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Supplementary Text 

S1. Aerosol mass spectrometry and positive-matrix factorization 

S1.1 AMS collection efficiency 

The collection efficiency (CE) of the AMS was calculated as composition dependent 

(Middlebrook et al., 2012) with a default value of 0.5, which yielded a CE of 0.51 ± 0.02 

throughout IOP2. A comparison of particle volume concentrations measured by the AMS with 

the CE applied and two co-located Scanning Mobility Particle Sizers (SMPS) is shown in Figure 

S1. The volume of refractory black carbon (rBC) accounted for 2 ± 1 % of the total volume 

measured by SMPS, for an assumed material density of 1.8 g cm-3 for BC. Therefore, the BC 

concentration was not subtracted from the abscissa of Figure S1.  

S1.2 Estimates of organic and inorganic nitrates from AMS data 

The total nitrate reported by the AMS includes fragments originating from both organic 

and inorganic nitrates. In the absence of external measurements of inorganic nitrate, the 

speciation of nitrate was estimated using the ratio of NO2
+ to NO+ signals according to the 

methods of Farmer et al. (2010); Fry et al. (2013). Results are shown in Figure S2. Calculations 

were done on a 60-min time base to increase signal over noise, and the resulting inorganic and 

organic nitrate time series were then interpolated into the original AMS timestamp for ambient 

measurements. The analysis excluded points that had total nitrate below the estimated detection 

limit, DLNitrate, which was estimated as three times the standard deviation for “closed AMS 

spectra”, i.e., when the chopper was in closed position and particles did not reach the vaporizer. 

Mathematically, DLNitrate = 3×√E, where E is the “closed” error calculated by the standard PIKA 

software (Ulbrich et al., 2009). The resulting mean fraction of organic nitrate in total nitrate was 

92% for IOP2 (Figure S2b).  
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S1.3 Diagnostics of positive-matrix factorization  

 The time series of organic mass spectra measured by the AMS was analyzed by positive-

matrix factorization (PMF) using a standard analysis toolkit (Ulbrich et al., 2009). While the 

higher-resolution “W”-mode data was used to aid the choice of ions to fit, the higher-sensitivity 

“V-mode” data were used for quantification of mass concentrations and for the PMF analysis. 

The first week of collected data (August 18 to August 24, 2014) was excluded from the PMF 

analysis due to the unusual and overwhelming signal intensities at m/z 44 during that period, 

which would bias the characterization of the PMF factors as representative of IOP2 as a whole. 

Technical diagnostics of the six-factor solution are presented in Figures S3 and S4. The analysis 

was run for a number of factors from 1 to 10, and the rotational ambiguity parameter fpeak was 

varied from -1 to 1 in intervals of 0.2. In Figure S3, panel c shows the quality of fit parameter 

Q/Qexpected (Ulbrich et al., 2009) as a function of the number of factors, suggesting that the 

solution should have at the very least three factors. Based on panels a and b, there was a large 

improvement in residuals by inclusion of a fifth factor for IOP2, indicating that the best solution 

for this dataset should contain at least five factors.  

The six-factor solution offered meaningful factors, which showed important correlations 

with external measurements and allowed for the study of specific sources and processes (Figure 

6). Figure S4 corroborates this analysis, showing the factor profiles and loading time series of the 

5- and 7-factor solutions. In the 5-factor solution, only one characteristic BBOA factor is 

resolved. Although this solution was also physically meaningful, the separation of BBOA factors 

in the 6-factor solution allowed for a more detailed scientific investigation into their sources and 

properties. In the 7-factor solution, the factors associated with primary sources are further split 



3 

 

(factors 4 through 7) and their interpretation becomes difficult. In conjunction with all the other 

diagnostics described, these results suggested that the 6-factors solution was the best choice.  

Finally, panel d of Figure S3 shows Q/Qexpected as a function of the rotational ambiguity 

parameter fpeak (Ulbrich et al., 2009) for the six-factor solution. A plausible range for fpeak was 

determined according to the best practice of limiting Q/Qexpected to a value that does not exceed 

0.1% of the minimum value (occurring at fpeak = 0). The default value of fpeak = 0 was chosen for 

the final six-factor solution. It yielded the minimum quality of fit parameter Q/Qexpected , and no 

significant improvements in the external validation of factors were observed by varying fpeak . 

S2. Fuzzy c-means clustering  

Fuzzy c-means (FCM) clustering was applied to datasets consisting of pollution 

indicators, namely concentrations of particle number, NOy, ozone, rBC, CO, and sulfate (Bezdek 

et al., 1984). The use of a fuzzy clustering method stems from the understanding that any point in 

time may be affected by a combination of different sources and processes and could therefore be 

anywhere on the scale between pristine background and extreme polluted conditions, as opposed 

to a simpler binary classification. Given the scope of the analysis as non-overcast afternoon 

times, data points were restricted to (i) local 12:00-16:00 h, (ii) local solar radiation over the past 

4 h not in the lowest 10 percentile, and (iii) no precipitation over the previous 10 h along 

backward trajectory. The data were normalized prior to the FCM analysis using the z-score 

method, which transforms all variables into a common scale with a mean of 0 and a standard 

deviation of 1. 

The FCM algorithm used was the same as in de Sá et al. (2018). It minimizes the 

objective function represented in Eq. S2-1, which is a weighted sum of squared errors where the 

error is the Euclidean distance between each data point and a cluster centroid. 
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 The input data is given by the matrix Y = [y1, y2, …, yN], where yk is a vector of length X 

at the k-th time point. X is the number of variables (i.e., measurements) used as input in the 

analysis. The number of time points is represented by N, and the associated running index is k. N 

was 397 for this study. The number of clusters is represented by c, and the corresponding 

running index is i. The coordinates of the centroid of each cluster i are represented by 𝜈i , a vector 

of length X. The exponent of the Fuzzy partition matrix is represented by m. The algorithm 

returns (1) the Fuzzy partition matrix of Y, given by U = [uik] where uik is the degree of 

membership of time point k to cluster i, (2) the vectors of coordinates of cluster centers, given by 

𝜈 = [𝜈i], as well as (3) the value J of the objective function.  

 The analysis was performed in MATLAB® using the “fcm” function in the Fuzzy logic 

toolboxTM. A default value of 2 was used for the exponent m of the partition matrix (Bezdek et 

al., 1984; Hathaway and Bezdek, 2001; Chatzis, 2011). Further technical details have been 

described in de Sá et al. (2018). The analysis was run for a number of clusters ranging from two 

to ten, and the value of the objective function after convergence is shown in Figure S8. The 

choice of number of clusters hinges on a trade-off between additional information provided by 

each extra cluster and increased complexity. The objective function largely improved from two 

to four clusters, with marginal improvements beyond four clusters. The location of cluster 

centroids was also examined for evaluation of cluster overlap (Figure S9 for IOP2). In this study, 

three clusters described the system in a meaningful way. The backtrajectories and PM chemical 

composition typically associated with each of the clusters corroborated the physical 

interpretation of the 3-cluster solution.  
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The PM composition associated with each of the clusters was determined by calculating 

the corresponding coordinates of the centroids for AMS species concentrations and PMF factor 

loadings, which were not input to the FCM analysis (except for sulfate). The calculation 

followed the mathematical definition of the centroid (Eq. S2-2). The typical particle optical 

properties and concentrations of nitrogen-containing families for each cluster in were also 

determined by the same equation. The resulting characterization of clusters was shown in Figure 

10  and Table S1. 
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(S2-2) 

In analogy to the weighted mean of Eq. S2-2, a weighted standard deviation was defined 

as a measure of cluster variability (Eq. S2-3). All points are considered in the calculation of the 

standard deviation for a variable in any given cluster. Because clusters have a fuzzy nature, large 

standard deviations may be expected (Table S1).  
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S3. Comparison of PM1 between IOP1 and IOP2 

PM1 mass concentrations at the T3 site during the dry and wet seasons differed by almost 

an order of magnitude. Figure S10a shows the statistics of mass concentrations of the NR-PM1 

components. The organic mass concentrations had the largest increase between IOP1 (wet 

season) and IOP2 (dry season), corresponding to a factor of 8. Mass concentrations increased by 

a factor of 6 for sulfate and ammonium, of 4 for nitrate, and of 2 for chloride. Mass 

concentrations of PM in the basin seem to have large interannual variability especially in the dry 

season due to the variability in biomass burning emissions (van Marle et al., 2017). Even so, the 

inter-season increases found in this study for the year of 2014 are in line with values previously 
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reported for other years, which vary between 3 and 10 (Artaxo et al., 1994; Holben et al., 1996; 

Fuzzi et al., 2007). 

The observed increases can be rationalized in terms of important differences between the 

wet and dry seasons. One relevant aspect is that meteorological factors such as less precipitation 

and lower relative humidity (RH) in the dry season may lead to lower wet deposition (Figure 

S11). In addition, higher solar irradiance may favor the photochemical processing of VOCs and 

thereby the production of PM, in spite of higher temperatures which may favor partitioning to the 

gas phase (Figure S11). As a direct result of lower wet deposition, higher particle number and 

mass concentrations may be maintained (Figure S10a-b). As an indirect result, particles with a 

longer atmospheric lifetime can continue to grow to larger sizes through condensation, especially 

given the increased solar irradiance, also leading to increased mass concentrations. A comparison 

of volume-diameter distributions for the two seasons (Figure S10c) shows that there was a shift 

from peak Dm of 340 nm in IOP1 to 400 nm in IOP2.  

Another relevant feature of the dry season is the basin-wide increased occurrence of fires 

(Artaxo et al., 2013; Martin et al., 2016). Biomass burning can contribute both primary particles 

and gaseous emissions that may be precursors for the production of secondary material. As 

shown in Figure S10b, there was a significant shift to large particle number concentrations from 

IOP1 to IOP2, with median values of 1060 cm-3 and 3240 cm-3, respectively. Taken together, 

these results suggest that the increased mass concentrations observed in the dry season compared 

to the wet season were due to a combination of larger number concentrations and larger particle 

diameters, driven both by meteorological and anthropogenic factors.  

S4. Calculations of PM optical properties 
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 In order to estimate the absorption coefficient of BrC at 370 nm, babs,BrC, the absorption 

coefficient of BC at the same wavelength, babs,BC, had to first be determined (Eq. 1). The 

calculation of åabs,BC and consequently of babs,BC was done through four methods, of which 

Method 2 was used in the analysis described in the main text. Herein, details and assumptions of 

the four methods as well as a comparison among their results are presented.  

The assumptions of each method and a description of their meaning is presented in Table 

S2. Methods 1 and 2 assume a constant absorption Ångstrom exponent åabs,BC across the 

spectrum. Methods 3 and 4 assume a varying åabs,BC, and the difference between åabs,BC at longer 

wavelengths and shorter wavelengths is accounted for by δ, which is the wavelength dependence 

of the absorption Ångstrom exponent, also known as WDA (Wang et al., 2016). The value of δ is 

calculated theoretically using Mie Theory and assuming spherical particles. The calculation also 

assumes a range of BC size distributions and coatings unless measurements are available. Once 

åabs,BC is estimated, babs,BC can be calculated through Eq. 2.  

A comparison of the estimated values for babs,BrC through the different methods is 

presented in Figure S13. On average, babs,BrC values from method 1 are 45% larger than method 

2, and values from methods 3 and 4 are 6 to 20% larger than method 2. Method 2 was chosen 

because (i) it represents an improvement over method 1, as it calculates åabs,BC sample by sample 

and does not simply assume a value of 1, and (ii) although methods 3 and 4 consider a 

wavelength dependence of åabs,BC, this dependence is unknown for our study. Method 3 relies 

purely on Mie modeling, and assumes spherical particles and ranges of BC size distribution and 

coating taken from global averages that might not be representative of our site. Method 4 uses 

BC size distribution data from a different site, which is an improvement but might still not be 

representative, and the mixing state is also not known. Because these methods might bring 
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additional uncertainty, method 2 is chosen as the base case. Because method 2 yields the lowest 

values, it can also be seen as a conservative method that establishes a lower bound for the 

particle absorption properties.  

S5. Attribution of BrC absorption for the clusters 

The attribution of BrC absorption for the three clusters is shown in Figure S15. The 

differences were overall small. Biomass burning factors represented the dominant brown carbon 

components in the dry season afternoons, accounting for about 50% of babs,BrC under all 

conditions. For the urban cluster, between the two BBOA factors, a larger proportion of 

absorption was attributed to the MO-BBOA factor. This result highlights that the increased 

concentrations of secondary products from biomass burning emissions possibly driven by the 

interaction with the oxidant-rich Manaus plume affected the total absorption by organic PM1. 

Regarding the IEPOX-SOA factor, its relative importance was larger when the influence of 

urban emissions was lower, corresponding to the baseline and event clusters. The HOA factor 

was associated with the largest estimated Eabs but its loadings were usually small. As a result, its 

contribution to BrC absorption became comparable to the LO-BBOA and IEPOX-SOA factors 

only for the urban cluster, which had the highest HOA loadings due to Manaus emissions.  
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List of Supplementary Figures 

Figure S1. Scatter plot of AMS PM volume concentrations and SMPS PM volume 

concentrations for IOP2. SMPS1 measured particles having mobility diameters of 

10 to 461 nm, and SMPS 2, 10 to 510 nm. SMPS1 measurements were available 

from August 16 to October 10, and SMPS2 measurements were available from 

August 16 to October 15. Material densities used in the calculation of AMS volume 

from AMS mass were based on a mixing rule for the five AMS-measured species. 

The material density of the organic component was calculated following the method 

of Kuwata et al. (2011) based on O:C and H:C values, which in turn were 

calculated following the method of Canagaratna et al. (2015). 

Figure S2. Summary of the analysis for estimating organic and inorganic nitrates from AMS 

bulk measurements for IOP2. (a) Resulting time series of organic and inorganic 

nitrates are shown together with the original nitrate AMS times series. (b) Time 

series of the fraction of organic nitrate in total nitrate. (c) Time series of the 

measured NO2
+/NO+ ratio is shown in red and values of NO2

+/NO+ from 

ammonium nitrate calibrations are shown in gray triangles. The reference ratio for 

inorganic nitrate over time is represented by the dashed dark blue line, which was 

the mean of the calibration values (grey triangles). The reference ratio for organic 

nitrates over time is represented by the dashed light blue line, and it was assumed to 

be a factor of 2.25 lower than that or inorganic nitrate based on previous field 

studies (Farmer et al., 2010; Fry et al., 2013). Calculations were done for data 

binned to one hour (as plotted), and the resulting time series were interpolated to 

the native time stamp for employment in data analyses. 
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Figure S3. Diagnostics of the PMF analysis for IOP2. (a) Time series of total ion residuals of 

PMF solutions from one to six factors, (b) Statistics of the sum of residuals 

presented in panel a. Box plots show the interquartile ranges, including the medians 

as a horizontal line. Red markers show the means. Whiskers show the 5 and 95 

percentiles. (c) Dependence of the quality-of-fit parameter Q/Qexpected on the number 

of factors for fpeak = 0, (d) Dependence of the quality-of-fit parameter Q/Qexpected on 

fpeak for number of factors = 6. The red line represents Q/Qexpected that exceeds in 

0.1% the minimum value at fpeak = 0. This limit determines the range of plausible 

fpeak values as indicated by the dashed black lines. 

Figure S4. Results of the PMF analysis for 5 factors (a and b) and 7 factors (c and d) for IOP2. 

Panels on the left (a and c) show the time series of factor loadings and panels on the 

right (b and d) show the profiles of factors. The signals shown in panels b and d 

were summed to unit mass resolution. 

Figure S5. Average total organic mass spectra (top row) and PMF factor profiles. The signals 

are classified by their ion families and colored accordingly. For m/z > 60, signals 

are multiplied by three for clearer visualization.  

Figure S6. Average mass spectra for nitrogen-containing organic material (top row) and PMF 

factor profiles showing only the nitrogen-containing ion families.  

Figure S7. Peak fitting for important nitrogen-containing ions measured: (a) CHN (m/z = 

27.011), (b) CH4N (30.034) (c) C2HN (39.011), (d) C2H3N (41.027), (e) CHNO 

(43.042), (f) CH2NO2 (60.009). For each panel, the rows show (a) spectra with 

chopper open, (b) spectra with chopper closed, and (c) the difference spectra 

between the cases of open and closed chopper. The spectra shown correspond to V-
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mode data averaged over IOP2. The black circles are data, and the purple lines are 

the overall fits. The fits to each individual ion are shown in different colors. All 

ions that were fitted are labeled by vertical arrows and tags. In each panel, the 

column on the right shows the fitting that was used in the analysis, with the 

nitrogen-containing ion indicated in dark red, and the column on the left offers a 

comparison for the case when the ion is not included.  

Figure S8. Value of the objective function of the FCM analysis in the last iteration plotted 

against the number of clusters.  

Figure S9. Locations of cluster centroids from the FCM analysis for IOP2 as visualized by a 2-

D projection on the plane defined by each pair of input variables. Results for two to 

five clusters are shown in panels a to d. Red circles are observational data and black 

squares are cluster centroids. 

Figure S10. Statistical comparison of NR-PM1 at T3 between the wet and dry seasons (IOP1 

and IOP2, respectively). (a) Mass concentrations of components measured by the 

AMS. The left axis scale refers to organic species, and the right axis refers to the 

inorganic species, as indicated by arrows at the top of plot. Solid markers represent 

means, whiskers show 5 percentiles and 95 percentiles, boxes span interquartile 

range, and horizontal line inside boxes indicates medians. Concentrations were 

adjusted to standard temperature (273.15 K) and pressure (105 Pa). (b) Probability 

density function for particle numbers concentrations. Vertical dashed lines indicate 

the medians of distributions. (c) Volume-diameter distributions measured by a 

Scanning Mobility Particle Sizer (SMPS). Dm represents the mobility diameter.  
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Figure S11. Statistical comparison of meteorological variables at T3 between the wet and dry 

seasons (IOP1 and IOP2, respectively). (a) Relative humidity, (b) Temperature, and 

(c) Solar irradiance. Boxes represent interquartile ranges, markers inside boxes 

represent medians, and lines represent means. 

Figure S12. Diel trends of families of nitrogen-containing ions. Organic and inorganic nitrates 

were estimated based on the ratio of NO+ and NO2
+ ions measured by the AMS 

(Section S1.2). CxHyOzNp
+ refers to the sum of ions containing at least one carbon 

atom and one nitrogen atom as measured by the AMS.  

Figure S13. Comparison of babs,Brc values calculated through method 2 and through the three 

other methods. Scatter plots depict results from methods (a) 1, (b) 3, and (c) 4 on 

the ordinate against method 2 on the abscissa. 

Figure S14. Relationships between the brown-carbon absorption coefficient and the fractional 

contributions to organic PM1 of (a) the CxHyOz
+ family and (b) the CxHyOzNp

+ 

family. Boxes indicate interquartile ranges, and horizontal lines within the boxes 

indicate medians.  

Figure S15. Attribution of BrC absorption, as represented by babs,BrC, to the components of 

organic PM1, as represented by the PMF factors. Calculations were made based on 

the typical cluster composition as described by centroid values (Table 1) and on the 

estimated Eabs values for each of the PMF factors (Table 3). Absorption by “other” 

corresponds to the contribution of the model constant B.   
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List of Supplementary Tables 

Table S1. Coordinates of cluster centroids for input variables, AMS species concentrations, PMF 

factor loadings and other PM characteristics and properties. Table entries for AMS species and 

PMF factors are plotted in Figure 10. Concentrations of NOy, O3, BC, CO, sulfate, and particle 

number were used as input in the clustering analysis.  

Species 

Clusters 

(centroid ± standard deviation) 

Baseline  Event Urban 

Input variables    

Particle number (cm-3) 2007 ± 752 3179 ± 938 4638 ± 1040 

NOy (ppb) 1.27 ± 0.36 1.70 ± 0.44 2.64 ± 0.56 

O3 (ppb) 32.5 ± 6.4 42.8 ± 7.2  56.4 ± 8.9 

rBC (µg m-3) 0.18 ± 0.10 0.28 ± 0.12 0.33 ± 0.14 

CO (ppb) 159 ± 30 179 ± 35 178 ± 33 

Sulfate (µg m-3) 1.41 ± 0.51 2.32 ± 0.87 1.85 ± 0.50 

AMS species concentrations (µg m-3)    

Organic 7.28 ± 2.54 9.19 ± 2.60 9.67 ± 2.49 

Ammonium 0.38 ± 0.12 0.59 ± 0.19 0.52 ± 0.12 

Nitrate 0.11 ± 0.04 0.15 ± 0.04 0.22 ± 0.05 

Chloride 0.012 ± 0.004 0.014 ± 0.004 0.014 ± 0.004 

PMF factor loadings (µg m-3)    

MO-OOA 1.64 ± 0.98 2.12 ± 1.16 2.48 ± 0.87 

LO-OOA 2.84 ± 0.83 2.88 ± 0.97 3.52 ± 0.99 

IEPOX-SOA 1.39 ± 0.82 2.30 ± 1.06 1.41 ± 0.58 

MO-BBOA 0.70 ± 0.70 0.95 ± 0.85 1.30 ± 0.92 

LO-BBOA 0.34 ± 0.37 0.49 ± 0.53 0.39 ± 0.51 

HOA 0.12 ± 0.20 0.22 ± 0.27 0.31 ± 0.22 

Optical properties    

babs,BrC (Mm-1) 1.5 ± 1.6 2.6 ± 1.9 2.4 ± 1.9 

åabs 1.5 ± 0.4 1.7 ± 0.4 1.7 ± 0.4 

Nitrogen-containing families    

CxHyOzNp
+ family (µg m-3) 0.25 ± 0.09 0.34 ± 0.10 0.33 ± 0.09 

Organic nitrates (µg m-3) 0.12 ± 0.04 0.15 ± 0.04 0.21 ± 0.04 

Inorganic nitrates (µg m-3) 0.005 ± 0.014 0.007 ± 0.020 0.005 ± 0.016 
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Table S2. Assumptions and description of the four methods used to calculate the absorption 

Ångstrom exponent of BC, åabs,BC.  

 

Method Assumptions Description 

1 åabs,BC = 1 • åabs,BC is not wavelength dependent 

• åabs,BC is equal to 1 at any point in time 

(absorption is constant over the spectrum) 

2 åabs,BC = åabs(700,880) • åabs,BC is not wavelength dependent 

• åabs,BC is calculated for each point in time from 

aethalometer measurements at the two largest 

wavelengths  

3 åabs,BC = åabs(700,880) + δ 

 

 δ = -0.1 

• åabs,BC is wavelength dependent 

• δ value was based on the theoretical 

calculations of Wang et al. (2016)  

4 åabs,BC = åabs(700,880) + δ 

 

 δ = -0.3 

• åabs,BC is wavelength dependent 

• δ value was based on Saturno et al. (2017), 

which relied on BC size distribution 

measurements at the T0a site 
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