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Abstract. Light-absorbing particles (LAPs) deposited on snow can decrease snow 1 

albedo and affect climate through the snow-albedo radiative forcing. In this study, we 2 

use MODIS observations combined with a snow albedo model (SNICAR) and a 3 

radiative transfer model (SBDART) to retrieve the radiative forcing by LAPs in snow 4 

(RFMODIS
LAPs ) across Northeastern China (NEC) in January-February from 2003 to 2017. 5 

RFMODIS
LAPs  presents distinct spatial variability, with the minimum (22.3 W m-2) in western 6 

NEC and the maximum (64.6 W m-2) near industrial areas in central NEC. The regional 7 

mean RFMODIS
LAPs  is ~45.1±6.8 W m-2 in NEC. The positive (negative) uncertainties of 8 

retrieved RFMODIS
LAPs  due to atmospheric correction range from 14% to 57% (-14% to -9 

47%) and the uncertainty value basically decreased with the increased RFMODIS
LAPs . We 10 

attribute the variations of radiative forcing based on remote sensing and find that the 11 

spatial variance of RFMODIS
LAPs  in NEC is 74.6% due to LAPs, while 21.2% and 4.2% due 12 

to snow grain size, and solar zenith angle. Furthermore, based on multiple linear 13 

regression, the BC dry and wet deposition and snowfall could totally explain 81% of 14 

the spatial variance of LAP contents, which confirms the reasonability of the spatial 15 

patterns of retrieved RFMODIS
LAPs  in NEC. We validate RFMODIS

LAPs  using in situ radiative 16 

forcing estimates. We find that the biases in RFMODIS
LAPs  are negatively correlated with 17 

LAP concentrations and range from ~5% to ~350% in NEC.  18 

 19 

20 
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1. Introduction 1 

Pure snow is the most strongly reflective natural substance at the surface of the Earth, 2 

and seasonal snow covers more than 30% of the Earth’s land area (Painter et al., 1998). 3 

Therefore, snow cover has an important impact on the radiation balance of the Earth 4 

(Cohen and Rind, 1991). When light-absorbing particles (LAPs), such as black carbon 5 

(BC), organic carbon (OC), and mineral dust deposited on snow, can effectively reduce 6 

snow albedo (Hadley and Kirchstetter, 2012; He et al., 2017, 2018; Li et al., 2016; 7 

Warren, 1982, 1984; Warren and Wiscombe, 1980) and enhance the absorption of solar 8 

radiation (Dang et al., 2017; Kaspari et al., 2014; Liou et al., 2011, 2014; Painter et al., 9 

2012b). Warren and Wiscombe (1980) indicated out that 10 ng g-1 BC in old snow could 10 

reduce the snow albedo by nearly 1% at 400 nm with the snow grain size of 1000 μm. 11 

Based on model simulation, Jacobson (2004) pointed out that the snow albedo reduction 12 

caused by BC in snow and ice is 4% in the global and 1% in the Northern Hemisphere. 13 

LAPs in snow further contribute to alterations in snow morphology, accelerations in 14 

snowmelt, and reductions in snow cover (Flanner et al., 2007, 2009; Painter et al., 2013a; 15 

Xu et al., 2009). For example, Qian et al. (2009) simulated the deposition of BC on 16 

snow and its impact on snowpack and the hydrological cycle in the western United 17 

States and the results showed that BC-induced snow albedo perturbations caused a 18 

decrease of snow water equivalent by 2-50 mm over the mountains during late winter 19 

to early spring. 20 

Several studies have estimated the radiative forcing by LAPs in snow based on model 21 

simulations, which has nonnegligible effects on local hydrological cycles (Painter et al., 22 
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2010; Qian et al., 2009; Yasunari et al., 2010) and regional and global climate (Bond et 1 

al., 2013; Hansen and Nazarenko, 2004; He et al., 2014; Jacobson, 2002, 2004; 2 

McConnell et al., 2007; Ramanathan and Carmichael, 2008; Yasunari et al., 2015). For 3 

example, in the Northern Hemisphere, Hansen and Nazarenko (2004) pointed out that 4 

the radiative forcing of BC on snow and ice albedo is +0.3 W m-2. In addition, the 5 

IPCC’s AR5 (2013) indicated that the impact of BC in snow and ice accounted for a 6 

global mean climate forcing of +0.04 W m-2, but the confidence level is low. Bond et 7 

al. (2013) estimated the climate forcing consisting of radiative forcing, rapid 8 

adjustments, and the strong snow-albedo feedback due to BC-in-snow forcing and 9 

pointed that the best valuation of the climate forcing by BC in snow and sea ice is +0.13 10 

W m-2, although the 90% uncertainty bounds are from +0.04 W m-2 to +0.33 W m-2. 11 

Nevertheless, recent studies reported that ample factors confuse the model simulation 12 

of BC-in-snow induced climate forcing, and the model-based estimate of the regional 13 

and global radiative forcing caused by BC in snow and ice is still a challenge (Hansen 14 

and Nazarenko, 2004; Bond et al., 2013; Pu et al., 2017). 15 

Much of northeastern China (NEC) is covered by contiguous seasonal snow in the 16 

winter and early spring. Local pollutant emissions in this region are some of the most 17 

intense in the world (Bond et al., 2004), leading to considerable amounts of LAPs 18 

deposited on snow (Bond et al., 2013). Several field campaigns have been conducted 19 

to analyze LAPs concentrations in snow across NEC (Huang et al., 2011; Wang et al., 20 

2014a, 2015). Wang et al. (2013) conducted a large field campaign to measure LAPs in 21 

seasonal snow in northern China from January to February 2010. They found that BC 22 
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is the dominant absorber compared with OC and dust in NEC and BC concentrations 1 

in snow in this region range from 40 ng g-1 to 4000 ng g-1, which are much higher than 2 

those measured in the Arctic, North America and Europe (Doherty et al., 2010, 2014; 3 

Peltoniemi et al., 2015). Recently, Wang et al. (2017) compared measured and 4 

simulated snow albedos and showed that LAPs can reduce the visible spectral albedo 5 

in NEC to 0.65, which indicated a significant impact of LAPs on snow albedo reduction. 6 

Zhao et al. (2014) simulated the radiative forcing by LAPs in snow over northern China 7 

using a coupled model; however, they noted that the uncertainties of their results are 8 

non-negligible, due to the limited observations that are available. 9 

Remote sensing is considered to be a powerful tool for estimating snow physical 10 

properties (e.g., Nolin and Dozier, 1993, 2000) and LAPs-induced snow albedo 11 

reduction, which can provide valuable observational information for modeling studies 12 

to reduce modeling uncertainties. For instance, to estimate the influence of mineral dust 13 

on snow albedo in the European Alps, Di Mauro et al. (2015) defined a new spectral 14 

index, the Snow Darkening Index based on in situ measured snow spectral reflectance 15 

and the Landsat 8 Operational Land Imager (OLI) data, they found that the Snow 16 

Darkening Index could effectively track the content of mineral dust in snow. In addition, 17 

Di Mauro et al. (2017) characterized the impact of LAPs on ice and snow albedo of the 18 

Vadret da Morteratsch, a large valley glacier in the Swiss Alps using satellite (EO-1 19 

Hyperion) hyperspectral data. The results showed that the spatial distribution of both 20 

narrow-band and broad-band indices retrieved from Hyperion was related to ice and 21 

snow impurities. In the Arctic, Dumont et al. (2014) developed an Impurity Index based 22 
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on satellite observations (MODIS C5 surface reflectance) to analyze the snow 1 

darkening caused by the increased contents of LAPs in snow in Greenland. 2 

Nevertheless, Polashenski et al. (2015) pointed out that the apparent snow albedo 3 

decline in Greenland observed from MODIS C5 surface reflectance (Dumont et al., 4 

2014) has a significant contribution from the uncorrected Terra sensor degradation. In 5 

this study, in order to prevent the interference from the sensor degradation, we used the 6 

latest version (version 6, C6) of MODIS data from Aqua sensor, which was verified to 7 

not suffer from the influence of sensor degradation (Polashenski et al., 2015). Even 8 

though these studies have confirmed the ability of remote sensing on assess the role of 9 

LAPs in snow on snow albedo reduction, however, they didn’t quantitatively estimate 10 

the radiative forcing caused by LAPs in snow, which is extremely important for 11 

implying the impact of LAPs on regional and global climate. Recently, Painter et al. 12 

(2012a) have successfully used the MODIS Dust Radiative Forcing in Snow 13 

(MODDRFS) model to retrieve surface radiative forcing by LAPs in snow cover from 14 

Moderate Resolution Imaging Spectroradiometer (MODIS) surface reflectance data. 15 

They found that the instantaneous at-surface radiative forcing can beyond 250 W m-2 16 

in the Hindu Kush-Himalaya area and falls in a range of 30-250 W m-2 in the Upper 17 

Colorado River Basin. Painter et al. (2013b) also provided and validated an algorithm 18 

suite to quantitatively retrieve radiative forcing by LAPs in snow from Airborne 19 

Visible/Infrared Imaging Spectrometer (AVIRIS) data in the Senator Beck Basin Study 20 

Area (SBBSA), SW Colorado, USA. The lowest radiative forcing was found on the 21 

high north facing slopes while the highest on southeast facing slopes at the lowest 22 
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elevations. Seidel et al. (2016) analyzed the spatial and temporal distribution of 1 

radiative forcing by LAPs in snow in the Sierra Nevada and Rocky Mountain from 2 

imaging spectroscopy. Their results presented an increased radiative forcing from 20 3 

W m-2 up to 200 W m-2 in the melting period. However, to date, no studies have 4 

quantitatively attributed the contributions of each factor to the variations of radiative 5 

forcing by LAPs in snow based on remote sensing. Moreover, no studies have estimated 6 

the radiative forcing by LAPs in snow across NEC using remote sensing, even though 7 

the LAP content is much higher compared with those in Arctic, Europe and USA (Dang 8 

et al., 2017). 9 

In this study, we attempt to retrieve the radiative forcing by LAPs in snow across NEC 10 

using MODIS datasets combined with the Snow, Ice, and Aerosol Radiation (SNICAR) 11 

model (Flanner et al., 2007, 2009) and the Santa Barbara DISORT Atmospheric 12 

Radiative Transfer (SBDART) model (Ricchiazzi et al., 1998), and estimate the 13 

uncertainties of radiative forcing from atmospheric correction and qualify the fractional 14 

contribution of each factor to the spatial variance of RFMODIS
LAPs . Then, we will investigate 15 

the reasonability of the spatial patterns of retrieved radiative forcing in NEC based on 16 

BC deposition and snowfall data. Finally, we quantitatively estimate the biases of 17 

MODIS retrieved radiative forcing using in situ radiative forcing estimates, which are 18 

based on field measurements. 19 

2. Datasets 20 

2.1. Remote Sensing Datasets 21 

The latest version (Collection 6) of MODIS surface reflectance data (MYD09GA), 22 
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MODIS snow cover data (MYD10A1), and MODIS aerosol optical depth (AOD) data 1 

(MYD04) are used in this study from 2003 to 2017 that cover the months of January 2 

through February (https://modis.gsfc.nasa.gov/). The MOD09 product is divided into 7 3 

bands (band 1, 620-670 nm; band 2, 841-876 nm; band 3, 459-479 nm; band 4, 545-4 

565 nm; band 5, 1230-1250 nm; band 6, 1628-1652 nm; and band 7, 2105-2155 nm), 5 

and has a spatial resolution of 500 m (Vermote, 2015). The MOD09 surface reflectance 6 

is an estimate of the surface spectral reflectance for each band as it would have been 7 

measured at ground level as if there were no atmospheric scattering or absorption. It 8 

corrects for the effects of atmospheric gases and aerosols. The performance of the 9 

atmospheric correction algorithm suffers from the influence of view and solar zenith 10 

angles and aerosol optical thickness; the accuracy of the algorithm is also affected by 11 

the wavelengths of different bands. More details about the data product information and 12 

band quality description of MOD09GA could be found in the MODIS Surface 13 

Reflectance User’s Guide (https://modis.gsfc.nasa.gov/data/dataprod/mod09.php). 14 

MODIS satellite data has been widely accepted in retrieval of snow cover and its 15 

physical properties. (e.g. Scambos et al., 2007; Rittger et al., 2013). In addition, MODIS 16 

has three bands located in the visible bands (VIS) and radiometric range in the VIS over 17 

snow surface has no saturation phenomenon, which provide the ability of detecting the 18 

changes of reflectance in the VIS caused by LAPs in snow (Painter et al., 2012a). 19 

2.2. Surface Measurement Datasets 20 

Wang et al. (2017) conducted a snow survey across NEC in January 2014. They 21 

measured AOD using a Microtops II Sun photometer. The Microtops II Sun photometer 22 

Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-1306
Manuscript under review for journal Atmos. Chem. Phys.
Discussion started: 14 January 2019
c© Author(s) 2019. CC BY 4.0 License.



9 

 

is a portable instrument and measures solar radiance in five spectral wave bands (340, 1 

440, 675, 870, and 936 nm) from which it automatically derives aerosol optical depth 2 

(AOD). When the Microtops II Sun photometer is well cleaned and well calibrated, its 3 

AOD retrievals can be comparable with those of CIMEL Sun photometers used in the 4 

AERONET network, with uncertainties ranging from 0.01 to 0.02 (Ichoku et al., 2002). 5 

The snow albedo and surface solar irradiance were measured using an Analytical 6 

Spectral Devices (ASD) spectroradiometer. The Analytical Spectral Devices Inc. (ASD) 7 

spectroradiometer has 3 nm spectral resolution on the visible/near infrared detector 8 

(350–1050 nm, silicon photodiode array), and 10–12 nm resolution on the short wave 9 

infrared detectors (900–2500 nm, InGaAs). Measurements are made by standing 10 

“down-sun” of the receptor, taking consecutive scans of downwelling and upwelling 11 

radiation. Wuttke et al. (2006) indicated that the ASD spectroradiometer is considered 12 

as the most mobile, capable, and rapid for measuring spectral albedo during short time 13 

periods, especially in very cold regions. The cosine error is less than 5% for solar zenith 14 

angles below 85º at a wavelength of 320 nm. We use these datasets to validate the snow 15 

grain size retrievals and the simulated surface solar irradiance values.  16 

Snow samples were collected at 46 sites in January and February 2010 across Northern 17 

China (Wang et al., 2013) and at 13 sites in January 2014 across Northeastern China 18 

(Wang et al., 2017). A detailed description of the procedures of snow collection and 19 

filtration has been presented by previous studies (Doherty et al., 2010, 2014; Wang et 20 

al., 2013). Briefly, in order to keep the collected snow samples to be regionally 21 

representative and minimize the influence from the local emission sources, sample 22 
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locations were usually chosen at least 1 km upwind away from the approach roads and 1 

railways and more than 50 km from cities and towns. In addition, efforts were made to 2 

collect samples in open areas in order to prevent the contaminations from the detritus 3 

of bushes and trees. Generally, snow samples were collected within a vertical resolution 4 

varied from ~2 cm to 10 cm and usually at typically vertical intervals of 5 cm from the 5 

top to the bottom throughout the snowpack depth at each site. In a case of a visibly 6 

distinct layering, such as newly fallen snow at surface layer or a melt layer, the snow at 7 

that layer was gathered individually. Right and left snow samples of two side-by-side 8 

vertical profiles were collected within each layer to make a comparison and average the 9 

snow sample pairs. All snow samples were maintained frozen to prevent the melting 10 

snow from influencing the LAPs content. Usually every 3 to 4 days, snow samples were 11 

filtered at temporary laboratories set up in hotels. Simply, snow samples were melted 12 

and filtered through Nuclepore filters of 0.4 μm pore size. The samples of “before” and 13 

“after” filtration were gathered and refrozen for the following chemical analysis, and 14 

the filters were used for optical analysis.  15 

An integrating sphere/integrating sandwich spectrophotometer (ISSW) was applied to 16 

analyze the filters and quantify the spectral light absorption by LAPs in snow. ISSW 17 

was firstly described by Grenfell et al. (2011), modified by Wang et al. (2013) and 18 

Doherty et al. (2014), and has been used by some previous studies (Dang and Hegg, 19 

2014; 2014; Pu et al., 2017; Zhou et al., 2017). Schwarz et al. (2012) has confirmed the 20 

performance of ISSW in quantifying LAPs concentrations in snow by comparing with 21 

the Single Particle Soot Photometer (SP2) although both SP2 and ISSW may suffer 22 
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from non-negligible uncertainties. Briefly, ISSW produces a diffuse radiation field 1 

when white light illumination is transmitted into an integrating sphere, then the diffuse 2 

radiation pass through the filter from below and is measured by a spectrometer. By 3 

measuring a sample filter and a blank filter, respectively, ISSW acquires the light 4 

attenuation spectrum due to the loadings on sample filter (Grenfell et al., 2011). 5 

Because of the design that the measured filter is sandwiched between two integrating 6 

spheres, the light attenuation is nominally due to the absorption of LAPs on the filter 7 

and the influence of light scattering is negligible (Doherty et al., 2014). ISSW measures 8 

the light attenuation from 400 nm to 700 nm benefited from the optimal signal-to-noise 9 

ratio, and then extends the full spectral to a range of 350 to 750 nm by extrapolation 10 

(Pu et al., 2017). Calibration is done by measuring a set of fullerene (a synthetic BC, 11 

Alfa Aesar, Inc., Ward Hill, MA, USA) filters with a range of known loadings. Then, 12 

the light attenuation spectrum of the sample filter is transformed to an equivalent BC 13 

mass loading by against the standard filters. With the loaded area on the filter and the 14 

volume of filtered snow water, equivalent BC mass is converted to equivalent BC 15 

concentration (BCequiv). In this study, we will use BCequiv on behalf of all LAPs to 16 

calculate the in situ radiative forcing. 17 

2.3. BC Deposition and Snowfall Data 18 

BC deposition and snowfall both have important effects on the radiative forcing by 19 

LAPs in snow (Seidel et al., 2016). Higher BC deposition indicates that greater amounts 20 

of BC are deposited on snow, reducing the snow albedo. A higher frequency of snowfall 21 

implies that greater amounts of fresh snow, which has smaller snow grains than aged 22 
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snow, are present at the surface, increasing the snow albedo (Wang et al., 2014b). 1 

Therefore, we examine the retrieved results based on the snowfall data in January-2 

February from 2003 to 2017 from the ERA-Interim reanalysis 3 

(http://apps.ecmwf.int/datasets/data/interim-full-daily/levtype=sfc/), and the BC dry 4 

and wet deposition data of MIROC5 historical experiments from phase 5 of the Coupled 5 

Model Intercomparison Project in January-February from 2003 to 2005 (CMIP5; 6 

Taylor et al., 2012). 7 

3. Methods 8 

3.1. Models 9 

3.1.1. SNICAR model 10 

Snow, Ice, and Aerosol Radiative (SNICAR) model is the most widely used multi-layer 11 

snow albedo model in the fields of atmospheric sciences. Flanner et al. (2007) has 12 

presented a comprehensive description for SNICAR model. Here, we just briefly give 13 

a summary of SNICAR. SNICAR simulates radiative transfer in snowpack based on 14 

the theory of Wiscombe and Warren (1980) and the two-stream multilayer radiative 15 

approximation of Toon et al (1989). The input optical parameters (mass extinction 16 

coefficient, single scatter albedo, and asymmetry factors) of snow grains and LAPs are 17 

off-line calculated using Mie theory. In addition, the types of surface spectral 18 

distribution (clear- or cloudy-sky) and incident radiation (direct or diffuse) can be 19 

chosed by users, and users must specify the solar zenith angle if the incident flux is 20 

direct. In general, users should input the parameters involving the type of surface 21 

spectral distribution and incident radiation, number of snow layers, snow thickness, 22 
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density, snow grain radius, and the type and concentration of LAPs in each snow layer, 1 

the albedo of underlying ground, Following the previous study (Painter et al., 2012a), 2 

we assume one-layer semi-infinite snow to drive SNICAR model in this study. 3 

3.1.2. SBDART model 4 

In this study, we use the Santa Barbara DISORT Atmospheric Radiative Transfer 5 

(SBDART) model (Ricchiazzi et al., 1998) to simulate the surface solar irradiance. 6 

SBDART is one of the most widely used models to calculate the radiative transfer at 7 

the Earth’s surface and within the atmosphere in both clear and cloudy sky. SBDART 8 

is a combination of a DISORT (Discrete Ordinate Radiative Transfer) radiative transfer 9 

module (Stamnes et al., 1988), low-resolution atmospheric transmission models, and 10 

Mie theory. The radiative transfer equations for a plane-parallel, vertically 11 

inhomogeneous, non-isothermal atmosphere numerically integrated in SBDART are 12 

based on DISORT and light scattering by water droplets and ice crystals results from 13 

Mie theory. SBDART already considers all important processes that affect the 14 

ultraviolet, visible, and infrared radiation fields. The key components of SBDART 15 

include standard atmospheric models, cloud models, extraterrestrial source spectra, gas 16 

absorption models, standard aerosol models, and surface models. SBDART is well 17 

suitable for a widespread use in atmospheric radiation and remote sensing studies. More 18 

details about SBDART model could be found in the paper of Stamnes et al. (1988). 19 

3.2. Retrieval Methods 20 

In this study we use BC as a representative to describe the effect of LAPs on snow 21 

albedo. Figure 1a shows the spectral snow albedo from 300 to 1400 nm. Gray areas 22 
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show the typical spectral solar irradiance at the time of MODIS Aqua overpass (local 1 

time of 1:30 PM) in January-February of NEC; the yellow column bars represent 2 

MODIS bandpasses. We can see that when LAPs such as BC deposited on snow, can 3 

effectively reduce snow albedo in the visible bands, which contain about half of total 4 

solar radiation. For a snowpack with snow grains radius of 100-300 μm, 100 ng g-1 BC 5 

in snow (a typical BC concentration in snow of the remote clean areas in NEC) can 6 

reduce snow albedo of ~0.05-0.08 at 500 nm; 1000 ng g-1 BC in snow (a typical BC 7 

concentration in snow of the polluted industrial areas in NEC) can reduce snow albedo 8 

of ~0.12-0.2. On the other hand, the effects of BC decrease at longer wavelengths in 9 

the near infrared (NIR). Moreover, when wavelengths exceed 1150 nm, snow albedo is 10 

dominated by the snow optical effective radius (Reff) and is independent of LAPs. As 11 

shown in Figure 1b, snow albedo reduction is not only dependent on LAPs in snow but 12 

also snow grains size and solar zenith angle (θ). Generally, the reduction in snow albedo 13 

caused by BC increases with BC concentration and Reff, whereas it decreases with the 14 

solar zenith angle (θ). Based on these characteristics, we retrieve Reff, the reduction in 15 

snow albedo, and the radiative forcing by LAPs in this section. 16 

3.2.1. Snow Cover 17 

Three methods have been widely used in mapping snow-covered area using MODIS 18 

data. In the first method, “binary” maps, pixels are classified as either “snow-free” or 19 

“snow-covered” (Hall et al., 1995). However, significant errors exist in such maps, as 20 

pixels with a resolution of 500 m are not always completely covered by snow. The 21 

second method, the MODSCAG retrieval algorithm, is a fractional snow algorithm that 22 
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is based on spectral mixture analysis (Painter et al., 2009). However, it cannot be 1 

applied in NEC, due to limited information on the spectral reflectances of the vegetation, 2 

soils and rock in this region. Therefore, we use the third method, which is based on the 3 

reflectances in the visible bands and the normalized difference snow index (NDSI): 4 

NDSI=
Rband4-Rband6

Rband4+Rband6

                                            (1) 5 

where Rband4 and Rband6 are the surface reflectances in bands 4 and 6. Following Negi 6 

and Kokhanovsky (2011), an area is determined to be snow-covered if the NDSI and 7 

the reflectance in band 4 both exceed 0.6. We note that the following analysis are only 8 

done over the defined snow covered areas and periods. 9 

3.2.2. Retrieval of Snow Grain Size 10 

Many methods have been used to retrieve snow grain size (e.g., Lyapustin et al., 2009; 11 

Nolin and Dozier, 1993). However, in NEC, the efficacy of most of these methods is 12 

limited, as the reflectances in bands 1-4 are seriously affected by LAPs in polluted snow 13 

(Figure 1a), and the reflectances in bands 6-7 are not sensitive to Reff. Hence, Reff is 14 

retrieved at a wavelength of 1240 nm (the central wavelength of band 5) using SNICAR 15 

(Wang et al., 2017).  16 

We validate the retrieved Reff values using in situ measurements. The mean absolute 17 

error (MAE) is 71 μm, which is slightly higher than that reported by Painter et al. (2009). 18 

Nevertheless, the results are still credible because this study investigates a larger spatial 19 

scale than the previous study. 20 

3.2.3. Impurity Index 21 

To assess LAP contents in snow, we use the surface reflectances in bands 4-5 to derive 22 
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an impurity index (ILAPs): 1 

ILAPs=
ln (R

band4
)

ln (R
band5

)
                                                                                                (2) 2 

This quantity increases with the LAP content but is almost independent of Reff and θ 3 

(Figure 1c). Di Mauro et al. (2017) has successfully exhibited ILAPs  to assess the 4 

variations of LAP contents in the snow of the Morteratsch Glacier in the Swiss Alps. 5 

In this study, we didn’t retrieve the concentrations of LAPs. Because such retrieval is 6 

constrained by many unknown factors, such as size distribution, optical properties and 7 

the mixing state of LAPs (He et al., 2017, 2018; Painter et al., 2013a; Pu et al., 2017). 8 

Therefore, the conversion from satellite spectra to ground concentrations of LAPs will 9 

cause significant errors. 10 

3.2.4. Retrieval of Radiative Forcing by LAPs in Snow 11 

Instantaneous surface solar irradiance at the time of MODIS overpass in January-12 

February is simulated using the SBDART model (Ricchiazzi et al., 1998) with MODIS 13 

AOD data as inputs. Wang et al. (2017) has validated the MODIS AOD data using in 14 

situ measurements in NEC. For the other inputs, the typical values for mid-latitude 15 

winter provided by SBDART are used. As a result, the normalized mean bias (NMB) 16 

is less than 2% (Figure S1). 17 

We estimate the instantaneous spectrally-integrated radiative forcing at the surface by 18 

LAPs in snow (RFMODIS
LAPs ) under clear-sky conditions at the time of MODIS Aqua 19 

overpass, which is a function of solar irradiance and the difference between the MODIS 20 

spectral reflectance and a simulated clean-snow (Rλ
clean-snow) reflectance (Miller et al., 21 

2016). Rλ
clean-snow is simulated using SNICAR model based on the retrieved Reff and 22 
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MODIS derived solar zenith angle (θ). On the other hand, for MODIS spectral 1 

reflectance, because MODIS provides only discrete reflectances, we simulate a 2 

continuous spectral reflectance by fitting SNICAR to the MODIS data and derive the 3 

fitting parameters by minimizing the RMSE (Painter et al., 2009): 4 

RMSE=(
1

4
∑ (R

λ

model
-

band4

λ=band1

Rλ
MODIS)

2
)
1/2

                                                               (3) 5 

where RMSE is the root mean squared error; and Rλ
model and Rλ

MODIS represent the 6 

simulated and MODIS-derived reflectances at a wavelength λ. Thus, RFMODIS
LAPs  is 7 

expressed as follows: 8 

RFMODIS
LAPs = ∑ Eλ*Dλ*∆λ

1240 nm

λ=300 nm

                                                                              (4)  9 

where Eλ is the solar irradiance at a wavelength λ simulated by SBDART model; Dλ 10 

is the difference between the clean-snow (Rλ
clean-snow) and simulated reflectances (Rλ

model) 11 

at a wavelength λ; and ∆λ is 10 nm. 12 

3.2.5. Uncertainties 13 

The uncertainties in radiative forcing retrievals are primarily due to terrain, liquid snow 14 

water, snow patchiness, protrusion of vegetation and atmospheric correction. The study 15 

areas are located on smooth plains, and the content of liquid snow water is limited in 16 

the study regions in January and February (Wang et al., 2013). Moreover, both 17 

experimental and theoretical evidences show that the effect of liquid water in snow on 18 

snow reflectance is small in the shortwave part of the spectrum but obvious at the 19 

wavelengths of 0.95 μm and 1.15 μm (O’Brien and Munis, 1975; O’Brien and Koh, 20 

1981; Wiscombe and Warren 1980), which are not included in MODIS bands used in 21 
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our study. As a result, the effect of liquid water in snow on the calculations of snow 1 

grain size, ILAPs and radiative forcing are limited. Therefore, the effects of terrain and 2 

liquid snow water on MODIS retrievals could be negligible.  3 

In our study, the snow-covered area is determined if the NDSI and the reflectance in 4 

band 4 both exceed 0.6, which means that fractional snow cover (FSC) is larger than 5 

0.87 according to the FSC equation (FSC= -0.01 + 1.45 *NDSI) from the MODIS Snow 6 

Products Collection 6 User Guide (http://nsidc.org/data/MYD10A1). In January and 7 

February, snow depth is much high and reaches its maximum depth in NEC, snow 8 

patchiness in high snow-covered areas is mostly due to the protrusion of vegetation 9 

according to the observations of field campaigns (Wang et al., 2013, 2014a). So that 10 

the MODIS derived surface reflectance (Rλ
MODIS) in a pixel of our study areas is not 11 

snow reflectance, but a mixture of snow and vegetation reflectance. Therefore, we need 12 

to correct the errors of snow reflectance caused by the protrusion of vegetation. 13 

According to Painter et al. (2009), Rλ
MODIS could be expressed as: 14 

Rλ
MODIS =

Eλ*FSC*Rsnow
λ +Eλ*(1-FSC)*Rvegetation

λ

Eλ

 15 

=FSC*Rsnow
λ +(1-FSC)*Rvegetation

λ                                  (5)  16 

where Rλ
MODIS is MODIS derived surface reflectance at a wavelength λ, Eλ is solar 17 

irradiance at a wavelength λ. FSC is the fractional snow cover, which could be derived 18 

according to the FSC equation. Rsnow
λ  and Rvegetation

λ  represent snow and vegetation 19 

reflectance, respectively, at a wavelength λ. Rvegetation
λ  is from the study of Siegmund 20 

and Menz (2005). Then Rsnow
λ  could be expressed as: 21 
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                         Rsnow
λ =

(Rλ
MODIS-(1-FSC)*Rvegetation

λ )

FSC
                                          (6) 1 

Finally, the accuracy of MODIS surface reflectance (MYD09GA) due to atmospheric 2 

correction is typically calculated based on the MODIS Surface Reflectance User’s 3 

Guide (Collection 6, https://modis.gsfc.nasa.gov/data/dataprod/mod09.php) as follows:  4 

± (0.005 + 0.05*reflectance) 5 

which is suitable under conditions that AOD is less than 5.0 and θ is less than 75°. 6 

Therefore, we also estimate the uncertainty of MODIS retrievals from atmospheric 7 

correction. Briefly, the MODIS derived snow reflectance (Rsnow, uncertainty
λ ), which takes 8 

into an account of the accuracy of the atmospheric correction, is expressed as: 9 

Rsnow, uncertainty
λ = Rsnow

λ ± (0.005 + 0.05*Rsnow
λ )            (7) 10 

then, the fractional uncertainty of MODIS retrieved snow grain size (FUReff
) could be 11 

expressed as: 12 

               13 

                              FUReff
=

Reff, uncertainty-Reff

Reff

                                                            (8) 14 

 15 

where Reff, uncertainty  is the SNICAR simulated snow grain size using the snow 16 

reflectance of Rsnow, uncertainty
1240 . Similar to snow grain size, the fractional uncertainty of 17 

ILAPs (FUILAPs
) and RFMODIS

LAPs  (FURF) is: 18 

                                 FUILAPs
=

ILAPs, uncertainty-ILAPs

ILAPs

                                                     (9) 19 

                                    FURF=
RFMODIS, uncertainty

LAPs  -RFMODIS
LAPs  

RFMODIS
LAPs  

                                             (10) 20 

We note that the positive and negative uncertainty is asymmetric due to the nonlinearity 21 

of SNICAR model. 22 

3.2.6. Attribution of the Spatial Variance of Radiative Forcing by LAPs in Snow 23 
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As discussed above, RFMODIS
LAPs  is dependent on ILAPs , Reff  and θ, and could be 1 

expressed as: 2 

                                RFMODIS
LAPs =f (ILAPs, Reff, θ)                                                      (11) 3 

as a result, the spatial patterns of ILAPs, Reff and θ determine the spatial pattern of 4 

RFMODIS
LAPs . Firstly, we keep Reff  and θ spatially constant with values of the spatial 5 

averages (Reff  and 𝜃 ). Therefore, the spatial pattern of radiative forcing is only 6 

dependent on the distribution of ILAPs: 7 

              RFMODIS
LAPs (ILAPs)=f (ILAPs, Reff, 𝜃)                                                   (12) 8 

similarly, we could obtain another two equations: 9 

              RFMODIS
LAPs (Reff)=f (ILAPs, Reff, 𝜃)                                                 (13) 10 

               RFMODIS
LAPs (θ)=f (ILAPs, Reff, θ)                                                      (14) 11 

Then RFMODIS
LAPs  is regressed with RFMODIS

LAPs (ILAPs), RFMODIS
LAPs (Reff) and RFMODIS

LAPs (θ) using 12 

multiple linear regression, the regressed radiative forcing (RFRegression
LAPs ) is expressed as: 13 

               RFRegression
LAPs =a+b*RFMODIS

LAPs (ILAPs)+c*RFMODIS
LAPs (Reff)+d*RFMODIS

LAPs (θ)              (15) 14 

where a, b, c and d are regression coefficients. In our study, we find that RFRegression
LAPs  15 

could explained 99.9% of the variance of RFMODIS
LAPs  (Figure S2). Therefore, we can 16 

attribute the variance of RFRegression
LAPs  instead of RFMODIS

LAPs  to estimate the fractional 17 

contribution of ILAPs, Reff and θ to radiative forcing. Equation 15 can be written as: 18 

RFRegression
LAPs - RFRegression

LAPs     =b*(RFMODIS
LAPs (ILAPs)-RFMODIS

LAPs (ILAPs))+c*(RFMODIS
LAPs (Reff)-          19 

RFMODIS
LAPs (Reff))+d*(RF

MODIS

LAPs
(θ)-RFMODIS

LAPs (θ))                     (16) 20 

where, RFRegression
LAPs - RFRegression

LAPs  is radiative forcing anomaly (RFRegression, anomaly
LAPs ). Then, 21 

Equation 16 can be written as:  22 
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RFRegression, anomaly
LAPs = b*RFMODIS, anomaly

LAPs (ILAPs)+ c*RFMODIS, anomaly
LAPs (Reff)+ 1 

                         d*RFMODIS, anomaly
LAPs (θ)                                                                       (17) 2 

according to Huang et al. (2016) and Huang and Yi (1991), the fractional contribution 3 

of ILAPs to the variance of radiative forcing (FCILAPs
) can be expressed as: 4 

FCILAPs
= 5 

1

m
∑ (

(b*RF
MODIS, anomaly

LAPs
(ILAPs)

i
)
2

(b*RF
MODIS, anomaly

LAPs
(ILAPs)

i
)
2
+(c*RF

MODIS, anomaly

LAPs
(Reff)

i
)
2
+(d*RF

MODIS, anomaly

LAPs
(θ)

i
)
2

)

m

i=1

 6 

                                                               (18) 7 

where, m is the length of the data series. Similarly, we can obtain FCReff
 and FCθ. 8 

3.2.7. Calculation of In situ Radiative Forcing by LAPs in Snow 9 

RFMODIS
LAPs  should be validated with measurements. However, due to the lack of radiative 10 

forcing measurements in NEC, we estimate the in situ radiative forcing (RFin situ
estimated) from 11 

measured BCequiv values. Briefly, we use SNICAR to calculate the in situ reduction in 12 

snow albedo from BCequiv and MODIS retrieved Reff. Then, the SBDART model is 13 

used to estimate RFin situ
estimated. 14 

4. Results 15 

4.1. The spatial distribution of AOD and BC emission 16 

Northeastern China suffers from heavy local pollutant emissions with high aerosol mass 17 

concentrations in winter (Wiedensohler et al., 2009). Figure 2a shows the spatial 18 

distribution of AOD at 550 nm derived from MODIS in NEC. We can find that AOD 19 

in the studying areas range from 0.08 to 0.65 and show strong spatial inhomogeneity. 20 

The largest AOD values are found in industrial areas at the south central of NEC, where 21 
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are the largest urban areas of NEC with the major cities of Harbin, Changchun, and 1 

Shenyang. These areas are associated with the largest pollution emission and 2 

anthropogenic activities in NEC (Wang et al., 2017). By comparison, the MODIS-Aqua 3 

results show that the AOD in the west of NEC along the border of China is smallest. 4 

Similar patterns of AOD were also found by Zhang et al. (2013) and Zhao et al. (2014). 5 

Previous studies indicated that BC are the primary light-absorbing particles in 6 

atmosphere (Cao et al., 2006) and seasonal snow (Wang et al., 2013). Figure 2b shows 7 

the spatial distribution of BC emission density in January-February of 2010 in NEC. 8 

The pattern of BC emission density is very comparable to AOD with the highest values 9 

of > 5*104 g km-2 month-1 in south central NEC and the lowest values of < 5*102 g km-
10 

2 month-1 in the remote areas of northwestern China. Both the results of AOD and BC 11 

emission density imply that the seasonal snow in south central of NEC suffers from 12 

abundant BC deposition and the radiative forcing by LAPs in snow is likely to be 13 

highest in NEC. 14 

4.2. The spatial distribution of snowfall frequency and land cover types 15 

Snowfall is spatially varied in NEC and has a dominated effect on local fractional snow 16 

cover, then defined snow-covered areas, where we retrieved the radiative forcing by 17 

LAPs in snow in our study. Figure 3a shows the normalized snowfall frequency in 18 

January-February from 2003 to 2017. We can find that the highest snowfall frequency 19 

occurred in northwestern and southeastern NEC, where are forest-covered areas (see 20 

Figure 3b). In contrast, the areas from central to southwestern NEC present lowest 21 

snowfall frequency, which means that the fractional snow cover in these areas is likely 22 
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to be lower than other areas and unable to reach to the critical value that we used to 1 

define the snow-covered areas. On the other hand, land cover types will also affect the 2 

local fractional snow cover. From Figure 3b, we can find that NEC presents a spatially 3 

different land cover types, the main land cover types are grasslands, croplands and 4 

evergreen needle leaf (forests). Grasslands and croplands are mainly located in 5 

southwestern NEC and central NEC respectively, while forests are distributed in 6 

northern and southeastern NEC. In our study periods, grasslands and croplands have 7 

limited influence on snow cover. However, in forest areas, even completed covered by 8 

deep snow, forest will effectively affect the derived surface reflectance from MODIS-9 

Aqua satellite, then the determination of snow-covered areas (further discussions in 10 

Section 5). 11 

4.3. Radiative Forcing by LAPs in Snow 12 

Figure 4 shows the identified snow-covered areas, which are primarily concentrated 13 

between 40 °N and 50 °N. Consistent with our analysis above, the low snow-frequency 14 

areas of south central and southwestern NEC and forest-covered areas of northern and 15 

southeastern NEC are not identified as snow-covered areas. According to the 16 

geographical distribution (Figure 4a), we separated the studied areas into three regions: 17 

western NEC (WNEC), central NEC (CNEC) and eastern NEC (ENEC). 18 

The spatial distributions of ILAPs, Reff, and RFMODIS
LAPs  are displayed in Figure 4, and 19 

their statistics are presented in Figure 5. On average, ILAPs is ~0.27±0.045; Reff is 20 

~261±32 μm; and RFMODIS
LAPs  is ~45.1±6.8 W m-2 in NEC. Regionally, RFMODIS

LAPs  is 21 

largest and shows an average of ~50.9±4.2 W m-2 in CNEC, where is located in the 22 
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industrial areas and closed to the largest urban areas of NEC, therefore suffers from the 1 

most serious pollutant emissions among these three regions. ENEC displays the second 2 

largest radiative forcing with an average RFMODIS
LAPs  of ~45.7±4.5 W m-2. The lowest 3 

value of ~41.0±5.9 W m-2 occurs in WNEC, where both AOD and BC emission density 4 

are lowest compared with other two regions, which is not only due to the low local  5 

pollutant emissions but also because that the regional transport of this region in our 6 

study period is mostly from the clean northwest and suffer from little influence of 7 

human activities (Wang et al., 2014b). For the individual regions, RFMODIS
LAPs  presents an 8 

increase from north to south in CNEC that ranges from 40.4 to 64.6 W m-2. In ENEC 9 

an east-west gradient of RFMODIS
LAPs  is noted that ranges from 62.0 to 35.0 W m-2. The 10 

most distinct intra-regional difference is in WNEC, where RFMODIS
LAPs  ranges from 22.3 11 

W m-2 to 55.5 W m-2. Generally, the patterns are consistent with those of AOD and BC 12 

emission density in NEC. Moreover, the spatial pattern of radiative forcing by LAPs in 13 

snow in this study is comparable with the results by Zhao et al. (2014), who firstly 14 

estimated the radiative forcing of LAPs in snow through WRF model and found that 15 

the radiative forcing in industrial source regions such as southern CNEC is obviously 16 

much higher than that in border regions such as WNEC, which primarily resulted from 17 

the spatial differences of LAP dry and wet deposition. Compared with the results from 18 

other studies, Seidel et al. (2016) reported a radiative forcing of ~20 W m-2 in the Sierra 19 

Nevada in late February, which is lower than the result in NEC, eventhough the surface 20 

solar irradiance in Sierra Nevada is higher. Painter et al. (2013b) reported an average 21 

radiative forcing of 215±63 W m-2 in the Senator Beck Basin Study Area (SBBSA), 22 
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SW Colorado, USA, which is approximately four times of our retrieved radiative 1 

forcing near industrial areas in NEC. However, the snow grain size and the surface solar 2 

irradiance in their study period is larger than that in our study by a factor of >2.5 and >4, 3 

respectively. The results implied the abundant LAP content in snow of CNEC. The 4 

regional and intra-regional patterns of variability in ILAPs are quite similar to those of 5 

RFMODIS
LAPs , which indicates the significant role of LAP content in determining the spatial 6 

distribution of radiative forcing; the average values of ILAPs  are ~0.311±0.024 in 7 

CNEC, ~0.307±0.026 in ENEC, and ~0.238±0.031 in WNEC. In contrast to ILAPs and 8 

RFMODIS
LAPs , Reff displays a smaller spatial variance and presents average values of ~2859 

±16 μm, ~281±15 μm, and ~239±29 μm in CNEC, ENCE and WNEC, respectively. 10 

Reff in WNEC is a little smaller compared with those in other two regions, which is 11 

probably due to the higher snowfall frequency, because higher snowfall frequency 12 

indicates longer duration of fresh finer snow at surface (Wang et al., 2013; Seidel et al., 13 

2016).  14 

Figure 6 shows the average uncertainties of ILAPs , Reff  and RFMODIS
LAPs  due to 15 

atmospheric correction in NEC in January-February from 2003 to 2017. The positive 16 

(negative) uncertainties of retrieved ILAPs and RFMODIS
LAPs  from atmospheric correction 17 

are comparable and range from 9% to 43% (-10% to -47%) and 14% to 57% (-14% to 18 

-47%), respectively. Both of ILAPs  and RFMODIS
LAPs  show larger uncertainties as their 19 

values are smaller; the positive (negative) uncertainties of ILAPs  and RFMODIS
LAPs  are 20 

largest in WNEC and show averages of 21% (-24%) and 30% (-28%), while the lowest 21 

uncertainties of 13% (-15%) and 20% (-20%) for ILAPs  and RFMODIS
LAPs  are found in 22 
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CNEC. It is because that the uncertainty of snow albedo from atmospheric correction 1 

is almost similar in our study areas across the whole NEC region as discussed in Section 2 

3.6, however the snow albedo reduction is smaller in clean snow and larger in polluted 3 

snow, which results into a larger relative uncertainty of snow albedo reduction in clean 4 

snow and a smaller relative uncertainty in polluted snow according to Equation 8. The 5 

positive (negative) uncertainties of Reff  are smaller compared with ILAPs  and 6 

RFMODIS
LAPs , and range from 14 to 18% (-12% to -16%), which is comparable with the errors 7 

between MODIS retrieved and in situ measured snow grain size discussed in Section 8 

3.2.2. Moreover, the uncertainties are spatially quite consistent for Reff , which is 9 

different from ILAPs and RFMODIS
LAPs . We note that the positive and negative uncertainties 10 

of all ILAPs , Reff , and RFMODIS
LAPs  are asymmetric, which are primarily due to the 11 

nonlinear characteristics of the radiative transfer in SNICAR model (Painter et al., 12 

2007). 13 

As discussed in Section 3, the spatial distribution of RFMODIS
LAPs  depends on ILAPs, Reff 14 

and θ. Even though some studies have successfully retrieved the radiative forcing by 15 

LAPs in snow using remote sensing (e.g. Painter et al., 2012a, 2013b). However, none 16 

of them has quantitatively estimate what degree of certainty can the variations of 17 

radiative forcing be attributed to LAPs in snow. Then we would like to qualify the 18 

contribution of each factor to the spatial variance of RFMODIS
LAPs . Combing sensitive test 19 

and the method of Huang and Yi (1991) as discussed in 3.2.6, we estimate the fractional 20 

contribution of ILAPs, Reff and θ to the spatial variance of RFMODIS
LAPs  in our study areas 21 

across NEC (Figure 7). We can find that the contributions from LAPs is largest with a 22 
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value of 74.6%, while Reff and θ make contributions of 21.2% and 4.2%, respectively 1 

in NEC. The result indicates that the LAP content in snow plays a dominant role in 2 

determining the spatial distribution of RFMODIS
LAPs . Regionally, the contribution of LAPs 3 

in WNEC (62.1%) is smaller than those of 73.9% and 83.4% in CNEC and ENEC, 4 

while Reff shows a higher contribution of 28.1% in WNEC than those of 19.6% and 5 

13.9% in CNEC and ENEC. The results point out a less important effect of LAPs but 6 

more important effect of Reff  on the spatial distribution of RFMODIS
LAPs  in WNEC 7 

compared with those in CNEC and ENEC. In addition, the contribution of θ is smaller 8 

in ENCE (2.7%) than those of 9.8% and 6.5% in WNEC and CNEC, which is primary 9 

due to the smallest altitude range of ENEC among those three regions. 10 

Seidel et al. (2016) reported that the variations in LAP contents in snow are dominated 11 

by LAP deposition and snowfall. Previous studies have also reported that BC is the 12 

dominant LAP type in NEC (Wang et al., 2013). Zhao et al. (2014) simulated LAP 13 

content and their radiative forcing in seasonal snow using WRF-Chem coupled with 14 

SNICAR model and indicated that the radiative forcing by LAPs in snow in NEC is 15 

primarily due to BC. Therefore, to examine the spatial distributions of retrieved ILAPs 16 

and RFMODIS
LAPs , we display the distribution of snowfall (Figure 3a) and BC dry and wet 17 

deposition (Figure 8). BC dry deposition is highest in the largest urban areas of NEC 18 

with the major cities of Harbin, Changchun, and Shenyang, then decrease sharply 19 

outwards from the central of urban areas to remote areas (Figure 8a). Different from 20 

BC dry deposition, which is dominated by BC concentrations in the atmosphere, BC 21 

wet deposition is affected by both BC concentrations and precipitation and shows an 22 
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increase from northwest to southeastern. Generally, the spatial patterns of BC dry and 1 

wet deposition are similar with ILAPs and RFMODIS
LAPs . For example, areas with higher BC 2 

dry and wet deposition such as industrial polluted NEC show higher ILAPs  and 3 

RFMODIS
LAPs . Moreover, from Figure 9a-c, we can find that the correlations between ILAPs 4 

with BC dry and wet deposition and snowfall (R2=0.65, 0.71, and 0.19) are significant 5 

at the 99% confidence level. The correlations of ILAPs with BC dry and wet deposition 6 

in WNEC is relatively lower than those in CNCE and ENEC, which is partly due to the 7 

effect of dust in this region (Wang et al., 2013; Zhao et al, 2014). Furthermore, using 8 

the method of multiple linear regression, we fitted ILAPs  using BC dry and wet 9 

deposition and snowfall data. Figure 9d shows the scatterplots of ILAPs and fitted ILAPs. 10 

We can find that BC dry and wet deposition and snowfall could totally explain 81% of 11 

the spatial variance of ILAPs. The result confirms the reasonability of the spatial patterns 12 

of retrieved ILAPs and thus RFMODIS
LAPs  in NEC.  13 

4.4. Comparisons of MODIS-Retrieved and In situ Estimated Radiative Forcing by 14 

LAPs in Snow 15 

Figure 10 shows the distribution of the sample sites and the measured BCequiv 16 

concentration in surface snow at each site. Circles and squares represent the snow 17 

samples collected in 2010 (Wang et al., 2013) and 2014 (Wang et al., 2017), 18 

respectively. Generally, BCequiv concentration ranges mostly from ~0.1 to ~3.0 μg g-1 19 

and shows an increase from northwest to southeastern. The highest BCequiv 20 

concentration are found in CNEC while lowest in WNEC. Figure 11a displays a 21 

comparison of MODIS retrieved radiative forcing (RFMODIS
LAPs ) and in situ radiative forcing 22 
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(RFin situ
estimated) estimated based on measured BCequiv concentration. In general, the mean 1 

absolute error (MAE) for RFMODIS
LAPs  against RFin situ

estimated  is 15.3 W m-2. The ratios of 2 

RFMODIS
LAPs  to RFin situ

estimated (Rin situ
MODIS) fall mainly in the range of 1-2. The errors indicate larger 3 

positive at lower RFin situ
estimated values, whereas smaller biases are noted at higher RFin situ

estimated 4 

values. The results of this bias analysis are comparable with those reported by Painter 5 

et al. (2012a). Figure 11b shows a scatterplot of Rin situ
MODIS versus BCequiv. We can find 6 

that Rin situ
MODIS  and BCequiv display a good correlation; the best-fitting equation is 7 

Rin situ
MODIS=1.690*BC

equiv

-0.522
, and the R2 is 0.89 (99% confidence level). This result 8 

indicates that the biases in the RFMODIS
LAPs  retrievals are negatively correlated with the 9 

LAP concentrations in NEC. Considering that the typical concentration of BCequiv in 10 

clean snow in NEC is 0.15 μg g-1, the bias in RFMODIS
LAPs  can be as high as 350% in some 11 

areas, such as WNEC. In other areas with very polluted snow, such as southern CNEC 12 

(where the BCequiv values are typically 2.5 μg g-1), the bias is ~5%. Thus, considering 13 

the values reported by Wang et al. (2013, 2017), the biases in RFMODIS
LAPs  largely fall in 14 

the range of ~5% to ~350% in NEC. Comparing Figure 11 with Figure 6, we find that 15 

the biases in the RFMODIS
LAPs  in polluted snow are comparable with the uncertainties of 16 

RFMODIS
LAPs  due to atmospheric corrections. However, in clean snow, the uncertainties 17 

from atmospheric corrections could not sufficiently explain the biases in retrieved 18 

RFMODIS
LAPs . There are three probable reasons: (a) for clean snow, retrieved radiative 19 

forcing is very sensitive to MODIS derived surface snow reflectance (Equation 4), 20 

although we have corrected the errors of snow reflectance from the protrusion of 21 

vegetation in our study areas of high snow cover fractions, the uncertainties from 22 
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fractional snow cover (FSC) calculation and the vegetation reflectance will effectively 1 

influence the corrections of snow reflectance (Equation 5); (b) Painter et al. (2012b) 2 

validated the retrieved radiative forcing by LAPs in snow in the Upper Colorado River 3 

Basin using in situ estimates based on radiation towers, and also found that the biases 4 

in the case of low radiative forcing could be up to several folds. They pointed out that 5 

MODIS can not proceed a continuous spectral measurement of a continuously variable 6 

forcing like that which LAPs afford to snow albedo due to the variably spaced and 7 

discrete bands of MODIS, which prevents a more quantitative retrieval and thus results 8 

into a non-negligible uncertainty in radiative forcing retrieval; (c) We use the average 9 

of MODIS retrieved radiative forcing in a pixel size of 0.05°×0.05° to compare with 10 

the in situ radiative forcing calculated using observed BCequiv concentration with the 11 

sample site located in the center of the pixel. Such a comparison may not be true in 12 

some sites due to the inhomogeneous spatial distribution of snow and LAP contents, 13 

which will influence radiative forcing estimates, especially in clean snow (Zhao et al. 14 

2014). Therefore, we note that the number of sample sites is still limited and more field 15 

campaigns are needed to validate the accuracy of MODIS retrievals and then correct 16 

the retrieved radiative forcing.  17 

4.5. Limitations 18 

The determination of snow-covered areas represents a limitation of the method used in 19 

this study, which restricts our study to areas with high snow cover fractions; thus, we 20 

cannot estimate RFMODIS
LAPs  across the NEC as a whole. In the future, we will attempt to 21 

use the spectral differences between different land cover types to distinguish the 22 
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spectral reflectance of snow in mixed pixels. This improvement will permit us to 1 

expand our work to areas with limited snow cover. Another limitation is that we retrieve 2 

only the instantaneous radiative forcing at the surface under clear-sky conditions at the 3 

time of MODIS overpass, and these measurements do not represent a time-integrated 4 

average over the studied period. However, the estimation of temporally resolved 5 

radiative forcing is much more difficult, given the significant effects of clouds, 6 

atmospheric components, θ, and the time-varying snow reflectance. 7 

5. Discussions 8 

In our study, we didn’t retrieve the radiative forcing in the northern and southeastern 9 

parts of NEC. In those regions, snowfall is frequent, the percent of snow cover is very 10 

high and snow is also very deep. For example, in the northern NEC, the averaged snow 11 

depth is ~ 20 cm, and in the areas near Changbai Mountain of the southeastern NEC, 12 

snow depth could be up to ~ 40 cm (Wang et al., 2013). However, due to the presence 13 

of forest cover, the reflected radiation received by sensor aboard the satellite in those 14 

areas is mostly due to trees. For example, Figure 12 shows the true color map of MODIS 15 

in NEC at 23 January 2010, we can see that in the northern and southeastern parts of 16 

NEC, the observed objects from MODIS are almost trees, not the snowpack under trees, 17 

although snow is almost completed covered (Wang et al., 2013). Therefore, in those 18 

forest areas, discussing the radiative forcing by LAPs in snow is extremely difficult due 19 

to the influence of trees. Bond et al. (2006) also indicated that LAPs in snow masked 20 

by forests contributes little to radiative forcing. They further pointed out that model 21 

representation of and forcing sensitivity to cover ranges of forests have not been 22 
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verified, and this is a boundless uncertainty in modeling radiative forcing by LAPs in 1 

snow at present. However, most modeling studies which simulated the radiative forcing 2 

by LAPs in snow didn’t take trees into considerations and estimated the radiative 3 

forcing over the whole boreal forest areas in the Northern Hemisphere. For example, 4 

Flanner et al. (2007) applied SNICAR model coupled a general circulation model to 5 

estimate the radiative forcing and response from BC in snow covered areas over the 6 

whole Northern Hemisphere. Nevertheless, due to the presence of trees in the extensive 7 

boreal forest areas, the simulated radiative forcing is unreal as the incident radiation is 8 

reflected by trees but not by the snowpack. Zhao et al. (2014) simulated BC and dust 9 

and their radiative forcing in seasonal snow in North China. They found that the 10 

radiative forcing by BC and dust is very high in the southeastern NEC, where are forest 11 

areas. But in fact, in those areas the simulated radiative forcing by LAPs is also unreal. 12 

Therefore, we note that estimating the radiative forcing by LAPs in forest areas should 13 

consider into the influence of trees. 14 

6. Conclusions 15 

In this study, we retrieve ILAPs, Reff, and RFMODIS
LAPs  across NEC in January-February 16 

from 2003 to 2017 using MODIS data, together with a snow albedo model (SNICAR) 17 

and a radiative transfer model (SBDART). On average, ILAP is ~0.27±0.045, Reff is 18 

~261±32 μm, and RFMODIS
LAPs  is ~45.1±6.8 W m-2 in NEC. The distribution of RFMODIS

LAPs  19 

presents distinct spatial differences; the lowest value is 22.3 W m-2, which occurs in 20 

remote western NEC, and the highest value is 64.6 W m-2, which occurs near the 21 

industrial areas in central NEC. Both ILAPs  and RFMODIS
LAPs  show larger uncertainties 22 
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from atmospheric correction as their values are smaller. We make a first attempt to 1 

attribute the variations of radiative forcing based on remote sensing. The results point 2 

out that ILAPs, Reff and θ make fractional contributions of 74.6%, 21.2% and 4.2% to 3 

the spatial variance of RFMODIS
LAPs  in our study areas across NEC. The result confirms that 4 

the LAP content in snow plays a dominant role in determining the spatial distribution 5 

of RFMODIS
LAPs . We also analyze the distribution of BC dry and wet deposition and snowfall, 6 

find that they could totally explained 81% of the spatial variance of ILAPs , which 7 

indicates the reasonability of the spatial patterns of ILAPs and thus RFMODIS
LAPs  in NEC. 8 

Finally, we validate the retrieved RFMODIS
LAPs  values using in situ estimated radiative 9 

forcing (RFin situ
estimated). The mean absolute error (MAE) of RFMODIS

LAPs  against RFin situ
estimated is 10 

15.3 W m-2. The biases in the RFMODIS
LAPs  retrievals display a negative correlation with 11 

the LAP concentrations in NEC. Considering typical concentrations of BCequiv, which 12 

range from ~0.15 μg g-1 to ~2.5 μg g-1, the biases in RFMODIS
LAPs  fall primarily within the 13 

range of ~5% to ~350% in NEC. 14 

Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-1306
Manuscript under review for journal Atmos. Chem. Phys.
Discussion started: 14 January 2019
c© Author(s) 2019. CC BY 4.0 License.



34 

 

Acknowledgements 1 

This research was supported by the Foundation for Innovative Research Groups of the 2 

National Natural Science Foundation of China (41521004), the National Natural 3 

Science Foundation of China under grant (41775144 and 41522505). The National 4 

Center for Atmospheric Research is sponsored by the National Science Foundation 5 

(USA). We thank M. Flanner for providing an executable version of the SNICAR model 6 

and modifying it to accommodate our analysis. We thank C. Dang for her suggestions 7 

and comments to this study. MODIS data can be found at https://modis.gsfc.nasa.gov/. 8 

Snowfall data can be found at http://apps.ecmwf.int/datasets/data/interim-full-9 

daily/levtype=sfc/. BC deposition data can be found at http://www.ipcc-10 

data.org/sim/gcm_monthly/AR5/Reference-Archive.html. Surface measurement 11 

datasets are from [Wang, X., et al. (2013). Black carbon and other light-absorbing 12 

impurities in snow across Northern China. Journal of Geophysical Research: 13 

Atmospheres, 118(3), 1471-1492. https://doi.org/10.1029/2012JD018291] and [Wang, 14 

X., et al. (2017). Observations and model simulations of snow albedo reduction in 15 

seasonal snow due to insoluble light-absorbing particles during 2014 Chinese survey. 16 

Atmospheric Chemistry and Physics, 17(3), 2279-2296. https://doi.org/10.5194/acp-17 

17-2279-2017]. 18 

Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-1306
Manuscript under review for journal Atmos. Chem. Phys.
Discussion started: 14 January 2019
c© Author(s) 2019. CC BY 4.0 License.



35 

 

References 1 

Bond, T. C., Streets, D. G., Yarber, K. F., Nelson, S. M., Woo, J. H., and Klimont, Z.: A technology-based global 2 

inventory of black and organic carbon emissions from combustion, J Geophys Res-Atmos, 109, 3 

https://doi.org/10.1029/2003jd003697, 2004. 4 

Bond, T. C., Habib, G., and Bergstrom, R. W.: Limitations in the enhancement of visible light absorption due to 5 

mixing state, J Geophys Res-Atmos, 111, https://doi.org/10.1029/2006jd007315, 2006. 6 

Bond, T. C., Doherty, S. J., Fahey, D. W., Forster, P. M., Berntsen, T., DeAngelo, B. J., Flanner, M. G., Ghan, S., 7 

Karcher, B., Koch, D., Kinne, S., Kondo, Y., Quinn, P. K., Sarofim, M. C., Schultz, M. G., Schulz, M., 8 

Venkataraman, C., Zhang, H., Zhang, S., Bellouin, N., Guttikunda, S. K., Hopke, P. K., Jacobson, M. Z., Kaiser, 9 

J. W., Klimont, Z., Lohmann, U., Schwarz, J. P., Shindell, D., Storelvmo, T., Warren, S. G., and Zender, C. S.: 10 

Bounding the role of black carbon in the climate system: A scientific assessment, J Geophys Res-Atmos, 118, 11 

5380-5552, https://doi.org/10.1002/jgrd.50171, 2013. 12 

Cao, G. L., Zhang, X. Y., and Zheng, F. C.: Inventory of black carbon and organic carbon emissions from China, 13 

Atmospheric Environment, 40, 6516-6527, https://doi.org/10.1016/j.atmosenv.2006.05.070, 2006. 14 

Cohen, J., and Rind, D.: The Effect of Snow Cover on the Climate, J Climate, 4, 689-706, 15 

https://doi.org/10.1175/1520-0442(1991)004<0689:Teosco>2.0.Co;2, 1991. 16 

Dang, C., and Hegg, D. A.: Quantifying light absorption by organic carbon in Western North American snow by 17 

serial chemical extractions, J Geophys Res-Atmos, 119, https://doi.org/10.1002/2014jd022156, 2014. 18 

Dang, C., Warren, S. G., Fu, Q., Doherty, S. J., Sturm, M., and Su, J.: Measurements of light-absorbing particles in 19 

snow across the Arctic, North America, and China: Effects on surface albedo, J Geophys Res-Atmos, 122, 20 

10149-10168, https://doi.org/10.1002/2017jd027070, 2017. 21 

Di Mauro, B., Fava, F., Ferrero, L., Garzonio, R., Baccolo, G., Delmonte, B., and Colombo, R.: Mineral dust impact 22 

on snow radiative properties in the European Alps combining ground, UAV, and satellite observations, J 23 

Geophys Res-Atmos, 120, 6080-6097, https://doi.org/10.1002/2015jd023287, 2015. 24 

Di Mauro, B., Baccolo, G., Garzonio, R., Giardino, C., Massabo, D., Piazzalunga, A., Rossini, M., and Colombo, 25 

R.: Impact of impurities and cryoconite on the optical properties of the Morteratsch Glacier (Swiss Alps), 26 

Cryosphere, 11, 2393-2409, https://doi.org/10.5194/tc-11-2393-2017, 2017. 27 

Doherty, S. J., Warren, S. G., Grenfell, T. C., Clarke, A. D., and Brandt, R. E.: Light-absorbing impurities in Arctic 28 

snow, Atmospheric Chemistry and Physics, 10, 11647-11680, https://doi.org/10.5194/acp-10-11647-2010, 29 

2010. 30 

Doherty, S. J., Dang, C., Hegg, D. A., Zhang, R. D., and Warren, S. G.: Black carbon and other light-absorbing 31 

particles in snow of central North America, J Geophys Res-Atmos, 119, 12807-12831, 32 

https://doi.org/10.1002/2014jd022350, 2014. 33 

Dumont, M., Brun, E., Picard, G., Michou, M., Libois, Q., Petit, J. R., Geyer, M., Morin, S., and Josse, B.: 34 

Contribution of light-absorbing impurities in snow to Greenland's darkening since 2009, Nat Geosci, 7, 509-35 

512, https://doi.org/10.1038/Ngeo2180, 2014. 36 

Flanner, M. G., Zender, C. S., Randerson, J. T., and Rasch, P. J.: Present-day climate forcing and response from 37 

black carbon in snow, J Geophys Res-Atmos, 112, https://doi.org/10.1029/2006jd008003, 2007. 38 

Flanner, M. G., Zender, C. S., Hess, P. G., Mahowald, N. M., Painter, T. H., Ramanathan, V., and Rasch, P. J.: 39 

Springtime warming and reduced snow cover from carbonaceous particles, Atmospheric Chemistry and Physics, 40 

9, 2481-2497, https://doi.org/10.5194/acp-9-2481-2009, 2009. 41 

Grenfell, T. C., Doherty, S. J., Clarke, A. D., and Warren, S. G.: Light absorption from particulate impurities in snow 42 

and ice determined by spectrophotometric analysis of filters, Appl Optics, 50, 2037-2048, 43 

Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-1306
Manuscript under review for journal Atmos. Chem. Phys.
Discussion started: 14 January 2019
c© Author(s) 2019. CC BY 4.0 License.



36 

 

https://doi.org/10.1364/Ao.50.002037, 2011. 1 

Hadley, O. L., and Kirchstetter, T. W.: Black-carbon reduction of snow albedo, Nat Clim Change, 2, 437-440, 2 

https://doi.org/10.1038/nclimate1433, 2012. 3 

Hall, D. K., Riggs, G. A., and Salomonson, V. V.: Development of Methods for Mapping Global Snow Cover Using 4 

Moderate Resolution Imaging Spectroradiometer Data, Remote Sens Environ, 54, 127-140, 5 

https://doi.org/10.1016/0034-4257(95)00137-P, 1995. 6 

Hansen, J., and Nazarenko, L.: Soot climate forcing via snow and ice albedos, P Natl Acad Sci USA, 101, 423-428, 7 

https://doi.org/10.1073/pnas.2237157100, 2004. 8 

He, C. L., Li, Q. B., Liou, K. N., Takano, Y., Gu, Y., Qi, L., Mao, Y. H., and Leung, L. R.: Black carbon radiative 9 

forcing over the Tibetan Plateau, Geophys Res Lett, 41, 7806-7813, https://doi.org/10.1002/2014gl062191, 10 

2014. 11 

He, C. L., Takano, Y., Liou, K. N., Yang, P., Li, Q. B., and Chen, F.: Impact of Snow Grain Shape and Black Carbon-12 

Snow Internal Mixing on Snow Optical Properties: Parameterizations for Climate Models, J Climate, 30, 13 

10019-10036, https://doi.org/10.1175/Jcli-D-17-0300.1, 2017. 14 

He, C. L., Liou, K. N., Takano, Y., Yang, P., Qi, L., and Chen, F.: Impact of Grain Shape and Multiple Black Carbon 15 

Internal Mixing on Snow Albedo: Parameterization and Radiative Effect Analysis, J Geophys Res-Atmos, 123, 16 

1253-1268, https://doi.org/10.1002/2017jd027752, 2018. 17 

Huang, J. P., and Yi, Y. H.: Inversion of a nonlinear dynamic-model from the observation, Science China Chemistry, 18 

34, 1246-1246, 1991. 19 

Huang, J. P., Fu, Q., Zhang, W., Wang, X., Zhang, R. D., Ye, H., and Warren, S. G.: Dust and Black Carbon in 20 

Seasonal Snow across Northern China, Bulletin of the American Meteorological Society, 92, 175-+, 21 

https://doi.org/10.1175/2010bams3064.1, 2011. 22 

Huang, J. P., Xie, Y. K., Guan, X. D., Li, D. D., and Ji, F.: The dynamics of the warming hiatus over the Northern 23 

Hemisphere, Climate Dynamics, 48, 429-446, https://doi.org/10.1007/s00382-016-3085-8, 2016. 24 

Ichoku, C., Levy, R., Kaufman, Y. J., Remer, L. A., Li, R. R., Martins, V. J., Holben, B. N., Abuhassan, N., Slutsker, 25 

I., Eck, T. F., and Pietras, C.: Analysis of the performance characteristics of the five-channel Microtops II Sun 26 

photometer for measuring aerosol optical thickness and precipitable water vapor, J Geophys Res-Atmos, 107, 27 

https://doi.org/10.1029/2001jd001302, 2002. 28 

Jacobson, M. Z.: Control of fossil-fuel particulate black carbon and organic matter, possibly the most effective 29 

method of slowing global warming, J Geophys Res-Atmos, 107, https://doi.org/10.1029/2001jd001376, 2002. 30 

Jacobson, M. Z.: Climate response of fossil fuel and biofuel soot, accounting for soot's feedback to snow and sea ice 31 

albedo and emissivity, J Geophys Res-Atmos, 109, https://doi.org/10.1029/2004jd004945, 2004. 32 

Kaspari, S., Painter, T. H., Gysel, M., Skiles, S. M., and Schwikowski, M.: Seasonal and elevational variations of 33 

black carbon and dust in snow and ice in the Solu-Khumbu, Nepal and estimated radiative forcings, 34 

Atmospheric Chemistry and Physics, 14, 8089-8103, https://doi.org/10.5194/acp-14-8089-2014, 2014. 35 

Li, C. L., Bosch, C., Kang, S. C., Andersson, A., Chen, P. F., Zhang, Q. G., Cong, Z. Y., Chen, B., Qin, D. H., and 36 

Gustafsson, O.: Sources of black carbon to the Himalayan-Tibetan Plateau glaciers, Nat Commun, 7, 37 

https://doi.org/10.1038/ncomms12574, 2016. 38 

Liou, K. N., Takano, Y., and Yang, P.: Light absorption and scattering by aggregates: Application to black carbon 39 

and snow grains, J Quant Spectrosc Ra, 112, 1581-1594, https://doi.org/10.1016/j.jqsrt.2011.03.007, 2011. 40 

Liou, K. N., Takano, Y., He, C., Yang, P., Leung, L. R., Gu, Y., and Lee, W. L.: Stochastic parameterization for 41 

light absorption by internally mixed BC/dust in snow grains for application to climate models, J Geophys Res-42 

Atmos, 119, 7616-7632, https://doi.org/10.1002/2014jd021665, 2014. 43 

Lyapustin, A., Tedesco, M., Wang, Y. J., Aoki, T., Hori, M., and Kokhanovsky, A.: Retrieval of snow grain size 44 

Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-1306
Manuscript under review for journal Atmos. Chem. Phys.
Discussion started: 14 January 2019
c© Author(s) 2019. CC BY 4.0 License.



37 

 

over Greenland from MODIS, Remote Sens Environ, 113, 1976-1987, 1 

https://doi.org/10.1016/j.rse.2009.05.008, 2009. 2 

McConnell, J. R., Edwards, R., Kok, G. L., Flanner, M. G., Zender, C. S., Saltzman, E. S., Banta, J. R., Pasteris, D. 3 

R., Carter, M. M., and Kahl, J. D. W.: 20th-century industrial black carbon emissions altered arctic climate 4 

forcing, Science, 317, 1381-1384, https://doi.org/10.1126/science.1144856, 2007. 5 

Miller, S. D., Wang, F., Burgess, A. B., Skiles, S. M., Rogers, M., and Painter, T. H.: Satellite-Based Estimation of 6 

Temporally Resolved Dust Radiative Forcing in Snow Cover, J Hydrometeorol, 17, 1999-2011, 7 

https://doi.org/10.1175/Jhm-D-15-0150.1, 2016. 8 

Negi, H. S., and Kokhanovsky, A.: Retrieval of snow grain size and albedo of western Himalayan snow cover using 9 

satellite data, Cryosphere, 5, 831-847, https://doi.org/10.5194/tc-5-831-2011, 2011. 10 

Nolin, A. W., and Dozier, J.: Estimating Snow Grain-Size Using Aviris Data, Remote Sens Environ, 44, 231-238, 11 

https://doi.org/10.1016/0034-4257(93)90018-S, 1993. 12 

Nolin, A. W., and Dozier, J.: A hyperspectral method for remotely sensing the grain size of snow, Remote Sens 13 

Environ, 74, 207-216, https://doi.org/10.1016/S0034-4257(00)00111-5, 2000. 14 

O'Brien, H. W., and Munis, R. H.: Red and Near-Infrared Spectral Reflectance of Snow, 311, 1975. 15 

O'Brien, H. W., and Koh, G.: Near-infrared reflectance of snow-covered substrates, 1981. 16 

Painter, T. H., Roberts, D. A., Green, R. O., and Dozier, J.: The effect of grain size on spectral mixture analysis of 17 

snow-covered area from AVIRIS data, Remote Sens Environ, 65, 320-332, https://doi.org/10.1016/S0034-18 

4257(98)00041-8, 1998. 19 

Painter, T. H., Barrett, A. P., Landry, C. C., Neff, J. C., Cassidy, M. P., Lawrence, C. R., McBride, K. E., and Farmer, 20 

G. L.: Impact of disturbed desert soils on duration of mountain snow cover, Geophys Res Lett, 34, 21 

https://doi.org/10.1029/2007gl030284, 2007. 22 

Painter, T. H., Rittger, K., McKenzie, C., Slaughter, P., Davis, R. E., and Dozier, J.: Retrieval of subpixel snow 23 

covered area, grain size, and albedo from MODIS, Remote Sens Environ, 113, 868-879, 24 

https://doi.org/10.1016/j.rse.2009.01.001, 2009. 25 

Painter, T. H., Deems, J. S., Belnap, J., Hamlet, A. F., Landry, C. C., and Udall, B.: Response of Colorado River 26 

runoff to dust radiative forcing in snow, P Natl Acad Sci USA, 107, 17125-17130, 27 

https://doi.org/10.1073/pnas.0913139107, 2010. 28 

Painter, T. H., Bryant, A. C., and Skiles, S. M.: Radiative forcing by light absorbing impurities in snow from MODIS 29 

surface reflectance data, Geophys Res Lett, 39, https://doi.org/10.1029/2012gl052457, 2012a. 30 

Painter, T. H., Skiles, S. M., Deems, J. S., Bryant, A. C., and Landry, C. C.: Dust radiative forcing in snow of the 31 

Upper Colorado River Basin: 1. A 6 year record of energy balance, radiation, and dust concentrations, Water 32 

Resour Res, 48, https://doi.org/10.1029/2012wr011985, 2012b. 33 

Painter, T. H., Flanner, M. G., Kaser, G., Marzeion, B., VanCuren, R. A., and Abdalati, W.: End of the Little Ice 34 

Age in the Alps forced by industrial black carbon, P Natl Acad Sci USA, 110, 15216-15221, 35 

https://doi.org/10.1073/pnas.1302570110, 2013a. 36 

Painter, T. H., Seidel, F. C., Bryant, A. C., Skiles, S. M., and Rittger, K.: Imaging spectroscopy of albedo and 37 

radiative forcing by light-absorbing impurities in mountain snow, J Geophys Res-Atmos, 118, 9511-9523, 38 

https://doi.org/10.1002/jgrd.50520, 2013b. 39 

Peltoniemi, J. I., Gritsevich, M., Hakala, T., Dagsson-Waldhauserova, P., Arnalds, O., Anttila, K., Hannula, H. R., 40 

Kivekas, N., Lihavainen, H., Meinander, O., Svensson, J., Virkkula, A., and de Leeuw, G.: Soot on Snow 41 

experiment: bidirectional reflectance factor measurements of contaminated snow, Cryosphere, 9, 2323-2337, 42 

https://doi.org/10.5194/tc-9-2323-2015, 2015. 43 

Polashenski, C. M., Dibb, J. E., Flanner, M. G., Chen, J. Y., Courville, Z. R., Lai, A. M., Schauer, J. J., Shafer, M. 44 

Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-1306
Manuscript under review for journal Atmos. Chem. Phys.
Discussion started: 14 January 2019
c© Author(s) 2019. CC BY 4.0 License.



38 

 

M., and Bergin, M.: Neither dust nor black carbon causing apparent albedo decline in Greenland's dry snow 1 

zone: Implications for MODIS C5 surface reflectance, Geophys Res Lett, 42, 9319-9327, 2 

https://doi.org/10.1002/2015gl065912, 2015. 3 

Pu, W., Wang, X., Wei, H. L., Zhou, Y., Shi, J. S., Hu, Z. Y., Jin, H. C., and Chen, Q. L.: Properties of black carbon 4 

and other insoluble light-absorbing particles in seasonal snow of northwestern China, Cryosphere, 11, 1213-5 

1233, https://doi.org/10.5194/tc-11-1213-2017, 2017. 6 

Qian, Y., Gustafson, W. I., Leung, L. R., and Ghan, S. J.: Effects of soot-induced snow albedo change on snowpack 7 

and hydrological cycle in western United States based on Weather Research and Forecasting chemistry and 8 

regional climate simulations, J Geophys Res-Atmos, 114, https://doi.org/10.1029/2008jd011039, 2009. 9 

Ramanathan, V., and Carmichael, G.: Global and regional climate changes due to black carbon, Nat Geosci, 1, 221-10 

227, https://doi.org/10.1038/ngeo156, 2008. 11 

Ricchiazzi, P., Yang, S. R., Gautier, C., and Sowle, D.: SBDART: A research and teaching software tool for plane-12 

parallell radiative transfer in the Earth's atmosphere, Bulletin of the American Meteorological Society, 79, 13 

2101-2114, https://doi.org/10.1175/1520-0477(1998)079<2101:Sarats>2.0.Co;2, 1998. 14 

Rittger, K., Painter, T. H., and Dozier, J.: Assessment of methods for mapping snow cover from MODIS, Adv Water 15 

Resour, 51, 367-380, https://doi.org/10.1016/j.advwatres.2012.03.002, 2013. 16 

Scambos, T. A., Haran, T. M., Fahnestock, M. A., Painter, T. H., and Bohlander, J.: MODIS-based Mosaic of 17 

Antarctica (MOA) data sets: Continent-wide surface morphology and snow grain size, Remote Sens Environ, 18 

111, 242-257, https://doi.org/10.1016/j.rse.2006.12.020, 2007. 19 

Schwarz, J. P., Doherty, S. J., Li, F., Ruggiero, S. T., Tanner, C. E., Perring, A. E., Gao, R. S., and Fahey, D. W.: 20 

Assessing Single Particle Soot Photometer and Integrating Sphere/Integrating Sandwich Spectrophotometer 21 

measurement techniques for quantifying black carbon concentration in snow, Atmospheric Measurement 22 

Techniques, 5, 2581-2592, https://doi.org/10.5194/amt-5-2581-2012, 2012. 23 

Seidel, F. C., Rittger, K., Skiles, S. M., Molotch, N. P., and Painter, T. H.: Case study of spatial and temporal 24 

variability of snow cover, grain size, albedo and radiative forcing in the Sierra Nevada and Rocky Mountain 25 

snowpack derived from imaging spectroscopy, Cryosphere, 10, 1229-1244, https://doi.org/10.5194/tc-10-1229-26 

2016, 2016. 27 

Siegmund, A., and Menz, G.: Fernes nah gebracht–Satelliten-und Luftbildeinsatz zur Analyse von 28 

Umweltveränderungen im Geographieunterricht. Geographie und Schule, 154(4), 2-10, 2005. 29 

Stamnes, K., Tsay, S. C., Wiscombe, W., and Jayaweera, K.: Numerically Stable Algorithm for Discrete-Ordinate-30 

Method Radiative-Transfer in Multiple-Scattering and Emitting Layered Media, Appl Optics, 27, 2502-2509, 31 

https://doi.org/10.1364/Ao.27.002502, 1988. 32 

Taylor, K. E., Stouffer, R. J., and Meehl, G. A.: An Overview of Cmip5 and the Experiment Design, Bulletin of the 33 

American Meteorological Society, 93, 485-498, https://doi.org/10.1175/Bams-D-11-00094.1, 2012. 34 

Toon, O. B., Mckay, C. P., Ackerman, T. P., and Santhanam, K.: Rapid Calculation of Radiative Heating Rates and 35 

Photodissociation Rates in Inhomogeneous Multiple-Scattering Atmospheres, J Geophys Res-Atmos, 94, 36 

16287-16301, https://doi.org/10.1029/JD094iD13p16287, 1989. 37 

Vermote, E.: MOD09A1MODIS/Terra Surface Reflectance 8-Day L3 Global 500m SIN Grid V006. NASA EOSDIS 38 

Land Processes DAAC, 2015. 39 

Wang, X., Doherty, S. J., and Huang, J. P.: Black carbon and other light-absorbing impurities in snow across 40 

Northern China, J Geophys Res-Atmos, 118, 1471-1492, https://doi.org/10.1029/2012jd018291, 2013. 41 

Wang, X., Xu, B. Q., and Ming, J.: An Overview of the Studies on Black Carbon and Mineral Dust Deposition in 42 

Snow and Ice Cores in East Asia, Journal of Meteorological Research, 28, 354-370, 43 

https://doi.org/10.1007/s13351-014-4005-7, 2014a. 44 

Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-1306
Manuscript under review for journal Atmos. Chem. Phys.
Discussion started: 14 January 2019
c© Author(s) 2019. CC BY 4.0 License.



39 

 

Wang, X., Pu, W., Zhang, X. Y., Ren, Y., and Huang, J. P.: Water-soluble ions and trace elements in surface snow 1 

and their potential source regions across northeastern China, Atmospheric Environment, 114, 57-65, 2 

https://doi.org/10.1016/j.atmosenv.2015.05.012, 2015. 3 

Wang, X., Pu, W., Ren, Y., Zhang, X. L., Zhang, X. Y., Shi, J. S., Jin, H. C., Dai, M. K., and Chen, Q. L.: 4 

Observations and model simulations of snow albedo reduction in seasonal snow due to insoluble light-absorbing 5 

particles during 2014 Chinese survey, Atmospheric Chemistry and Physics, 17, 2279-2296, 6 

https://doi.org/10.5194/acp-17-2279-2017, 2017. 7 

Wang, Z. W., Gallet, J. C., Pedersen, C. A., Zhang, X. S., Strom, J., and Ci, Z. J.: Elemental carbon in snow at 8 

Changbai Mountain, northeastern China: concentrations, scavenging ratios, and dry deposition velocities, 9 

Atmospheric Chemistry and Physics, 14, 629-640, https://doi.org/10.5194/acp-14-629-2014, 2014b. 10 

Warren, S. G., and Wiscombe, W. J.: A Model for the Spectral Albedo of Snow .2. Snow Containing Atmospheric 11 

Aerosols, J Atmos Sci, 37, 2734-2745, https://doi.org/10.1175/1520-0469(1980)037<2734:Amftsa>2.0.Co;2, 12 

1980. 13 

Warren, S. G.: Optical-Properties of Snow, Reviews of Geophysics, 20, 67-89, 14 

https://doi.org/10.1029/RG020i001p00067, 1982. 15 

Warren, S. G.: Impurities in Snow - Effects on Albedo and Snowmelt Review, Annals of Glaciology, 5, 177-179, 16 

https://doi.org/10.3189/1984AoG5-1-177-179, 1984. 17 

Wiedensohler, A., Cheng, Y. F., Nowak, A., Wehner, B., Achtert, P., Berghof, M., Birmili, W., Wu, Z. J., Hu, M., 18 

Zhu, T., Takegawa, N., Kita, K., Kondo, Y., Lou, S. R., Hofzumahaus, A., Holland, F., Wahner, A., Gunthe, S. 19 

S., Rose, D., Su, H., and Poschl, U.: Rapid aerosol particle growth and increase of cloud condensation nucleus 20 

activity by secondary aerosol formation and condensation: A case study for regional air pollution in northeastern 21 

China, J Geophys Res-Atmos, 114, https://doi.org/10.1029/2008jd010884, 2009. 22 

Wiscombe, W. J., and Warren, S. G.: A Model for the Spectral Albedo of Snow .1. Pure Snow, J Atmos Sci, 37, 23 

2712-2733, https://doi.org/10.1175/1520-0469(1980)037<2712:Amftsa>2.0.Co;2, 1980. 24 

Wuttke, S., Seckmeyer, G., and Konig-Lang, G.: Measurements of spectral snow albedo at Neumayer, Antarctica, 25 

Ann Geophys-Germany, 24, 7-21, https://doi.org/10.5194/angeo-24-7-2006, 2006. 26 

Xu, B. Q., Cao, J. J., Hansen, J., Yao, T. D., Joswia, D. R., Wang, N. L., Wu, G. J., Wang, M., Zhao, H. B., Yang, 27 

W., Liu, X. Q., and He, J. Q.: Black soot and the survival of Tibetan glaciers, P Natl Acad Sci USA, 106, 22114-28 

22118, https://doi.org/10.1073/pnas.0910444106, 2009. 29 

Yasunari, T. J., Bonasoni, P., Laj, P., Fujita, K., Vuillermoz, E., Marinoni, A., Cristofanelli, P., Duchi, R., Tartari, 30 

G., and Lau, K. M.: Estimated impact of black carbon deposition during pre-monsoon season from Nepal 31 

Climate Observatory - Pyramid data and snow albedo changes over Himalayan glaciers, Atmospheric 32 

Chemistry and Physics, 10, 6603-6615, https://doi.org/10.5194/acp-10-6603-2010, 2010. 33 

Yasunari, T. J., Koster, R. D., Lau, W. K. M., and Kim, K. M.: Impact of snow darkening via dust, black carbon, 34 

and organic carbon on boreal spring climate in the Earth system, J Geophys Res-Atmos, 120, 5485-5503, 35 

https://doi.org/10.1002/2014jd022977, 2015. 36 

Zhang, R., Hegg, D. A., Huang, J., and Fu, Q.: Source attribution of insoluble light-absorbing particles in seasonal 37 

snow across northern China, Atmospheric Chemistry and Physics, 13, 6091-6099, https://doi.org/10.5194/acp-38 

13-6091-2013, 2013. 39 

Zhao, C., Hu, Z., Qian, Y., Leung, L. R., Huang, J., Huang, M., Jin, J., Flanner, M. G., Zhang, R., Wang, H., Yan, 40 

H., Lu, Z., and Streets, D. G.: Simulating black carbon and dust and their radiative forcing in seasonal snow: a 41 

case study over North China with field campaign measurements, Atmospheric Chemistry and Physics, 14, 42 

11475-11491, https://doi.org/10.5194/acp-14-11475-2014, 2014. 43 

Zhou, Y., Wang, X., Wu, X. Q., Cong, Z. Y., Wu, G. M., and Ji, M. X.: Quantifying Light Absorption of Iron Oxides 44 

Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-1306
Manuscript under review for journal Atmos. Chem. Phys.
Discussion started: 14 January 2019
c© Author(s) 2019. CC BY 4.0 License.



40 

 

and Carbonaceous Aerosol in Seasonal Snow across Northern China, Atmosphere-Basel, 8, 1 

https://doi.org/10.3390/atmos8040063, 2017.2 

Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-1306
Manuscript under review for journal Atmos. Chem. Phys.
Discussion started: 14 January 2019
c© Author(s) 2019. CC BY 4.0 License.



41 

 

 1 

Figure 1. (a) The spectral albedo of snow with different Reff values and BC contents 2 

simulated using SNICAR. The column bars represent MODIS bands, and the gray areas 3 

represent the typical solar irradiance in winter in NEC. (b) The reduction in the 300-4 

1240 nm spectral-weighted integrated snow albedo as a function of BC for different 5 

Reff values and solar zenith angles (θ) simulated using SNICAR. (c) The variations in 6 

the impurity index (ILAPs) with BC content simulated using SNICAR.  7 
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 1 

Figure 2. Spatial distribution of (a) MODIS AOD at 550 nm and (b) BC emission 2 

density density in January-February in NEC. AOD data is from 2003 to 2017 and BC 3 

emission density is from 2014. The major cities in NEC are also shown in this figure.    4 
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 1 

Figure 3. Spatial distribution of (a) the normalized snowfall frequency in January-2 

February from 2003 to 2017 and (b) the different land cover types based on MODIS 3 

data in NEC. 4 
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 1 

Figure 5. Statistics of average RFMODIS
LAPs , ILAPs, and Reff in NEC in January-February 2 

from 2003 to 2017.3 
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 1 

Figure 6. (a) Negative and (b) positive uncertainty of average ILAPs  in NEC in 2 

January-February from 2003 to 2017. (c) and (d) are similar to (a) and (b), but for Reff. 3 

(e) and (f) are similar to (a) and (b), but for RFMODIS
LAPs . The background shows the spatial 4 

distribution of MODIS AOD values. The dotted areas are covered by forests. The major 5 

cities in NEC are also shown in this figure. 6 

 7 
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 1 

Figure 7. Fractional contribution of average ILAPs, Reff, and solar zenith angle (θ) to 2 

the spatial variance of RFMODIS
LAPs  in January-February from 2003-2017.  3 
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 1 

Figure 8. Spatial distribution of average (a) dry and (b) wet deposition of BC in NEC 2 

in January-February from 2003 to 2005. BC deposition data is only updated to 2005. 3 

The major cities in NEC are also shown in this figure.    4 
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 1 

Figure 9. Scatterplots of (a) ILAPs versus BC dry deposition, (b) ILAPs versus BC wet 2 

deposition, (c) ILAPs  versus normalized snowfall frequency, and (d) ILAPs  versus 3 

regressed ILAPs (ILAPs_Regression), which is regressed with BC dry and wet deposition 4 

and snowfall frequency using multiple linear regression. We note that all data in this 5 

figure is from January-February of 2003-2005 due to that BC deposition data is only 6 

updated to 2005. 7 
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 1 

Figure 10. Spatial distribution of the measured BCequiv concentration in surface snow 2 

in NEC. Circles and squares represent the snow samples collected in 2010 (Wang et a., 3 

2013) and 2014 (Wang et a., 2017), respectively.4 
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 1 

Figure 11. Scatterplots of (a) RFMODIS
LAPs  versus RFin situ

estimated  and (b) Rin situ
MODIS  versus 2 

BCequiv. 3 
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 1 

Figure 12. A true color map of MODIS in NEC at 23 January 2010. 2 
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