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Abstract. Climate model simulations show an acceleration of the Brewer-Dobson circulation (BDC) in response to climate 

change. While the general mechanisms for the BDC strengthening are widely understood, there are still open questions 

concerning the influence of the details of the wave driving. Mean age of stratospheric air (AoA) is a useful transport 

diagnostic for assessing changes of the BDC. Analysing AoA from a subset of Chemistry Climate Model Initiative part 1 

climate projection simulations, we find a remarkable agreement between most of the models in simulating the largest 20 

negative AoA trends in the extratropical lower to middle stratosphere of both hemispheres (approximately between 20 and 

25 geopotential kilometers (gpkm) and 20°- 50°N/S). We show that the occurrence of AoA trend minima in those regions is 

directly related to the climatological AoA distribution, which is sensitive to an upward shift of the circulation in response to 

climate change. Also other factors like a reduction of aging by mixing (AbM) and residual circulation transit times (RCTTs) 

contribute to the AoA distribution changes by widening the AoA isolines. Furthermore, we analyze the time evolution of 25 

AbM and RCTT trends in the extratropics and examine the connection to possible drivers focusing on local residual 

circulation strength, net tropical upwelling and wave driving. However, after the correction for a vertical shift of pressure 

levels, we find only seasonally significant trends of residual circulation strength and zonal mean wave forcing (resolved and 

unresolved) without a clear relation between the trends of the analyzed quantities. This indicates that additional causative 

factors may influence the AoA, RCTT and AbM trends. In this study, we postulate that the shrinkage of the stratosphere has 30 

the potential to influence the RCTT and AbM trends and thereby cause additional AoA changes over time. 
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1 Introduction 

 A global mass meridional circulation in the stratosphere, the Brewer-Dobson circulation (BDC), has been discovered by 

Brewer (1949) and by Dobson (1956) through analysis of trace gas distributions. Climate model simulations robustly show 

that the BDC accelerates in connection to the greenhouse gas induced climate change (Shepherd and McLandress, 2011; 35 

Palmeiro et al., 2014) and this acceleration dominates the stratospheric changes in climate model projections (Butchart, 

2014). Recently, Polvani et al. (2017, 2018) and Morgenstern et al. (2018) showed that ozone depleting substances are key 

drivers of BDC trends with the potential to considerably reduce the trends in the future. However, the physical cause behind 

the BDC changes, in particular the role of various sources of wave driving for the circulation and its variations (Cohen et al., 

2014), remains an open issue.  40 

The BDC consists of two separate branches - a ‘shallow branch’ in the subtropical lower stratosphere (LS) and a ‘deep 

branch’ higher in the middle atmosphere (Andrews et al., 1987; Plumb, 2002; Birner and Boenisch, 2011). Both BDC 

branches are currently considered to be driven primarily by resolved waves of different scales (Plumb, 2002) plus 

contributions from gravity waves (GWs) in the upper stratosphere and mesosphere (Andrews et al., 1987) as well as above 

the subtropical jet (McLandress and Shepherd, 2009). Li et al. (2008), Okamoto et al. (2011) and Butchart (2014) 45 

highlighted the role of GW drag (GWD) and especially of orographic GWD (OGWD) changes for driving the trend of the 

shallow BDC branch. But, there are also indications that changes in the unresolved wave drag are often compensated by 

changes in the resolved wave driving (McLandress and McFarlane, 1993; Cohen et al., 2013; Cohen et al., 2014; Sigmond 

and Shepherd, 2014), which makes it difficult to clearly separate the two effects (e.g. by the Downward Control (DC) 

principle (Haynes et al., 1991)). 50 

In this study, we analyze the mean age of stratospheric air (AoA; Hall and Plumb, 1994) trends and their causative factors in 

the REF-C2 scenario (see Eyring et al., 2013) from a subset of models participating in the Chemistry Climate Model 

Initiative part 1 (CCMI-1; Morgenstern et al., 2017). AoA is a useful transport diagnostic and one of the best available tools 

for assessing the BDC change (Butchart, 2014).  For different methods of definitions and a chemistry climate model inter-

comparison of age-of-air also in the troposphere refer to Krol et al. (2018).  In the first part of our paper, we highlight a 55 

remarkable agreement between the majority of models in projecting the strongest negative AoA trends (global or local 

minimum) in the extratropical lower to middle stratosphere of both hemispheres. The extratropical regions of strongest AoA 

trend have previously been noted by e.g. Okamoto et al. (2011), Li et al. (2012) and Butchart (2014). Studying the full AoA 

spectrum, Li et al. (2012) have attributed the existence of strong AoA trends in the extratropics to the effect of a 

strengthening residual circulation and a weakening of the so-called "recirculation" (in-mixing of old stratospheric air into the 60 

tropical pipe). 

The following sections comprise an in-depth analysis of the kinematic and dynamic changes corresponding with the regions 

of strongest AoA trends. For this analysis we use the Canadian Middle Atmosphere Model (CMAM; Scinocca et al., 2008) 

simulation. CMAM uses relatively advanced orographic (Scinocca et al., 2000) and non-orographic (Scinocca, 2003) GW 
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parameterization schemes and has been used in previous studies regarding BDC (McLandress and Shepherd, 2009) and wave 65 

driving (Shepherd and McLandress, 2011) changes in response to climate change. Also, the issue of compensation between 

resolved and unresolved wave driving has been studied extensively for CMAM (Sigmond and Shepherd, 2014).  

First, we illustrate that the minimal AoA trends in the extratropical lower to middle stratosphere in CMAM are connected 

with the climatological AoA distribution. In this region, the AoA distribution is sensitive to the vertical shift of the pressure 

levels under climate change (Lübken et al., 2009) as well as to the widening of the AoA isolines (Fig.1). The isoline 70 

widening (not to be confused with the circulation widening) is due to a combination of the upward shift itself and a decrease 

in AoA. A decomposition of AoA into residual circulation transit times (RCTTs; Birner and Boenisch, 2011) and aging by 

mixing (AbM; Garny et al., 2014; Ploeger et al., 2015a) shows an additional contribution to the AoA isoline widening by the 

AbM reduction.  

In the final section of results, we investigate possible causative factors of AbM and RCTT trends with a focus on the 75 

hypothesis of a strengthening residual mean circulation in the shallow BDC branch (e.g. Li et al., 2012; Garny et al., 2014; 

Ploeger et al., 2015a) driven by changes in resolved and unresolved extratropical wave forcing (e.g. Okamoto et al., 2011; 

Shepherd and McLandress, 2011; Butchart, 2014). However, after the correction to the vertical shift of pressure layers, a 

clear connection between the acceleration of the residual circulation, stronger wave driving in the extratropical lower to 

middle stratosphere, net tropical upwelling and the time evolution of the RCTT and especially AbM trends is not found. On 80 

this basis we argue that additional mechanisms may be acting. Namely, in the discussion section, we formulate a hypothesis 

about a possible impact of a variable shift of pressure levels in the stratosphere under climate change (stratospheric 

shrinkage; Lübken et al., 2009; Berger and Lübken, 2011) for the AoA (RCTT and AbM) trends. 

 

Figure 1. Schematic illustration of the location and direction of the effects of the upward shift trend (A), the maximal AoA 85 

gradient (B) and the aging by mixing decrease (C) on the AoA trend. The colors indicate the climatological zonal mean AoA 

distribution of the 1960-2000 period in the CMAM REF-C2 simulation. 
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2 Methodology 

2.1 Data 

Our methodology is motivated by the intention to diagnose the effect of the vertical shift of the circulation due to 90 

tropospheric warming and stratospheric cooling (Shepherd and McLandress, 2011; Singh and O’Gorman, 2012; Oberländer-

Hayn et al., 2016). For this goal, we have chosen to base our analysis on interpolation to the geopotential height vertical 

coordinate as an equivalent to the geometric height (for details on the difference between geometric and geopotential height, 

which is variable with altitude, refer to Andrews et al., 1987). The method of interpolation and vertical shift analysis is 

described in Section 2.2. Among the models that participate in the CCMI-1 project, we were able to apply this methodology 95 

to monthly mean data of five chemistry-climate models (CCMs) – 1) CMAM, 2) the Goddard Earth Observing System CCM 

(GEOSCCM, Pawson et al., 2008), 3) the ECHAM/MESSy Atmospheric Chemistry model (EMAC; Jöckel et al., 2016) in 

two setups with different vertical resolution L47 (r2i1p1 ensemble member) and L90, 4) HadGEM3-ES (Hardiman et al., 

2017) and 5) NIWA-UKCA (Morgenstern et al., 2009) ensemble of REF-C2 simulations. Basic information on these 

simulations is summarized in Eichinger et al. (2019; Tab. 1) and more details on the simulation setups can be found in 100 

Morgenstern et al. (2017). The selection of models is based on the availability of the required variables for our analysis and 

applicability of the method described in Section 2.2. 

Following Dietmüller et al. (2018), the AoA data require additional modification. For each time step, the AoA value at the 

tropical tropopause (between 10°S and 10°N) is subtracted from the AoA values everywhere in the stratosphere (so that 

AoA=0 at the tropopause). This ensures consistency between the simulations and filters the effect of an increasing path the 105 

air has to travel before entering the stratosphere due to the tropopause rise over the period of the study (Held, 1982; Santer et 

al., 2003, Añel et al., 2006, Shepherd and McLandress, 2011, Oberländer-Hayn et al., 2016, Abalos et al., 2017).  

The studied period 1960-2100 has been divided into three parts in agreement with common periods of the REF-C2 model 

outputs: 1960-2000 (regarded as reference period in our study; Ref), 2000-2050 (near future; NF) and 2050-2100 (future, F). 

Those periods correspond well with the ozone depletion and projected recovery (Dhomse et al., 2018; and Fig. 1S in the 110 

Supplement for the ozone evolution in CMAM REF-C2 simulation), which has been highlighted to play a crucial role for 

driving the BDC trends (Polvani et al., 2017, 2018; Morgenstern et al., 2018). 

In Section 3.2, we analyze the mechanisms of the occurence of the minimal AoA trends in the extratropical stratosphere and 

highlight the important role of decreasing RCTT and AbM for the AoA isoline widening. RCTTs are calculated according to 

the method of Birner and Bönisch (2011) based on residual circulation backward trajectories. AbM is estimated as the 115 

difference between AoA and RCTTs (see Garny et al. 2014, Dietmüller et al. 2017, 2018). This means that AbM includes all 

sorts of resolved and unresolved mixing (see Dietmüller et al., 2017). Due to the methodology of their computation 

(initialization of backward trajectories), RCTTs and therefore also AbM data are available starting from the year 1970.  

For analysis of the causative factors of AbM and RCTT trends in Section 3.3, we use CMAM REF-C2 monthly OGWD, 

non-orographic gravity wave drag (NOGWD), EPFD and residual mean velocities ( v * ,w* ). These quantities are also 120 
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interpolated to the geopotential height vertical coordinate by means of collocated monthly geopotential data. We decided not 

to distinguish between the OGWD and NOGWD in the analysis, but take the sum of the two (GWD), partly because we have 

zonal mean monthly averaged data only and partly because NOGWD parametrization schemes are usually tuned to have 

only little influence on the LS (Scinocca, 2003).  

Throughout the paper, we use information about the tropopause and turn-around latitudes as a measure for BDC widening 125 

(Hardiman et al., 2014). The tropopause is computed as a lapse rate first tropopause using the WMO (1957) definition. The 

turn-around latitudes are computed as the first latitude with a monthly mean vertical residual velocity being lower or equal to 

zero going poleward from the equator on the respective hemisphere and geopotential level. 

Trends of all variables have been estimated by the Theil-Sen estimator (Theil, 1950; Sen, 1968) and their significance have 

been computed using the Mann-Kendall test (Mann, 1945; Kendall, 1975). Where applicable, the statistical significance of 130 

differences and correlations has been computed by a Student's t-test. 

2.2 Method 

The monthly mean data of all analysed quantities (in the form Y(time, plvl, lat, lon), where Y is a scalar function, time is a 

time step, plvl pressure or hybrid level depending on a model, lat is latitude and lon stands for longitude) have been linearly 

interpolated from model levels to the equidistant geopotential height vertical coordinate (0 <1.25< ... < 70 gpkm) using 135 

collocated geopotential height values  normalized by the standard gravity at the mean sea level 

(9.80665 ms−2 ). The transformation of a vertical coordinate has a direct influence on the value of trends, which can be 

illustrated by approximating the trend by a local time derivative and by a simple application of the chain rule. Having two 

scalar functions Y(time, plvl, lat, lon) and Y'(time, φ(time, plvl, lat, lon) , lat, lon), their local time derivatives in pressure 

and geopotential coordinates are related as follows: 140 

∂Y
∂t

=
∂ "Y
∂t

+
∂ "Y
∂φ

∂φ
∂t

,   (1) 

where ∂ denotes a partial derivative and t is time. In meteorology we generally do not distinguish between Y and Y'. For 

AoA (Y=Y'=AoA) eq. (1) yields: 

∂AoA
∂t p

=
∂AoA
∂t φ

+
∂AoA
∂φ

∂φ
∂t

.    (2) 

Here the local derivative of AoA in geopotential height vertical coordinate is denoted by subscript φ  and in pressure 145 

coordinates by subscript p.  

In Section 3.2, we estimate and subtract the effect of the vertical shift of pressure levels on the computation of trends (the 

second term in eqs. (1) and (2)). Later in the text we call this procedure a correction to the vertical shift of the pressure 

levels. The correction is based on modification of the geopotential height field (to which we interpolate) so that it does not 

φ(time, plvl, lat, lon)



6 
 

have a trend (in the long term sense 
∂φ
∂t

 is zero) and the second term in eqs. (1) and (2)) vanishes. The correction is 150 

implemented as follows: Where the pressure levels have a significant vertical shift trend, its monthly value (decadal trend 

divided by the number of months, 120) is cumulatively subtracted from the geopotential field used to interpolate AoA (and 

other quantities). This is demonstrated in eq. (3) for the correction in the F period: 

𝜙! 𝑖, 𝑝,lat = 𝜙 𝑖, 𝑝,lat − 𝑡ref 𝑝,lat ⋅ 𝑛ref − 𝑡nf 𝑝,lat ⋅ 𝑛nf − 𝑡! 𝑝,lat ⋅ 𝑖!!!,..,!!.   (3) 

𝜙! is the geopotential height after correction that corresponds to a pressure level p and meridional position lat in the month i 155 

of the F period, t is the pressure level trend (gpm month-1) corresponding to p and lat in the given period, and n is the number 

of months in the respective period (Ref, NF, F). Except for interannual and interseasonal variations, the 𝜙! vertical 

coordinate corresponds with the geopotential height of pressure levels at the starting years of the analysis.  The resulting 

trends corrected to the vertical shift of pressure levels are denoted by a superscript c further in the text. 

The interpolation to the geopotential height vertical coordinate has been performed for monthly mean data (AoA, RCTT) or 160 

for zonal mean monthly mean fields (Eliassen-Palm flux divergence (EPFD), GWD, residual mean velocities). From theory, 

the interpolation should be made on the finest scale (spatiotemporal) possible. We tried to estimate an upper boundary of the 

interpolation-connected error by considering an extreme case - we confronted the zonal mean AoA climatology in the 1960-

2000 period computed from 1) daily 3D AoA data interpolated on a daily basis and 2) from climatological zonal mean AoA 

data interpolated using the 1960-2000 mean zonal mean geopotential data. This is an extreme case, because in our analysis 165 

we are interpolating at least monthly mean zonal averages. The difference of resulting AoA climatologies is at maximum 

around ±0.05 year in the polar regions (not shown). Also in other regions (and in the extratropical stratosphere) the upper 

estimate of the error connected with interpolation reaches at maximum 1% of the AoA climatological value. This shows that 

the application of our methodology to the monthly mean zonal averages will not qualitatively affect our results, especially in 

the extratropical stratosphere.  170 

2.3 Additional diagnostics 

Note that, in the process of changing to a different coordinate system, only values of the original quantities are interpolated. 

This may be confusing especially in the case of residual mean vertical velocity (w* ), which is usually computed in the 

models as Pa s-1 as most models use hybrid-pressure coordinates (including CMAM; see Table 3 in Morgenstern et al., 

2017) and has to be transformed to m s−1 for the standard output. As described in the Supplement of Dietmüller et al. (2018), 175 

there are some inconsistencies between the CCMI-1 models regarding this transformation. It was suggested by the CCMI-1 

data request to use the log-pressure relationship for this transformation with a scale height of H = 6950 m. In our study we 

interpolate w*  (log-pressure, given on pressure levels) to the geopotential height vertical coordinate. Also, the procedure of 

correction for the vertical shift of pressure levels affects only the distribution of w*  (log-pressure) in the modified 
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geopotential coordinate, where we compute the trends, not the units of w*  (log-pressure) themselves. Later in the text, we 180 

state several times that the correction influences the process of the trend computation only, and that it cannot account e.g. for 

the influence of shrinkage on the vertical velocity in log-pressure coordinates (time dependence of the relationship between 

log-pressure and geopotential meter). The validity of the assumption of a constant scale height, which does not take into 

account the variable vertical shift of pressure levels, is discussed in Section 4.2. 

 185 

 In Sections 3.2 and 3.3 we analyze net tropical upwelling trends and trends of spatially averaged local residual circulation 

and wave driving. Those quantities in the form of mass fluxes or forces are computed from the original pressure (log-

pressure) data interpolated to the geopotential height vertical coordinate. Unlike in pressure, in the geopotential height 

vertical coordinate system, mass flux (force) has to be computed as a product of velocity (acceleration) and density, which is 

not a standard output in the CCMI-1 REFC2 simulations. In our analysis, density is computed using the state equation for 190 

dry air.  However, the net upwelling mass flux trend is dominated by the density trends (negative trends after the correction 

for the vertical shift, see Fig. 2S and Tab. 3S).  Therefore we define a kinematic proxy for the mass flux in the form 

ρ(z, lat)
period

w*(z, lat) , where overbar denotes the zonal mean and 
period

 denotes the average across a period.  

The net tropical upwelling kinematical proxy (UP) is then computed by three different methods: 1) direct integration of the 

mass flux proxy between the turn-around latitudes (UPwstar), 2) evaluation of the residual mean stream function with a 195 

vertical integral of the mass flux proxy connected with v *  at the turn-around latitudes between 20 and 40 gpkm (UPvstar) and 

3) usage of the quasi-geostrophic version of the DC integral at the turn-around latitudes between 20 and 40 gpkm with a net 

force in the form ρ(z, lat)
period

(EPFD(z, lat)+GWD(z, lat))  (UPDC). See e.g. Okamoto et al. (2011), Abalos et al. 

(2015) for more information on the different methods for tropical upwelling computation. The meridional and vertical 

integration was performed using classical Simpson's rule (Süli and Mayers, 2003).  200 

The average density is also used to define the local residual circulation strength (RC) in the form 

ρ(z, lat)
period

v *(z, lat)2 +w*(z, lat)2 .  Neglecting the density trend allows us to focus on the acceleration of the 

circulation (which is linked with kinematic variables like AoA, RCTT) while still being able to weight the contributions of 

different vertical levels to the spatial averages from which we compute the trends in Sections 3.2 and 3.3.  

3 Results 205 

3.1 Extratropical AoA trends in the model simulations 

In Fig. 2, the trends of zonal mean AoA for the subset of CCMI-1 simulations are shown for the three periods (Ref, NF and 

F). The contour lines display the climatological AoA distribution of the respective period. In all periods we see that the 
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analysed CCMI-1 REF-C2 simulations show the maximum AoA gradient in the region between the tropical LS and the 

extratropical lower to middle stratosphere (illustrated in Fig. 1).  210 

Here, we focus on the inter-model agreement in projecting the largest negative trend (global or local minimum) in the 

extratropical lower to middle stratosphere of both hemispheres. The location of those minima does slightly vary between the 

models, but can be found in most cases approximately between 20 gpkm and 25 gpkm and 20°- 50°N (ExNH) and 20°- 50°S 

(ExSH). As long as we do not discuss hemispheric differences, those regions are referred to as Ex regions in the following. 

Presence of global or local extremes of the AoA changes in the extratropics also in other CCMI-1 simulations can be seen in 215 

Figs. 1 and 3 in Eichinger et al. (2019).  

The best agreement in projecting the minimal trend in the Ex regions is in the NF and F period (Fig. 2). In the NF period, the 

AoA trends from all analyzed simulations display a well-pronounced, localized NH minimum (on the analyzed vertical 

domain) in the ExNH region. In the NF period, the ExSH AoA trend minima are only local extremes in NIWA and CMAM 

and have a different structure in GEOS and EMAC-L47. In the F period, there is a pronounced, localized AoA trend 220 

minimum in all simulations except EMAC-L47 in the ExNH region and EMAC-L47 and HADGEM in the ExSH region. 

Particularly in the EMAC-L47 simulation, the trend is strongest in the polar regions below/above 30 gpkm in the NH/SH.  In 

the Ref period, the models agree only in projecting strong negative AoA trends in the ExSH region. In the NH, the trends are 

small or more wide-spread in a broader region with the minimum at the pole. 

A localized minimum of the AoA trend in the ExSH region for the 1965-2000 period and in both Ex regions for the 2000-225 

2080 period is visible also in Fig. 3 in Polvani et al. (2018) for their "All-forcings" simulation. In their study, Polvani et al. 

(2018) apply the Whole Atmosphere Community Climate Model (Marsh et al., 2013; Solomon et al., 2015; Garcia et al., 

2017), which is forced as per the CCMI-1 specifications of scenario REF-C2. The localized and almost symmetric AoA 

trend features in the Ex regions (best pronounced in our analysis in CMAM, HADGEM and NIWA) are collocated with the 

maximum climatological AoA gradient. This suggests that the trend minima are a geometric consequence of the 230 

climatological AoA distribution and its future changes that are aligned with the direction of the gradient. We investigate this 

in the next subsection and propose possible causes for the changes of the AoA distribution. 
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Figure 2. Zonal mean AoA trends [days/decade] (colors) and AoA climatology (contours) of the analysed CCMI-1-REFC2 235 

simulations. The left column shows the Ref period, the middle column the NF period and the right column the F period. The 

vertical axis is in geopotential kilometers [gpkm]. The mean tropopause position is indicated by the bold black line. White 

regions mark where the significance level of the trends does not exceed 95%.  
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The time evolution of the AoA trends is in agreement with the effect of the phasing out of the ozone depleting substances, 240 

which will lead to a reduction of the BDC trends in future decades (Polvani et al. 2017, 2018; Morgenstern et al., 2018). In 

Fig. 2, except for the EMAC-L90 REF-C2 simulation, all analyzed simulations are in agreement with this (note that the color 

bar is different between the periods). The strongest negative AoA trends (globally as well as in the Ex regions) can be 

detected in the Ref period and thereafter in the NF period, the trend declines. In the F period (mature state of ozone recovery, 

see Fig. 1S), the AoA trends are approaching the magnitudes of the Ref period. In the EMAC-L90 REF-C2 simulation the 245 

AoA trend shows the smallest magnitude in the Ref period and an increase in the NF and F periods. For a detailed 

intermodel comparison of the AoA changes refer to Eichinger et al. (2019).  

3.2 Reasons for the minimal AoA trend in the extratropical stratosphere 

In the first part of this section we analyze the vertical shift of pressure levels and connect it with the net upward shift of the 

circulation (Shepherd and McLandress, 2011; Singh and O’Gorman, 2012; Oberländer-Hayn et al., 2016).  In the second part 250 

we estimate the effect of the correction for the vertical shift of the pressure levels on AoA, AbM and RCTT trends and 

analyze the processes leading to the minimal AoA trend in the Ex regions. This part of the analysis is based solely on the 

CMAM simulation. However, the findings of Eichinger et al. (2019) show that the AoA distribution and its change are 

governed by similar processes among the different CCMI-1 REFC2 models. This suggests that our results can be considered 

robust also for other CCMI-1 simulations. 255 

3.2.1 Vertical shift and stratospheric shrinkage  

Observations and models have shown that the tropopause shifts upward (Santer et al., 2003; Añel et al., 2006) together with 

the whole tropospheric circulation pattern (Singh and O’Gorman, 2012) due to the tropospheric warming and stratospheric 

cooling in the course of climate change. The tropospheric warming also influences BDC wave driving by causing an upward 

displacement of the critical layers for wave breaking (Shepherd and McLandress, 2011). The effect of the upward shift of the 260 

circulation on the BDC trends have been highlighted recently by Oberländer-Hayn et al. (2016), where the shift has been 

divided between the shift of pressure levels and relative to pressure levels. Our methodology (see Section 2.2) is developed 

to diagnose (and subtract) the vertical shift of pressure levels, which is diagnosed as a trend of geopotential height of 

pressure levels (Fig. 3). 
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 265 
Figure 3. CMAM trend of geopotential height of pressure levels [gpm/decade] interpolated to the climatological 

geopotential height of the selected pressure levels in each period. The mean tropopause and turnaround latitude positions are 

marked with black lines. Only the trends in the regions where they exceed the statistical significance of 95% confidence 

level are plotted. 

 270 

In Fig. 3 we see that the tropopause is collocated with the region of the largest upward trend of pressure levels in all periods. 

The trend of the pressure levels in the vicinity of the tropopause in the tropics is around 40 gpm/decade, 60 gpm/decade and 

80 gpm/decade in the Ref, NF and F period, respectively. Above the tropopause, the trend decreases with altitude and it is 

not significant higher up. Starting in the middle stratosphere (above around 38 gpkm), the trend is negative. This vertical 

structure of the pressure level geopotential height trend characterizes the stratospheric shrinkage.  275 

The vertical shift is not globally homogenous, it shows a maximum between approximately 30°S and 30°N in the Ref period 

and it is not significant in the polar regions. In the NF and F period, the area of significance of the trend widens, moving 

upwards and shifting slightly to the NH. The magnitude of the upward shift trend is smallest in the Ref period and largest in 

the F period. Interestingly, there is a strong (around 200 gpmdecade) almost significant (at a 85% confidence level and so not 

shown) negative trend of the pressure levels in the Ref period in the SH polar stratosphere between 10 to 25 gpkm connected 280 

most likely with radiative effects due to ozone depletion and dynamical response of the SH polar vortex. 

As described in eq. (2), the height changes of the pressure levels result in a dependence of the AoA trend on the vertical 

coordinate system. Since the partial derivative of AoA with respect to the geopotential height is generally positive in the 

stratosphere (see Fig. 2), the sign of the second term in eq. (2) is determined by the local derivative of the geopotential height 

of pressure levels (in our approximation by the trend of geopotential height of pressure levels). Hence, the AoA trend in 285 

geopotential height vertical coordinate is smaller/larger than in pressure coordinates, where the pressure levels rise/sink. In 

the LS, the pressure levels rise and so the AoA trend is smaller (more negative) in geopotential height than in pressure 
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coordinates. This can be easily illustrated by assuming a situation, where the AoA trend in pressure coordinates would be 

zero. But as the pressure levels rise, the fixed geopotential corresponds to increasing pressures over time. These are 

connected with smaller AoA, which yields a negative AoA trend in geopotential coordinates. 290 

The second part of the vertical shift of the circulation, the vertical shift relative to the pressure levels, is diagnosed in the 

literature mainly with relation to the tropopause rise. E.g., Abalos et al. (2017) assessed the shift by accounting for the 

tropopause rise by means of remapping to tropopause relative coordinates. The tropopause rise in geopotential height vertical 

coordinate and relative to the surrounding pressure levels is shown in Fig. 4. 

 295 
Figure 4. Time evolution of CMAM zonal mean geopotential height [gpkm] of selected pressure levels and of a lapse rate 

first tropopause averaged between 30°S and 30°N smoothed by a decadal running average. 

 

The tropopause trend in the geopotential height vertical coordinate can be used in our methodology (Section 2.2, eq. 3) 

instead of the trend of geopotential height of pressure levels to diagnose the trends also in the tropopause relative coordinate. 300 

However, due to neglecting the variable vertical shift of pressure levels (see Fig. 3; stratospheric shrinkage (Lübken et al., 

2009)), the assumption of a uniform shift equal to the tropopause rise everywhere in the stratosphere may lead to an 

increasing overestimation of the upward shift effect with distance from the tropopause.  
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In the next section, we estimate the effect of the vertical shift of pressure levels on the computation of trends. Additional 

impact of the vertical shift relative to the pressure levels (included in the tropopause rise) on the trend computation is 305 

quantified for the trend of the net upwelling only, as the upwelling will undoubtedly reflect the tropopause rise (Oberländer-

Hayn et al., 2016), but this is not as certain for the regions higher in the stratosphere. 

3.2.2 The effect of the upward shift and AoA isoline widening 

In Fig. 5 we show the AoA, AbM, RCTT trends in the Ref, NF and F period computed from spatial averages over the Ex 

regions (between 20 gpkm and 25 gpkm and 20°- 50°N/S) in the standard geopotential height coordinates and after the 310 

correction for the vertical shift of the pressure levels (denoted by the superscript c). The bars in Fig. 5 show the trends of the 

net upwelling proxy computed directly by integration of the mass flux proxy between the turn-around latitudes (UPwstar, see 

Section 2.3) at 20 gpkm before (blue) and after the correction (red) to the vertical shift of pressure levels and also after the 

correction to the tropopause shift (green). The vertical level of 20 gpkm has been chosen, because it corresponds with the 

lower boundary of the Ex regions. In Fig. 5 we have chosen to lower the significance threshold to the 90% confidence level, 315 

because many trends are significant between the 90% and 95% levels. The information from Fig. 5 is summarized in Tabs. 

1S and 2S in the Supplement, where also values of trends significant at least at the 80% confidence level are given. 

   
Figure 5. Trends of AoA (squares), AbM (crosses) and RCTTs (pluses) averaged over the Ex regions (ExNH on the left, 

ExSH in the middle) in the Ref, NF and F period in - days/decade. Blue markers denote the trends in geopotential height 320 

vertical coordinates and Red markers the trends computed after the correction for the vertical shift of pressure levels. On the 

right (Tropics), bars represent UPwstar trends at 20 gpkm before (blue) and after the correction (red) for the vertical shift of 

pressure levels and also after the correction for the tropopause shift (green) given in 107kgs−1 / decade . The Ref period is 

not included as there are no signifficant UPwstar trends. Presented are only trend values significant at least at the 90% 

confidence level. AbM and RCTT trends are computed in a reduced Ref period (1970-2000).   325 
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In Fig. 5, both before and after the correction for the pressure level shift, we can see the strongest negative AoA and AbM 

trends in both Ex regions in the Ref period. The AoA and AbM trends both have the same time evolution, decrease (in 

absolute values) from Ref to NF and increase again in the F period. On the contrary, both before and after the correction, the 

RCTT trends are not significant in the Ref period (significant at the 80% confidence level before the correction in ExNH - 330 

see Tab. 1S). In the NF period, the RCTT trends are slightly larger than in the F period both before and after the correction. 

The AoA trends in the Ex regions are dominated by RCTT trends in the NF period. The time evolution of AoA, AbM and 

RCTT trends is unchanged after the correction for the pressure level shift. 

The difference between the directly computed trend value and the trend value after the correction gives us an estimate of the 

influence of the pressure level shift on the trend computation. The influence is determined by the second term on the right 335 

side of eqs. (1) or (2), which consists of the vertical gradient of the given quantity and the rate of the pressure level shift that 

is identical for all quantities, but differs between periods. We have seen in Fig. 5 that for the AoA and AbM trends, the 

influence grows in future periods in accordance with the time evolution of the trend of geopotential height of pressure levels 

(Fig. 3). Absolute values of the AoA trend are reduced by 2, 6 and 8 days/decade (i.e. by 6%, 35% and 26%) after the 

correction in ExNH and by 3, 4, 5 days/decade (7%, 27%, 15%) in the ExSH for the Ref, NF and F period respectively. The 340 

AbM trend is reduced by maximally only 5 days/decade through the correction, however, the 3 days/decade reduction in the 

ExNH region in NF already accounts for 50% of the uncorected trend. In the ExSH region in NF the AbMc trend is no longer 

significant. RCTT trends are also reduced in absolute value by 2 and 3 days/decade (18% and 30%) in the NF and F period 

in ExNH and by 2 days/decade in both future periods (18% in NF and 22% in F) in the ExSH region.  

In the Ref period, the UPwstar trends in geopotential height coordinates (blue bars in Fig. 5) are not significant (only at the 345 

80% confidence level as shown in Tab. 2S). After the correction to the pressure level shift (red bars), the UPwstar trends are 

reduced by 22% and 25% in the NF and F period respectively. In NF and F, both before and after the correction, the UPwstar 

trend is larger in the F than NF period (as it is the case also for AoA and AbM trends).  

It has been noted e.g. by Randel et al. (2008), Butchart et al. (2011) and Butchart (2014) that the residual circulation changes 

mainly depend on strengthening of the tropical upwelling. We find a good correspondence with the RCTT and RCTTc trends 350 

only for the UPwstar trends corrected for the tropopause shift (Fig. 5, green bars). The correction for the tropopause rise is 

implemented in a similar manner as for the pressure level shift (eq. (3)); only the tropopause trend instead of the variable 

pressure level trend is cumulatively subtracted. The UPrel
wstar trend is larger in the NF than F period agreeing with the time 

evolution of RCTT trends in the Ex regions. The UPrel
wstar trend is larger than UPc

wstar trend in NF because, only in the NF 

period, the tropopause rises less rapidly than the surrounding pressure levels in the CMAM simulation (see Fig. 4). These 355 

CMAM results agree well with the results of Oberländer-Hayn et al. (2016) who showed that there is no increase of 

upwelling when accounting for the tropopause rise. We also did not find any net tropical upwelling trends (differs from UP 

by containing the time evolving density) after the correction to the pressure level shift and only one positive trend in the NF 
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period after the correction for the tropopause shift (see Tab. 3S in the Supplement). In summary, we cannot unambiguously 

link the time evolution of AoA, AbM and RCTT trends in the Ex regions with the tropical upwelling trends. 360 

We have also analyzed trends of spatial averages of RC in the Ex regions. RC (i.e. the residual circulation strength) is a local 

measure of acceleration of the residual circulation defined in Section 2.3. However, the RC trends are only sparsely 

significant at the 80% confidence level and severely reduced in magnitude (see Tab. 1 in the next section or Tab. 1S in the 

Supplement) after the correction for the vertical shift of pressure levels. The possible link between the time evolution of 

AoA, AbM and RCTT trends and the acceleration of the residual circulation together with a possible role of wave driving is 365 

analyzed also on a seasonal basis in Section 3.3. 

 

With the methodology for correction to the vertical shift of pressure levels (eq. 3), we can now demonstrate the effect of 

vertical shift on the occurrence of minimal AoA trends in the Ex regions. The distribution of AoAc trends is shown in Fig. 6.  

Without the effect of vertical shift of pressure levels (upward shift up to about 30 gpkm; Fig. 3), the AoA trends do not form 370 

the pronounced, localized, almost symmetric minima in the Ex regions as in Fig. 2 (upper plots for CMAM). Only the global 

minimum in the Ref period remains in the ExSH region. This is likely due to the impact of ozone depletion in the SH in the 

Ref period and the methodological limitation that we do not account for the pressure levels shift in the SH midlatitudes and 

polar region due to the lower significance of the vertical shift trend than our threshold (95% confidence level, Fig. 3).  

 375 
Figure 6. CMAM zonal mean AoA annual trend [days/decade] after the correction of the pressure levels trend for the Ref 

(left), NF (middle) and F (right) period, in colors. Only trends that exceed the 95% significance level are plotted. The mean 

AoA climatology of the respective period is contoured and the tropopause as well as the turnaround latitudes (computed 

from the residual circulation field interpolated to the geopotential height corrected to the upward shift of the pressure levels) 

are shown by bold black lines. The turn-around latitude of the preceding period is illustrated by a dashed line.  380 
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Fig. 6 also shows the mean turn-around latitude positions. The mean turn-around latitude positions between the periods show 

only small differences in their meridional location. In the NH, there are some visible changes towards a narrowing of the 

upwelling region below about 26 gpkm and towards a widening above. This is in agreement with the results of Hardimann et 

al. (2014), who found that the tropical upwelling region narrows below about 20 hPa, and widens above. This pattern also 385 

appears for turn-around latitude position changes in seasons (not shown), when changes in the SH are pronounced as well.  

 
Figure 7. Time evolution of the meridional position of the zonal mean AoA=2years isoline at 20gpkm after the correction to 

the upward shift of pressure levels for CMAM. The evolution is smoothed by a decadal running mean.  

 390 

Figure 7 shows that the AoA distribution in the Ex regions is widening also after subtraction of the vertical shift of pressure 

levels. This widening is related only to AoA isolines and is completely independent of any circulation widening. In Fig. 7 we 

show the time evolution of a meridional position of intersection of the AoA = 2 years isoline with a lower boundary of the 

Ex regions (20 gpkm) after the correction to the vertical shift. The AoA = 2 years isoline crosses the Ex regions initially on 

their equatorward flanks and the intersection with 20 gpkm moves poleward of 40°S and 40°N by the end of the period. 395 

The widening of AoA isolines is partly a direct consequence of the AoA distribution and the negative AoAc trend. Moreover, 

in the Ex regions, there is a specific role of the decreasing AbM (Fig. 5) for the AoA isoline widening. The climatological 

distributions of RCTTs (left panel) and AbM (right panel) in the period 1970-2000 overlaid by the AoA climatological 

distribution (contours) are shown in Fig. 8. Note that the RCTT distribution up to around 30 gpkm between the turn-around 

latitudes is much broader than the AoA distribution, which has a sharper horizontal gradient than the RCTT distribution. The 400 

difference between AoA and RCTTs is largest in the Ex regions and slightly above (up to about 28 gpkm; climatological 

maxima of AbM in Fig. 8). Due to the negative trend in AbMc in the Ex regions (Fig. 5; see Eichinger et al. (2019) for the 

zonal mean distribution of the AbM change), the AoA distribution additionaly widens as it becomes more similar to the 

RCTT distribution. Besides the negative AoAc trend and decreasing effect of AbM, the vertical shift relative to pressure 
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levels (tropopause shift) can also be contributing to the widening shown in Fig. 7 in the sense of shifting the climatological 405 

AoA isolines upward. The basic features of the CMAM climatologies in Fig. 8 are similar to the RCTT and AbM 

climatologies from the CCMI-1 REF-C1 simulations (see Figs. 1 and 2 in Dietmüller et al., 2018).  

 
 

Figure 8. CMAM zonal mean RCTTs [year] on the left and AbM on the right averaged over the 1970-2000 period. The 410 

thick black lines show the mean tropopause and the turnaround latitude positions in the Ref period. 

3.3 Acceleration of the residual circulation and wave driving 

The Ex regions lie in the upper flank of the shallow BDC branch. There, AoA has been found to be controlled by both 

horizontal and vertical residual circulation tendencies and the horizontal mixing tendency (Ploeger et al., 2015b, see their 

Fig. B1). From Fig. 5 we know that the AoA trends in the Ex regions are dominated by the AbM trends in the Ref and F and 415 

by the RCTT trends in the NF period. Note that AbM is not a local quantity. Ploeger et al. (2015b; Lagrangian model study) 

found that AbM corresponds well with the local mixing integrated along the air parcel pathway. Garny et al. (2014) and 

Ploeger et al. (2015a) found that the AbM trends in the lowest part of the stratosphere are affected predominantly by changes 

of the local mixing intensity, but those further above are strongly coupled to the residual mean circulation. This complicates 

the analysis of possible AbM drivers in the Ex regions, because the Ex regions are located in the transition region between 420 

these two regimes. RCTTs are an integrated quantity with climatological values around one year in the Ex regions (Fig. 8) 

and hence they can be influenced by changes in seasonal UP and RC strength (this holds for AbM as well). To gain a better 

insight into these connections, we study how the RC, UP, local wave drag and vertically integrated drag trends correlate with 

each other and with the time evolution of AbM and RCTT trends in the Ex regions. The analysis on a seasonal basis is 

shown in the Appendix. 425 
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The Ex regions are located in a region characterized by domination of the meridional residual mean velocity component v *  

(see the aspect ratio analysis of Birner and Bönisch (2011)). There is a local direct relationship between v * and the 

collocated zonal mean force per unit mass (𝐹) derivable from the Transformed Eulerian Mean equations (Andrews et al., 

1987) under the quasi-geostrophic scaling: 

v *(ϕ, z) = − F(ϕ, z)
f

,           (4) 430 

where ϕ  is the latitude and f  the Coriolis parameter. Equation 4 provides a direct link between the strength of residual 

circulation in the extratropical stratosphere and the distribution of the zonal mean zonal force. Besides the trends of the 

spatially averaged local zonal mean zonal force, we compute also upwelling trends by evaluating the quasi-geostrophic 

version of the DC integral (Haynes et al., 1991) at the turn-around latitudes (UPDC, see Section 2.3). UPDC provides 

information on wave driving in the whole vertical domain of our analysis.  The total drag is in our case composed of the 435 

resolved wave driving characterized by EPFD and OGWD and NOGWD from parameterizations. In the Ex regions 

NOGWD is by an order of magnitude smaller than OGWD. Thus, OGWD largely controls the net GWD that is analyzed 

further. As explained before in Section 2.3, in the definition of forces we also replace zonal mean density by zonal mean 

density averaged over a period to filter out the effect of negative density trends.  

In Tab. 1 we provide annual trends of the spatial averages of total drag (TD), RC, EPFD and GWD scaled by the 440 

climatological zonal mean density and corrected for the vertical shift of pressure levels (c). Seasonal trends are shown in Tab. 

A1 in the Appendix. In Tab. 1 we are providing also values of trends significant between the 75% and 90% confidence level, 

which are denoted with a superscript +. As explained in detail in the Appendix, EPFD trends are computed from spatial 

averages between 18 gpkm and 25 gpkm and 15°- 30°N/S and GWD is averaged in the poleward part of the Ex regions 

between 18 gpkm and 25 gpkm and 30°- 45°N/S near its climatological minimum. The values of trends including the density 445 

are shown in Tab. 5S in the Supplement.  

 

Table 1. Upward shift corrected trend values (c) of total drag (TD, EPFD + GWD) and its components EPFD and GWD 

multiplied by ρ
period

 (all in 10−5kgm−2s−2 / decade ) and RC (10−3kgm−2s−1 / decade ) averaged over the Ex 

regions in the Ref, NF and F period. Presented are trend values significant at least at the 90% confidence level or at least at 450 

the 75% confidence level (denoted by superscript +), otherwise the cell is left blank. 

Period Ref NF F 

Trend TDc EPFDc GWDc RCc TDc EPFDc GWDc RCc TDc EPFDc GWDc RCc 

ExNH -1.3+   1.7+    1.1+  -1.4  1.2+ 

ExSH   -0.6  -0.9 -0.5 -0.7 0.1+ -0.8 -0.6 -0.4 0.1+ 
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Table 1 shows that in the ExNH, neither TDc nor its components over the smaller regions have significant trends in the future 

periods. In Ref, TDc shows a trend on a weaker significance level. RCc has a positive trend on the weaker significance level 

in all periods. In the ExSH, GWDc has a significant annual trend in all periods and EPFDc and TDc in the NF and F period. 455 

This is reflected in NF and F by the RCc trend at a weaker significance level (+). There is no evidence of a direct link 

between the RCTT and AbM trends in the Ex regions (Fig. 5) and the trends of the local quantities in Tab.1. Keep in mind 

that after the correction for the vertical shift of pressure levels, the RCTTc trends are stronger in NF than in F in both Ex 

regions. AbMc trends are weak or not significant in NF and dominate the AoA trend in the F period. In Tab. 1 we cannot see 

any clear time evolution of the magnitude of the trends.  460 

As shown in the Appendix (Tab. A1), seasonally, RCc and TDc and its components have significant trends in both Ex 

regions.  But again, the time evolution of trend magnitudes does not offer any clear link to the RCTTc or AbMc trends. The 

evolution of trend magnitudes between the periods differs depending on season and also on the hemisphere. The validity of 

the quasi-geostrophic local relationship (eq. 4) is expected to be smaller seasonally (in the equinoctial seasons; Sato and 

Hirano, 2019), but the link with RCc is especially weak for GWDc both regarding seasonal correlations (Tab. 4S) or seasonal 465 

(Tab. A1) and annual trends (Tab. 1). 

To conclude, after the subtraction of the vertical shift of pressure levels the AbMc and RCTTc trends in the Ex regions cannot 

be easily linked to the upwelling or local residual circulation changes. The link to the wave driving trends in the NF and F 

period is even less clear. This indicates that additional mechanisms may be involved, for example the effect of stratospheric 

shrinkage could explain some of the AoA changes. Moreover, our diagnostic methods, in particular regarding the sparse 470 

spatiotemporal sampling of GWD effects, may not meet the needs for accurate analysis of the connections between the 

processes. 

4 Discussion 

4.1 Speeding up of the BDC and wave driving 

In several studies a physical connection between changes in AoA, AbM and RCTTs, the speeding up of the residual mean 475 

circulation (see Birner and Bönisch, 2011; Li et al., 2012; Garny et al., 2014; Ploeger et al., 2015a) and increasing wave 

driving by changes in the resolved and unresolved extratropical wave forcing (e.g. Okamoto et al., 2011; Shepherd and 

McLandress, 2011; Butchart, 2014) has been postulated. In the present study, after the correction to the vertical shift of 

pressure levels, we could not find a simple link between trends of wave driving (TDc, GWDc, EPFDc and UPc
DC), net 

upwelling (UPc
wstar and UPc

vstar, Fig. 5 and Tab. A2), local residual circulation strength (RCc) in the extratropical lower to 480 

middle stratosphere (Tabs. 1 and A1) and trends of AoAc, AbMc and RCTTc (Fig. 5), i.e. quantities representing transport 

connected with the BDC. The fact that our results do not fully support the hypothesis indicates that additional mechanisms 

may be influencing transport and dynamics in the studied regions (as discussed in 4.2), but it also partly stems from 

peculiarities of our analysis. Namely, our analysis is focused on the Ex regions, which do not belong fully to the altitudinal 
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range of the shallow BDC branch and lie e.g. on the interface between the two dynamical regimes influencing the AbM 485 

(Garny et al., 2014; Ploeger et al., 2015a). Also, our approach of dividing the REFC2 simulations into three periods is 

different from the above mentioned studies and brings along the novel opportunity to analyze the time evolution of trends of 

different quantities on the expense of more difficult acquisition of significance. 

The trends computed in geopotential height vertical coordinate after the correction for the pressure level shift (c) should be 

comparable to the trends in pressure levels (eqs. (1) and (2)). Hence, it is exactly due to the methodology (choice of 490 

significance levels, periods, seasons, trends vs. differences) that we did not find as robust changes of wave drag in 

connection with the acceleration of the residual mean circulation as reported in other studies based on pressure coordinates 

(e.g. Okamoto et al., 2011; McLandress and Shepherd (2009), Shepherd and McLandress, 2011). However, this does not 

hold for analyses based on log-pressure coordinates, as they include the effect of the vertical shift of pressure levels (see 

discussion in 4.2). If the vertical shift of pressure levels is not subtracted, the emerging link between the trends or changes in 495 

general may be simply induced by the common impact of the vertical shift and not by the structural changes. 

We would like to point out one particular result of our wave driving analysis - a weak correspondence between GWDc and 

the RCc trends. Although the quasi-geostrophic theory itself does not support GWs, it is often used to study GW effects on 

the circulation. As shown in Appendix (Fig. A1), the correlation between v * and GWD is weaker than for EPFD, suggesting 

that the quasi-geostrophic local relationship (eq. 4) is less valid for GWD. Also the weak correspondence between GWD and 500 

RC trends argues against a direct relationship (of absolute values) as in eq. (4). We do not argue that the lower validity of the 

local relationship (eq. 4) for GWD implies that the quasi-geostrophic approximation is generally unfit for studies of the 

GWD effects. We argue that the complex role of GWD on transport in the stratosphere cannot be judged from the zonal 

mean monthly mean data output only, as the average value is not fully representative of the GWD distribution. 

GWs are intermittent (e.g. Hertzog et al., 2012; Wright et al., 2013) and asymmetrically distributed (Hoffmann et al., 2013; 505 

Šácha et al., 2015; Hoffmann et al., 2016; Pišoft et al., 2018) in nature. This intermittency and asymmetry of the spatial 

distribution of GWD (OGWD in particular) is to some extent present also in the CCMI-1 simulations. For example, a crucial 

role of the zonally asymmetric OGWD distribution for its interannual variability has been shown by Šácha et al. (2018) for a 

CMAM specified dynamics simulation (McLandress et al., 2013), which uses the same parameterization of orographic GWs 

as the CMAM REFC2 simulation analyzed in this study. The zonal mean data can hide different effects on the residual 510 

circulation due to the zonally asymmetric distribution of the GWD (Šácha et al., 2016) present in the models and monthly 

mean output can mask the extreme GWD values. Note that also the widely used DC principle relies on zonally symmetric 

forces (Haynes et al., 1991). Clearly, there is a need for provision of as frequent as possible 3D GWD output (complex, not 

only the induced zonal acceleration component) as possible in connection with reporting of extreme values during the time 

window in addition to average values to properly diagnose the possible GW effects present in the models. 515 
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4.2 Stratospheric shrinkage 

In Section 3.2.1 (Fig. 3) we have analyzed the vertical shift of pressure levels, which results in a so-called stratospheric 

shrinkage. Although our methodology accounts for the effect of the vertical shift of pressure levels (stratospheric shrinkage) 

in the process of trend computation, the effect of decreasing geometrical distances between pressure levels in the course of 

the model simulation, which can directly influence the AoA, RCTTs and AbM, cannot be quantified in our analysis. To our 520 

knowledge, this effect has not been mentioned yet in relation to the possible causative factors of the AoA trend (or BDC 

acceleration) before. For example in Tab. 2 we show how the mean distance between the 1 hPa and 100 hPa levels will 

change between the 1960s and the 2090s. In the analyzed simulations, the 100 hPa level in the tropics will be closer to the 1 

hPa level by about 400-700 meters in the 2090s than in the 1960s. Depending on the variable geopotential height of pressure 

levels and distances between the two levels at the start of the analysis in the simulations, the differences in Tab. 2 are ranging 525 

from 2.33 % for CMAM to 1.3% for NIWA of the original distance in the 1960s in the tropics. Assuming a constant speed of 

advection in the vertical, this directly reduces the RCTTs (for vertical velocity of an order of 10−4ms−1 it takes 84 days less 

to travel the distance shrunken by 720 meters). The effect on AbM or mixing in general can be of more complex, possibly 

nonlinear, nature.  

 530 

Table 2. The change in the mean distance (in geopotential meters) between the 1hPa and 100hPa levels in the tropics 

between the 1960s and the 2090s for the analyzed REFC2 CCMI-1 simulations. 

CMAM EMACL47r2 EMACL90 HadGEM3 GEOS NIWA_ens 

721 ± 268 622 ± 230 658 ± 281 682 ± 186 646 ± 250 409 ± 285 

      

As pointed out before, we also cannot account directly for the shift relative to the pressure levels. Typically in the literature 

(Oberländer-Hayn et al. (2016), Abalos et al. (2017)), the tropopause is taken as a proxy for the upward shift relative to 

pressure levels. Otherwise, the possibly non-homogeneous shift relative to pressure levels in the stratosphere cannot be 535 

objectively assessed. Note also that the shift related to the tropopause can become very complicated to disentangle. The 

whole region changes its structure because of the increasing occurrence of double and multiple tropopauses due to increasing 

baroclinicity in the course of climate change (Castanheira et al., 2009; Castanheira and Gimeno, 2011; Wang and Polvani, 

2011; Añel et al. 2012).   

 In Fig. 4 (Section 3.2.1) we have shown how the first lapse rate tropopause in CMAM shifts relative to pressure levels 540 

between 30°S and 30N for the CMAM REFC2 simulation. The averaged tropopause shifts by about 1 gpkm in the course of 

the simulation. Such a shift is in the range of the tropopause trends from the Coupled Model Intercomparison Project 

(CMIP5) ensemble mean in the tropics (Fig. 7a in Vallis et al. (2015)). It corresponds also to the net equatorial tropopause 

height change from the simulations analyzed by Oberländer-Hayn et al. (2016) and Abalos et al. (2017), who diagnosed a net 

tropopause shift of 430 m in global average. In the whole period of the analysis, the tropopause pressure changes by almost 545 
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10 hPa. Depending on the vertical shift of the stratopause (assuming that it will follow the pressure levels rather than the 

tropopause), the tropopause shift causes additional stratospheric shrinkage.  

Figure 4 also shows that the rate of the tropopause shift relative to pressure levels almost perfectly follows the division into 

the periods used in this study. The tropopause rises rapidly relative to pressure levels in the Ref and F period, when we found 

the biggest AbM and AoA trends (Fig. 5). In the NF period, there is no visible shift of the tropopause relative to pressure 550 

levels, which corresponds well with the small (ExNH) or insignificant (ExSH) AbM trends. The rate of the tropopause shift 

(and possibly of the net stratospheric shrinkage) thus correlates with the time evolution of AbM trends. However, at this 

stage we cannot provide a detailed or analytical description of the mechanism. 

It has been shown before by Shepherd and McLandress (2011) that the EPFD changes associated with GHG increases in the 

subtropics are largely controlled by the upward displacement of the critical layers for wave breaking, and by McLandress 555 

and Shepherd (2009) and Okamoto et al. (2011) that the OGWD changes are linked to the upward shift of the subtropical jet 

(Son et al., 2009). Also, Eichinger et al. (2019) found that the mixing changes, as well as the inter-model spread are 

connected to changes (upward shift) of the background PV gradient in the CCMI-1 simulations. All of those studies were 

based on pressure coordinates and so the shift they are referring to is the shift relative to pressure levels (tropopause shift). 

The RCTT trends do not reflect the time evolution of the shift relative to pressure levels directly (i.e. the trend is larger in the 560 

NF than in the F period). The reason can lie in the strong dependence of RCTTs on the tropical upwelling. Tropical 

upwelling is the only quantity (as explained in Section 3.2.1) for which we computed the trends also in coordinates corrected 

to the tropopause shift (Tab. 2S, 3S and 6S in the Supplement). After the correction to the tropopause shift, the net tropical 

upwelling shows the same time evolution of trends as RCTTs. This is caused by a missing vertical shift of the tropopause 

relative to pressure levels in NF in CMAM. Future research is needed regarding a possible cause and robustness of this 565 

feature between the models. 

Finally, there are important consequences for trend analyses based in log-pressure coordinates in connection to the 

stratospheric shrinkage. Unlike in the pressure coordinates, the vertical shift of pressure levels is reinstated in log-pressure 

coordinates due to the utilization of a constant scale height (H) in the conversion from the pressure coordinates. Therefore 

the trends computed in log-pressure coordinates are influenced by the effect of the variable vertical shift of pressure levels. 570 

Moreover, the choice of constant H also leads to the artificial increase of the log-pressure vertical velocity (see the 

Supplement of Dietmüller et al., 2018 for details on the transformation) due to neglecting the shrinking geometrical distance 

between the pressure levels.  

5 Summary and conclusion 

In a subset of CCMI-1 REFC2 simulations, we have pointed out a remarkable pattern of similarity in the morphology of the 575 

stratospheric AoA trend, especially in the future periods (2000-2050 and 2050-2100). These are the regions of minimal AoA 

trends, which are located in both hemispheres between 20 gpkm and 25 gpkm and 20°- 50°N (ExNH) and 20°- 50°S (ExSH). 
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We hypothesized that these minima are connected with the climatological AoA gradient and the previously known AoA 

trend drivers: a) upward shift of the circulation (Oberländer-Hayn et al., 2016; Abalos et al., 2017) and b) decreasing AoA 

trend consisting of the RCTT (residual circulation transit times) and AbM (aging by mixing) contribution (Garny et al., 580 

2014). Both mechanisms also influence the widening of the AoA isolines in the Ex regions. 

From the net upward shift of the circulation, the part connected with the vertical shift of the pressure levels has been 

diagnosed and the so far neglected stratospheric shrinkage pattern has been pointed out. We then showed that the AoA, 

AbM, RCTT (in the Ex regions) and the net tropical upwelling trends are reduced when accounting for the vertical shift of 

pressure levels. Moreover, the local residual circulation strength (RC) does not exhibit any trends when accounting for the 585 

shift (only at a weaker significance level). After the vertical shift correction, we could not find a direct relationship between 

the total zonal mean wave drag and its components (resolved and unresolved), the seasonal RC or upwelling trends and the 

time evolution of the AbM and RCTT trends. This indicates that additional mechanisms may be involved. For example, we 

discuss a mechanism how the stratospheric shrinkage can affect the AoA changes. Moreover, our diagnostic methods, in 

particular regarding the sparse spatiotemporal sampling of GWD effects, may not meet the needs for accurate analysis of the 590 

connections between the processes in the models, for which more detailed GWD output would be needed. 

 

The analysis is based on geopotential height coordinates, but the argument that the upward shift (together with AoA isoline 

widening) is necessary for the visual pattern of localized AoA trend minima in the extratropical stratosphere holds also in 

pressure coordinates. The location of the minimal AoA trends is in the best vertical range for the AirCore measuring tool 595 

(Engel et al., 2017) and their easy visual detectability makes them the best regions for AoA trend observations. The detection 

of the localized trend minima in the Ex regions in observations could provide validation of the processes that lead to their 

formation in the models. Those are the upward shift of the circulation, the AoA decreasing trend and most importantly its 

aging by mixing (AbM) component that can be connected with the fine dynamical features of the model’s lower 

stratosphere. To gain more insight in future climate projections, we particularly suggest inter-model analysis of the 600 

stratospheric shrinkage, including the time evolution of the vertical shift of the tropopause, and its effect on the stratospheric 

circulation. 

 

Data availability. All data CCMI-1 used in this study can be obtained through the British Atmospheric Data Centre (BADC) 

archive (ftp://ftp.ceda.ac.uk, last access: August 2018). For instructions for access to the archive see 605 

http://blogs.reading.ac.uk/ccmi/ badc-data-access.). 
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Appendix: Issue of compensation and specification of the averaging domain for wave drag components 

There are indications that changes in the unresolved wave drag are often compensated by changes in the resolved wave 

driving (McLandress and McFarlane, 1993; Cohen et al., 2013; Cohen et al., 2014). This so called "compensation 610 

mechanism" is present also in comprehensive climate model projections of the BDC change (Sigmond and Shepherd, 2014) 

and complicates the possibility to clearly separate the effects of individual wave drag components. The compensation needs 

to be taken into account to identify the areas, where the individual drag components can influence the advection to the Ex 

regions. Therefore, we analyze the wave drag distribution and the occurrence of compensation near the Ex regions. 

In Fig. A1a, we show the total drag (GWD+EPFD) climatology (contours) overlaid over the ratio of unresolved to resolved 615 

wave drag (GWD/EPFD). Figs. A1b and c show the climatological distribution of EPFD and GWD, respectively. We see 

that GWD has its climatological minimum slightly below the Ex regions around 18 gpkm and is dominant (bigger than 

EPFD) in the lower stratosphere only in the NH (Fig. A1a, red color). This extratropical lower stratospheric region is located 

exactly around the NH turn-around latitude from 16 to 22 gpkm. In the location of the GWD minimum in SH, GWD is 

smaller than EPFD. Other regions of GWD dominance are scattered higher in the stratosphere. 620 

 In the extratropical stratosphere, regions with the same sign of GWD and EPFD prevail (Fig. A1a, red and antique white 

colors). The ratio is shown for the Ref period and differs only slightly in the NF and F period when corrected to the pressure 

levels shift (not shown). The regions of the lower stratospheric minima of GWD are collocated with the "saddle-like regions" 

in the EPFD distribution around 16 to 22 gpkm (Fig. A1b). Those regions are positioned on the upper flank of the 

subtropical jets of both hemispheres, but are more pronounced in NH, where the GWD is stronger. The total drag distribution 625 

(contours in Fig. A1a) largely copies the EPFD distribution, but it is smoother in the lower stratosphere as the "saddle-like" 

pattern from the EPFD distribution is filled by GWD. This can be considered as a fingerprint of the compensation and 

indeed, this region includes the 70 hPa level, where Cohen et al. (2013) demonstrated the compensating effects between 

OGWD and EPFD and NOGWD for driving of the residual circulation.  

 630 
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Figure A1. (a) GWD/EPFD ratio of the Ref period. The color scale is chosen so that the regions with the absolute value of 

zonal mean zonal GWD stronger than EPFD are highlighted. The contours show the total drag Ref climatology. (b) EPFD 

and (c) GWD climatology of the Ref period (units 𝑘𝑔 ⋅𝑚 ⋅ 𝑠!!). Correlations between (d) GWD and EPFD, (e) EPFD and 

v *  and (f) GWD and v *  in the Ref period. The vertical axis is in geopotential kilometers [gpkm].  The plots are overlaid by 635 

the mean tropopause and turnaround latitude positions in the Ref period. Only regions with a statistical significance of 

correlations exceeding the 95% confidence level are plotted.  

 

Further information on the compensation is provided in Figs. A1d, e, f. Here we show correlations between the drag 

components and v * . For brevity, only the annual mean correlations in the Ref period are shown, although the compensation 640 

between wave drag components and the relationship with the residual circulation is changing during the year (see Tab. 4S in 

the Supplement for the correlations computed after the correction to the vertical shift of pressure levels. 

In Fig. A1d, the distribution of negative correlations, which indicate compensation between the drag components, agrees 

well with the location of regions of minimum (strongest) GWD (EPFD saddle regions). Otherwise, in the extratropical 
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stratosphere we find mainly positive GWD and EPFD correlations. The localization of the compensation is confirmed also 645 

by correlations of GWD and EPFD with v *  (Fig. A1e, f). In the extratropical stratosphere, EPFD does not have significant 

correlation with v * solely in the region of minimal GWD in the NH (low value of correlation also in the location of the SH 

GWD minimum). GWD is strongly correlated with v * in those regions. Elsewhere, the high absolute values of correlation 

between EPFD and v *  (generally higher than 0.7) show a good validity of the direct relationship between the zonal mean 

zonal force and v *  (eq. 4), although neither EPFD nor v *  are computed using a quasi-geostrophic formula. The correlation 650 

of GWD with v *  has a more patchy structure and does not reach as high correlation values as for EPFD. In ExNH, GWD is 

better correlated with v *  than in the ExSH region. 

Due to the climatological distibution and ocurrence of compensation, we do not average the drag components over the whole 

Ex regions.  Instead, EPFD trends are computed from a spatial average between 18 gpkm and 25 gpkm and 15°- 30°N/S, i.e. 

slightly lower and more equatorward than the location of Ex regions. There, EPFD dominates the driving of the advection to 655 

the Ex regions. GWD is averaged in the poleward part of the Ex regions between 18 gpkm and 25 gpkm and 30°- 45°N/S 

near its climatological minimum. For direct comparison with the RC trends, the total drag is averaged over the whole Ex 

regions. The occurrence of compensation within the averaging domain means that the total drag can have a significant trend, 

regardless of significance of the trends of its components. Because the compensation is also present around the turn-around 

latitudes at 20 gpkm, where we evaluate the DC integral for computation of the mean upwelling (UPDC), we do not separate 660 

the individual drag components (UPDC trends are given in Tab. A2). 

 

As shown in Tab. A1, seasonally, RCc and TDc and its components have significant trends in both Ex regions. The seasonal 

trends have the largest magnitude in absolute value in both Ex regions in the Ref period in the DJF and MAM season. In JJA 

and SON the trends are smaller in absolute value in the ExNH or reverse sign towards weakening of the drag (except GWD) 665 

and deceleration of the circulation in the ExSH. In the following, we will focus on seasonal trends in the NF and F periods 

and on the issue of different evolution of trend (RCTTc vs. AbMc) in the future periods.  

First, note that the seasonal TDc, EPFDc and GWDc trends are generally larger in the NF than F period in both Ex regions, 

which excludes the possibility of a direct link between the AbM trends and local wave drag. For RCc, we can see stronger 

trends in F than NF in the MAM and SON season in the ExNH region and in JJA season in the ExSH region. In other 670 

seasons the trend is not significant in both future periods or is higher in the NF period. In ExNH, all drag trends are 

accompanying RCc trends in MAM for both future periods and in JJA only for the NF period. However, the drag trends in 

MAM do not reflect almost doubling of the magnitude of the MAM RCc trend between the NF and F period. In the ExSH 

region, local drag trends accompany the RCc trend in both future periods only in DJF. In this season, the absolute value of 

trends decreases more strongly for drag than for RCc between NF and F. In the ExSH, the link with RCc is especially poor 675 
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for the GWDc trends. The reason for this may be that in the ExSH region, GWDc is only weakly correlated with v *  (annual 

mean correlation equal to 0.31, see Tab. 4S).  

 

Table A1. Upward shift corrected trend values (c) of total drag (TD, EPFD + GWD) and its components EPFD and GWD 

multiplied by ρ
period

 (all in 10−5kgm−2s−2 / decade ) and RC (10−3kgm−2s−1 / decade ) averaged over the Ex 680 

regions in the Ref, NF and F period. Presented are trend values significant at least at the 90% confidence level or at least at 

the 80% confidence level (denoted by superscript +), otherwise the cell is left blank. 

Period Ref  NF  F  
Season DJF MAM JJA SON Ann DJF MAM JJA SON Ann DJF MAM JJA SON Ann 

ExNH 

TDc -3.5 -1.4+ -0.5 -1.2   -1.4 -1.1 -0.5+   -1.4  -0.7+  

EPFDc -1.5 -0.6+  -0.4+   -0.8 -0.7 -0.3+  -0.8 -0.7 -0.4+   

GWDc -3 -1.5     -1.3 -0.4    -1.2+    

RCc 3.8  1 2.3 1.7+  1.1 0.8 1.2  1.8+ 2  2.6  

ExSH 

TDc -2.2 -1.1 1.4 2.3  -1.9   -1.1+ -0.9 -1.2 -0.7+   -0.8 

EPFDc  -0.8 0.9   -1    -0.5 -0.6 -0.5+ -0.8+  -0.6 

GWDc -0.5 -0.4+ -1.2  -0.6 -0.6 -0.5+  -1.8 -0.7 -0.3+   -0.9 -0.4 

RCc 3.2 1.4  -3.7  1.2 1.6 1.1  0.1+ 1.1 1.4 2.2  0.1+ 

 

In the ExSH region, when significant, the seasonal RCc trends are only slightly higher in F than in NF. Nevertheless, in 

ExNH, the seasonal RCc trends are more than twice as large in F than in NF. This correlates better with the AbMc trend 685 

evolution in the ExNH. However, in the ExSH region, we cannot link the magnitude of the seasonal RCc trends to the time 

evolution of the AbMc trend. The AbMc trend in ExSH is not significant in NF and then larger in F than the ExNH AbMc 

trend. Seasonal trends of TDc, EPFDc, GWDc show some small increase from the NF period to the F period in ExNH, but 

rather the opposite in the ExSH region. This does not allow a clear link to the time evolution of the RCc or AbMc and RCTTc 

trends.  690 

In Tab. A2 we show seasonal UP trends computed with different methodologies after the correction for the vertical shift of 

pressure levels. The trends of net upwelling (including time evolving density) are given in Tab. 6S in the Supplement. 

Trends of another drag based quantity (UPc
DC) show a clear strengthening of the integrated TDc in the F period, but are only 

sparsely significant with different seasonality than the upwelling estimates based on the residual mean circulation, indicating 

lower validity of the quasi-geostrophic assumption.  695 

 From the three methodologies, two based on the residual mean velocities (UPc
wstar, UPc

vstar) yield almost identical results 

regarding seasonal occurrence of the trends. The time evolution of the seasonal UPc
wstar and UPc

vstar trends varies between 
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seasons. In the DJF season both trends are largest in Ref and smallest in the F period, but in MAM the trends are largest in F 

and smallest in the NF period. This is true also for the annual trends and trends in other seasons that are not significant in the 

Ref period.  700 

The UPc
DC inferred from the integral of TDc at the turn-around latitudes have only weakly significant seasonal trends in 

MAM and JJA in the NF period and significant trends in the JJA and SON season in the F period. The JJA trend is higher in 

F than NF. We can only speculate that the UPc
DC trends in MAM and JJA in the NF period can be connected with the local 

drag trends in the ExNH (Tab. 1), but this is almost certainly not possible for the UPc
DC JJA and SON trends in the F. One 

possible reason is that the seasonal UPc
DC trends in the F period are driven by changes of drag above the Ex regions, where 705 

TDc has been spatially averaged. The RCc trends correlate well with the seasonal UPc
wstar and UPc

vstar trends, with the 

exception of the strong UPc
wstar and UPc

vstar trends in DJF in the NF period accompanied by small (missing in the ExNH) RCc 

trends in this season and period.  

 

Table A2. Trends of UP (in 107kgs−1 / decade ) computed with three different methods after the correction for the 710 

vertical shift of pressure levels (UPc
wstar, UPc

vstar and UPc
DC) in the Ref, NF and F period. Presented are trend values 

significant at least at the 90% confidence level or at least at the 80% confidence level (denoted by superscript +), otherwise 

the cell is left blank. 

Upwelling 

Period Ref  NF  F  
Season DJF MAM JJA SON Ann DJF MAM JJA SON Ann DJF MAM JJA SON Ann 

UPc
DC       5.2+ 4.8+     6.9 7.3  

UPc
vstar

 22 6.4    11 5 3.7+  5.3+ 8.3 9.2 5.5+ 6.6+ 6.7+ 

UPc
wstar

 25.7 8.8    15.8 5.9+ 5.3+ 7.1+ 7.6 13 11.3 8.6  9.1 

 

To conclude, the UPc
wstar and UPc

vstar trends do not allow a clear link to the time evolution of AbMc or RCTTc trends, as they 715 

have a different time evolution in the DJF and MAM and JJA seasons between the periods. 
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