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Abstract. Light-absorbing particles (LAPs) deposited on snow can decrease snow 1 

albedo and affect climate through the snow-albedo radiative forcing. In this study, we 2 

use MODIS observations combined with a snow albedo model (SNICAR) and a 3 

radiative transfer model (SBDART) to retrieve the instantaneous spectrally-integrated 4 

radiative forcing at the surface by LAPs in snow (RFMODIS
LAPs ) under clear-sky conditions 5 

at the time of MODIS Aqua overpass across Northeastern China (NEC) in January-6 

February from 2003 to 2017. RFMODIS
LAPs  presents distinct spatial variability, with the 7 

minimum (22.3 W m-2) in western NEC and the maximum (64.6 W m-2) near industrial 8 

areas in central NEC. The regional mean RFMODIS
LAPs  is ~45.1±6.8 W m-2 in NEC. The 9 

positive (negative) uncertainties of retrieved RFMODIS
LAPs  due to atmospheric correction 10 

range from 14% to 57% (-14% to -47%) and the uncertainty value basically decreased 11 

with the increased RFMODIS
LAPs . We attribute the variations of radiative forcing based on 12 

remote sensing and find that the spatial variance of RFMODIS
LAPs  in NEC is 74.6% due to 13 

LAPs, while 21.2% and 4.2% due to snow grain size, and solar zenith angle. 14 

Furthermore, based on multiple linear regression, the BC dry and wet deposition and 15 

snowfall could totally explain 84% of the spatial variance of LAP contents, which 16 

confirms the reasonability of the spatial patterns of retrieved RFMODIS
LAPs  in NEC. We 17 

validate RFMODIS
LAPs  using in situ radiative forcing estimates. We find that the biases in 18 

RFMODIS
LAPs  are negatively correlated with LAP concentrations and range from ~5% to 19 

~350% in NEC.  20 

 21 

22 
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1. Introduction 1 

Pure snow is the most strongly reflective natural substance at the surface of the Earth, 2 

and seasonal snow covers more than 30% of the Earth’s land area (Painter et al., 1998). 3 

Therefore, snow cover has an important impact on the radiation balance of the Earth 4 

(Cohen and Rind, 1991). When light-absorbing particles (LAPs), such as black carbon 5 

(BC), organic carbon (OC), and mineral dust deposited on snow, can effectively reduce 6 

snow albedo (Hadley and Kirchstetter, 2012; He et al., 2017, 2018; Li et al., 2016; 7 

Warren, 1982, 1984; Warren and Wiscombe, 1980) and enhance the absorption of solar 8 

radiation (Dang et al., 2017; Kaspari et al., 2014; Liou et al., 2011, 2014; Painter et al., 9 

2012b). Warren and Wiscombe (1980) indicated out that 10 ng g-1 BC in old snow could 10 

reduce the snow albedo by nearly 1% at 400 nm with the snow grain size of 1000 μm. 11 

Based on model simulation, Jacobson (2004) pointed out that the snow albedo reduction 12 

caused by BC in snow and ice is 0.4% in the global and 1% in the Northern Hemisphere. 13 

LAPs in snow further contribute to alterations in snow morphology, accelerations in 14 

snowmelt, and reductions in snow cover (Flanner et al., 2007, 2009; Painter et al., 2013a; 15 

Xu et al., 2009). For example, Qian et al. (2009) simulated the deposition of BC on 16 

snow and its impact on snowpack and the hydrological cycle in the western United 17 

States and the results showed that BC-induced snow albedo perturbations caused a 18 

decrease of snow water equivalent by 2-50 mm over the mountains during late winter 19 

to early spring. 20 

Several studies have estimated the radiative forcing by LAPs in snow based on model 21 

simulations, which has nonnegligible effects on local hydrological cycles (Painter et al., 22 
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2010; Qian et al., 2009; Yasunari et al., 2010) and regional and global climate (Bond et 1 

al., 2013; Hansen and Nazarenko, 2004; He et al., 2014; Jacobson, 2002, 2004; 2 

McConnell et al., 2007; Ramanathan and Carmichael, 2008; Yasunari et al., 2015). For 3 

example, in the Northern Hemisphere, Hansen and Nazarenko (2004) pointed out that 4 

the radiative forcing of BC on snow and ice albedo is +0.3 W m-2. In addition, the 5 

IPCC’s AR5 (2013) indicated that the impact of BC in snow and ice accounted for a 6 

global mean climate forcing of +0.04 W m-2, but the confidence level is low. Bond et 7 

al. (2013) estimated the climate forcing consisting of radiative forcing, rapid 8 

adjustments, and the strong snow-albedo feedback due to BC-in-snow forcing and 9 

pointed that the best valuation of the climate forcing by BC in snow and sea ice is +0.13 10 

W m-2, although the 90% uncertainty bounds are from +0.04 W m-2 to +0.33 W m-2. 11 

Nevertheless, recent studies reported that ample factors confuse the model simulation 12 

of BC-in-snow induced climate forcing, and the model-based estimate of the regional 13 

and global radiative forcing caused by BC in snow and ice is still a challenge (Hansen 14 

and Nazarenko, 2004; Bond et al., 2013; Pu et al., 2017). 15 

Much of northeastern China (NEC) is covered by contiguous seasonal snow in the 16 

winter and early spring. Local pollutant emissions in this region are some of the most 17 

intense in the world (Bond et al., 2004), leading to considerable amounts of LAPs 18 

deposited on snow (Bond et al., 2013). Several field campaigns have been conducted 19 

to analyze LAPs concentrations in snow across NEC (Huang et al., 2011; Wang et al., 20 

2014b, 2015). Wang et al. (2013) conducted a large field campaign to measure LAPs 21 

in seasonal snow in northern China from January to February 2010. They found that 22 
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BC is the dominant absorber compared with OC and dust in NEC and BC 1 

concentrations in snow in this region range from 40 ng g-1 to 4000 ng g-1, which are 2 

much higher than those measured in the Arctic, North America and Europe (Doherty et 3 

al., 2010, 2014; Peltoniemi et al., 2015). Recently, Wang et al. (2017) compared 4 

measured and simulated snow albedos and showed that LAPs can reduce the visible 5 

spectral albedo in NEC to 0.65, which indicated a significant impact of LAPs on snow 6 

albedo reduction. Zhao et al. (2014) simulated the radiative forcing by LAPs in snow 7 

over northern China using a coupled model; however, they noted that the uncertainties 8 

of their results are non-negligible, due to the limited observations that are available. 9 

Remote sensing is considered to be a powerful tool for estimating snow physical 10 

properties (e.g., Nolin and Dozier, 1993, 2000) and LAPs-induced snow albedo 11 

reduction, which can provide valuable observational information for modeling studies 12 

to reduce modeling uncertainties. For instance, to estimate the influence of mineral dust 13 

on snow albedo in the European Alps, Di Mauro et al. (2015) defined a new spectral 14 

index, the Snow Darkening Index based on in situ measured snow spectral reflectance 15 

and the Landsat 8 Operational Land Imager (OLI) data, they found that the Snow 16 

Darkening Index could effectively track the content of mineral dust in snow. In addition, 17 

Di Mauro et al. (2017) characterized the impact of LAPs on ice and snow albedo of the 18 

Vadret da Morteratsch, a large valley glacier in the Swiss Alps using satellite (EO-1 19 

Hyperion) hyperspectral data. The results showed that the spatial distribution of both 20 

narrow-band and broad-band indices retrieved from Hyperion was related to ice and 21 

snow impurities. In the Arctic, Dumont et al. (2014) developed an Impurity Index based 22 
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on satellite observations (MODIS C5 surface reflectance) to analyze the snow 1 

darkening caused by the increased contents of LAPs in snow in Greenland. 2 

Nevertheless, Polashenski et al. (2015) pointed out that the apparent snow albedo 3 

decline in Greenland observed from MODIS C5 surface reflectance (Dumont et al., 4 

2014) has a significant contribution from the uncorrected Terra sensor degradation. In 5 

this study, in order to prevent the interference from the sensor degradation, we used the 6 

latest version (version 6, C6) of MODIS data from Aqua sensor, which was verified to 7 

not suffer from the influence of sensor degradation (Polashenski et al., 2015). Even 8 

though these studies have confirmed the ability of remote sensing on assess the role of 9 

LAPs in snow on snow albedo reduction, however, they didn’t quantitatively estimate 10 

the radiative forcing caused by LAPs in snow, which is extremely important for 11 

implying the impact of LAPs on regional and global climate. Recently, Painter et al. 12 

(2012a) have successfully used the MODIS Dust Radiative Forcing in Snow 13 

(MODDRFS) model to retrieve surface radiative forcing by LAPs in snow cover from 14 

Moderate Resolution Imaging Spectroradiometer (MODIS) surface reflectance data. 15 

They found that the instantaneous at-surface radiative forcing can beyond 250 W m-2 16 

in the Hindu Kush-Himalaya area and falls in a range of 30-250 W m-2 in the Upper 17 

Colorado River Basin. Painter et al. (2013b) also provided and validated an algorithm 18 

suite to quantitatively retrieve radiative forcing by LAPs in snow from Airborne 19 

Visible/Infrared Imaging Spectrometer (AVIRIS) data in the Senator Beck Basin Study 20 

Area (SBBSA), SW Colorado, USA. The lowest radiative forcing was found on the 21 

high north facing slopes while the highest on southeast facing slopes at the lowest 22 
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elevations. Seidel et al. (2016) analyzed the spatial and temporal distribution of 1 

radiative forcing by LAPs in snow in the Sierra Nevada and Rocky Mountain from 2 

imaging spectroscopy. Their results presented an increased radiative forcing from 20 3 

W m-2 up to 200 W m-2 in the melting period. However, to date, no studies have 4 

quantitatively attributed the contributions of each factor to the variations of radiative 5 

forcing by LAPs in snow based on remote sensing. Moreover, no studies have estimated 6 

the radiative forcing by LAPs in snow across NEC using remote sensing, even though 7 

the LAP content is much higher compared with those in Arctic, Europe and USA (Dang 8 

et al., 2017). 9 

Although estimating the radiative forcing by LAPs in snow by using surface 10 

measurements are more precise than those using remote sensing or model simulation. 11 

However, the surface measurements of snow albedo and LAP content in snow are very 12 

limited from the regional or global scales. According to our knowledge, the number of 13 

sample sites is less than 50 over a wide NEC area of ~1.5 million km2 (Wang X. et al., 14 

2013; 2017; Wang Z. et al., 2014c; Ren et al., 2017). The very sparse measurement sites 15 

led to the poor spatial-temporal distribution of estimated radiative forcing in NEC 16 

(Dang et al., 2017). On the other hand, remote sensing technology has the advantage of 17 

high spatial-temporal resolution and has been successfully used to retrieve the radiative 18 

forcing by in-snow light-absorbing particles in high snow cover areas (Painter et al., 19 

2012a). In addition, previous study indicated that the uncertainty in estimating radiative 20 

forcing using model simulation is very high due to limited measurement data (Zhao et 21 

al., 2014), which however could be possibly improved by combining remote sensing 22 
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retrieved results. Hence, estimating the radiative forcing by LAPs in snow by using 1 

satellite remote sensing seems to be necessary. 2 

In this study, we attempt to retrieve the radiative forcing by LAPs in snow across NEC 3 

using MODIS datasets combined with the Snow, Ice, and Aerosol Radiation (SNICAR) 4 

model (Flanner et al., 2007, 2009) and the Santa Barbara DISORT Atmospheric 5 

Radiative Transfer (SBDART) model (Ricchiazzi et al., 1998), and estimate the 6 

uncertainties of radiative forcing from atmospheric correction and qualify the fractional 7 

contribution of each factor to the spatial variance of RFMODIS
LAPs . Then, we will investigate 8 

the reasonability of the spatial patterns of retrieved radiative forcing in NEC based on 9 

BC deposition and snowfall data. Finally, we quantitatively estimate the biases of 10 

MODIS retrieved radiative forcing using in situ radiative forcing estimates, which are 11 

based on field measurements. 12 

2. Datasets 13 

2.1. Remote Sensing Datasets 14 

The latest version (Collection 6) of MODIS surface reflectance data (MYD09GA), 15 

MODIS snow cover data (MYD10A1), and MODIS aerosol optical depth (AOD) data 16 

(MYD04) are used in this study from 2003 to 2017 that cover the months of January 17 

through February (https://modis.gsfc.nasa.gov/). The MOD09 product is divided into 7 18 

bands (band 1, 620-670 nm; band 2, 841-876 nm; band 3, 459-479 nm; band 4, 545-19 

565 nm; band 5, 1230-1250 nm; band 6, 1628-1652 nm; and band 7, 2105-2155 nm), 20 

and has a spatial resolution of 500 m (Vermote, 2015). The MOD09 surface reflectance 21 

is an estimate of the surface spectral reflectance for each band as it would have been 22 
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measured at ground level as if there were no atmospheric scattering or absorption. It 1 

corrects for the effects of atmospheric gases and aerosols. The performance of the 2 

atmospheric correction algorithm suffers from the influence of view and solar zenith 3 

angles and aerosol optical thickness; the accuracy of the algorithm is also affected by 4 

the wavelengths of different bands. More details about the data product information and 5 

band quality description of MOD09GA could be found in the MODIS Surface 6 

Reflectance User’s Guide (https://modis.gsfc.nasa.gov/data/dataprod/mod09.php). 7 

MODIS satellite data has been widely accepted in retrieval of snow cover and its 8 

physical properties. (e.g. Scambos et al., 2007; Rittger et al., 2013). In addition, MODIS 9 

has three bands located in the visible bands (VIS) and radiometric range in the VIS over 10 

snow surface has no saturation phenomenon, which provide the ability of detecting the 11 

changes of reflectance in the VIS caused by LAPs in snow (Painter et al., 2012a). 12 

2.2. Surface Measurement Datasets 13 

Wang et al. (2017) conducted a snow survey across NEC in January 2014. They 14 

measured AOD using a Microtops II Sun photometer. The Microtops II Sun photometer 15 

is a portable instrument and measures solar radiance in five spectral wave bands (340, 16 

440, 675, 870, and 936 nm) from which it automatically derives aerosol optical depth 17 

(AOD). When the Microtops II Sun photometer is well cleaned and well calibrated, its 18 

AOD retrievals can be comparable with those of CIMEL Sun photometers used in the 19 

AERONET network, with uncertainties ranging from 0.01 to 0.02 (Ichoku et al., 2002). 20 

The snow albedo and surface solar irradiance were measured using an Analytical 21 

Spectral Devices (ASD) spectroradiometer. The Analytical Spectral Devices Inc. (ASD) 22 

https://modis.gsfc.nasa.gov/data/dataprod/mod09.php)
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spectroradiometer has 3 nm spectral resolution on the visible/near infrared detector 1 

(350–1050 nm, silicon photodiode array), and 10–12 nm resolution on the short wave 2 

infrared detectors (900–2500 nm, InGaAs). Measurements are made by standing 3 

“down-sun” of the receptor, taking consecutive scans of downwelling and upwelling 4 

radiation. Wuttke et al. (2006) indicated that the ASD spectroradiometer is considered 5 

as the most mobile, capable, and rapid for measuring spectral albedo during short time 6 

periods, especially in very cold regions. The cosine error is less than 5% for solar zenith 7 

angles below 85º at a wavelength of 320 nm. We use these datasets to validate the snow 8 

grain size retrievals and the simulated surface solar irradiance values.  9 

Snow samples were collected at 46 sites in January and February 2010 across Northern 10 

China (Wang et al., 2013) and at 13 sites in January 2014 across Northeastern China 11 

(Wang et al., 2017). A detailed description of the procedures of snow collection and 12 

filtration has been presented by previous studies (Doherty et al., 2010, 2014; Wang et 13 

al., 2013). Briefly, in order to keep the collected snow samples to be regionally 14 

representative and minimize the influence from the local emission sources, sample 15 

locations were usually chosen at least 1 km upwind away from the approach roads and 16 

railways and more than 50 km from cities and towns. In addition, efforts were made to 17 

collect samples in open areas in order to prevent the contaminations from the detritus 18 

of bushes and trees. Generally, snow samples were collected within a vertical resolution 19 

varied from ~2 cm to 10 cm and usually at typically vertical intervals of 5 cm from the 20 

top to the bottom throughout the snowpack depth at each site. In a case of a visibly 21 

distinct layering, such as newly fallen snow at surface layer or a melt layer, the snow at 22 
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that layer was gathered individually. Right and left snow samples of two side-by-side 1 

vertical profiles were collected within each layer to make a comparison and average the 2 

snow sample pairs. All snow samples were maintained frozen to prevent the melting 3 

snow from influencing the LAPs content. Usually every 3 to 4 days, snow samples were 4 

filtered at temporary laboratories set up in hotels. Simply, snow samples were melted 5 

and filtered through Nuclepore filters of 0.4 μm pore size. The samples of “before” and 6 

“after” filtration were gathered and refrozen for the following chemical analysis, and 7 

the filters were used for optical analysis.  8 

An integrating sphere/integrating sandwich spectrophotometer (ISSW) was applied to 9 

analyze the filters and quantify the spectral light absorption by LAPs in snow. ISSW 10 

was firstly described by Grenfell et al. (2011), modified by Wang et al. (2013) and 11 

Doherty et al. (2014), and has been used by some previous studies (Dang and Hegg, 12 

2014; Pu et al., 2017; Zhou et al., 2017). Schwarz et al. (2012) has confirmed the 13 

performance of ISSW in quantifying LAP concentrations in snow by comparing with 14 

the Single Particle Soot Photometer (SP2) although both SP2 and ISSW may suffer 15 

from non-negligible uncertainties. Briefly, ISSW produces a diffuse radiation field 16 

when white light illumination is transmitted into an integrating sphere, then the diffuse 17 

radiation pass through the filter from below and is measured by a spectrometer. By 18 

measuring a sample filter and a blank filter, respectively, ISSW acquires the light 19 

attenuation spectrum due to the loadings on sample filter (Grenfell et al., 2011). 20 

Because of the design that the measured filter is sandwiched between two integrating 21 

spheres, the light attenuation is nominally due to the absorption of LAPs on the filter 22 
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and the influence of light scattering is negligible (Doherty et al., 2014). ISSW measures 1 

the light attenuation from 400 nm to 700 nm benefited from the optimal signal-to-noise 2 

ratio, and then extends the full spectral to a range of 350 to 750 nm by extrapolation 3 

(Pu et al., 2017). Calibration is done by measuring a set of fullerene (a synthetic BC, 4 

Alfa Aesar, Inc., Ward Hill, MA, USA) filters with a range of known loadings. Then, 5 

the light attenuation spectrum of the sample filter is transformed to an equivalent BC 6 

mass loading by against the standard filters. With the loaded area on the filter and the 7 

volume of filtered snow water, equivalent BC mass is converted to equivalent BC 8 

concentration (BCequiv). In this study, we will use BCequiv on behalf of all LAPs to 9 

calculate the in situ radiative forcing. 10 

2.3. BC Deposition and Emission data 11 

BC deposition has important effects on the radiative forcing by LAPs in snow (Seidel 12 

et al., 2016). Higher BC deposition indicates that greater amounts of BC are deposited 13 

on snow, reducing the snow albedo. To our knowledge, there is no measurement data 14 

for the spatial distribution of BC deposition in NEC. Therefore, we collected reanalysis 15 

data of BC deposition from the Modern-Era Retrospective Analysis for Research and 16 

Applications, version 2 (MERRA-2) in January-February from 2003 to 2017 and the 17 

modelling data of BC deposition from the Coupled Model Intercomparison Project 18 

Phase 6 (CMIP6, the latest CMIP phase) including CESM2, CESM2-WACCM, and 19 

CNRM-ESM2-1 historical experiments in January-February from 2003 to 2014 (Eyring 20 

et al., 2016). So far, only the above three models in CMIP6 provide BC deposition data. 21 

In our study, we prefer to use MERRA-2 data, because this data is the latest atmospheric 22 

https://esgf-node.llnl.gov/projects/cmip6
https://esgf-node.llnl.gov/projects/cmip6


13 

 

reanalysis data of the modern satellite era produced by NASA’s Global Modeling and 1 

Assimilation Office (GMAO) and assimilates aerosol observations and other 2 

observation types to provide a viable ongoing climate analysis. Its provided both 3 

observable parameters and aerosol diagnostics have widely potential applications 4 

ranging from air quality forecasting to aerosol-climate interactions (Bocquet et al., 2015; 5 

Randles et al., 2016, 2017). In addition, the period range of MERRA-2 BC deposition 6 

data satisfies our study period of 2003-20017 but the CMIP6 data is only updated to 7 

2014. We note that the results and conclusions based on different BC deposition data 8 

are similar (see Section 4.3). 9 

Local BC emission density can also imply the LAP content in snow. Among the all 10 

available BC emission density data, we use the data from the research group at Peking 11 

University (http://inventory.pku.edu.cn/home.html, Wang et al., 2014a) after taking 12 

spatial and temporal resolution, data period, data quality and other factors into account. 13 

The BC emission density data we used is in January-February from 2003 to 2014 14 

because it is only updated to 2014. 15 

2.4. Snowfall and Snow Parameter Data 16 

Seidel et al. (2016) pointed out that snowfall can affect the radiative forcing by LAPs 17 

in snow. A higher frequency of snowfall implies that greater amounts of fresh snow, 18 

which has smaller snow grains than aged snow, are present at the surface, increasing 19 

the snow albedo (Wang et al., 2014c). In this study, we collected four types of snowfall 20 

data in January-February from 2003 to 2017, including the surface observational data 21 

from China Meteorological Administration (126 observation stations), the ERA-22 

http://inventory.pku.edu.cn/home.html
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Interim reanalysis (http://apps.ecmwf.int/datasets/data/interim-full-daily/levtype=sfc/), 1 

the Modern-Era Retrospective Analysis for Research and Applications, version 2 2 

(MERRA-2), and the National Centers for Environmental Prediction (NCEP) Climate 3 

Prediction Center (CPC) 4 

(https://www.esrl.noaa.gov/psd/data/gridded/data.cpc.globalprecip.html). Figure S1 5 

shows the spatial distribution of the observational stations over Northeastern China. We 6 

note that the observation stations are limited in our study areas. Compared with the 7 

observed snowfall data, we also assessed the snowfall data from ERA-Interim 8 

reanalysis, MERRA-2 reanalysis, and CPC in NEC. We found that the ERA-Interim 9 

reanalysis data is more consistent with surface observations (Figure S2). Therefore, we 10 

prefer to use ERA-Interim for snowfall data in this study. But as with BC deposition 11 

data, the results and conclusions based on different snowfall data are similar (see 12 

Section 4.3). 13 

To briefly describe the snow cover condition in NEC in January-February, we collect 14 

multiple types of snow parameter data including snow cover data (MYD10CM and 15 

MYD10C2) from MODIS products 16 

(https://modis.gsfc.nasa.gov/data/dataprod/mod10.php), snow depth data from 17 

Canadian Meteorological Centre (CMC) (https://nsidc.org/data/NSIDC-18 

0447/versions/1), and snow water equivalent data (GlobSnow-2) from European Space 19 

Agency (ESA) Global Snow Monitoring for Climate Research 20 

(http://www.globsnow.info/). 21 

3. Methods 22 

http://apps.ecmwf.int/datasets/data/interim-full-daily/levtype=sfc/
https://www.esrl.noaa.gov/psd/data/gridded/data.cpc.globalprecip.html
https://nsidc.org/data/NSIDC-0447/versions/1
https://nsidc.org/data/NSIDC-0447/versions/1
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3.1. Models 1 

3.1.1. SNICAR model 2 

Snow, Ice, and Aerosol Radiative (SNICAR) model is the most widely used multi-layer 3 

snow albedo model in the fields of atmospheric sciences. Flanner et al. (2007) has 4 

presented a comprehensive description for SNICAR model. Here, we just briefly give 5 

a summary of SNICAR. SNICAR simulates radiative transfer in snowpack based on 6 

the theory of Wiscombe and Warren (1980) and the two-stream multilayer radiative 7 

approximation of Toon et al (1989). The input optical parameters (mass extinction 8 

coefficient, single scatter albedo, and asymmetry factors) of snow grains and LAPs are 9 

off-line calculated using Mie theory. In addition, the types of surface spectral 10 

distribution (clear- or cloudy-sky) and incident radiation (direct or diffuse) can be 11 

chosed by users, and users must specify the solar zenith angle if the incident flux is 12 

direct. In general, users should input the parameters involving the type of surface 13 

spectral distribution and incident radiation, number of snow layers, snow thickness, 14 

density, snow grain radius, and the type and concentration of LAPs in each snow layer, 15 

the albedo of underlying ground, Following the previous study (Painter et al., 2012a), 16 

we assume one-layer semi-infinite snow to drive SNICAR model in this study. 17 

3.1.2. SBDART model 18 

In this study, we use the Santa Barbara DISORT Atmospheric Radiative Transfer 19 

(SBDART) model (Ricchiazzi et al., 1998) to simulate the surface solar irradiance. 20 

SBDART is one of the most widely used models to calculate the radiative transfer at 21 

the Earth’s surface and within the atmosphere in both clear and cloudy sky. SBDART 22 
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is a combination of a DISORT (Discrete Ordinate Radiative Transfer) radiative transfer 1 

module (Stamnes et al., 1988), low-resolution atmospheric transmission models, and 2 

Mie theory. The radiative transfer equations for a plane-parallel, vertically 3 

inhomogeneous, non-isothermal atmosphere numerically integrated in SBDART are 4 

based on DISORT and light scattering by water droplets and ice crystals results from 5 

Mie theory. SBDART already considers all important processes that affect the 6 

ultraviolet, visible, and infrared radiation fields. The key components of SBDART 7 

include standard atmospheric models, cloud models, extraterrestrial source spectra, gas 8 

absorption models, standard aerosol models, and surface models. SBDART is well 9 

suitable for a widespread use in atmospheric radiation and remote sensing studies. More 10 

details about SBDART model could be found in the paper of Stamnes et al. (1988). 11 

3.2. Retrieval Methods 12 

In this study we use BC as a representative to describe the effect of LAPs on snow 13 

albedo. Figure 1a shows the spectral snow albedo from 300 to 1400 nm. Gray areas 14 

show the typical spectral solar irradiance at the time of MODIS Aqua overpass (local 15 

time of 1:30 PM) in January-February of NEC; the yellow column bars represent 16 

MODIS bandpasses. We can see that when LAPs such as BC deposited on snow, can 17 

effectively reduce snow albedo in the visible bands, which contain about half of total 18 

solar radiation. For a snowpack with snow grains radius of 100-300 μm, 100 ng g-1 BC 19 

in snow (a typical BC concentration in snow of the remote clean areas in NEC) can 20 

reduce snow albedo of ~0.05-0.08 at 500 nm; 1000 ng g-1 BC in snow (a typical BC 21 

concentration in snow of the polluted industrial areas in NEC) can reduce snow albedo 22 
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of ~0.12-0.2. On the other hand, the effects of BC decrease at longer wavelengths in 1 

the near infrared (NIR). Moreover, when wavelengths exceed 1150 nm, snow albedo is 2 

dominated by the snow optical effective radius (Reff) and is independent of LAPs. As 3 

shown in Figure 1b, snow albedo reduction is not only dependent on LAPs in snow but 4 

also snow grains size and solar zenith angle (θ). Generally, the reduction in snow albedo 5 

caused by BC increases with BC concentration and Reff, whereas it decreases with the 6 

solar zenith angle (θ). Based on these characteristics, we retrieve Reff, the reduction in 7 

snow albedo, and the radiative forcing by LAPs in this section. 8 

3.2.1. Snow Cover 9 

Three methods have been widely used in mapping snow-covered area using MODIS 10 

data. In the first method, “binary” maps, pixels are classified as either “snow-free” or 11 

“snow-covered” (Hall et al., 1995). However, significant errors exist in such maps, as 12 

pixels with a resolution of 500 m are not always completely covered by snow. The 13 

second method, the MODSCAG retrieval algorithm, is a fractional snow algorithm that 14 

is based on spectral mixture analysis (Painter et al., 2009). However, it cannot be 15 

applied in NEC, due to limited information on the spectral reflectances of the vegetation, 16 

soils and rock in this region. Therefore, we use the third method, which is based on the 17 

reflectances in the visible bands and the normalized difference snow index (NDSI): 18 

NDSI=
Rband4-Rband6

Rband4+Rband6

                                            (1) 19 

where Rband4 and Rband6 are the surface reflectances in bands 4 and 6. Following Negi 20 

and Kokhanovsky (2011), an area is determined to be snow-covered if the NDSI and 21 

the reflectance in band 4 both exceed 0.6. We note that the following analysis are only 22 
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done over the defined snow covered areas and periods. 1 

3.2.2. Retrieval of Snow Grain Size 2 

Many methods have been used to retrieve snow grain size (e.g., Lyapustin et al., 2009; 3 

Nolin and Dozier, 1993). However, in NEC, the efficacy of most of these methods is 4 

limited, as the reflectances in bands 1-4 are seriously affected by LAPs in polluted snow 5 

(Figure 1a), and the reflectances in bands 6-7 are not sensitive to Reff. Hence, Reff is 6 

retrieved at a wavelength of 1240 nm (the central wavelength of band 5) using SNICAR 7 

(Wang et al., 2017).  8 

We validate the retrieved Reff values using in situ measurements. The mean absolute 9 

error (MAE) is 71 μm, which is slightly higher than that reported by Painter et al. (2009). 10 

Nevertheless, the results are still credible because this study investigates a larger spatial 11 

scale than the previous study. 12 

3.2.3. Impurity Index 13 

To assess LAP contents in snow, we use the surface reflectances in bands 4-5 to derive 14 

an impurity index (ILAPs): 15 

ILAPs=
ln (R

band4
)

ln (R
band5

)
                                                                                                (2) 16 

This quantity increases with the LAP content but is almost independent of Reff and θ 17 

(Figure 1c). Di Mauro et al. (2017) has successfully exhibited ILAPs  to assess the 18 

variations of LAP contents in the snow of the Morteratsch Glacier in the Swiss Alps. 19 

In this study, we didn’t retrieve the concentrations of LAPs. Because such retrieval is 20 

constrained by many unknown factors, such as size distribution, optical properties and 21 

the mixing state of LAPs (He et al., 2017, 2018; Painter et al., 2013a; Pu et al., 2017). 22 
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Therefore, the conversion from satellite spectra to ground concentrations of LAPs will 1 

cause significant errors. 2 

3.2.4. Retrieval of Radiative Forcing by LAPs in Snow 3 

Instantaneous surface solar irradiance at the time of MODIS overpass in January-4 

February is simulated using the SBDART model (Ricchiazzi et al., 1998) with MODIS 5 

AOD data as inputs. Wang et al. (2017) has validated the MODIS AOD data using in 6 

situ measurements in NEC. For the other inputs, the typical values for mid-latitude 7 

winter provided by SBDART are used. As a result, the normalized mean bias (NMB) 8 

is less than 2% (Figure S3). 9 

We estimate the instantaneous spectrally-integrated radiative forcing at the surface by 10 

LAPs in snow (RFMODIS
LAPs ) under clear-sky conditions at the time of MODIS Aqua 11 

overpass, which is a function of solar irradiance and the difference between the MODIS 12 

spectral reflectance and a simulated clean-snow (Rλ
clean-snow) reflectance (Miller et al., 13 

2016). Rλ
clean-snow is simulated using SNICAR model based on the retrieved Reff and 14 

MODIS derived solar zenith angle (θ). On the other hand, for MODIS spectral 15 

reflectance, because MODIS provides only discrete reflectances, we simulate a 16 

continuous spectral reflectance by fitting SNICAR to the MODIS data and derive the 17 

fitting parameters by minimizing the RMSE (Painter et al., 2009): 18 

RMSE=(
1

4
∑ (R

λ

model
-

band4

λ=band1

Rλ
MODIS)

2
)
1/2

                                                               (3) 19 

where RMSE is the root mean squared error; and Rλ
model and Rλ

MODIS represent the 20 

simulated and MODIS-derived reflectances at a wavelength λ. Thus, RFMODIS
LAPs  is 21 
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expressed as follows: 1 

RFMODIS
LAPs = ∑ Eλ*Dλ*∆λ

1240 nm

λ=300 nm

                                                                              (4)  2 

where Eλ is the solar irradiance at a wavelength λ simulated by SBDART model; Dλ 3 

is the difference between the clean-snow (Rλ
clean-snow) and simulated reflectances (Rλ

model) 4 

at a wavelength λ; and ∆λ is 10 nm. 5 

3.2.5. Uncertainties 6 

The uncertainties in radiative forcing retrievals are primarily due to terrain, liquid snow 7 

water, snow patchiness, protrusion of vegetation and atmospheric correction. The study 8 

areas are located on smooth plains, and the content of liquid snow water is limited in 9 

the study regions in January and February (Wang et al., 2013). Moreover, both 10 

experimental and theoretical evidences show that the effect of liquid water in snow on 11 

snow reflectance is small in the shortwave part of the spectrum but obvious at the 12 

wavelengths of 0.95 μm and 1.15 μm (O’Brien and Munis, 1975; O’Brien and Koh, 13 

1981; Wiscombe and Warren 1980), which are not included in MODIS bands used in 14 

our study. As a result, the effect of liquid water in snow on the calculations of snow 15 

grain size, ILAPs and radiative forcing are limited. Therefore, the effects of terrain and 16 

liquid snow water on MODIS retrievals could be negligible.  17 

In our study, the snow-covered area is determined if the NDSI and the reflectance in 18 

band 4 both exceed 0.6, which means that fractional snow cover (FSC) is larger than 19 

0.87 according to the FSC equation (FSC= -0.01 + 1.45 *NDSI) from the MODIS Snow 20 

Products Collection 6 User Guide (http://nsidc.org/data/MYD10A1). In January and 21 

February, snow depth is much high and reaches its maximum depth in NEC, snow 22 
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patchiness in high snow-covered areas is mostly due to the protrusion of vegetation 1 

according to the observations of field campaigns (Wang et al., 2013, 2014b). So that 2 

the MODIS derived surface reflectance (Rλ
MODIS) in a pixel of our study areas is not 3 

snow reflectance, but a mixture of snow and vegetation reflectance. Therefore, we need 4 

to correct the errors of snow reflectance caused by the protrusion of vegetation. 5 

According to Painter et al. (2009), Rλ
MODIS could be expressed as: 6 

Rλ
MODIS =

Eλ*FSC*Rsnow
λ +Eλ*(1-FSC)*Rvegetation

λ

Eλ

 7 

=FSC*Rsnow
λ +(1-FSC)*Rvegetation

λ                                  (5)  8 

where Rλ
MODIS is MODIS derived surface reflectance at a wavelength λ, Eλ is solar 9 

irradiance at a wavelength λ. FSC is the fractional snow cover, which could be derived 10 

according to the FSC equation. Rsnow
λ  and Rvegetation

λ  represent snow and vegetation 11 

reflectance, respectively, at a wavelength λ. Rvegetation
λ  is from the study of Siegmund 12 

and Menz (2005). Then Rsnow
λ  could be expressed as: 13 

                         Rsnow
λ =

(Rλ
MODIS-(1-FSC)*Rvegetation

λ )

FSC
                                          (6) 14 

Finally, the accuracy of MODIS surface reflectance (MYD09GA) due to atmospheric 15 

correction is typically calculated based on the MODIS Surface Reflectance User’s 16 

Guide (Collection 6, https://modis.gsfc.nasa.gov/data/dataprod/mod09.php) as follows:  17 

± (0.005 + 0.05*reflectance) 18 

which is suitable under conditions that AOD is less than 5.0 and θ is less than 75°. 19 

Therefore, we also estimate the uncertainty of MODIS retrievals from atmospheric 20 

correction. Briefly, the MODIS derived snow reflectance (Rsnow, uncertainty
λ ), which takes 21 

into an account of the accuracy of the atmospheric correction, is expressed as: 22 



22 

 

Rsnow, uncertainty
λ = Rsnow

λ ± (0.005 + 0.05*Rsnow
λ )            (7) 1 

then, the fractional uncertainty of MODIS retrieved snow grain size (FUReff
) could be 2 

expressed as: 3 

               4 

                              FUReff
=

Reff, uncertainty-Reff

Reff

                                                            (8) 5 

 6 

where Reff, uncertainty  is the SNICAR simulated snow grain size using the snow 7 

reflectance of Rsnow, uncertainty
1240 . Similar to snow grain size, the fractional uncertainty of 8 

ILAPs (FUILAPs
) and RFMODIS

LAPs  (FURF) is: 9 

                                 FUILAPs
=

ILAPs, uncertainty-ILAPs

ILAPs

                                                     (9) 10 

                                    FURF=
RFMODIS, uncertainty

LAPs  -RFMODIS
LAPs  

RFMODIS
LAPs  

                                             (10) 11 

We note that the positive and negative uncertainty is asymmetric due to the nonlinearity 12 

of SNICAR model. 13 

3.2.6. Attribution of the Spatial Variance of Radiative Forcing by LAPs in Snow 14 

As discussed above, RFMODIS
LAPs  is dependent on ILAPs , Reff  and θ, and could be 15 

expressed as: 16 

                                RFMODIS
LAPs =f (ILAPs, Reff, θ)                                                      (11) 17 

as a result, the spatial patterns of ILAPs, Reff and θ determine the spatial pattern of 18 

RFMODIS
LAPs . Firstly, we keep Reff  and θ spatially constant with values of the spatial 19 

averages (Reff  and 𝜃 ). Therefore, the spatial pattern of radiative forcing is only 20 

dependent on the distribution of ILAPs: 21 

              RFMODIS
LAPs (ILAPs)=f (ILAPs, Reff, 𝜃)                                                   (12) 22 

similarly, we could obtain another two equations: 23 
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              RFMODIS
LAPs (Reff)=f (ILAPs, Reff, 𝜃)                                                 (13) 1 

               RFMODIS
LAPs (θ)=f (ILAPs, Reff, θ)                                                      (14) 2 

Then RFMODIS
LAPs  is fitted with RFMODIS

LAPs (ILAPs) , RFMODIS
LAPs (Reff)  and RFMODIS

LAPs (θ)  using 3 

multiple linear regression, the fitted radiative forcing (RFFit
LAPs) is expressed as: 4 

               RFFit
LAPs=a+b*RFMODIS

LAPs (ILAPs)+c*RFMODIS
LAPs (Reff)+d*RFMODIS

LAPs (θ)              (15) 5 

where a, b, c and d are regression coefficients. In our study, we find that RFFit
LAPs could 6 

explained 99.9% of the variance of RFMODIS
LAPs  (Figure S4). Therefore, we can attribute 7 

the variance of RFFit
LAPs instead of RFMODIS

LAPs  to estimate the fractional contribution of 8 

ILAPs, Reff and θ to radiative forcing. Equation 15 can be written as: 9 

RFFit
LAPs- RFFit

LAPs    =b*(RFMODIS
LAPs (ILAPs)-RFMODIS

LAPs (ILAPs))+c*(RFMODIS
LAPs (Reff)-          10 

RFMODIS
LAPs (Reff))+d*(RF

MODIS

LAPs
(θ)-RFMODIS

LAPs (θ))                     (16) 11 

where, RFFit
LAPs- RFFit

LAPs is radiative forcing anomaly (RFFit, anomaly
LAPs ). Then, Equation 16 12 

can be written as:  13 

RFFit, anomaly
LAPs = b*RFMODIS, anomaly

LAPs (ILAPs)+ c*RFMODIS, anomaly
LAPs (Reff)+ 14 

                         d*RFMODIS, anomaly
LAPs (θ)                                                                       (17) 15 

according to Huang et al. (2016) and Huang and Yi (1991), the fractional contribution 16 

of ILAPs to the variance of radiative forcing (FCILAPs
) can be expressed as: 17 

FCILAPs
= 18 

1

m
∑ (

(b*RF
MODIS, anomaly

LAPs
(ILAPs)

i
)
2

(b*RF
MODIS, anomaly

LAPs
(ILAPs)

i
)
2
+(c*RF

MODIS, anomaly

LAPs
(Reff)

i
)
2
+(d*RF

MODIS, anomaly

LAPs
(θ)

i
)
2

)

m

i=1

 19 

                                                               (18) 20 

where, m is the length of the data series. Similarly, we can obtain FCReff
 and FCθ. 21 
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3.2.7. Calculation of In situ Radiative Forcing by LAPs in Snow 1 

RFMODIS
LAPs  should be validated with measurements. However, due to the lack of radiative 2 

forcing measurements in NEC, we estimate the in situ radiative forcing (RFin situ
estimated) from 3 

measured BCequiv values. Briefly, we use SNICAR to calculate the in situ reduction in 4 

snow albedo from BCequiv and MODIS retrieved Reff. Then, the SBDART model is 5 

used to estimate RFin situ
estimated. 6 

4. Results 7 

In January-February, seasonal snow is widely covered over Northeastern China. For 8 

example, the area with snow cover fraction of > 50% and snow duration period of > 30 9 

days is ~75% and ~85%, respectively (Figure S5a and b), which is consistent with 10 

previous studies based on meteorological station data (Zhong et al., 2010) and satellite 11 

remote sensing data (Che et al., 2008). In addition, the area with snow depth of > 5 cm 12 

and snow water equivalent of > 20 mm is ~70% and ~70%, respectively (Figure S5c 13 

and d). 14 

4.1. The spatial distribution of AOD and BC emission 15 

Northeastern China usually suffers from heavy local pollutant emissions with high 16 

aerosol mass concentrations in winter (Wiedensohler et al., 2009). Figure 2a shows the 17 

spatial distribution of AOD at 550 nm derived from MODIS in NEC. We can find that 18 

AOD in the studying areas range from 0.08 to 0.65 and show strong spatial 19 

inhomogeneity. The largest AOD values are found in industrial areas at the south 20 

central of NEC, where are the largest urban areas of NEC with the major cities of Harbin, 21 

Changchun, and Shenyang. These areas are associated with the largest pollution 22 
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emission and anthropogenic activities in NEC (Wang et al., 2017). By comparison, the 1 

MODIS-Aqua results show that the AOD in the west of NEC along the border of China 2 

is smallest. Similar patterns of AOD were also found by Zhang et al. (2013) and Zhao 3 

et al. (2014). Previous studies indicated that BC are the primary light-absorbing 4 

particles in atmosphere (Cao et al., 2006) and seasonal snow (Wang et al., 2013). Figure 5 

2b shows the spatial distribution of BC emission density in January-February of 2010 6 

in NEC. The pattern of BC emission density is very comparable to AOD with the 7 

highest values of > 5*104 g km-2 month-1 in south central NEC and the lowest values of 8 

< 5*102 g km-2 month-1 in the remote areas of northwestern China. Both the results of 9 

AOD and BC emission density imply that the seasonal snow in south central of NEC 10 

suffers from abundant BC deposition and the radiative forcing by LAPs in snow is 11 

likely to be highest in NEC. 12 

4.2. The spatial distribution of snowfall frequency and land cover types 13 

Snowfall is spatially varied in NEC and has a dominated effect on local fractional snow 14 

cover, then defined snow-covered areas, where we retrieved the radiative forcing by 15 

LAPs in snow in our study. Figure 3a shows the normalized snowfall frequency in 16 

January-February from 2003 to 2017. We can find that the highest snowfall frequency 17 

occurred in northwestern and southeastern NEC, where are forest-covered areas (see 18 

Figure 3b). In contrast, the areas from central to southwestern NEC present lowest 19 

snowfall frequency, which means that the fractional snow cover in these areas is likely 20 

to be lower than other areas and unable to reach to the critical value that we used to 21 

define the snow-covered areas. On the other hand, land cover types will also affect the 22 
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local fractional snow cover. From Figure 3b, we can find that NEC presents a spatially 1 

different land cover types, the main land cover types are grasslands, croplands and 2 

evergreen needle leaf (forests). Grasslands and croplands are mainly located in 3 

southwestern NEC and central NEC respectively, while forests are distributed in 4 

northern and southeastern NEC. In our study periods, grasslands and croplands have 5 

limited influence on snow cover. However, in forest areas, even completed covered by 6 

deep snow, forest will effectively affect the derived surface reflectance from MODIS-7 

Aqua satellite, then the determination of snow-covered areas (further discussions in 8 

Section 5). 9 

4.3. Radiative Forcing by LAPs in Snow 10 

Figure 4 shows the identified snow-covered areas, which are primarily concentrated 11 

between 40 °N and 50 °N. Consistent with our analysis above, the low snow-frequency 12 

areas of south central and southwestern NEC and forest-covered areas of northern and 13 

southeastern NEC are not identified as snow-covered areas. According to the 14 

geographical distribution (Figure 4a), we separated the studied areas into three regions: 15 

western NEC (WNEC), central NEC (CNEC) and eastern NEC (ENEC). 16 

The spatial distributions of ILAPs, Reff, and RFMODIS
LAPs  are displayed in Figure 4, and 17 

their statistics are presented in Figure 5. On average, ILAPs is ~0.27±0.045; Reff is 18 

~261±32 μm; and RFMODIS
LAPs  is ~45.1±6.8 W m-2 in NEC. Regionally, RFMODIS

LAPs  is 19 

largest and shows an average of ~50.9±4.2 W m-2 in CNEC, where is located in the 20 

industrial areas and closed to the largest urban areas of NEC, therefore suffers from the 21 

most serious pollutant emissions among these three regions. ENEC displays the second 22 
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largest radiative forcing with an average RFMODIS
LAPs  of ~45.7±4.5 W m-2. The lowest 1 

value of ~41.0±5.9 W m-2 occurs in WNEC, where both AOD and BC emission density 2 

are lowest compared with other two regions, which is not only due to the low local  3 

pollutant emissions but also because that the regional transport of this region in our 4 

study period is mostly from the clean northwest and suffer from little influence of 5 

human activities (Wang et al., 2015). For the individual regions, RFMODIS
LAPs  presents an 6 

increase from north to south in CNEC that ranges from 40.4 to 64.6 W m-2. In ENEC 7 

an east-west gradient of RFMODIS
LAPs  is noted that ranges from 62.0 to 35.0 W m-2. The 8 

most distinct intra-regional difference is in WNEC, where RFMODIS
LAPs  ranges from 22.3 9 

W m-2 to 55.5 W m-2. Generally, the patterns are consistent with those of AOD and BC 10 

emission density in NEC. Moreover, the spatial pattern of radiative forcing by LAPs in 11 

snow in this study is comparable with the results by Zhao et al. (2014), who firstly 12 

estimated the radiative forcing of LAPs in snow through WRF model and found that 13 

the radiative forcing in industrial source regions such as southern CNEC is obviously 14 

much higher than that in border regions such as WNEC, which primarily resulted from 15 

the spatial differences of LAP dry and wet deposition. Compared with the results from 16 

other studies, Seidel et al. (2016) reported a radiative forcing of ~20 W m-2 in the Sierra 17 

Nevada in late February, which is lower than the result in NEC, eventhough the surface 18 

solar irradiance in Sierra Nevada is higher. Painter et al. (2013b) reported an average 19 

radiative forcing of 215±63 W m-2 in the Senator Beck Basin Study Area (SBBSA), 20 

SW Colorado, USA, which is approximately four times of our retrieved radiative 21 

forcing near industrial areas in NEC. However, the snow grain size and the surface solar 22 
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irradiance in their study period is larger than that in our study by a factor of >2.5 and >4, 1 

respectively. The results implied the abundant LAP content in snow of CNEC. The 2 

regional and intra-regional patterns of variability in ILAPs are quite similar to those of 3 

RFMODIS
LAPs , which indicates the significant role of LAP content in determining the spatial 4 

distribution of radiative forcing; the average values of ILAPs  are ~0.311±0.024 in 5 

CNEC, ~0.307±0.026 in ENEC, and ~0.238±0.031 in WNEC. In contrast to ILAPs and 6 

RFMODIS
LAPs , Reff displays a smaller spatial variance and presents average values of ~2857 

±16 μm, ~281±15 μm, and ~239±29 μm in CNEC, ENCE and WNEC, respectively. 8 

Reff in WNEC is a little smaller compared with those in other two regions, which is 9 

probably due to the higher snowfall frequency, because higher snowfall frequency 10 

indicates longer duration of fresh finer snow at surface (Wang et al., 2013; Seidel et al., 11 

2016).  12 

Figure 6 shows the average uncertainties of ILAPs , Reff  and RFMODIS
LAPs  due to 13 

atmospheric correction in NEC in January-February from 2003 to 2017. The positive 14 

(negative) uncertainties of retrieved ILAPs and RFMODIS
LAPs  from atmospheric correction 15 

are comparable and range from 9% to 43% (-10% to -47%) and 14% to 57% (-14% to 16 

-47%), respectively. Both of ILAPs  and RFMODIS
LAPs  show larger uncertainties as their 17 

values are smaller; the positive (negative) uncertainties of ILAPs  and RFMODIS
LAPs  are 18 

largest in WNEC and show averages of 21% (-24%) and 30% (-28%), while the lowest 19 

uncertainties of 13% (-15%) and 20% (-20%) for ILAPs  and RFMODIS
LAPs  are found in 20 

CNEC. It is because that the uncertainty of snow albedo from atmospheric correction 21 

is almost similar in our study areas across the whole NEC region as discussed in Section 22 
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3.6, however the snow albedo reduction is smaller in clean snow and larger in polluted 1 

snow, which results into a larger relative uncertainty of snow albedo reduction in clean 2 

snow and a smaller relative uncertainty in polluted snow according to Equation 8. The 3 

positive (negative) uncertainties of Reff  are smaller compared with ILAPs  and 4 

RFMODIS
LAPs , and range from 14 to 18% (-12% to -16%), which is comparable with the errors 5 

between MODIS retrieved and in situ measured snow grain size discussed in Section 6 

3.2.2. Moreover, the uncertainties are spatially quite consistent for Reff , which is 7 

different from ILAPs and RFMODIS
LAPs . We note that the positive and negative uncertainties 8 

of all ILAPs , Reff , and RFMODIS
LAPs  are asymmetric, which are primarily due to the 9 

nonlinear characteristics of the radiative transfer in SNICAR model (Painter et al., 10 

2007). 11 

As discussed in Section 3, the spatial distribution of RFMODIS
LAPs  depends on ILAPs, Reff 12 

and θ. Previous studies have attempted to retrieve the radiative forcing by LAPs in snow 13 

by using remote sensing (e.g. Painter et al., 2012a, 2013b), however, attributing the 14 

spatial variations of radiative forcing by LAPs in snow is really sparse, and need to be 15 

further investigated. Therefore, we would like to qualify the contribution of each factor 16 

to the spatial variance of RFMODIS
LAPs . Combing sensitive test and the method of Huang and 17 

Yi (1991) as discussed in 3.2.6, we estimate the fractional contribution of ILAPs, Reff 18 

and θ to the spatial variance of RFMODIS
LAPs  in our study areas across NEC (Figure 7). We 19 

can find that the contributions from LAPs is largest with a value of 74.6%, while Reff 20 

and θ make contributions of 21.2% and 4.2%, respectively in NEC. The result indicates 21 

that the LAP content in snow plays a dominant role in determining the spatial 22 
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distribution of RFMODIS
LAPs . Regionally, the contribution of LAPs in WNEC (62.1%) is 1 

smaller than those of 73.9% and 83.4% in CNEC and ENEC, while Reff  shows a 2 

higher contribution of 28.1% in WNEC than those of 19.6% and 13.9% in CNEC and 3 

ENEC. The results point out a less important effect of LAPs but more important effect 4 

of Reff  on the spatial distribution of RFMODIS
LAPs  in WNEC compared with those in 5 

CNEC and ENEC. In addition, the contribution of θ is smaller in ENCE (2.7%) than 6 

those of 9.8% and 6.5% in WNEC and CNEC, which is primary due to the smallest 7 

altitude range of ENEC among those three regions. 8 

Seidel et al. (2016) reported that the variations in LAP contents in snow are dominated 9 

by LAP deposition and snowfall. Previous studies have also reported that BC is the 10 

dominant LAP type in NEC (Wang et al., 2013). Zhao et al. (2014) simulated LAP 11 

content and their radiative forcing in seasonal snow using WRF-Chem coupled with 12 

SNICAR model and indicated that the radiative forcing by LAPs in snow in NEC is 13 

primarily due to BC. Therefore, to examine the spatial distributions of retrieved ILAPs 14 

and RFMODIS
LAPs , we display the distribution of snowfall (Figure 3a) and BC dry and wet 15 

deposition (Figure 8). BC dry deposition is highest in the largest urban areas of NEC 16 

with the major cities of Harbin, Changchun, and Shenyang, then decrease sharply 17 

outwards from the central of urban areas to remote areas (Figure 8a). Different from 18 

BC dry deposition, which is dominated by BC concentrations in the atmosphere, BC 19 

wet deposition is affected by both BC concentrations and precipitation and shows an 20 

increase from northwest to southeastern. Generally, the spatial patterns of BC dry and 21 

wet deposition are similar with ILAPs and RFMODIS
LAPs . For example, areas with higher BC 22 
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dry and wet deposition such as industrial polluted NEC show higher ILAPs  and 1 

RFMODIS
LAPs . Moreover, from Figure 9a-c, we can find that the correlations between ILAPs 2 

with BC dry and wet deposition and snowfall (R2=0.81, 0.73, and 0.14) are significant 3 

at the 99% confidence level. The correlations of ILAPs with BC dry and wet deposition 4 

in WNEC is relatively lower than those in CNCE and ENEC, which is partly due to the 5 

effect of dust in this region (Wang et al., 2013; Zhao et al, 2014). Furthermore, using 6 

the method of multiple linear regression, we fitted ILAPs  using BC dry and wet 7 

deposition and snowfall data. Figure 9d shows the scatterplots of ILAPs  and fitted 8 

ILAPs_fit. We can find that ILAPs_fit is highly correlated with ILAPs, and BC dry and wet 9 

deposition and snowfall could totally explain 84% of the spatial variance of ILAPs. The 10 

result confirms the reasonability of the spatial patterns of retrieved ILAPs  and thus 11 

RFMODIS
LAPs  in NEC. In addition to MERRA-2 BC deposition data and ERA-Interim 12 

snowfall data used in Figure 9, we also used other types of BC deposition and snowfall 13 

data to fit ILAPs. Table S1 shows the R2 between MODIS retrieved ILAPs and fitted 14 

ILAPs_fit based on different datasets as discussed in Section 2.3 and 2.4. The values of 15 

R2 are very similar and in a range of 0.81-0.84, which further indicates that the spatial 16 

pattern of retrieved ILAPs is reasonable and independent of the data types used for 17 

validation. 18 

4.4. Comparisons of MODIS-Retrieved and In situ Estimated Radiative Forcing by 19 

LAPs in Snow 20 

Figure 10 shows the distribution of the sample sites and the measured BCequiv 21 

concentration in surface snow at each site. Circles and squares represent the snow 22 
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samples collected in 2010 (Wang et al., 2013) and 2014 (Wang et al., 2017), 1 

respectively. Generally, BCequiv concentration ranges mostly from ~0.1 to ~3.0 μg g-1 2 

and shows an increase from northwest to southeastern. The highest BCequiv 3 

concentration are found in CNEC while lowest in WNEC. Figure 11a displays a 4 

comparison of MODIS retrieved radiative forcing (RFMODIS
LAPs ) and in situ radiative forcing 5 

(RFin situ
estimated) estimated based on measured BCequiv concentration. In general, the mean 6 

absolute error (MAE) for RFMODIS
LAPs  against RFin situ

estimated  is 15.3 W m-2. The ratios of 7 

RFMODIS
LAPs  to RFin situ

estimated (Rin situ
MODIS) fall mainly in the range of 1-2. The errors indicate larger 8 

positive at lower RFin situ
estimated values, whereas smaller biases are noted at higher RFin situ

estimated 9 

values. The results of this bias analysis are comparable with those reported by Painter 10 

et al. (2012a). Figure 11b shows a scatterplot of Rin situ
MODIS versus BCequiv. We can find 11 

that Rin situ
MODIS  and BCequiv display a good correlation; the best-fitting equation is 12 

Rin situ
MODIS=1.690*BC

equiv

-0.522
, and the R2 is 0.89 (99% confidence level). This result 13 

indicates that the biases in the RFMODIS
LAPs  retrievals are negatively correlated with the 14 

LAP concentrations in NEC. Considering that the typical concentration of BCequiv in 15 

clean snow in NEC is 0.15 μg g-1, the bias in RFMODIS
LAPs  can be as high as 350% in some 16 

areas, such as WNEC. In other areas with very polluted snow, such as southern CNEC 17 

(where the BCequiv values are typically 2.5 μg g-1), the bias is ~5%. Thus, considering 18 

the values reported by Wang et al. (2013, 2017), the biases in RFMODIS
LAPs  largely fall in 19 

the range of ~5% to ~350% in NEC. Comparing Figure 11 with Figure 6, we find that 20 

the biases in the RFMODIS
LAPs  in polluted snow are comparable with the uncertainties of 21 

RFMODIS
LAPs  due to atmospheric corrections. However, in clean snow, the uncertainties 22 
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from atmospheric corrections could not sufficiently explain the biases in retrieved 1 

RFMODIS
LAPs . There are three probable reasons: (a) for clean snow, retrieved radiative 2 

forcing is very sensitive to MODIS derived surface snow reflectance (Equation 4), 3 

although we have corrected the errors of snow reflectance from the protrusion of 4 

vegetation in our study areas of high snow cover fractions, the uncertainties from 5 

fractional snow cover (FSC) calculation and the vegetation reflectance will effectively 6 

influence the corrections of snow reflectance (Equation 5); (b) Painter et al. (2012b) 7 

validated the retrieved radiative forcing by LAPs in snow in the Upper Colorado River 8 

Basin using in situ estimates based on radiation towers, and also found that the biases 9 

in the case of low radiative forcing could be up to several folds. They pointed out that 10 

MODIS can not proceed a continuous spectral measurement of a continuously variable 11 

forcing like that which LAPs afford to snow albedo due to the variably spaced and 12 

discrete bands of MODIS, which prevents a more quantitative retrieval and thus results 13 

into a non-negligible uncertainty in radiative forcing retrieval; (c) We use the average 14 

of MODIS retrieved radiative forcing in a pixel size of 0.05°×0.05° to compare with 15 

the in situ radiative forcing calculated using observed BCequiv concentration with the 16 

sample site located in the center of the pixel. Such a comparison may not be true in 17 

some sites due to the inhomogeneous spatial distribution of snow and LAP contents, 18 

which will influence radiative forcing estimates, especially in clean snow (Zhao et al. 19 

2014). Therefore, we note that the number of sample sites is still limited and more field 20 

campaigns are needed to validate the accuracy of MODIS retrievals and then correct 21 

the retrieved radiative forcing.  22 
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4.5. Limitations 1 

The determination of snow-covered areas represents a limitation of the method used in 2 

this study, which restricts our study to areas with high snow cover fractions; thus, we 3 

cannot estimate RFMODIS
LAPs  across the NEC as a whole. In the future, we will attempt to 4 

apply other satellite data with higher spatial resolution and use the spectral differences 5 

between different land cover types to distinguish the spectral reflectance of snow in 6 

mixed pixels. These improvements will permit us to expand our work to areas with 7 

limited snow cover. Another limitation is that we retrieve only the instantaneous 8 

radiative forcing at the surface under clear-sky conditions at the time of MODIS 9 

overpass, and these measurements do not represent a time-integrated average over the 10 

studied period. However, the estimation of temporally resolved radiative forcing is 11 

much more difficult, given the significant effects of clouds, atmospheric components, 12 

θ, and the time-varying snow reflectance.  13 

5. Discussions 14 

In our study, we didn’t retrieve the radiative forcing in the northern and southeastern 15 

parts of NEC. In those regions, snowfall is frequent, the percent of snow cover is very 16 

high and snow is also very deep. For example, in the northern NEC, the averaged snow 17 

depth is ~ 20 cm, and in the areas near Changbai Mountain of the southeastern NEC, 18 

snow depth could be up to ~ 40 cm (Wang et al., 2013). However, due to the presence 19 

of forest cover, the reflected radiation received by sensor aboard the satellite in those 20 

areas is mostly due to trees. For example, Figure 12 shows the true color map of MODIS 21 

in NEC at 23 January 2010, we can see that in the northern and southeastern parts of 22 
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NEC, the observed objects from MODIS are almost trees, not the snowpack under trees, 1 

although snow is almost completed covered (Wang et al., 2013). Therefore, in those 2 

forest areas, discussing the radiative forcing by LAPs in snow is extremely difficult due 3 

to the influence of trees. Bond et al. (2006) also indicated that LAPs in snow masked 4 

by forests contributes little to radiative forcing. They further pointed out that model 5 

representation of and forcing sensitivity to cover ranges of forests have not been 6 

verified, and this is a boundless uncertainty in modeling radiative forcing by LAPs in 7 

snow at present. However, most modeling studies which simulated the radiative forcing 8 

by LAPs in snow didn’t take trees into considerations and estimated the radiative 9 

forcing over the whole boreal forest areas in the Northern Hemisphere. For example, 10 

Flanner et al. (2007) applied SNICAR model coupled a general circulation model to 11 

estimate the radiative forcing and response from BC in snow covered areas over the 12 

whole Northern Hemisphere. Nevertheless, due to the presence of trees in the extensive 13 

boreal forest areas, the simulated radiative forcing is unreal as the incident radiation is 14 

reflected by trees but not by the snowpack. Zhao et al. (2014) simulated BC and dust 15 

and their radiative forcing in seasonal snow in North China. They found that the 16 

radiative forcing by BC and dust is very high in the southeastern NEC, where are forest 17 

areas. But in fact, in those areas the simulated radiative forcing by LAPs is also unreal. 18 

Therefore, we note that estimating the radiative forcing by LAPs in forest areas should 19 

consider into the influence of trees. 20 

6. Conclusions 21 

In this study, we retrieve ILAPs, Reff, and RFMODIS
LAPs  across NEC in January-February 22 
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from 2003 to 2017 using MODIS data, together with a snow albedo model (SNICAR) 1 

and a radiative transfer model (SBDART). On average, ILAP is ~0.27±0.045, Reff is 2 

~261±32 μm, and RFMODIS
LAPs  is ~45.1±6.8 W m-2 in NEC. The distribution of RFMODIS

LAPs  3 

presents distinct spatial differences; the lowest value is 22.3 W m-2, which occurs in 4 

remote western NEC, and the highest value is 64.6 W m-2, which occurs near the 5 

industrial areas in central NEC. Both ILAPs  and RFMODIS
LAPs  show larger uncertainties 6 

from atmospheric correction as their values are smaller. We make a first attempt to 7 

attribute the variations of radiative forcing based on remote sensing. The results point 8 

out that ILAPs, Reff and θ make fractional contributions of 74.6%, 21.2% and 4.2% to 9 

the spatial variance of RFMODIS
LAPs  in our study areas across NEC. The result confirms that 10 

the LAP content in snow plays a dominant role in determining the spatial distribution 11 

of RFMODIS
LAPs . We also analyze the distribution of BC dry and wet deposition and snowfall, 12 

find that they could totally explained 84% of the spatial variance of ILAPs , which 13 

indicates the reasonability of the spatial patterns of ILAPs and thus RFMODIS
LAPs  in NEC. 14 

Finally, we validate the retrieved RFMODIS
LAPs  values using in situ estimated radiative 15 

forcing (RFin situ
estimated). The mean absolute error (MAE) of RFMODIS

LAPs  against RFin situ
estimated is 16 

15.3 W m-2. The biases in the RFMODIS
LAPs  retrievals display a negative correlation with 17 

the LAP concentrations in NEC. Considering typical concentrations of BCequiv, which 18 

range from ~0.15 μg g-1 to ~2.5 μg g-1, the biases in RFMODIS
LAPs  fall primarily within the 19 

range of ~5% to ~350% in NEC. 20 
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 1 

Figure 1. (a) The spectral albedo of snow with different Reff values and BC contents 2 

simulated using SNICAR. The column bars represent MODIS bands, and the gray areas 3 

represent the typical solar irradiance in winter in NEC. (b) The reduction in the 300-4 

1240 nm spectral-weighted integrated snow albedo as a function of BC for different 5 

Reff values and solar zenith angles (θ) simulated using SNICAR. (c) The variations in 6 

the impurity index (ILAPs) with BC content simulated using SNICAR.  7 
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 1 

Figure 2. Spatial distribution of (a) MODIS AOD at 550 nm and (b) BC emission 2 

density in January-February in NEC. AOD data is from 2003 to 2017 and BC emission 3 

density data is from the research group at Peking University 4 

(http://inventory.pku.edu.cn/home.html) from 2003 to 2014. The major cities in NEC 5 

are also shown in this figure.    6 

http://inventory.pku.edu.cn/home.html
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  1 

Figure 3. Spatial distribution of (a) the normalized snowfall frequency in January-2 

February from 2003 to 2017 and (b) the different land cover types based on MODIS 3 

data in NEC. Snowfall data is from the ERA-Interim reanalysis. The major cities in 4 

NEC are also shown in this figure.  5 
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 1 

Figure 5. Statistics of average RFMODIS
LAPs , ILAPs, and Reff in NEC in January-February 2 

from 2003 to 2017.3 
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 1 

Figure 6. (a) Negative and (b) positive uncertainty of average ILAPs  in NEC in 2 

January-February from 2003 to 2017. (c) and (d) are similar to (a) and (b), but for Reff. 3 

(e) and (f) are similar to (a) and (b), but for RFMODIS
LAPs . The background shows the spatial 4 

distribution of MODIS AOD values. The dotted areas are covered by forests. The major 5 

cities in NEC are also shown in this figure. 6 

 7 

 8 
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 1 

 2 

Figure 7. Fractional contribution of average ILAPs, Reff, and solar zenith angle (θ) to 3 

the spatial variance of RFMODIS
LAPs  in January-February from 2003-2017.  4 
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  1 

Figure 8. Spatial distribution of average (a) dry and (b) wet deposition of BC in NEC 2 

in January-February from 2003 to 2017. BC deposition data is from MERRA-2 3 

reanalysis.4 
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 1 

 2 

Figure 9. Scatterplots of ILAPs versus (a) BC dry deposition, (b) BC wet deposition, 3 

(c) normalized snowfall frequency, and (d) fitted ILAPs (ILAPs_fit), which is fitted with 4 

BC dry and wet deposition and snowfall frequency using multiple linear regression. BC 5 

deposition data is from MERRA-2 reanalysis and snowfall data is from ERA-Interim 6 

reanalysis in January-February from 2003 to 2017.7 
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 1 

Figure 10. Spatial distribution of the measured BCequiv concentration in surface snow 2 

in NEC. Circles and squares represent the snow samples collected in 2010 (Wang et a., 3 

2013) and 2014 (Wang et a., 2017), respectively. 4 
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 1 

Figure 11. Scatterplots of (a) RFMODIS
LAPs  versus RFin situ

estimated  and (b) Rin situ
MODIS  versus 2 

BCequiv. 3 
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 1 

Figure 12. A true color map of MODIS in NEC at 23 January 2010. 2 
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