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Abstract 

Residential wood combustion remains one of the most important sources of primary organic aerosols (POA) and secondary 

organic aerosol (SOA) precursors during winter. The overwhelming majority of these precursors have not been traditionally 

considered in regional models, and only recently, lignin pyrolysis products and polycyclic aromatics were identified as the 

principal SOA precursors from flaming wood combustion. The SOA yields of these components in the complex matrix of 5 

biomass smoke remain unknown and may not be inferred from smog chamber data based on single compound systems. Here, 

we studied the aging of emissions from flaming and smoldering-dominated wood fires in three different residential stoves, 

across a wide range of aging temperatures (-10°C, 2°C and 15°C) and emission loads. Organic gases (OGs) acting as SOA 

precursors were monitored by a proton transfer reaction time-of-flight mass spectrometer (PTR-TOF-MS), while the evolution 

of the aerosol properties during aging in the smog chamber was monitored by a high resolution time-of-flight aerosol mass 10 

spectrometer (HR-ToF-AMS). We developed a novel box model based on the volatility basis set (VBS) to determine the 

volatility distributions of the oxidation products from different precursor classes found in the emissions, grouped according to 

their emission pathways and SOA production rates. We show for the first time that SOA yields in complex emissions are 

consistent with those reported in literature from single compound systems. We identify the main SOA precursors in both 

flaming and smoldering wood combustion emissions at different temperatures. While single-ring and polycyclic aromatics are 15 

significant precursors in flaming emissions, furans generated from cellulose pyrolysis appear to be important for SOA 

production in the case of smoldering fires. This is especially the case at high loads and low temperatures, given the higher 

volatility of furan oxidation products predicted by the model. We show that the oxidation products of oxygenated aromatics 

from lignin pyrolysis are expected to dominate SOA formation, independent of the combustion or aging conditions, and 

therefore can be used as promising markers to trace aging of biomass smoke in the field. The model framework developed 20 

herein may be generalizable for other complex emissions sources, allowing determination of the contributions of different 

precursor classes to SOA, at a level of complexity suitable for implementation in regional air quality models. 

1. Introduction 

Atmospheric aerosols impact visibility, human health, and climate on a global scale (Stocker et al., 2013; World Health 

Organization, 2013). A thorough understanding of their chemical composition, sources, and processes is a fundamental 25 

prerequisite to develop appropriate mitigation policies. Laboratory experiments using smog chambers enable the detailed 

examination of the gas-phase composition and aging of different emissions such as biomass smoke (e.g. Bruns et al., 2016; 

Bian et al., 2017), car exhaust (Gordon et al., 2014a ; b, Platt et al., 2017 ; Gentner et al., 2017; Pieber et al., 2018), aircraft 

exhaust (Miracolo et al., 2011; Kılıç et al., 2018), or cooking emissions (Klein et al., 2016). Results from these studies 

consistently show that the measured concentrations of secondary organic aerosol (SOA), formed upon oxidation and 30 

partitioning of the oxidized vapors, greatly exceed estimated concentrations based on the oxidation of volatile organic 

compounds (VOCs) traditionally assumed to be the dominant SOA precursors (Jathar et al., 2012). The SOA formed from 
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these chemically speciated VOCs is defined as traditional SOA (T-SOA) and is explicitly accounted for in chemical transport 

models (CTMs). However, Robinson et al. (2007) suggested that a significant fraction of the unexplained SOA is due to the 

oxidation of lower-volatility organics, i.e. semi-volatile and intermediate volatility organic compounds (SVOC and IVOC, 

respectively), collectively referred to as non-traditional SOA (NT-SOA) precursors (Donahue et al., 2009).  

In spite of its importance, incorporating NT-SOA into current organic aerosol (OA) models remains challenging without the 5 

identification and the quantification of the most important precursors (Jathar et al., 2012). For simplification purposes several 

methods based on the volatility of the emissions and a volatility-based oxidation mechanism have been developed. Currently 

the volatility basis set (VBS) scheme is considered to be the most suitable approach to simulate the aging processes of non-

speciated organic vapors (Donahue et al., 2006). The VBS scheme represents OA as a discrete volatility-resolved mass 

distribution. Reactions are described by the transfer of OA mass between volatility bins, thereby accounting for the contribution 10 

of non-traditional vapors to SOA formation without the need to incorporate explicit chemical mechanisms. Robinson et al. 

(2007) proposed that SVOCs, IVOCs and their products react with hydroxyl radicals (OH) to form products that are an order 

of magnitude lower in volatility than their precursors. Pye and Seinfeld (2010) proposed a single-step mechanism for the non-

speciated SVOCs, where the products of oxidation were two orders of magnitude lower in volatility than the precursors. They 

used SOA-yield (defined as SOA mass formed divided by reacted precursor mass) data for naphthalene as a surrogate for all 15 

non-speciated IVOCs, even though these are thought to be mainly branched and cyclic alkanes (Robinson et al., 2007, 2010; 

Schauer et al., 1999). Both methods have been implemented in plume models as well as regional and global chemical transport 

models and have reduced discrepancies between measured and predicted SOA concentrations and properties (Shrivastava et 

al., 2008; Dzepina et al., 2009; Pye and Seinfeld, 2010; Jathar et al., 2011). However, considerable uncertainties remain in the 

relative contributions of non-traditional precursors to different emissions, their ability to form SOA and their reaction rate 20 

constants (Jathar et al., 2014a). Limitations in SOA modelling are also a direct consequence of limitations in measurements; 

namely undetected or unidentified precursors and limited number of studies available investigating the influence of different 

parameters such as temperature, emission load, and combustion regimes. For instance, the overwhelming majority of smog 

chamber studies have been conducted under summer-time conditions (20-30°C), preventing the assessment of temperature 

effects on both SOA-producing reactions and the partitioning thermodynamics (Jathar et al., 2013). 25 

Similar limitations apply to the consideration of emissions in models. Biomass combustion is a major source of gas and 

particle-phase air pollution on urban, regional and global scales (Grieshop et al., 2009; Lanz et al., 2010; Crippa et al., 2013; 

Gobiet et al., 2014; Chen et al., 2017; Bozzetti et al., 2017). Globally, approximately 3 billion people burn biomass or coal for 

residential heating and cooking (World Energy Council, 2016), often using old and highly polluting appliances. Emissions 

from these devices are highly variable depending on fuel type and fuel moisture (McDonald et al., 2000; Schauer et al., 2001; 30 

Fine et al., 2002; Pettersson et al., 2011; Eriksson et al., 2014; Reda et al., 2015; Bertrand et al., 2017), and typically include 

a complex mixture of non-methane organic gases (NMOGs), primary organic aerosol (POA), and black carbon (BC). Once 

emitted into the atmosphere, organic compounds can react with oxidants such as OH radicals, ozone (O3) and nitrate radicals 

(NO3). These reactions remain poorly understood, which greatly hinders the quantification of wood combustion SOA in 
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ambient air. Bruns et al. (2016) investigated the SOA formation from residential log wood combustion from a single type of 

stove under stable flaming conditions only. They reported that T-SOA precursors included in models account for only 3 to 

27% of the measured SOA whereas 84 to 116% was from NT-SOA precursors including in total 22 individual compounds and 

two lumped compound classes, mainly consisting of polycyclic aromatic hydrocarbons from incomplete combustion (e.g. 

naphthalene) and cellulose and lignin pyrolysis products (e.g. furans and phenols, respectively). The estimated SOA 5 

concentrations were based on the literature SOA yields of single precursors, obtained from smog chamber experiments, and a 

good agreement was observed between predicted and measured SOA. However, the method suffers from two drawbacks. First, 

the dependence of the yields on the organic aerosol loading and temperature was not considered. Second, although the relative 

contributions of different precursors to SOA were estimated, thermodynamic parameters for chemical transport models 

(CTMs) were not determined. Based on the same experiments, the lumped concentrations of the 22 non-traditional volatile 10 

organic compounds and 2 compound classes were constrained in a box model (Ciarelli et al., 2017a). Improved parameters 

were retrieved describing the volatility distributions and the production rates of oxidation products from the overall mixture 

of precursors present in biomass smoke. While this method is well suited for CTMs (Pandis et al., 2013; Ciarelli et al., 2017b), 

it does not provide any information about the contributions of the different chemical classes to the aerosol. Similar limitations 

are associated with the study of other emissions, e.g. fossil fuel combustion or evaporation (Jathar et al., 2013, 2014b). The 15 

development of models capable of simulating the contribution of the different chemical species to the aerosol at different 

conditions is especially important in the light of the current development of highly time resolved chemical ionization mass 

spectrometry, capable of quantifying these products. To realize the full potential of the data acquired by this instrumentation, 

a modelling framework capable of predicting the production rates and the partitioning between the gas and the particle phase 

of the oxidation products from complex emissions is required.  20 

Here, we extend the past analysis investigating the most recent smog chamber data of residential wood combustion based on 

14 experiments performed in 2014-2015 under various conditions. Different experimental temperatures of the smog chamber 

were investigated; namely -10°C, 2°C and 15°C. Three different stove types were tested, including conventional and modern 

residential burners. Different emission load and different hydroxyl (OH) radical exposure were examined. Moreover distinct 

combustion regimes were sampled across the different experiments for the first time, to investigate the secondary organic 25 

aerosol chemical composition and yields from flaming and smoldering emissions. Integrated VBS-based model and novel 

parameterization methods based on a genetic algorithm (GA) approach were developed to predict the contribution of the 

oxidation products of different chemical classes present in complex emissions and to better explain the SOA formation process, 

providing useful information to regional air quality models. Overall, this study presents a general framework which can be 

adapted to assess SOA closure for complex emissions from different sources. 30 
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2 Methods 

2.1 Smog chamber set up and procedure 

Two smog chamber campaigns were conducted to investigate SOA production from multiple domestic wood combustion 

appliances as a function of combustion phase, initial fuel load, and OH exposure. These experiments were previously described 

in detail (Bruns et al., 2016; Ciarelli et al., 2017; Bertrand et al., 2017, 2018a) and are summarized here. Experiments from 5 

Bertrand et al. (2017, 2018a) will be referred to as Set1 and experiments from Bruns et al. (2016) and Ciarelli et al. (2017) as 

Set2. 

The emissions were generated by three different logwood stoves for residential wood combustion: stove 1 manufactured before 

2002 (Cheminées Gaudin Ecochauff 625), stove 2 fabricated in 2010 (Invicta Remilly) and stove 3 (Avant, 2009, Attika). For 

each stove three to four replicate experiments were performed with a loading of 2-3 kg of beech wood having a total moisture 10 

content ranging between 2 and 19%. The fire was ignited with 3 starters made of wood wax, wood shavings, paraffin and 5 

natural resin. The starting phase was not studied. In total, 14 experiments were performed, consisting of two experiments at -

10°C, seven experiments at 2°C and five experiments at 15°C. These experiments cover the typical range of European winter 

temperatures and are summarized in Table 1.  

Ward and Hardy (1991) define the flaming and smoldering conditions according to the modified combustion efficiency, MCE 15 

= CO2/(CO+CO2). Specifically, MCE > 0.9 is identified as flaming condition, while MCE < 0.85 is identified as smoldering 

condition. MCE values for the different experiments are reported in Table 1. According to this parameter, Set1 and Set2 

experiments were dominated by smoldering and flaming, respectively. Practically, we achieved the different burning 

conditions by varying the amount of air in the stoves, therefore changing the combustion temperature. For Set1, closing the air 

window decreased the flame temperature, resulting in a transition from a flaming to a smoldering fire. This could be visibly 20 

identified, together with the development of a thick white smoke from the chimney. We note that this conduct is very common 

in residential stoves, to keep the fire running for longer. Meanwhile, for Set2, after lighting the fire, we kept a high air input 

to maintain a flaming fire. At the same time, we monitored the MCE in real time and only injected the emissions into the 

chamber when the MCE increased above 0.9. 

The experiments were performed in a flexible Teflon bag of nominally 7 but typically about 5.5 m3 equipped with UV lamps 25 

(40 lights, 90–100W, Cleo Performance, Philips, wavelength  < 400 nm) enabling photo-oxidation of the emissions (Platt et 

al., 2013; Bruns et al., 2015). The chamber is located inside a temperature-controlled housing. Relative humidity was 

maintained at 50% and three different temperatures were investigated. Emissions from the stoves were sampled from the 

chimney into the chamber through heated (140°C) stainless-steel lines to reduce the loss of semi-volatile compounds. An 

ejector dilutor was installed (Dekati Ltd, DI-1000) to dilute emissions in the chamber by a factor of 10 before sampling.  The 30 

sample injection lasted for approximately 30 minutes for each experiment, and were followed by an injection of 1 L d9-

butanol (98%, Cambridge Isotope Laboratories), which was used to estimate the OH exposure as described in Section 3.1.1 

(Barmet et al., 2012). The chamber was then allowed to equilibrate for 30 minutes to ensure stabilization and homogeneity 
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and to fully characterize the primary emissions before aging. OH radicals were produced by UV irradiation of nitrous acid 

(HONO) injected after chamber equilibration, generated as described in Taira and Kanda (1990), reaction of diluted sulfuric 

acid (H2SO4) and sodium nitrate (NaNO2) in a gas flask, and introduced into the chamber and brought into the gas-phase 

flushing with a carrier gas with a flow rate of 1 L min-1. The smog chamber was then irradiated with UV lights for 

approximately 4 hours to simulate atmospheric aging. 5 

Before and after each experiment, the smog chamber was cleaned with humidified pure air (100% RH) and O3 (1000 ppm) 

under irradiation with UV lights for at least 1 hour, followed by flushing with pure dry air for at least 10 hours. The background 

particle- and gas-phase concentrations were then measured in the clean chamber. 

The total amount and composition of the emissions depend on the oxygen supply, temperature, the fuel elemental composition, 

and combustion conditions, which can be broadly classified as flaming or smoldering (Koppmann et al., 2005; Sekimoto et al., 10 

2018). Flaming combustion occurs at high temperature and consists of volatilization of hydrocarbons from the thermal 

decomposition of biomass leading to rapid oxidation and efficient combustion, producing CO2, water and black carbon (BC). 

Instead, smoldering combustion is flameless and can be initiated by weak sources of heat and results in less efficient 

combustion of fuel, leading to gas-phase products (mainly CO, CH4 and volatile organic compounds).  

2.2 Instrumentation 15 

We characterized the emissions with a suite of gas- and particle-phase instrumentation. Organic gases (OGs) were measured 

by a proton transfer reaction time-of-flight mass spectrometer (PTR-ToF-MS 8000, Ionicon Analytik). A detailed description 

of the instrument can be found in Jordan et al. (2009). The PTR-ToF-MS was operated under standard conditions (ion drift 

pressure of 2.2 mbar and drift intensity of 125 Td) in H3O+ mode, allowing the detection of OGs with a proton affinity higher 

than that of water. For quantification, when known individual reaction rate constants were used (Cappellin et al., 2012), 20 

otherwise a value of 2 x 10-9 cm3 s-1 was assumed. The effectively rate constants applied to both Set1 and Set2 can be found 

in Bruns et al., (2017). Data were analyzed using the Tofware software 2.4.2 (PTR module as distributed by Ionicon Analytik 

GmbH, Innsbruck, Austria) running in Igor Pro 6.3. 

Non-refractory primary and aged particle composition was monitored by a high resolution time-of-flight aerosol mass 

spectrometer (HR-ToF-AMS, Aerodyne Research Inc.) (DeCarlo et al., 2006). The HR-ToF-AMS is described in detail 25 

elsewhere (Bruns et al., 2016; Bertrand et al., 2017) and summarized here. The instrument was operated under standard 

conditions (temperature of vaporizer 600°C, electronic ionization (EI) at 70eV, V mode) with a temporal resolution of 10 

seconds. Data analysis was performed in Igor Pro 6.3 (Wave Metrics) using SQUIRREL 1.57 and PIKA 1.15Z assuming a 

collection efficiency of 1. The O:C ratio was determined according to Aiken et al. (2008). 

Black carbon (BC) was derived from the absorption coefficient measured with a 7-wavelength aethalometer (Magee Scientific 30 

aethalometer model AE33). The corresponding mass concentration of equivalent BC (eBC) was thus converted from the 

absorption coefficient measured with a time resolution of 1 minute at a wavelength of 880 nm (Drinovec et al., 2015).  
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The particle number concentration and size distribution (16 to 914 nm) were provided by a scanning mobility particle sizer 

(SMPS, consisting of a custom-built differential mobility analyzer (DMA) and a condensation particle counter (CPC 3022, 

TSI)) with a time resolution of 5 minutes. Supporting gas measurements included a CO2 analyzer (LI-COR), a CH4, a total 

hydrocarbon (THC) monitor (flame ionization detector, THC monitor Horiba APHA-370), and NO and NO2 (NOX analyzer, 

Thermo Environmental) monitors. 5 

3. Data analysis 

The data analysis entails three steps detailed in this Section: The first sub-section describes the determination of the amount 

of oxidized OGs in the chamber. The second sub-section details the determination of the amount of SOA formed in the 

chamber. The last sub-section describes the box model used for the parameterization of SOA formation from the OGs. 

3.1 Organic gases loss in the chamber 10 

In the chamber, OGs were oxidized to several oxidation products, referred to as oxidized OGs (CG, condensable gases) in the 

following analysis. According to their volatility, these products may remain in the gas phase or partition to the particle phase, 

thereby contributing to SOA formation.  

We described the change in any OG concentration over time as a combination of its loss and production as follows: 

 15 

𝑑[OG]

𝑑𝑡
= 𝑃 − ( ∑𝑘𝑑𝑖𝑙 ∗ [OG] + 𝑘𝑂𝐻  ∗ [𝑂𝐻] ∗ [OG] + 𝑘𝑜𝑡ℎ𝑒𝑟 ∗ [OG]) (1) 

 

Here, P corresponds to the production of a OG in the chamber, e.g. from the oxidation of other primary OGs. kdil is the dilution 

rate constant in s-1. kOH[OH] [OG] in molec-1 cm3 s-1 represents the consumption rate due to oxidation by OH, where kOH  is 

the reaction rate constant and [OH] is the OH concentration. 𝑘𝑜𝑡ℎ𝑒𝑟[OG] in molec-1 cm3 s-1 is the loss rate of OG by other 

processes, where 𝑘𝑜𝑡ℎ𝑒𝑟  is the reaction rate constant in s-1. The loss of some OGs could not be explained by their reaction with 20 

OH and dilution alone for the Set1, so we added this additional term which is discussed after the first two processes are 

constrained. We considered primary OGs that exhibited a clear decay with time to be strictly of primary origin, and hence 

neglected their production from other OGs (i.e. P = 0). This assumption signifies that the yields estimated under our conditions 

are upper limits. In reality, the detection of aromatic hydrocarbons (e.g. single-ring aromatic hydrocarbons, SAHs and 

polycyclic aromatic hydrocarbons, PAH) by the PTR-ToF-MS may be affected by the interference due to fragmentation during 25 

ionization of their oxidation products (Gueneron et al., 2015). On the other hand, directly emitted oxygenated aromatics could 

be themselves the oxidation products of aromatic hydrocarbons and their production may continue during the experiment. 

However, the assumption of P = 0 does not introduce a significant error for most OGs with significant primary emissions, 

because the observed OG decay was consistent with their OH reaction rate constant for Set 2 as demonstrated by Bruns et al. 
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(2017) for the +15°C conditions. In the following, we describe the processes governing the changes in the OG concentrations 

in the chamber and the approaches adopted for the determination of the different parameters in Eq. (1). 

3.1.1 Reaction with OH radical 

The OH exposure, that is the integrated OH concentration over time, was estimated based on the differential reactivity of two 

OGs. Specifically, we used d9-butanol (fragment at mass to charge ratio m/z 66.126, [C4D9]+) and naphthalene (fragment at 5 

m/z 129.070, [C10H8]H+). These compounds are selected because they can be unambiguously detected (no isomers or 

interferences, high signal-to-noise), are not produced during the experiment, and have OH reaction rate constants that are 

precisely measured and significantly different from each other. The OH exposure can be expressed as follows:  

 

𝑂𝐻 𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒 = (

𝑙𝑛 (
𝑑9 − 𝑏𝑢𝑡𝑎𝑛𝑜𝑙
𝑛𝑎𝑝ℎ𝑡ℎ𝑎𝑙𝑒𝑛𝑒

)
0
− 𝑙𝑛 (

𝑑9 − 𝑏𝑢𝑡𝑎𝑛𝑜𝑙
𝑛𝑎𝑝ℎ𝑡ℎ𝑎𝑙𝑒𝑛𝑒

)
𝑡

𝑘𝑂𝐻,𝑏𝑢𝑡 − 𝑘𝑂𝐻,𝑛𝑎𝑝ℎ

) (2) 

   

where (d9-butanol/naphthalene)0 is the ratio between these compounds at t = 0 (before lights were turned on), (d9-10 

butanol/naphthalene)t is the ratio measured at time t, and kOH,but and kOH,naph are the OH reaction constants of d9-butanol and 

naphthalene, respectively (kOH,but=3.14 × 10-12 cm3 molec-1 s-1 and kOH,naph = 2.30 × 10-11 cm3 molec-1 s-1) (Atkinson and Arey, 

2003). 

For Set1, the OH exposure at the end of each experiment ranged between 5 and 8 × 106 molec cm-3 h, corresponding to 

approximately 5-8 hours in the atmosphere (given global average and typical wintertime OH concentrations of 1 × 106 molec 15 

cm-3). For Set2, higher OH exposures were reached (3 to 7 × 107 molec cm-3 h at the end of each experiment, corresponding to 

2-3 days in the atmosphere). This is likely because both sets of experiments utilized a similar HONO molar flow (and thus 

similar OH production rate), but higher OG concentrations were reached in Set1, which could possibly have resulted in a 

higher OH sink. We calculated the OH concentration, [OH] in Eq. (1), numerically as d(OH exposure)/dt. 

3.1.2 Smog chamber dilution 20 

For Set 2, dilution was dominated by the constant injection of HONO to the chamber and accounted for as described in Bruns 

et al. (2016). For Set1 the dilution rate of primary OGs in the chamber was calculated as follows. The integrated dilution over 

time, Kdil, was determined as the ratio between the d9-butanol concentration corrected for the reaction of d9-butanol with OH 

and the d9-butanol concentration at t = 0 ([d9-butanol]0): 

 25 

𝛫𝑑𝑖𝑙 =
[𝑑9 − 𝑏𝑢𝑡𝑎𝑛𝑜𝑙] ∗ 𝑒𝑘𝑂𝐻,𝑏𝑢𝑡∗𝑂𝐻 𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒

[𝑑9 − 𝑏𝑢𝑡𝑎𝑛𝑜𝑙]0
 (3) 
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Figure S1 shows calculated values for Kdil as a function of time. Increasingly high dilution at the end of these experiments (Fig 

S1), between 20 and 35% (i.e., a dilution ratio of 0.8 to 0.65), is a result of constant injection of HONO and excessive sampling 

at high rates, resulting in inputs from laboratory air (likely through leaks in the Teflon bag or the connections of chamber inlets 

and outlets). The inputs from the HONO pure carrier gas and of laboratory air are roughly comparable (about 12 vs. 8-23% at 

the end of the experiment). Besides dilution, the effect of both inputs on the gas phase chemical composition is negligible. 5 

Dilution rates are non-linear, increasing as the experiment progresses due to continuous dilution within a decreasing chamber 

volume. The dilution rate constant, kdil, in Eq. (1), is the differential of Kdil over time.  

3.1.3 Losses by other processes 

To corroborate the estimated OH exposures and dilution rates, we examined the loss of prominent OGs with known reaction 

rate constants against OH. For Set2 and as demonstrated by Bruns et al. (2017), the OG decay is consistent with their estimated 10 

loss based on their dilution and reaction with OH. By contrast, for Set1, the decay of some OGs could not be solely explained 

by their reaction with OH and dilution, suggesting additional reactions with oxidants other than OH as discussed below. The 

OG total consumption by this process (∫ 𝑘𝑜𝑡ℎ𝑒𝑟  [OG])   was estimated as the difference between the total measured decay of 

the OG of interest and the fraction consumed by both dilution and oxidation by OH radicals. The reaction rate constants for 

several precursors towards OH (𝑘OH ) are not available in the literature. In addition, many fragments may have several isomers, 15 

each of which associated with different rate constants. Effective rate constants for all precursors considered were estimated 

from their decay in Set2, where the combination of OH reaction and dilution fully explained the decay of OGs with known 

OH reaction rate constants.  

3.1.4. Precursor classification 

A common set of 263 ions were extracted from the PTR-ToF-MS. Among these ions, 86 showed a clear decay with time and 20 

were thus identified and selected as potential SOA precursors. Previous work based on Set2 experiments showed that the PTR-

ToF-MS measures the most important SOA precursors, which explained the measured SOA mass within 40% uncertainty and 

without systematic bias (Bruns et al., 2016). Therefore, these compounds are expected to capture the dominant fraction of SOA 

mass, although we cannot rule out losses in the PTR-ToF-MS inlet or small contributions from other precursors such as alkanes. 

The compound identification was supported by previous publications (McDonald et al., 2000; Fine et al., 2001; Nolte et al., 25 

2001; Schauer et al., 2001; Stockwell et al., 2015), including gas chromatography-mass spectrometry (GC-MS) analysis when 

available.  

The size of our dataset does not allow us retrieving the volatility distribution for single precursors, which would entail the 

determination of more than 86 free parameters. This is especially the case as the time series of precursors, decaying with 

oxidation, are typically strongly correlated, which prevents resolving systematic differences between the yields of the different 30 

single precursors. Therefore, lumping is needed to decrease the model degree of freedom. Accordingly, precursors are grouped 
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in six chemical classes: furans, single-ring aromatic hydrocarbons (SAH), polycyclic aromatic hydrocarbons (PAH), 

oxygenated aromatics (OxyAH) and organic compounds containing more or less than 6 carbon atoms (OVOCc≥6, OVOCc<6, 

respectively) (Table S1). The selected precursors in each class are the same for each experiment and each dataset. This lumping 

approach is based on the two main objectives of the study: 

1. Compare the SOA yields of specific precursors determined in complex emission experiments with those determined in 5 

single compound systems.  

2. Identify the main SOA precursors in flaming and smoldering wood emissions, at different temperatures.  

To be able to compare to literature yields, we lumped species that have similar yields in the same chemical class: e.g. at organic 

aerosol concentration of 10 µg m-3 the yields of PAHs is ~20% (objective 1). In addition, we classified the precursors based 

on the pathway by which they are emitted, which will allow us to determine which compounds dominate SOA formation in 10 

flaming and smoldering emissions (objective 2). We differentiated between oxygenated aromatics, mainly emitted through 

lignin pyrolysis, furans emitted through cellulose pyrolysis and single-ring aromatics and PAHs generated from incomplete 

combustion, especially from flaming wood. The remaining SOA precursors are all oxygenated OGs therefore we separated 

them according to their carbon number knowing that larger precursors will have higher yields than smaller precursors. Our 

ability to precisely extract yields specific to a precursor class heavily relies on differences in the oxidation rates or emission 15 

patterns of the precursors. Therefore, the classification approach adopted here, where classes are expected to have different 

contributions during different experiments (Bhattu et al., 2019), facilitates the extraction of yields of the different classes. 

3.2 Calculation of the OA mass in the chamber 

The total organic aerosol measured by the HR-ToF-AMS was corrected for particle losses in the chamber due to gravitational 

and diffusional deposition. To assess the total wall losses due to both processes, we assumed that the condensable vapors 20 

partition only to the suspended aerosols but not to the wall.  

Assuming that black carbon is inert in the chamber, it was possible to use its decay to estimate the particle loss to the walls. 

The aerosol attenuation measured at 880 nm (at the end of each experiment, ~4 hours) with an aethalometer was used to 

estimate the particle loss rate to the wall. This attenuation is proportional to the eBC mass concentration and within 

uncertainties independent of the aging extent, as demonstrated in Kumar et al. (2018). Using eBC as a tracer, we inherently 25 

assumed that eBC and OA were internally mixed and homogeneously distributed over the aerosol size range. The decay of 

eBC due to both dilution and deposition onto the chamber walls was parametrized as follows: 

 

𝑑[eBC]

𝑑𝑡
= − 𝑘𝑑𝑖𝑙 [eBC] − 𝑘𝑤𝑎𝑙𝑙 [eBC]  

 

(4) 

where kwall is the first order wall loss rate used to correct the measured OA concentration for wall losses, ranging between 4 

and 8 × 10-5 s-1, and kdil is the dilution rate determined above. 30 
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The wall loss corrected organic aerosol, OAWLC, was calculated using Eq. (5): 

 

OAWLC (𝑡) = OA (𝑡) + ∫ 𝑘𝑤𝑎𝑙𝑙

𝑡

0

∗ OA (𝑡) ∗ 𝑑𝑡 

 

(5) 

where OA(t) is the measured organic aerosol concentration in μg m-3. The total OA present in the chamber was estimated as 

the suspended OA concentration measured by the HR-ToF-AMS plus the estimated OA lost to the wall. This concentration 

was directly compared to the condensable gases (CG) concentration estimated according to Eq. (A8) presented in the Appendix 5 

A. As mentioned, our approach did not take into account the losses of precursor vapors or their oxidation products in the gas 

phase onto the walls. We note that these processes were unlikely to have a substantial effect on the precursors considered, 

which were largely highly volatile species, even at lower temperature. Based on the calculation of the equilibrium constant of 

semi-volatile species on the walls by Bertrand et al. (2018b), we estimated that at 293 K the fraction of these compounds 

absorbed on the walls is <5%. Meanwhile, the walls could indeed act as a sink for the semi-volatile oxidation products. This 10 

effect was not taken into account in the current study, but we expect that it was minimized under our conditions, by the high 

OA concentration in the chamber and rapid production rates (Zhang et al., 2014; Nah et al., 2017).  

3.3. Modelling SOA formation 

The general aim of the model is the determination of the parameters describing the volatility distributions of the oxidation 

products from different precursor classes and their temperature-dependence. A simplified schematic of the modeling 15 

framework is described in Fig. 1. It consists of 1) a box model that describes the partitioning of the condensable gases generated 

through oxidation, 2) the model input parameters obtained from the smog chamber, 3) the model output parameters and 4) the 

model optimization based on a genetic algorithm (GA). Each of these parts is described in the following sections. 

3.3.1 Box model 

We assume the partitioning of CG between the gas and the particle phases to obey Raoult’s law (Strader et al., 1999), where 20 

the aerosol can be described as a pseudo-ideal organic solution, of SOA and POA species. The volatility basis set (VBS, 

implemented by Koo et al., 2014 in the Comprehensive Air quality Model with eXtensions, CAMx), was used to classify the 

oxidation products of the different precursors into surrogates with different volatility, distributed into discrete logarithmically 

spaced bins (Donahue et al., 2006). 

We considered the most basic mechanism by which SOA may form. That is, the oxidation products from the different precursor 25 

classes described above instantaneously partition into the condensed phase depending on their volatility. No additional 

reactions in the gas or particle phase were considered (e.g. reaction with oxidants, photolysis or oligomerization). In addition, 

we neglected the contribution of primary oxidation products of the gas-phase semi-volatile species (co-emitted with POA) 

compared to the OGs detected by the PTR-ToF-MS, based on the findings of Bruns et al. (2016) and Ciarelli et al. (2017). 
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Finally, we considered the species in the gas and the particle phase to be permanently at equilibrium, as condensation is 

expected to be faster than oxidation (time scales for oxidized vapours condensation < 1 minute assuming no particle phase 

diffusion limitations, Bertrand et al., 2018b). While including additional processes in the model is feasible, this would result 

in a significantly higher-dimensional parameter space, which cannot be unambiguously inferred from the present data. We 

consider that without supportive data, e.g. chemically resolved characterization of the particle phase species, such reactions 5 

could not be well constrained or even deduced from structure activity relationships, given the many unknowns in complex 

emissions. Therefore, such simplified scheme of SOA formation from complex emissions may be compared in the future with 

chemically resolved data to help the identification of additional mechanisms that were not considered here. 

The derivation of the thermodynamic equations governing SOA formation from precursors, implemented in the box model, is 

detailed in Appendix A and only a brief description of the model principles is given here. In the following, let i and j be the 10 

indices for the different volatility bins and precursor classes, respectively. The model determines the molar distribution of the 

oxidation products from different precursor classes in the different volatility bins, Υi,j, together with the compounds’ enthalpy 

of evaporation, Δ𝐻𝑣𝑎𝑝 𝑖,𝑗. The latter describes the temperature dependence of the oxidation products’ effective molar saturation 

concentration, 𝑥𝑖,𝑗
∗ . For this, the model iteratively solves Eq. (A6) and (A7) at every experimental time step (time resolution of 

10 seconds) for all experiments, to retrieve the surrogate molar concentrations in the particle phase, 𝑥𝑖,𝑗|𝑝   and the total 15 

surrogates’ molar concentration in the condensed organic phase, 𝑥𝑂𝐴 (see Appendix A).  

3.3.2 Model inputs  

The model uses as main inputs the molar concentrations of the condensable gases from different precursors (in total n = 6 

precursor classes) in both phases, 𝑥𝑗|𝑔+𝑝. The latter is derived from the consumption rates of 𝑉𝑂𝐶𝑗 determined by the PTR-

ToF-MS, by numerically integrating Eq. A8. 𝑥𝑗|𝑔+𝑝 is related to the concentrations of the different surrogates from a precursor 20 

class j in different volatility bins, 𝑥𝑖,𝑗|𝑔+𝑝 (Eq. A6), through their yields, Υ𝑖,𝑗, according to Eq. A9. The number of volatility 

bins, m, is set to 6, approximately corresponding to the following mass saturation concentrations: 𝐶𝑖,𝑗
∗⃗⃗ ⃗⃗  ⃗(𝜇𝑔 𝑚−3) =

{ 10−1; 100; 101; 102; 103; 104}. 

In addition to 𝑥𝑗|𝑔+𝑝, the model needs as inputs 𝑥
𝑖

𝑂𝑀𝑝|𝑝+𝑔, the molar concentration of primary organic matter from a volatility 

bin i in both gas and particle phase (Eq. A7). 𝑥
𝑖

𝑂𝑀𝑝|𝑔+𝑝 is inferred from the measured POA concentrations injected in the 25 

chamber at the beginning of the experiment and using the volatility distribution function of wood combustion emissions in 

May et al. (2013). It is assumed constant with aging. The computation of the fraction of POAi in the condensed phase is similar 

to that for SOA species in Eq. (A6). 

The secondary surrogates’ elemental composition (𝐶#𝑖,𝑗 ,  𝑂#𝑖,𝑗  and 𝐻#𝑖,𝑗 ) is also used as model inputs to compute the 

surrogates molecular weight, MW𝑖,𝑗, required for 𝐶𝑂𝐴 calculations (see Section 3.3.3). A single 𝐶#𝑖,𝑗 value is calculated per 30 

chemical class, based on the average 𝐶#𝑗
𝑉𝑂𝐶 of the respective precursor class, and considering 𝐶#𝑖,𝑗 = 𝐶#𝑗

𝑉𝑂𝐶 − Δ𝐶, where 
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Δ𝐶 is the average loss in carbon due to fragmentation during the oxidation of precursors from all classes. Δ𝐶 is determined by 

systematically changing its value in multiple model runs and selecting the value that explains best the observed O:C ratios (see 

Fig. 8b). Likewise, a single  𝐻#𝑖,𝑗  value is assumed per chemical class, considering that 𝐻#𝑗 𝐶#𝑗⁄  equals 𝐻#𝑗
𝑉𝑂𝐶 𝐶#𝑗

𝑉𝑂𝐶⁄ . 

Finally, 𝑂#𝑖,𝑗 is constrained by the 𝐶#𝑗 and the surrogate volatility (𝐶𝑖,𝑗
∗ ) based on the simplification of the SIMPOL model 

(Pankow and Asher, 2008), provided by Eq. (3) in Donahue et al. (2011). Based on this relationship, 𝑂#𝑖,𝑗 increases with 5 

decreasing 𝐶#𝑗  and 𝐶𝑖,𝑗
∗ . The O:C ratio of primary emissions is constrained in the model to the measured O:C in the beginning 

of each experiment, by setting 𝐶#𝑂𝑀𝑝 and calculating 𝑂#
𝑖

𝑂𝑀𝑝
 using the same methodology as for 𝑂#𝑖,𝑗. The resulting 𝐶#𝑂𝑀𝑝 

and 𝑂#
𝑖

𝑂𝑀𝑝
 and the corresponding primary organic matter molecular weight, 𝑀𝑊

𝑖

𝑂𝑀𝑝
, as well as 𝐶#𝑗, 𝑂#𝑖,𝑗, 𝐻#𝑗 and 𝑀𝑊𝑖,𝑗 

are reported in Table S4.  

3.3.3 Model outputs 10 

The model provides the Υ𝑖,𝑗 and Δ𝐻𝑣𝑎𝑝 𝑖,𝑗 parameters. To reduce the model’s degree of freedom we consider a single Δ𝐻𝑣𝑎𝑝 

for all surrogates from different chemical classes in different volatility bins. Υ𝑖,𝑗  is considered to follow a kernel normal 

distribution as a function of log 𝐶∗, Υ𝑖,𝑗~𝑁(μ𝑗 , σ ), where μ𝑗  is the median value of log 𝐶∗ and σ is the standard deviation. This 

step (1) insures positive Υ𝑖,𝑗 parameters, (2) significantly reduces the model’s degree of freedom and (3) allows constraining 

the total concentration of surrogates from a certain chemical class:  ∑ Υ𝑖,𝑗  
𝑚
𝑖 = 1.   15 

The set of Υ𝑖,𝑗 and Δ𝐻𝑣𝑎𝑝 𝑖,𝑗 parameters are determined by minimizing the sum of mean bias (MB) and the root mean square 

error (RMSE) between modelled mass concentrations of the particulate organic phase, 𝐶𝑂𝐴,  calculated using Eq. (6) and 

concentrations measured by the AMS.  

 

𝐶𝑂𝐴 = ∑∑  𝑀𝑊𝑖,𝑗𝑥𝑖,𝑗|𝑝 +
𝑚

𝑖
𝑀𝑊

𝑖

𝑂𝑀𝑝𝑥
𝑖

𝑂𝑀𝑝|𝑝

𝑛

𝑗

 (6) 

 20 

The model fitted to the measured 𝐶𝑂𝐴 was also validated by external AMS measurements of the O:C ratio determined through 

high resolution analysis. The modelled O:C ratio was calculated at every experimental time step as follows: 

 

𝑂: 𝐶 =
∑ ∑  𝑂#𝑖,𝑗𝑥𝑖,𝑗|𝑝 +𝑚

𝑖 𝑂#
𝑖

𝑂𝑀𝑝𝑥
𝑖

𝑂𝑀𝑝|𝑝
𝑛
𝑗

∑ ∑  𝐶#𝑖,𝑗𝑥𝑖,𝑗|𝑝 +𝑚
𝑖 𝐶#

𝑖

𝑂𝑀𝑝𝑥
𝑖

𝑂𝑀𝑝|𝑝
𝑛
𝑗

 (7) 
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3.3.4 Model optimization 

The model is optimized to determine the volatility distributions of the oxidation products from different precursor classes 

described by μj,σ and their temperature-dependence described by ΔHvap, to best fit the observed OA concentrations. For the 

model optimization, we used a genetic algorithm (GA), a metaheuristic procedure inspired by the theory of natural selection 

in biology, including selection, crossover and mutation processes, to efficiently generate high-quality solutions to optimize 5 

problems (Goldberg et al., 2007; Mitchell, 1996). The GA is initiated with a population of randomly selected individual 

solutions. The performance of each of these solutions is evaluated by a fitness function, and the fitness values are used to select 

more optimized solutions, referred to as parents. The new generation of solutions (denoted children) are produced either by 

randomly changing a single parent (as mutation) or by combing the vector entries of a pair of parents (as crossover). The 

evolution process will be repeated until the termination criterion is reached, here maximum iteration time. In this study, a 10 

population of 50 different sets of model parameters (μj,σ and ΔHvap) was considered for each GA generation. The sum of mean 

bias and RMSE between measured and modelled COA of the 14 experiments were used as fitness function to evaluate the 

solutions. We assume the termination criterion is reached if no improvement in the fitness occurs after 50 generations, with a 

maximum of 500 total iterations allowed. The GA calculations were performed using the package “GA” for R (Scrucca et al., 

2017). A bootstrap method was then adopted to quantify the uncertainty in the constrained parameters.   15 

4. Results and discussion 

4.1 Comparison of primary emissions across experiments 

A larger amount of primary OGs was emitted into the chamber in Set1, with concentrations ranging from 950 to 7860 µg m-3, 

while in Set2 the primary OGs concentrations ranged from 300 to 1360 µg m-3. In the same way, the measured OA at the 

beginning of each test (POA) ranged from 10 to 180 µg m-3 and from 9 to 22 µg m-3 for Set1 and Set2, respectively (Table 1). 20 

The OGs composition for Set1 and Set2 is summarized in Fig. 2 showing the mean PTR-ToF-MS mass spectra (Fig. 2a, b), 

the relative contributions of the different compounds for different datasets (Fig. 2c) and the variability in composition among 

all experiments (Fig. 2d). Set1 shows higher relative contributions of furans and OVOCc<6 (Fig. 2a), while the contributions of 

PAH, SAH and OxyAH are higher in Set2 (Fig. 2b). The OxyAH compounds, mainly methyl and methoxy-phenols, are 

produced by lignin pyrolysis (Fine et al., 2001) while furans are formed from cellulose pyrolysis (Mettler et al., 2012). The 25 

chemical class referred to as ‘Others’ comprise compounds that do not show a clear decay upon oxidation and are therefore 

not considered as SOA precursors in the following analysis. ‘Others’ is dominated by acetic acid, previously reported as a 

major species in residential wood burning emissions (Bhattu et al., 2019). The majority of the compounds differ among datasets 

and the most significant difference estimated through the p value (probability associated with a student t-test) occurs for the 

OVOCc<6, which is about a factor of 6 higher than the significance threshold (p = 0.05) for Set1. In order to investigate the 30 

similarity between all experiments a Spearman correlation matrix was calculated. Experiments from Set1 appear to be 
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consistently similar to each other while the experiments from Set2 are significantly different among each other in terms of 

composition of the primary emissions. A possible reason for such discrepancy was the difficulty in injecting flaming emissions 

without any significant smoldering contribution for Set2. This hypothesis is supported by the strong similarity between 

precursor compounds measured in some experiments supposed to represent flaming phase emissions only but apparently 

included some smoldering as well (9, 12, 13) with experiments from Set1 (1-7). Figure S2 reports the relative contributions of 5 

primary OGs (before photo-oxidation) for all compound classes for the fourteen experiments. Note that these trends are not 

correlated with the modified combustion efficiency (MCE), reported in Table 1, defined as CO2/(CO+CO2), which was 

constant at 0.97 g g-1, for Set2, but ranged from 0.8 g g-1 to 0.91 g g-1 for Set1. 

Figure 3 shows the contribution of each class of precursor compounds and of the primary semi-volatile organic matter (OMP) 

to the total primary emissions.  OMP is the total organic matter in the semi-volatile and low-volatility range in the particle and 10 

the gas phase (saturation concentration < 1000 μg m-3 at 298 K) (see Section 3.3.2). Overall, the highest average relative 

contributions are related to OVOCc<6 followed by furans and OxyAH but we also note an average large contribution by SAH 

for Set2. The two sets of experiments investigated clearly show different primary composition of emissions in terms of 

dominant contributions; in Set1 OVOCc<6 and OxyAH dominate by far the total primary emissions while in Set2 the main 

species influencing the total primary emissions are OxyAH, OVOCc<6 and SAH with roughly similar contribution (see Fig. 15 

3b). Moreover, the calculated averaged OMp/OGs ratios are around 0.05 and 0.03 for Set2 and Set1, respectively. 

OGs undergo oxidation during atmospheric aging to form a complex mixture of products, some of which remain in the gas 

phase while others have sufficiently low volatility to partition to the particle phase. The consumption of the different OG 

classes over time is shown in Fig. 4a, b for Set1 and Set2 respectively. The general trends manifest that PAH and OxyAH are 

the most reactive classes, exhibiting an average consumption of up to 80% at the end of the experiments (after ~4 hours of 20 

aging) while for both the datasets SAH appears to be the least reactive class (with an average consumption between 10 and 

20% at the end of experiments). Relevant compounds in the latter class are benzene (C6H6), toluene (C7H8) and xylene (C8H10), 

their slow reactivity is consistent with literature reaction rate constants toward OH, from the NIST database (NIST chemistry 

WebBook, 2018), of 1.22 × 10-12, 6.13 × 10-12 and 7.51 × 10-12 (cm3 molec-1 s-1), respectively.  

The two datasets differ for the OH dose; we observe in Set2 (Expt. 8-14) an overall higher consumption of all precursor classes 25 

due to the higher OH dose (representing a longer aging time in an ambient atmosphere ). PAH shows the highest reactivity 

followed by OxyAH while for Set1 (Expt. 1-7) the fastest class of compounds to react is the OxyAH followed by PAH and 

OVOCc<6. Moreover, despite of the lower OH exposure reached for Set1 the consumption of OxyAH and furans is substantially 

higher at comparable exposure levels.  

In the same way, we also observe a higher SOA production for Set1 compared to Set2 at comparable OH exposure. The 30 

SOA/POA ranges between 2 and 6, similar to ratios observed in previous studies (Heringa et al., 2011a, Bruns et al., 2015, 

Grieshop et al., 2009, Tiitta et al., 2016).  
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 Overall the same chemical classes appear to behave differently across the different sets of experiments. Such an inconsistency 

in behavior is either due to differences in the chemical composition within the same class or due to additional reactivity 

occurring in Set1. 

To investigate the chemical differences within the same class of compounds across different experiments, Table 2 reports the 

average reaction rate constants against OH of the different chemical classes calculated at the beginning of each experiment 5 

following Eq. (8).  

 

𝑘̅𝑂𝐻𝑗,𝑘
= ∑𝑘𝑂𝐻𝑐,𝑗

× 
OG𝑐,𝑗,𝑘

OG𝑗,𝑘
i

 
(8) 

 

Here, c represents the single compound, j the family and k the experiment. kOH is the reaction rate constant toward OH and OG 

refers to the primary OGs.  10 

OH reaction rate constants (𝑘𝑂𝐻𝑐,𝑗
) for each compound were calculated from Set2 only (Fig. 5), whereas the decay of the 

precursors contributing most to SOA formation during aging was compared with the expected decay based on literature. The 

good agreement indicates that for these experiments the consumption of the precursors was dominated by OH (Bruns et al. 

2017). The average OH reaction rate constants (𝑘𝑂𝐻𝑐,𝑗
) are reported in Table S3. They are determined for each precursor class 

and calculated with a first order exponential fitting on the precursors’ decay curves previously corrected for dilution.  15 

The average reaction rate constants per family ( 𝑘̅𝑂𝐻𝑗,𝑘
)  are similar among the same families for different experiments 

suggesting that the variable behavior of the chemical classes across different experiments was due to differences in the reactive 

environment rather than a different chemical composition within a given class. 

As introduced in Section 3.1.3, the total measured decay of OGs in Set1 could not be fully explained by dilution and reactivity 

against OH, suggesting the presence of an additional loss process. To assess the remaining oxidation processes, kOH values 20 

were used to estimate the missing loss process for Set1 according to Eq. (1). In this way the consumed fraction due to OH 

chemistry, dilution in the chamber and the additional reactivity was calculated for each OG compound family and is shown in 

Fig. 6. The additional reactivity appears to contribute to the total precursor consumption for most of the classes, with particular 

relevance for the OxyAH and PAH classes. This is in contrast with the calculated loss for the Set2 (Fig. S3) where the dominant 

consumption is due to OH. 25 

One possible hypothesis is that the remaining loss process might be due to reaction with the nitrate radical (NO3), which 

absorbs in the visible region (~500-650 nm) and thus is not efficiently photolyzed by the black lights used here (Reed et al., 

2016). Fig. S4 shows that for Set1 the NO3 reaction rate constants (kNO3) for compounds found in the NIST database (NIST 

chemistry WebBook, 2018) (see Table S1) are well correlated with the amount reacted, making nitrate chemistry a likely loss 

process (Schwantes et al., 2018). We note that while the OH production rate in the chamber is similar for the two sets of 30 

experiments, given the same injection rate of HONO, the OH total reactivity is significantly higher for Set 1, because of the 
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injection of ~5 times higher OG concentrations. As a result, the OH concentration is around 1.5 × 106 versus 10 × 106 molec 

cm-3 for Set1 and Set2, respectively, increasing the availability of OGs for consumption by other processes during Set1.  

4.2 Model evaluation 

As previously mentioned, the reaction of the OGs produces oxidation products (CG, condensable gases) which can 

consequently partition between the gas and particle phases. Their concentration, estimated by accounting for the production 5 

minus the loss in the chamber, as described in Eq. (1), was used as input for the box model with the volatility basis set (VBS) 

scheme. Figure S5 shows the volatility distributions of different precursor classes for Set1 and Set2 to assess the influence of 

different processes occurring in different experiments. 

We note that for Set1 the lower volatility bins exhibit higher contributions compared to Set2 but still within two standard 

deviations, such that it is difficult to distinguish statistically different yields for most of the cases. Hence, the total volatility 10 

distribution was used to calculate the mass yield instead of a specific one for each dataset (Fig. 9). Mass yields calculated for 

the specific datasets Set1 and Set2 are reported in Fig. S6.  

Fig. 7 shows the modelled and measured OA mass for all fourteen experiments, where Set1 accounts for both OH and NO3 

chemistry while Set2 includes OH chemistry only. The modelled OA is divided into POA and 6 SOA classes attributed to the 

respective precursor classes. Overall, the model performance is satisfactory, although in general the final OA concentration is 15 

slightly overpredicted while the initial production rate is underpredicted. Most of the SOA is attributed to furans (30.8%), 

OxyAH (19%) and OVOCc<6 (12.5%) for Set1 while for Set2 there is a generally lower contribution from OVOCc≥6 (7.8%) 

and a higher contribution from PAH (12%), especially for experiments 08, 13 and 14. The mean bias between measured and 

modelled OA averaged over all experiments is -7.2 µg m-3 which corresponds to ~ 15 % on average.  

4.3 Investigation of OA chemical and physical properties 20 

Comparisons between measured and modelled O:C ratios are reported in Fig. 8. The oxidation products elemental composition 

based on which the modelled O:C ratio is calculated are presented in Table S4. The oxidation products’ carbon numbers that 

explained best the observed O:C ratio corresponds to a set ΔC of 0.6 (Fig. S7). There is a general increase in the O:C ratio 

with time. Model and observations match in terms of average O:C ratio for each experiment but the temporal evolution of the 

ratio is not well predicted suggesting that there are additional processes that are not taken into account in the model. As the 25 

model was initiated using the measured POA O:C ratio at OH exposure equal to zero, an agreement between model and 

measurements can be observed at this time of the experiment. We do not find any systematic correlation of the bias with 

chamber conditions except for lower concentrations where experiments exhibit higher O:C ratios at the end. Overall for 

experiments conducted at lower temperature (-10°C) the model tends to overestimate the O:C while for higher temperature 

experiments (15°C) the model clearly under-predicts the ratio upon aging especially at the end of the experiments indicating 30 

the presence of compounds with a higher number of oxygen (lower number of carbon) than predicted.  
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Fig. 9 shows mass yield curves for each class of compounds, in comparison with mass yields of several single compounds 

from literature (Table S2). The single compounds were selected according to their presence in the current study and compared 

to the respective chemical family. The reported published yields were discriminated according to experimental NOx regimes, 

as low NOx conditions generally lead to higher OA yields. Our study is more likely representative of a high NOx regime and 

thus assesses the SOA forming potential for this atmospherically relevant condition. For the model and measurement 5 

conditions (COA~20-600 µg m-3) the following median mass yields ranges were found: 7-20% for furans, 10-25% for SAH, 

14-32% for PAH, 9-24% for OxyAH, 23-46% for OVOCc≥6 and 6-18% for OVOCc<6.  Mass yields were also calculated for 

the two separate datasets and reported in Fig. S6 in order to assess differences driven by specific combustion regimes. 

Considering ambient relevant conditions of COA~50 µg m-3 we note a generally good agreement between the two datasets 

except for OxyAH which exhibit higher median yields (representing smoldering phase) of ~25% in Set1 and only ~10% in 10 

Set2 (representing flaming phase). Set2 on the other hand exhibited higher median yields for the OVOCc≥6 family (~20% 

compared to ~16 % for Set1).  

The effect of temperature and OH exposure on OA concentrations and yields are shown in Fig. 10 for different primary OM 

loads (total primary gaseous and particulate OMp + OGs) of 6, 60 and 600 µg m-3. The range of temperatures investigated 

varies between 255 and 315 K. We find a general increase in total OA concentration with increasing OH exposure, decreasing 15 

experimental temperature, and higher initial loads, as expected. The average increase in OA concentration is 0.001, 0.03 and 

0.6 µg m-3 K-1 for 6, 60 and 600 µg m-3, respectively. Concerning SOA yields the temperature effect is also a function of OH 

exposure and aerosol load; SOA yields increase by 0.0001, 0.0006 and 0.002 g g-1 K-1 on average for 6, 60 and 600 µg m-3, 

respectively, with a higher effect predicted at lower temperature. We note overall an average yield increase by a factor of 3-4 

for a 10-fold increase in the primary OM loads at the highest OH exposure considered (8×107 molec cm-3 h). Set2 exhibits 20 

higher yields because of lower contributions from the OVOCc<6 family, which does not produce significant amounts of SOA. 

SOA yields increase with increasing COA due to additional partitioning but also due to changes in the chemical composition 

and volatility of SOA species since they age differently with different experimental temperature and concentrations. 

Compounds with different oxygen to carbon ratios lead to different functionality, polarity and vapor pressure upon aging. 

Moreover, different temperatures result in different evaporation enthalpies that influence consequently the compounds’ 25 

volatility and lifetime. The modeled SOA ∆Hvap for each family of precursors results to be 17.5 kJ mol-1 after GA calculation. 

This value is within the ranges of values reported in literature, where values between 11 and 44 kJ mol -1 were reported for 

biogenic and anthropogenic SOA precursors depending upon the reactant hydrocarbon mixture and NOx concentration. For 

SOA formed both from α-pinene or toluene, a negative correlation between ∆Hvap and NOx concentration was observed 

(Offenberg et al., 2006). 30 

The modelled fractional contributions of the six different precursor classes to SOA are shown in Fig. 11 for Set1 and Set2. The 

most dominant contribution is from the OxyAH family apart from Set1 at high OH exposure where the contributions from 

precursors with higher volatility (furans and OVOCc<6) are more strongly temperature-dependent. In detail, the OVOCc<6 

family exhibits higher contribution with higher initial load and higher OH exposure. The SAH and PAH families have relevant 
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contributions for Set2 because these compounds are strongly emitted during the flaming phase. Since the SAH family consists 

of compounds that are less reactive than other families, they become relevant just at high OH exposure, while the compounds 

in the PAH family react faster and show a decreasing contribution with increasing OH exposure. 

5. Conclusions 

We performed box model simulations, based on the volatility basis set (VBS) approach, of residential wood combustion smog 5 

chamber experiments conducted at different temperatures, different combustion conditions and using different residential 

stoves. Primary emissions of SOA precursor compounds (OGs) and organic aerosol (OA) as well as their evolution during 

aging in the smog chamber were simultaneously monitored by a PTR-ToF-MS and an HR-ToF-AMS, respectively. This 

enabled the identification of the nature of SOA precursors lumped into different classes according to their chemical 

composition.  10 

The knowledge about the nature of SOA precursors was used to better constrain model parameters, in the oxidation products 

production rates and elemental composition. Using the measured OA mass, we were able to determine the volatility 

distributions and ∆Hvap for the products formed from the oxidation of the dominant precursor compound classes. We estimated 

the contributions of different compound classes to SOA and evaluate how the variability in the emission composition under a 

wide range of conditions would influence the SOA yield predictions. Investigation of different experimental temperatures 15 

allowed the evaluation of the model evaporation enthalpies which have a decisive influence on the volatility of the emissions 

and hence their atmospheric lifetimes. Upon aging, compounds with lower atomic O:C ratios are converted through the 

oxidation pathway to products with higher functionality, higher polarity and lower vapor pressure. As a result, a part of these 

products (re-)condense to the particle phase with partial pressures determined by their volatility, ambient temperature and 

concentration of the particulate organic mixture. While the degree of oxygenation increases during aging, organic species may 20 

also fragment into more volatile compounds, being eventually converted into CO2. Understanding the balance between 

oxygenation and fragmentation, their effect on volatility of emissions and timescale of these processes is essential to predict 

the evolution of the OA concentration. 

Overall we developed a framework useful to constrain complex emissions and suitable for sophisticated mass spectrometry 

analysis with the novelty and ability of identifying the contributions of different classes of OG precursors to SOA formation. 25 

The main focus of the study included the investigation of smoldering versus flaming emissions, resulting in predominant 

contributions of different classes of compounds according to the combustion phase investigated. Smoldering phase emissions 

were dominated by the OVOCc<6 compound family while the flaming phase exhibited higher contributions by the SAH and 

PAH families. For both phases, SOA formation is found to be dominated by OxyAH (e.g. phenols and cresols), emitted from 

lignin pyrolysis. These species were therefore predicted to be important markers to be monitored in air pollution studies in 30 

order to estimate the SOA forming potential from real emissions. 
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Appendix A 

In this appendix, we present the derivation of the thermodynamic equations used in the model. We considered the species in 

the gas and the particle phase to be permanently at equilibrium, as condensation is expected to be faster than oxidation (time 

scales for oxidized vapours condensation < 1 minute assuming no particle phase diffusion limitations, Bertrand et al., 2018b). 

Accordingly, the relation between the aerosol and gas phase activities satisfies the following expression: 5 

       

𝑥𝑖,𝑗|𝑔 = 𝛾𝑖,𝑗𝜒𝑖,𝑗𝑥𝑖,𝑗
0  (A1) 

 

Here, 𝑥𝑖,𝑗|𝑔 denotes the gas phase molar concentration of a surrogate in a volatility bin i formed from a precursor class j. The 

product 𝛾𝑖,𝑗𝜒𝑖,𝑗 represents the activity of the same surrogate in the particle phase, where  𝛾𝑖,𝑗 and 𝜒𝑖,𝑗  are the activity coefficient 

and the fraction of the surrogate in the particle phase, respectively. 𝑥𝑖,𝑗
0  is the equilibrium molar saturation concentration of the 10 

pure surrogate,  related to its equilibrium vapor pressure, 𝑝𝑖,𝑗
0 , according to Eq. (A2). 

𝑥𝑖,𝑗
0 =

𝑝𝑖,𝑗
0

𝑅𝑇
 (A2) 

 

Here, R and T are the ideal gas constant and the temperature, respectively. The effective molar saturation concentration (𝑥𝑖,𝑗
∗ ) 

which takes into account the influence of non-ideal mixing on the compounds’ activity, can be defined as the product of 𝛾𝑖,𝑗 

and 𝑥𝑖,𝑗
0 : 15 

     

𝑥𝑖,𝑗
∗ = 𝛾𝑖,𝑗𝑥𝑖,𝑗

0   (A3) 

 

Similar to 𝑝𝑖,𝑗
0 , 𝑥𝑖,𝑗

∗  can be written as a function of temperature, according to the Clausius-Clapeyron relationship based on Eq. 

(A4). 

ln (
𝑥𝑖,𝑗

∗ (𝑇)

𝑥𝑖,𝑗
∗ (𝑇𝑟𝑒𝑓)

) = −
𝛥𝐻𝑣𝑎𝑝 𝑖,𝑗

𝑅
 (

1

𝑇
−

1

𝑇𝑟𝑒𝑓
)  (A4) 
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Here, 𝑇  and 𝑇𝑟𝑒𝑓  are the experimental and reference (𝑇𝑟𝑒𝑓 = 298K)  temperatures, respectively. 𝛥𝐻𝑣𝑎𝑝 𝑖,𝑗  is the effective 

enthalpy of evaporation. It includes the effects of temperature on (1) the pure compound vapor pressure (𝑝𝑖,𝑗
0 ), (2) the 

compounds’ mixing properties in the condensed phase, i.e. 𝛾𝑖,𝑗  and (3) the radical chemistry reaction rate constants and 

branching ratios in the gas-phase (Stolzenburg et al., 2018).  

𝑥𝑖,𝑗
∗  is related to the Donahue effective mass saturation concentration (Donahue et al., 2012), 𝐶𝑖,𝑗

∗ , which is the inverse of the 25 

Pankow equilibrium constant (Pankow, 1987), through  the compounds’ molecular weight, 𝑀𝑊𝑖,𝑗, as indicated in Eq. (A5). 
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𝐶𝑖,𝑗
∗ = 𝑀𝑊𝑖,𝑗𝑥𝑖,𝑗

∗   (A5) 

                    

To constrain the model to the measurements, it is of convenience to rearrange Eq. (A1) and (A3) as a function of the surrogate 

total concentration, 𝑥𝑖,𝑗|𝑔+𝑝 = 𝑥𝑖,𝑗|𝑔 + 𝑥𝑖,𝑗|𝑝 and the total molar concentration of species in the particle phase (𝑥𝑂𝐴) which 

yields the following expression: 5 

𝑥𝑖,𝑗|𝑝 = (1 +
𝑥𝑖,𝑗

∗

𝑥𝑂𝐴 
)
−1

𝑥𝑖,𝑗|𝑔+𝑝  (A6) 

 

The parameters in Eq. (A6) were equated as follows: 

 The modelled molar concentration of the particulate organic phase was expressed as the sum of the concentration of 

all surrogates in the particle phase Eq. (A7). 

 10 

𝑥𝑂𝐴 = ∑ ∑  𝑥𝑖,𝑗|𝑝 + 𝑥
𝑖

𝑂𝑀𝑝|𝑝
𝑚
𝑖

𝑛
𝑗   (A7) 

 

Here, m and n are the total number of volatility bins and precursors chemical classes, respectively. 𝑥
𝑖

𝑂𝑀𝑝|𝑝 is the 

particle phase molar concentration of primary organic matter in volatility bin i. The 𝑥
𝑖

𝑂𝑀𝑝|𝑝 is calculated based on 

𝑥
𝑖

𝑂𝑀𝑝|𝑔+𝑝 in both phases, following a similar computation as for SOA (Eq. A6). 𝑥
𝑖

𝑂𝑀𝑝|𝑔+𝑝 was inferred from the 

measured POA concentrations injected into the chamber at the beginning of the experiment and using the volatility 15 

distribution function of wood combustion emissions in May et al. (2013).  

 

 𝑥𝑖,𝑗|𝑔+𝑝  was derived from the precursor oxidation rates measured by the PTR-ToF-MS. The change in the total 

concentration of oxidation products from a precursor class j in both gas and particle phases, 𝑥𝑗|𝑔+𝑝, was expressed as 

follows: 20 

 

𝑑𝑥𝑗|𝑔+𝑝

𝑑𝑡
= 𝑘𝑂𝐻  ∗ [𝑂𝐻] ∗ [OG𝑗] + 𝑘𝑜𝑡ℎ𝑒𝑟 ∗ [OG𝑗] − 𝑘𝑑𝑖𝑙 ∗ 𝑥𝑗|𝑔+𝑝  (A8) 

 

Here, [OG𝑗] is the molar concentration of total OG precursors in class j. For the definition of the other parameters, the 

reader is referred to Eq. (1). 𝑥𝑗|𝑔+𝑝  is calculated by numerically integrating Eq. (A8). 𝑥𝑗|𝑔+𝑝  is related to the 

concentration of the different surrogates from a precursor class j in different volatility bins, 𝑥𝑖,𝑗|𝑔+𝑝 (Eq. A6), through 25 

their yields, Υ𝑖,𝑗:  
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𝑥𝑖,𝑗|𝑔+𝑝 = Υ𝑖,𝑗𝑥𝑗|𝑔+𝑝  (A9) 

 

These yields, which represent the surrogate volatility distributions were determined by the model. 
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Table 1. Experimental parameters for the 14 smog chamber experiments used in this study, including smog chamber temperature, 

stove type, modified combustion efficiency (MCE), and the intial concentrations of POA and OGs.  

 

Expt. dataset reference date 

experimental 

temperature 

(°C) 

stove 

type 
MCE POA (µg m-3) OGs (µg m-3) 

1   
Bertrand et al. 

2017 
29.10.2015 2 stove 1 0.85 126 4039 

2   
Bertrand et al. 

2017 
30.10.2015 2 stove 1 0.84 179 7862 

3   
Bertrand et al. 

2017 
04.11.2015 2 stove 1 0.83 73 3694 

4 Set1 
Bertrand et al. 

2017 
05.11.2015 2 stove 1 0.91 10 948 

5   
Bertrand et al. 

2017 
06.11.2015 2 stove2 0.80 42 1839 

6   
Bertrand et al. 

2017 
07.11.2015 2 stove2 0.87 35 2007 

7   
Bertrand et al. 

2017 
09.11.2015 2 stove2 0.82 44 3379 

8   

Bruns et al. 

2016, Ciarelli 

et al. 2017 

02.04.2014 -10 stove 3  0.97 9 301 

9   

Bruns et al. 

2016, Ciarelli 

et al. 2017 

17.03.2014 -10 stove 3 n.a. 12 1024 

10   
Bruns et al. 

2016 
25.03.2014 15 stove 3 0.97 22 526 

11 Set2 
Bruns et al. 

2016 
27.03.2014 15 stove 3 0.97 15 645 

12   
Bruns et al. 

2016 
28.03.2014 15 stove 3 0.97 17 1368 

13   
Bruns et al. 

2016 
29.03.2014 15 stove 3 0.97 18 1096 

14   
Bruns et al. 

2016 
30.03.2014 15 stove 3 0.97 18 910 

 

n.a.: not available. 5 
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Table 2. Reported average reaction rate constants (10-11 cm3 molec-1 s-1) towards OH per family at the beginning of each experiment, 

including average reactivity (AVG) and standard deviation (STDEV). 

 

Expt. Furans SAH PAH OxyAH OVOCc≥6 OVOCc<6 

1 2.96 1.90 2.90 1.94 0.66 1.16 

2 2.97 1.86 2.99 2.05 0.70 1.25 

3 3.04 1.88 2.95 2.07 0.66 1.19 

4 2.79 2.02 2.84 2.38 0.62 1.16 

5 3.04 2.10 2.73 2.57 0.60 1.12 

6 3.04 1.88 2.83 2.09 0.59 1.11 

7 2.92 1.93 2.80 2.05 0.67 1.21 

8 3.09 2.28 3.36 3.74 0.88 1.40 

9 3.65 2.37 3.76 5.58 0.69 1.48 

10 3.15 2.34 3.27 4.41 0.59 1.44 

11 3.11 2.34 3.07 4.04 0.60 1.57 

12 3.04 2.23 2.50 2.32 0.75 1.39 

13 3.02 2.33 3.48 2.98 0.72 1.41 

14 2.96 2.36 3.58 4.40 0.77 1.50 

AVG 3.06 2.13 3.08 3.04 0.68 1.31 

STDEV 0.19 0.21 0.36 1.17 0.08 0.16 
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Figure 1. Schematic of the modelling framework. The box model simulates the formation of SOA from each precursor class j in 

volatility bins i. The best solution of the initialized input parameters volatility distribution (described as mean value of logC* for 

each precursor class µj and standard deviation σ) and enthalpy of vaporization (∆Hvap) parameters are optimized by a genetic 

algorithm, using minimum mean bias and root mean square error (RMSE) between modelled and measured OA concentration as 5 

the fitness function. Green boxes represent measured data from the chamber experiments. 
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Figure 2. Comparison of the OG emissions between the two sets of experiments. Panels (a) and (b) display average primary OGs 

mass spectra from Set1 (representing the smoldering phase) and Set2 (representing mainly the flaming phase), respectively. Spectra 

are normalized to the initial total OG concentration in µg m-3. Compounds are color coded by chemical classes. c) p-value versus 5 

fold change comparing the fingerprints of primary OGs between the two sets of experiments. The fold change was calculated as the 

ratio of the intensities of each ion normalized to the total signal, between Set2 and Set1 averaged across experiments. Data points 

above p = 0.05 have significantly different contributions to the total OGs between the two sets of experiments. Blue colored data 

points on the right hand side designate compounds enriched in the emissions from Set2 while green colored data points on the left 

hand side designate compounds enriched in the emissions from Set1. d) Spearman correlation matrix for the primary OGs mass 10 

spectra between all experiments highlighting the variability in the composition of the primary emissions. Each experiment is 

identified by an index (see Table 1) and the experiments from Set2 were reordered according to similarity with Set1. 
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Figure 3. a) Box plot for the relative contributions to the total primary emissions of the different precursor classes and of OMp 

averaged between experiments. OMp is the total semi-volatile and low-volatility organic matter calculated by means of the VBS 5 

model assuming the volatility distribution from May et al. (2013) and using as input the measured organic aerosol (OA) mass. The 

top and bottom whiskers represent the 90th and 10th percentiles, respectively, while the top, middle and bottom lines of the boxes 

show the 75th, 50th and 25th percentiles, respectively. The circles represent each single experiment from the two datasets investigated. 

b) Average contributions of different precursor families and OMp for Set1 and Set2. 
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Figure 4.  Average consumption of SOA precursor classes against average OH exposure for Set1 (a) and Set2 (b). The observed 

decay of SOA precursor families (OGs) as described in Eq. (1) is due to both oxidation processes and dilution in the chamber. c) 

SOA to POA ratio for each experiment against average OH exposure colored according to experimental temperatures (2°C, -10°C, 5 

15°C). 
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Figure 5. Box plot of mass weighted average OH reaction rate constants (kOH) determined for each precursor class from Bruns et al. 

(2016) for Set2 only (see Table S3). The individual kOH values for all compounds are also shown for all experiments, color coded 

according to the experimental temperatures. The top and bottom whiskers represent the 90th and 10th percentiles, while the top, 

middle and bottom lines of the boxes show the 75th, 50th, and 25th percentiles, respectively. 5 
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Figure 6. Fraction of consumed precursor compounds for Set1 by OH oxidation (a), dilution (b) and other reactivity (c) at the end 

of the experiments. Each point corresponds to a single compound averaged among experiments and normalized to the initial 

concentration. The color legend represents the statistically significant deviation from zero reactivity with the investigated reactant 

(p value). 5 
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Figure 7. a) Comparison between the sum of simulated organic aerosol (OA) concentrations from different precursor families and 

the measured OA concentration as a function of the OH exposure for each smog chamber experiment. Set1 (Expt. 1-7, 2°C) and Set2 

(Expt. 8-9, -10°C and Expt. 10-14, 15°C). b) Probability distribution of mean bias weighted by the average measured OA 5 

concentration. The resulting mean bias is -7.2 µg m-3 (~15%) and the root-mean-square error (RMSE) is 37.4 µg m-3. The model 

tends to underestimate the measured OA for Set1 with a mean bias of 7% while it tends to overestimate the measured OA for Set2 

with a mean bias of 8%.  
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Figure 8. a) Comparison between modelled and measured O:C ratio as a function of the OH exposure for each experiment. Set1 

(Expt. 1-7, 2°C) and Set2 (Expt. 8-9, -10°C and Expt. 10-14, 15°C). b) Probability distribution of the relative bias (normalized by the 

averaged measured O:C ratios). The resulting mean relative bias is 0.006 and the root-mean-square error (RMSE) is 0.06.  5 
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Figure 9. Mass yields for each class of compounds. The solid lines represent the median values while the lower and upper limits are 

the 25th and 75th percentiles, respectively. The different markers in each plot are yields published in the literature for different single 

compounds (see Table S2). The color code denotes different NOx regimes (red denoting high NOx, blue low or no NOx and grey not 5 

specified NOx regimes). The shaded background represents the range of our experiments (20-600 µg m-3), outside this shaded area 

yields are extrapolated from the model. 
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Figure 10. Modelled OA concentrations (a) and yields (b) under different temperature, OH exposure and initial OA concentrations 

(6, 60 and 600 µg m-3). Upper and lower panels are based on Set1 and Set2, respectively. Temperature is provided in Kelvin (K) to 

avoid confusion with the experimental data in Celsius (°C). 5 
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Figure 11. Fractional contributions of the six precursor classes to SOA formation under different temperature, OH exposure, and 

initial OA concentrations. Left and right panels are based on Set1 and Set2, respectively. Temperature is provided in Kelvin (K) to 

avoid confusion with the experimental data in Celsius (°C). 5 
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