanced collision-rate betwsreall clusters and particles due to van
der Waals forces was reported in recent CLOUD pahbns (Kirten et al., 2014, Lehtipalo et
al., 2016; Kurten et al., 2018). SANTIAGO takesiatcount dilution and wall loss, which are
relevant loss processes in the CLOUD chamber (kiddbal., 2011; Kirten et al., 2015a; Sl
Textl). The value of the modeled new patrticle fdfomarate,Jmodes iS taken for the nonamer
(Karten et al., 2015b):

Jmodet = Zi+j2m Ki,j “N; - N] (1)

The nonamemf = 9) has approximately a mobility diameter of and for which CLOUD new
particle formation rates are derived (Kirkby ef 2011; Dunne et al., 2016). The formation rate
calculation takes into account that the collisiétivao smaller clusters with concentratioNs
andN; yield a particle equal or larger than the nonafiee. differential equations are integrated
over the same time that each of the 125 indivi@Qi&UD runs lasted; this time varied between
roughly half an hour and several hours dependetti®@gas concentrations. The latest value of
the calculated nucleation rate defines the modgf# rate. Further details regarding the model
can be found in Kirten et al. (2015a, 2018) andlimext1.

The particle growth rate§R, can be calculated using the monomer and clusterantrations
in SANTIAGO:

GR. =ym-1 L%t g 2
m _Z m,l I ( )

i=1 T[/z'dlzo,m

The increase in diameter depends on the partidenetier for which the growth rate is
determinedd,m, and the colliding cluster/particle diametey; (Nieminen et al., 2010). Note
that equation (2) does not only consider the gradvih to monomer additions£ 1) but also
the gain due to collisions with all clusters/pdesc smaller than the considered diameter.
Lehtipalo et al. (2016) have highlighted the impare of such cluster-cluster or cluster-particle
collisions, especially for systems containing haliister concentrations like the sulfuric acid-
dimethylamine system. In the present st@Ryis calculated fom = 9, which corresponds to a
mobility diameter of 1.7 nm.

2.3 Metricfor average error of the model

In order to optimize the thermodynamic parameiteéssnecessary to define a criterion that
describes the overall deviation between the 125aored and modeled new particle formation
rates. Since the NPF rates span a large range (roghly 10° to 1¢ cni® s?) it is reasonable
to compare the ratios between modeled and measatesdrather than the absolute differences.
In this way, it is avoided that mainly the high wa$ of the NPF rates are brought into
agreement. In addition, it is taken into accouat the data covers five different temperatures
(208, 223, 248, 278 and 292 K) with different nunsbef experiments conducted at each of the
temperatures. In order to weigh each of the tenipess equally and not to bias the error
calculation towards the temperature where moshefexperiments were conducted at the
following error functionf, was defined:
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f — lOg <§ . (nil . Z:lzll 10|loy(]model,i)_lOg(]exp,i)| + niz . Z:lzzl 10|lOg(]model,i)_lOg(]exp,i)| +

1. Zn3 10|109(]model,i)_lOg(]exp,i)| + L. Zn‘l' 10|109(]model,i)_lOg(]exp,i)| + 1.
ns i=1 Ny i=1 nsg

Z:lzsl 10|log(]model,i)—log(]exp,i)|)> (3)

In this equation the values to ns indicate the number of experiments at each tenyera
2.4 Optimization method

The optimization method used was introduced byih&tg (1983) and uses an
approximation for the functior, that should be minimized. A quadratic model (secorder
Taylor expansion) approximates the function:

1
M(xy +s) = f(x) + gp - sie + > Sk Hy Sy 4)

In this study, the poinkk is the current set of thermodynamic parametersdiiand 11 &
values, i.e., 22 parameters in total) &k the vector that moves the point to a new parsiti
that ideally yields a smaller error (i.e., a sntallalue forf). The gradient vector is denoted by
ok and the Hessian matrix Ik Steihaug’s conjugated gradient method fisdbat minimizes

M (Steihaug, 1983; Nocedal and Wright, 2006). Tlgerhm takes into account that the length
of the vectors, stays within a certain trust regiof (i.e.,Isd < 4x). The value of

_ fOe)—f (xgtsk) (5)

K M) —MCep+si)

is used to decide whethek can be increased, stays unchanged or should bee@dfter each
iteration,k. The empirical factor is used to determine after each iteration whethstep
should be taken or not:

(X tSk pr=m
Xlet1 = { X Pr <M1 (6)

The trust region radius is updated by using thieohg rules:

t1 - Dg Pr <1
Apyq1 = min(ty - A, Appayx) Pk =M3 (7)
Ay Ny < P <73

where the empirical parameters s, t1 andtz are used. The algorithm in this study was run
with parameterslo = 0.5,4max = 2,t1 = 0.25,t> = 2.0,/71 = 0.20,172 = 0.25,773 = 0.75 and
converged approximately after 20 steps. The valoego (initialization) are the d and &
values from Ortega et al. (2012).
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2.5 Monte Carlo method

With the Monte Carlo method (Differential Evolutidarkov Chain algorithm, DE-MC,
see Ter Braak, 2006; Ter Braak and Vrugt, 2008;i&opn-Maatta, 2016) the probability
density functions (pdf) of the thermodynamic partere are explored. The pdf give
information on the uncertainties of the paramefiusd by the optimization algorithm, as it is
very likely that the optimized values represenbd@l minimum in the parameter space that is
just one possible solution out of many others. DReMC algorithm aims at finding the most
probable values for the parameters instead ofrippdne optimal values (Kupiainen-Maatta,
2016). Therefore, the Monte Carlo solutions candel to evaluate if the optimized values are
within the range of the most probable solutions.

2.5.1 Initialization for generating the prior distributions

At the start of the Monte Carlo simulation, thegmaeters H and & are initialized, where
each value is randomly selected from a range dfiplesvalues. In this study, this range was
defined by the values from Ortega et al. (20120#aal mot* for dH and + 10 cal mol K*
for dS For these randomly selected thermodynamic paesidhe initial error (equation (3))
is calculated.

2.5.2Main loop

Within the main loop (iterated 5000 times), thestfistep involves the random variation of
the parameters. The value for ea¢hahd & is updated with a probability of 0.2. Given that
22 parameters are used, this means that on avdrdgparameters changed during each
iteration. If, however, the situation occurs thatupdate for any of the parameters is requested,
the selection process is repeated until at least thermodynamic parameter is updated
(Kupiainen-Maatta, 2016). If a value should be updats step width is chosen from a normal
distribution with a standard deviation of 0.05 tsrike width of the allowed range (i.e., 20 kcal
mol? for dH and 20 cal mol K for dS). If a step would lead to the crossing of the uppe
lower bound for any of the parameters, a new randalme is chosen until the updated value
stays within its allowed range. With the new sepafameters, the new erréfw + ), is
calculated. If(x« +s¢) <f(x), then the new set of parameters is accepted. HAaweven iff(x«

+ s is larger thari(x) the step might still be accepted with the prolitgbi

P =exp (=5 (FCu + 50 = fG)), ®)

where ao of 0.2 has been chosen (same as by Kupiainen-8)&16). This means that even
steps in the “wrong” direction (making the erraigier) have a chance of being taken. This can
avoid that the parameters might become trappedi@ca minimum, which can, e.g., be the
case with minimization methods. In any cage, is set tax + < if a step is taken before a new
iteration starts. The error as well as the fullafgtarameters are recorded after each iteration.
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2.5.3 Generation of the prior distribution

In total 20 data sets (each containing 5000 stegspenerated with the methods described
in Section 2.5.1 and 2.5.2. From each of the 28 stts the average error was determined from
the last 2500 points. Whenever the error for orta dat is smaller than the geometric mean
from all 20 errors, the data set was selected @opn-Maatta, 2016). All selected data sets
combined and thinned to 5000 data points repredentprior distribution,Zo. For each
parameter the standard deviatiagn is determined.

2.5.4 DE-MC algorithm

In the DE-MC (Differential Evolution-Markov Chaia)gorithm, five Markov chains are run
in parallel, where each of the chain starts fralaraom point of the joint historyyp (Ter Braak,
2006; Ter Braak and Vrugt, 2008; Kupiainen-Maa2@i16). In the algorithm, the probability
to jump from an old poinkoi, to a new pointwew, should be the same as moving frew, to
Xold. This is achieved, by calculating the new positrentor according to

Xnew = Xota TV - (xl - xz) + 6, (9)

wherex; andx, are randomly selected points from the joint higt@ds. The factor is taken as
(Ter Braak, 2006)

238 238

vy = [ZTcoers V222

= 0.359 (10)

or 0.98 (at every fifth step). Each individu# dnd & value for the new point is updated with
a probability of 0.2 (see Section 2.3.3)s drawn from a normal distribution with= 0.05% Gini
(calculated from the prior distribution, see abovédje decision process whether a step should
be accepted or not is the same as in Section @§uation (8)).

The points from the five chains are appended égdmt history,Zo, and the new points in
the following iterations are drawn from the updatéstory. This way, eventually convergence
should be reached after many iterations resultm¢he posterior distributions (probability
density functions) for all parameters. The metndicating convergence is given by
(Kupiainen-Maatta, 2016):

-~ k-1 c+l b
R==+—"0 (11)
with the parametek indicating the step index; the number of chains#s5. The variance of
the means for each parameteris calculated from

b= T (@ — m)?, (12)

wheref is the average of a parameter over all chaingiaisthe average for each of the chains,
|. The mean of the varianca¥, is calculated from
9
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W =23 Van, (13)

whereVar, is the variance for each parameter in one of tieens. Convergence is assumed
whenR (for each of the 22 parameters) reaches a valseldf. In the present study, this was
the case after more than®literations.

3.RESULTS
3.1 Thermodynamic data

The results for the thermodynamic parameters lawevis in Figure 2. This figure indicates
the results from the optimization method (dashedd) and the probability density functions
(pdf, solid lines) along with their medians (dottldes) for the 11 different clusters. A
comparison between the pdf and the values fromgaré¢ al. (2012) and Hanson et al. (2017)
is shown in Figure S1. The pdf result from geneghistograms of the values frafs, where
the first 5000 points are neglected (see SectibR.Discussion on the thermodynamic data
follows in Section 4.

An overall comparison between modeled and measNRd rates is shown in Figure 3.
SANTIAGO uses the thermodynamic data from Steihsugptimization method. The
maximum ratio for the deviation between the modeled measured nucleation rates is below
a factor of 10 with only a few exceptions. The aggr deviation is a factor of ~4. Some of the
cases where the ratio deviates by more than arfatid® correspond to the lowest temperature
(208 K) binary experiments where the model ovemesties the measured NPF rates (Section
3.2). As intended (Section 2.3) the data in Figud® not indicate an apparent bias.

3.2 Comparison between modeled and experimental data: Ji.7nm vs. [H2S04]

To further evaluate the performance of SANTIAG@ ttalculated NPF rates are shown
together with the measured rates as a functiomefstlfuric acid concentration for the five
different temperatures (Figure 4). The color caglgresents the ammonia mixing ratio, while
grey symbols indicate pure binary nucleation (séetd et al., 2016; Duplissy et al., 2016).
Again, as in Figure 3 the agreement between modeiddmeasured data is good. The same
applies to the parameterization; in some cases,ptrameterization yields even better
agreement compared with the model. This is the, @agg for the binary nucleation at 208 K
and the data at 278 K and 292 K for the lowest amanmixing ratios. However, one clear
advantage of SANTIAGO is that it describes the fiomal behavior of the system more
accurately. At a temperature of 208 K for the hagiimonia mixing ratio the model line shows
a pronounced curvature, whereas the parameterzggtds a straight line on the log-log-plot.
The curvature is due to the fact that the suryivabability of subcritical clusters (i.e., clusters
below the nonamer) can bgongly affected by losses to walls or pre-exgparticles(Ehrhart and
Curtius, 2013). This effect is most strongly pronoed when the concentration of the
nucleating vapor is relatively low, which resultsslow cluster/particle growth rates. Other
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thermodynamic data sets can be used to generatel cwges similar to the ones in Figure 4.
Using the data from Ortega et al. (2012) and Haretoml. (2017) generates Figure S3 and
Figure S4. Figure S2 shows the model curves udthgrdl & from the medians of the Monte
Carlo simulation. The medians also give good reseixcept for an overestimation at 248 K
and 278 K at the lowest NHoncentration. This is probably due to comparétivew dG
values for the sulfuric acid tetramer (Table 1)fdtunately, Yu et al. (2018) did not provide
dH and & values but only @ values at 298 K; therefore, their data set cooldoe tested.

3.3 Comparison between modeled and experimental data: Ji.7nm vs. [NH3]

SANTIAGO can yield the dependency of the NPF rédesarying ammonia concentrations
at fixed sulfuric acid concentration. Figure 5 skkaWwese data for five different temperatures
over a wide range of Ndtoncentrations. The modeled data agree overall g@od with the
experimental CLOUD data. The data points indicateligure 5 are obtained by normalizing
the CLOUD data to one sulfuric acid concentrationgach of the temperatures (see Kiirten et
al., 2016); the sulfuric acid concentrations foe tiormalization are indicated in the figure
annotation.

For the lowest temperature (208 K) the new parficimation rates show almost no increase
with [NH3] when ammonia is present at low concentratier® cn®); this indicates that NPF
is dominated by the pure binary channel. The dabatp for pure binary conditions are placed
at the estimated Nd-background concentrations for 208 K and 223 Kigufe 5 (Kurten et
al., 2016). However, in the model for generating lthes at pure binary conditions (Figune 4
zero NH is assumed. For larger [NHhe NPF rates increase until they reach a plat¢du
10° cnt3). In this case new particle formation is only liedl by the availability of sulfuric acid;
evaporating ammonia molecules from clusters argyeler, rapidly replaced because the
arrival rate of ammonia is similar or faster thhe ammonia evaporation rate. For the data at
223 K the situation is very similar. The platealues agree very well with the calculated values
for collision-controlled new particle formation (Kén et al., 2018), which can be seen as a
validation of SANTIAGO.

For both temperatures (208 K and 223 K) the erpemial pure binary new particle
formation rates are well represented by the mo&eP48 K and above, the modeled rates at
low [NH3] very likely overestimate the NPF rates (dashetices of the curves, see discussion
in Section 4) because the model considers onlyaa#ipn up to the sulfuric acid tetramer,
which is not sufficient to accurately model binawycleation at these conditiortéowever, the
slow rates of <¢10° or 1x10* s? are not atmospherically relevant near the groumchost cases.
Beyond the regions where binary nucleation domg)dtee rates increase steeply with Bj{H
Although the slopes of the curves flatten somewdatrds high ammonia concentrations, no
plateau is reached even at concentrations Hf&f® (approximately 4 ppbv).

3.4 Particle growth rates

Figure 6 shows calculated growth rates as a fumatibthe sulfuric acid concentration
according to equation (2). Additionally, a curverfr the equations given by Nieminen et al.
(2010) is included. The model results from the pnéstudy show a linear increase3R as a
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function of the sulfuric acid monomer concentrateanexpected (Nieminen et al., 2010). The
higher values from SANTIAGO can be explained bydifeerent methods for calculating the
collision rate constant that includes van der Waalsancement for the model of the present
study (c.f. Kurten et al., 2018). The increas&Rat low temperature (208 K) is not intuitive
as the collision rates decrease somewhat with teahye, which should lead to slowéR.
However, the clusters are more stable at low teatper and their elevated concentrations can
contribute to particle growth (Lehtipalo et al., 18). This effect is pronounced at 208 K with
some ammonia, which indicates that considering ¢tiidycondensation of monomers is not
sufficient for some conditions. Not only growth dam effected by coagulation but also new
particle formation rates; therefore, the implem#ataof a full coagulation scheme (Sl Text
S1) is important for the present study. The pobsilof deriving growth rates with the model
is an important feature that is not included ingheameterization for the CLOUD new patrticle
formation rates by Dunne et al. (2016). The modgledvth rates enable further comparison to
experimental data and the future study of pargictavth to climatically relevant diameters.

4. DISCUSSION
4.1 General discussion on the thermodynamic values
4.1.1 Results from the optimization and Monte Carlo method

The posterior distributions with the median valtesdH and & for all clusters are shown
in Figure 2. For comparison, the values from Siggfmoptimization method are also shown.
For the & values, the medians and the optimized values ageeg well. However, the
distributions are rather flat indicating that thesex wide possible range of entropies that lead
to reasonable agreement between modeled and meddBFe rates. This is also reflected in
Table 1 when comparing th&db the Ortega et al. (2012) data. These were tesattialize
the optimization method. However, no large diffeencan be found between the initialized
and optimized values, which can be interpreted $bhahthe quantum chemical calculations
yield accurate results foid

The distributions for thel values show more structure. However, the onlytelushere a
clear peak can be found is theBA cluster (for the B evaporation). The median vati¢he
distribution is somewhat lower (by ~2 kcal Mptompared with the optimized value but it is
well within the half-width of the distribution. Fonost dH values there exist flat regions of the
probability density function, e.g., for theBy cluster (A evaporation) between -28 kcal thol
and -39 kcal mot. In this range the evaporation rate varies betvied®3 s* and x10!! st
(at 278 K and 8 = -43 cal mol K1, SI Text2). In practice, it does not matter whaote of
these evaporation rates is used; the magnitudéheofetaporation rate in this range has
essentially no effect on the outcome because tisterlis stable on the considered time-scale
(Kupiainen-Maatta, 2016).

For some clusters, limits seem to exist fidt &or example, thekdlvalue for the Ais below
-15 kcal mott and for the AB3 clusters (A evaporation) the upper limit is appneately -19
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kcal moll. The pdf for the AB:1 and the AB; clusters show local maxima, which indicate
elevated probability densities around -16.5 kcalhand -23 kcal mot.

4.1.2 Comparison of dH and dSto literature data

For most of the clusters, the agreement betweei®ttega et al. (2012) data and the data
from the present study is quite good. One excepisothe A cluster, where the pdf indicates
a median value of -23.1 kcal mlolor dH (-19.7 kcal mot from the optimization method) in
contrast to -16.78 kcal midby the Ortega et al. (2012) study. The much lovedue found in
the present study is reasonable since Ortega €Qdl2) did not include water vapor in their
calculations. The available water in the CLOUD ekpent can lead to significant slower
evaporation rates indicated by the lower hlue. The difference to the Hanson et al. (2017)
data is generally much larger. Especially, thedriand tetramer with one ammoniaBa and
A4B1) evaporate significantly slower for the Hansomle{2017) data. This might explain the
much higher NPF rates observed at the warm tempesatfor the Hanson et al. (2017)
predictions compared with the CLOUD data (Figurg. ¥4 et al. (2018) report@l values
(Table 1) in their study. While the agreement betwineir model and CLOUD data is generally
good for ion-induced conditions, the agreementnieutral conditions is only good for low
temperature conditions. At temperature?48 K the Yu et al. (2018) model underestimates th
measurements by up to many orders of magnitude. ddn at least partly be explained by the
significantly higher & values for some clusters (e.g3BA and AB1) in comparison to the
other literature data and the values from the mtesteidy.

4.2 Uncertainties and limitations of SANTIAGO

One limitation of the model from the present stiglyhat the effect of water vapor is not
taken into account explicitly, i.e., no clustersi@ning different amounts of water molecules
are considered. However, for the clusters contgima ammonia to some extent humidity
effects are included. This is achieved by scalmggeavaporation rates of the sulfuric acid dimer,
trimer and tetramer by a factor (209%H)P with p = 0.5 for the dimer and 1.5 for the trimer
and tetramer. The first two values for the paramgtare from Hanson and Lovejoy (2006).
For the tetramer the same dependency as for theertris assumed, which introduces
uncertainty. The reportedHdand & values for the sulfuric acid tetramer are therefterived
for a relative humidity of 20% in order to be catent with the Hanson and Lovejoy (2006)
data. In Figure 4 the agreement between the moaelgéaneasured pure binary data (at 208 K
and 223 K) is relatively good, especially for ti#28K data. For the 208 K data SANTIAGO
overestimates the measured data. It has to be ,nihi@dthe model calculations assume an
averageRH (33% at 208 K and 28% at 223 K), whereas the nreasnt conditions cover
varying relative humidities (12% to 57% at 208 Kldri% to 52% at 223 K). This can explain
some of the scatter in the measured data but Bo$ytstematic overestimation for the 208 K
data by the model. However, the general agreenenigen model and measurement a3
K is considered good for both ternary and binanyditions. For the warmer temperatures (
248 K) the pure binary conditions can currently hetaccurately represented by the model.
This can be seen in Figure 5 for the dashed sexctbthe curves, which approximately mark
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the limit of the parameter space regarding thensdtb NH concentrations. For the very low
NH3z concentrations, the modeled NPF rates approactpthie” binary conditions. However,
comparison with the data by Ehrhart et al. (20169 wimulated pure binary nucleation for the
CLOUD chamber with the SAWNUC (Sulfuric Acid WatdtJCleation) model indicate that
the apparent binary data in Figure 5 are signitigasverestimating the true binary NPF rates.
For 248 K the overestimation seems to be withiacadr of 10 but for 278 K and 292 K the
overestimation amounts to many orders of magni(ktiehart et al., 2016). For this reason, the
solid line sections for 248 K and warmer have héefined such that the contribution from the
overestimated binary conditions is in any casetleass 10%. This means that SANTIAGO can
be applied, e.g., at 292 K for Nidoncentrations above cas10’ cni® (= 0.4 pptv at 292 K and

1 bar). It can be seen that BlHas a large effect even at these tiny concentrgtivhich are
below the measurable range of ammonia in the athevep

The effect of water vapor on particle growth rateseds to be studied in the future.
Comparison between measured and modeled growthaasenall diameters (2 nm) in the acid
base system (sulfuric acid-dimethylamine and sigdfacid-ammonia) indicates that water has
no significant effect on particle growth (Lehtipabal., 2016). The same can be concluded for
the sulfuric acid-ammonia system at larger diansetetO nm, see Chen et al., 2018).

The fact that no larger clusters than the tetraman evaporate in SANTIAGO apparently
leads to truncation errors as discussed beforéhéobinary conditions. This truncation leads to
the overestimation of new particle formation rdtasthe pure binary conditions at the warm
temperatures. To what extent truncation affectsténeary new particle formation can be
discussed based on the cluster evaporation ratébddetramers at the warmest temperature
(292 K). The evaporation rates are ~308@A4B1), ~75 s (A4B2) and ~0.02$ (A4Bs) using
the thermodynamic parameters from Table 1 (firétiroms) and the equations to convert d
and 5to an evaporation rate (see Sl Text2). This ind&that new particle formation proceeds
most efficiently via the clusters containing atdethree base molecules. For this cluster the
forward reaction rate is larger than the evapomatiate when the total sulfuric acid
concentration is larger than xB0’ cni®. If the AsBs and ABa clusters are the dominant ones,
this indicates that even if a pentamer with a smathber of base molecules evaporates rapidly
it is probably not very important in terms of cobtiting to the new particle formation rates as
the main nucleation pathway will follow the clustevith high ammonia content. If truncation
nevertheless plays a role, it can lead to an otisxaBon of evaporation for a smaller cluster,
thereby compensating for the missing evaporatighefarger clusters. Therefore, it is possible
that some evaporation rates in the present stualg @ overestimated. However, the data that
are shown in Table 1 for a comparison have beewatefrom similar methods, where the
effect of evaporation is also considered only ug ¢tertain cluster size limit. Truncation effects
are discussed in detail by Hanson et al. (2017).

Similarly, to truncation the negligence of evapaof either acid or base for all considered
clusters can potentially lead to errors (see Se@i@). The model includes only the cluster
evaporation rates, which seem to be most relegaat Figure 1 and cf. Ortega et al., 2012; Yu
et al., 2018). For each cluster, one evaporatitmisancluded (either acid or base). This means,
that the negligence of the second evaporation aiatan lead to an overestimation of the
cluster concentration. However, in case the omitgdporation rate is smaller than the
considered one, this effect is very likely smalieTselection of the considered evaporation rates
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are guided by the literature data on QC calculati@rtega et al., 2012; Yu et al., 2018). This
does, however, not rule out that important evajpamathannels could be neglected. On the
other hand, increasing the number of free parametses not necessarily improve the accuracy
of the model but only its complexity and the congpainal demands for the optimization and
Monte Carlo calculations.

4.3 Implementation of literaturedatain SANTIAGO

The previous study by Kirten et al. (2016) compattee CLOUD data with ACDC
(Atmospheric Cluster Dynamics Code, McGrath et 2012) model calculations using the
thermodynamic data from Ortega et al. (2012). Ushngy same data Figure S3 shows this
comparison using the model from the present st8dyprisingly the agreement between model
and measurement is better than in the study byeliet al. (2016). One difference between the
two studies is that the ACDC model used the foromatate for neutral clusters containing six
sulfuric acid molecules instead of nine in the preéstudy. This difference was tested with the
present model but it does only lead to a very sotahge in the simulated formation rates. An
effect that can, however, explain the discrepasdhat the ACDC model calculations did not
consider a wide range of particle sizes. This ctedd to inaccuracies regarding the coagulation
sink for the formed clusters. Especially at higldaoncentrations when growth and nucleation
rates are large, the particles can create a signifisink that can reach similar magnitude as the
wall loss rate in the CLOUD chamber (Kirten et2015b). Neglecting the full size distribution
can lead to an overestimation of cluster concantratand formation rates (S| Textl). This
effect needs to be studied in more detail in ther&u In any case, taking into account particles
over a wide size range should improve the accusheymodel due to the described effect.

The comparison between the CLOUD data and SANTIAGIDg the Hanson et al. (2017)
data is shown in Figure S4. Hanson et al. base da& on flow tube measurements performed
at rather warm temperatures (~295 K). The agreebetnteen the modeled and measured data
is good, however, mostly at the low temperature33 (K and 223 K); for the warmer
temperatures, the model using the literature dgtafeantly overestimates the NPF rates. This
can partly be due to the fact that the model da#snclude all possible evaporation effects
(acid and base for each cluster). Hanson et al. AP@erived their data, however, by including
many more possible evaporation channels. Theirigmgte shifts the new particle formation
rates to higher values. It is likely that this effés stronger at warm temperatures because at
very cold conditions the evaporation rates fordhusters are generally very low except for the
A1B1 cluster. For this cluster only one possible evapon channel exists that is included in
the model. By including the new particle formatiates reported by Hanson et al. (2017) for
278 K at CLOUD chamber conditions (additional syfsbm Figure S4 at 278 K), the
agreement is somewhat better but still signifigahtgher than the CLOUD data. Therefore,
the missing evaporation channels in this study ctexplain the full extent of the discrepancy.

5. SUMMARY AND CONCLUSIONS
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The model (SANTIAGO, Sulfuric acid Ammonia Nucldam And GrOwth model)
describes new particle formation and growth frora thactions between sulfuric acid and
ammonia. The effect of water vapor is taken intwoaat but the capability of simulating binary
nucleation is limited to low temperatures423 K) because cluster evaporation rates are only
considered up to the tetramer; at warmer tempersitevaporation of larger pure acid clusters
becomes important.

SANTIAGO implements evaporation of the smalleastérs, containing one to four sulfuric
acid molecules and a variable number of ammoniaocutés. The thermodynamic datad(d
and & for 11 different channels is used to calculatap®ration rates as a function of
temperature. Two numeric methods have been appbiefthd the best set of parameters
(Steihaug algorithm) and their probability dendimctions (Differential Evolution-Markov
Chain algorithm, DE-MC). This is achieved by conmpgrthe model output to the CLOUD
data set for neutral nucleation in the ternaryesysof sulfuric acid-water-ammonia (Dunne et
al., 2016; Kirten et al., 2016). The average tag¢itwveen modeled and measured data is found
to be as small as a factor of ~4 (mean error) faide range of conditions (208 K to 292 K,
sulfuric acid at atmospherically relevant conceidres, e.g.> 5x10° cm® at 208 K andk 2x10°
at 292 K) when using the best fit parameters. SAAGD can very well represent the neutral
measured CLOUD data for all tested conditions. Tiesins that even binary neutral nucleation
at the lowest temperatures (208 K and 223 K) cawdiedescribed.

The optimization and the Monte Carlo method werecsssfully applied to explore the
landscape of the cluster thermodynamics for thelemtinog system of sulfuric acid and
ammonia. However, the probability density functiémmsn the DE-MC algorithm do not yield
a very clear picture of the most likely values dibt and & as the derived probability density
functions are rather flat and indicate a wide ramiggrobable values. Therefore, the parameters
reported in the present study have a rather higlertgnty. Future experiments and quantum
chemical calculations are necessary to narrow dbese uncertainties.

Implementation of the literature data in the modelicates that the Ortega et al. (2012)
thermodynamic data describes the CLOUD data b#tser previously thought (Kirten et al.,
2016). This could be because of the negligencargelparticles in the previous study. It seems
essential to include the larger nucleated partidéise model as these contribute to the sink for
the small nucleating clusters and particles. Thedda et al. (2017) data overestimate the new
particle formation rates for the warm temperat 288 K and 292 K). No direct comparison to
the Yu et al. (2018) is possible as no temperadegmendent evaporation rates can be calculated
from their reported @ values at 298 K.

SANTIAGO allows calculating new particle formatiorates for a wide range of
experimental conditionsI( RH, sulfuric acid and ammonia concentration). In casttto the
parameterization from Dunne et al. (2016) for th€0OD data it is also capable of considering
different external sinks (e.g., due to chamber/ftalse walls in laboratory experiments or the
presence of pre-existing particles in the atmogghtitat can affect nucleation and particle
growth (Kerminen and Kulmala, 2002; Ehrhart andtidsr 2013). With the model, growth
rates can also be determined.

Finally, the strong dependence on [lHegarding NPF even at levels below 1 pptv
highlights the need for improved instrumentatiorewlone wants to understand the impact of
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ammonia on nucleation as no available techniquereasure such low atmospheric ammonia
concentrations in real-time.
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Nomenclature

Jexp
Jmodel

-3 - XX

variance of the means for each parametdrdqddS)

Hessian matrix of regarding all 81 and & values

number of chains

particle diameter

enthalpy for one of the reactions (see Table 1)

entropy for one of the reactions (see Table 1)

average error for all modeled and measured pafibicnation rates
gradient vector of regarding all #i and & values

particle growth rate

index

index

experimental formation rate (from CLOUD experiment

modeled formation rate

iteration index in numeric algorithms

collision rate constant for clusters/particles

index

index for critical cluster sizen(= 9)

approximated function value in Steihaug’s method

number of experiments{ for 208 K,ny for 223 K,nz for 248 K,n4 for 278 K,ns for
298 K)

total number of coefficients, i.e., alHdand & values Qcoets= 22)
cluster/particle number density

power dependency of an evaporation rate regatimgelative humidity
acceptance probability in Monte Carlo algorithm

statistical metric to indicate convergence forMante Carlo simulation
relative humidity

vector of step changes (aHdnd & values) in one iteration

empirical parameter needed in Steihaug’s optinunalgorithm {1, to)
temperature

variance for a parameter in one of the chains

mean of the variances over all chains for onematar

current vector of allld and &values (Monte Carlo simulation)

drawn vectors of allld and & values from history (Monte Carlo simulation)
new vector of all H and & values (Monte Carlo simulation)

old vector of all ¢ and & values (Monte Carlo simulation)

joint history for all chains in the Monte Carlarsilation

term in the calculation of the new vector in therie Carlo algorithm
radius of trust region in Steihaug’s method

maximum allowed radius of trust region in Steihaugethod

scaling factor in the calculation of the new veatothe Monte Carlo algorithm
empirical parameter needed in Steihaug’s optinanalgorithm ¢1, 72, 773)
mean value for one parameter
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Ohni

mean value over all chains for one parameter
ratio between actual and predicted function radaan Steihaug’s method

standard deviation
standard deviation of the parameters from ther pligtribution
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Table 1: dH and & values from this studydgptimization method;medians from Monte Carlo simulation) and from tierature. & values at 298
K. 3Data from Ortega et al. (2012Data from Hanson et al. (2017Pata from Yu et al. (2018)Value applies for cluster without involvement of
water, with different amounts of water molecules tralue varies between 11.52 and 12.59 kcal'mdlalue applies for cluster without involvement
of water, with different amounts of water moleculleis value varies between 5.71 and 8.37 kcal'mol

Reaction

-tH (kcal mot?)

-dS (cal moti! K1)

-dG (kcal mot?) at 298 K

H2SOy + NHz = (H2SQi)1(NHs)1
(H2SQy)1(NH3)1 + H:SOy = (H2SOy)2(NH3)1
(H2SQw)2(NH3)1 + NHs = (HaSQu)2(NH3)2
(H2SOy)2(NH3)1 + H2SOy = (H2SOy)3(NH3)1
(HzSO4)2(NH3)2 + H,SOy = (H25Q)3(NH3)2
(H2SQw)3(NHs)2 + NHs = (H2SQy)3(NHs)s
(H2SQu)3 + HoSOy = (H2SQy)a
(H2SQw)3(NH3)1 + HoSOy = (H2SQn)a(NH3)1
(H2SQOy)3(NHs)2 + H2SOy = (H2SOy)a(NH3)2
(H2SQy)3(NH3)z + H:SOy = (H2SOy)a(NH3)s
(H2SQOy)a(NH3)z + NHs = (H2SQi)a(NHs)4

16.7, 12.8 (16.00} (15.0¥
27.8, 29.T (29.00} (29.0f
19.3, 21.1 (19.46} (19.0f
18.3, 20.0 (21.06} (26.0F
28.T, 30.6 (27.63} (30.0f
25.7%, 27.T (25.48} (20.0f
19.7, 23.1 (16.78} (23.0f
21.8, 20.7 (21.34} (24.5§
22.9, 24.1 (23.04} (26.0f
27.9, 30.8 (27.60} (30.0f
19.%, 20.3 (19.18)(21.0¥

29.8, 30.0 (28.14 (21.8)
43.1, 42.9 (42.90% (52.08
34.7, 34.7 (33.41F (26.8)
37.6, 37.2 (36.69F (35.3)
38.0, 38.3 (38.74% (36.9)
37.6, 37.9 (38.07} (28.5)
27.F, 26.7 (27.84% (43.9)
43.2, 44.7 (43.50% (43.6)
39.6, 39.9 (40.157 (36.9)
41.%, 40.3 (41.09% (34.2)
28.7, 29.0 (28.68F (27.8)

7.8, 3.9 (7.61% (8.5f (7.77)
15.0, 16.3(16.22} (13.5) (11.65)°
9.0%, 10.97(9.5% (11.0 (8.75§°
7.1%, 8.9 (10.13} (12.5) (7.08Y
16.8, 19.T (16.09 (19.0) (12.17}
14.5, 15.8 (14.14} (11.5) (7.42¥
11.6, 15.T (8.48F (9.9F (n.a.
8.9, 7.5 (8.38) (11.5 (4.16¥
11.%, 12.7 (11.08} (15.0) (7.48¥
15.7%, 18.8 (15.36} (19.8) (12.34}
10.6, 11.6 (10.63F (12.7) (11.34}
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Figurel. Acid-base scheme implemented in SANTIAGO (Sulfaded Ammonia NucleaTlon
And GrOwth model). ABy denotes a cluster of sulfuric acid and ammonia wgulfuric acid
molecules angtammonia molecules. The arrows indicate the corsitevaporation rates. Red
colors mark the evaporation channels optimized witmeric methods in the present study.
Evaporation rates for the channels marked with rgi@®ows were taken from Hanson and
Lovejoy (2006). Forward reactions are not shown th& model considers all possible
collisions, i.e., cluster-cluster collisions and tnqust the additions of monomers.
Clusters/particles beyond the pentamer (with cotmagan Ns) are not allowed to evaporate;
for these larger clusters, the base content isoasidered.
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1071
1072  Figure 2: Probability density functions ofttland & values for 11 clusters in the acid base
1073  system (ABy = cluster of sulfuric acid and ammonia wihsulfuric acid molecules any
1074 ammonia molecules). The vertical lines indicate vakies from the optimization method
1075 (dashed lines) and the medians of the probabigtysdy functions (dotted lines).
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Figure 3: Calculated new particle formation (NPF) ratesmeasured NPF rates (from Kirten
et al., 2016). The color code indicates the tentpeza(between 208 K and 292 K). The
calculated values are from the model using thentbdynamic data from Steihaug’s
optimization method. The solid line indicates time-¢o-one correspondence, while the dashed
lines indicate a factor of ten deviation from theedo-one line. The error bars include the
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Figure 4. Comparison between simulated and measured newlpddrmation rates for five
different temperatures. The color code indicatesaiimmonia mixing ratio (for the respective
temperatures indicated in the figure panels andgesspre of 1 bar); the grey symbols indicate
pure binary conditions. The model (solid lines)atermodynamic data from the optimization
scheme according to Steihaug (1983, Section 2B .average ratio for the deviation is ~4. In
comparison, the results from the parameterizatteralso shown (dashed lines, Gordon et al.,

2017).
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1094
1095 Figure 5. New particle formation rates as a function of #mamonia concentration. The
1096 triangles show the neutral formation rates from @e€OUD experiment normalized to the
1097 indicated sulfuric acid concentration for five @ifént temperatures (Ktrten et al., 2016). The
1098 lines show calculated NPF rates from the modelgusire thermodynamic data from the
1099  optimization method (Table 1). The dashed sect{tms248 K, 278 K and 292 K) indicate
1100 regions of the parameter space where the modelrddegve accurate results as the true binary
1101 rates are expected to be lower (Ehrhart et al.6R01
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1104  Figure 6: Particle growth rates as a function of the sutfacid monomer concentration. The
1105 black line indicates the theoretical curve frommieen et al. (2010) for a temperature of 278
1106 K and for sulfuric acid vapor. The other lines shibv calculated particle growth rates at two
1107  different temperatures (indicated in the figurecied). The NH concentration was set te10°
1108  cm (blue and red curve); for all calculations a dgnsf 1615 kg ¥ and a particle mobility
1109 diameter of 2.4 nm was used; the diameter of thicpes was calculated assuming a molecular
1110 mass of 151 amu (2 water and 1 ammonia moleculsyifric acid molecule).
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