
Anonymous Referee #1 

General Comments 

1. The manuscript entitled ‘High-resolution (0.05°×0.05°) NOx emissions in the 
Yangtze River Delta inferred from OMI’ focuses on developing a method to inverting 
NOx emissions at a high resolution in major urban areas by using the long-term satellite 
measurements of nitrogen dioxide. The results show that the inverted NOx emission 
dataset can reveal the features which are not well represented or not included widely 
used Multi-scale Emissions Inventory of China. Overall, though the topic is important 
and the methods are technically, the manuscript need be restructured and rephrased. I 
recommend to reconsider its publication pending the following concerns satisfactorily 
addressed. 

The manuscript has been overhauled considering the comments from both referees.  

A brief review has been made about the inventories at similar resolutions, including 
Zhao et al. (2015) and CAMS-reg (Granier et al., 2019) on page 3 line 8 (see the revised 
manuscript) based on bottom-up methods. Top-down estimates can be further combined 
with bottom-up inventories and spatial proxies to increase the spatial resolution, by 
downscaling and/or source sector apportionment (e.g., MarcoPolo on page 4 line 1-4). 
MarcoPolo emissions can reach higher resolutions than 0.05°×0.05°, i.e., 0.01°×0.01°, 
given the detailed information of the location of the emission sources which ask for lots 
of efforts to collect and are absent or inaccurate at times. Top-down emissions including 
our work offer an important supplement and reference at high resolutions.  

The PHLET model has been upgraded and re-built on the FEniCS platform, the 
necessary citations of which have also been included. Based the FEniCS platform, we 
improve the calculation efficiency of the PHLET and A-PHLET largely. Now, the 
inversion calculation takes less than one hour as stated on page 6 line 14.  

We have also fixed a bug to correctly account for the effect of S0  in Eq. 3. The 
corresponding results and discussions have been revised including NOx emissions, 
lifetimes and the uncertainties. After processing the error covariance properly, the 
derived the lifetime of NO2 due to deposition becomes longer (30.4 h), which is more 
consistent with our knowledge about NOx chemistry. 

We have shortened the study time period from summer 2012-2016 to summer 2012-
2015. According to the National Bureau of Statistics of China (http://data.stats.gov.cn/), 
NOx emissions have dropped substantially from 2015 to 2016. Thus, including summer 
2016 may not be the best practice to derive emissions. 

To substantiate the emission distribution, more discussion has added in Sect. 4.2 based 

http://data.stats.gov.cn/


on the distributions of proxies such as nighttime light, population density, marine 
shipping routes, coal power plant locations and land use indicated by a satellite photo 
from Google Earth. Sect. 4.3 compares our emissions with other inventories besides 
MEIC. 

In the conclusion section, we give a summary of the limitations and shortcomings of 
our method. 

Most of the figures have been re-arranged. Some figures have been added, considering 
comments from both referees. 

We have substantially improved the structure of the manuscript to accommodate both 
reviewers’ suggestions. A flowchart has been added to Sect. 2.1 in order to illustrate the 
procedures of our inversion method. Section 2.3 has been divided into 5 subsections for 
clarification. Section 2.3.1-2.3.3 describe the model setting and assumptions. Sect. 
2.3.4 shows how the SCM matrix is applied to PHLET simulated VCDs, with the 
detailed procedures shown in Appendix B. Section 2.3.5 summarizes the uncertainty 
estimates. The part (former Appendix D) about solving the observation error covariance 
matrix and the adjoint model has been moved to Sect. 2.4, supplemented with an 
extended discussion on assuming the covariance to be diagonal. The OSSE-like test 
(former Appendix E) based on GEOS-Chem simulated NO2 data has been moved to a 
new Sect. 5. 

Specific comments 

1. Why the shortest lifetime of NO2 has the advantage to better relate NOx emissions 
to NO2 VCDs at the 0.05°×0.05° resolution? 

Due to the short lifetime of NO2, the effect of transport and diffusion is rather local. 
Therefore, the distribution of NO2 VCDs can better reflect that of NOx emission at high-
resolution; and the effect of transport errors on emission estimate is smaller. 

2. Page 6, Line 1-7: What’s the relation between the NO2 retrieval with the AOD? 
The description is needed. 

The NO2 retrieval becomes unreliable when the loading of aerosol gets too high. We 
have added necessary citation to this description. 

3. Section 2 is generally messy and lack of logics. What’s the relation between the 
PHLET model and PHLET-A model? I suggest the authors rephrase the part ‘data and 
method’ more logically. 

In order to clarify our method, we have added a flowchart and additional descriptions 
to illustrate the procedures in Sect. 2. See our response to general comment 1 for the 



detailed structural changes. 

4. The main of this manuscript includes two parts: part one is to show the distributions 
of NO2 basing on the retrieved emission data, part two is to evaluate above emission 
data. Thus, showing more explicit analyses are needed. 

To substantiate the emission distribution, more discussion has added in Sect. 4.2 based 
on the distributions of proxies such as nighttime light, population density, marine 
shipping routes, coal power plant locations and land use indicated by a satellite photo 
from Google Earth. Sect. 4.3 compares our emissions with other inventories besides 
MEIC. 

5. In Figure 1, why the NOx emission and local net source are somewhat related to the 
lifetime of NO2? The good relationship between the NO2 VCDs and lifetimes of NO2 
can be understood well, however, the relations with NOx emission and local net source 
are not taken for granted. 

We have clarified the methodology; see our response to general comment 1. 

As shown in Eq. (2), the local net source is the difference between emission and loss. 

Sect. 2.5 and Appendix C presents how to calculate emission and lifetime from the local 
net source. 

6. Figure 1 and Figure 2 should be rearranged. Fig. 2a-d can be combined into Fig.1a-
d; Fig. 2e-f and Fig. 1f can be combined into one graph. The current arrangement is 
messy to describe. 

More figures are included in the revised manuscript. The figures are also re-arranged 
taking the comments from both of the referees into consideration. 

7. Page 17, Line 6, what does ‘Figure 3ows’ mean? 

Typing error. Changed. 

8. How do the authors define ‘anthropogenic’ emission? Including what? 

As now clarified in Sect. 2.3.2 (page 10 line 13-21): 

“Lightning emissions, biomass burning emissions, aircraft emissions, transport from 
neighboring regions, and convection can lead to NO2 at higher altitudes over the YRD 
area. However, the amount of NO2 aloft is much smaller than near-ground NO2 due to 
large ground sources (Lin, 2012). Thus, we regard NO2 aloft as the regional background, 
and do not include it in Eq. 1. Also, for near-ground NO2 over the YRD area, the 



contribution of downward vertical transport is negligible compared to the contribution 
of ground sources. Aircraft emissions contribute little to the total ground source, 
because 78% of aircraft emissions occur at the high altitudes (9–12 km) (Ma and Xiuji, 
2000). Therefore, PHLET only accounts for near-ground NO2 from ground soil, 
biomass burning and anthropogenic sources (energy, industry, transportation, and 
residential).” 

And in Sect. 4.3 (page 21 line 11-13): 

“Our emission data and the DECSO inventory are top-down estimates and include the 
contributions of soil and biomass-burning sources. Thus, we estimate soil and biomass 
burning emissions from independent sources, and then subtract these emissions from 
our and DECSO emission datasets” (to obtain anthropogenic emissions.) 

9. What’s the reason of inconsistent difference of total anthropogenic NOx emission in 
each city for summer inverted by this study versus from the MEIC inventory? 
Otherwise, the difference should be same for each city, that is to say, systematically 
higher or lower. 

Both our and MEIC inventories are gridded, and their differences are grid cell 
independent and vary from one city to another.  

10. The tile of Section 4.3 should be ‘Comparing our inverted emission dataset with the 

MEIC inventory’, or more exactly, it should be ‘Comparison between our inverted 

emission dataset with the MEIC inventory’. 

Changed 

 

Anonymous Referee #2 

General Comments 

1. This inventory is presented as the only high-resolution inventory for the YRD 
region, but in the MarcoPolo-Panda project, a high-resolution emission inventory of 
0.01-degree resolution has been developed for this region (see http://www.marcopolo-
panda.eu/products/toolbox/emission-data/) Since the affiliations of the authors were 
also participating in the MarcoPolo-Panda project it is surprising that this inventory is 
not mentioned or used in their comparisons. Also, Zhao et al. (2015) present a city-
scale emission inventory with the resolution of 3kmx3km in Nanjing, in the Yangtze 
River Delta.: “Zhao, Y., Qiu, L. P., Xu, R. Y., Xie, F. J., Zhang, Q., Yu, Y. Y., Nielsen, C. 



P., Qin, H. X., Wang, H. K., Wu, X. C., Li, W. Q., and Zhang, J.: Advantages of a city-
scale emission inventory for urban air quality research and policy: the case of 
Nanjing, a typical industrial city in the Yangtze River Delta, China, Atmos. Chem. 
Phys., 15, 12623-12644, 10.5194/acp-15-12623-2015, 2015.“ The authors claim that 
very high resolution emissions are lacking, but it is not mentioned how “very high” is 
defined. Several regions have a high-resolution emission inventory with similar 
resolution as PHLET: CAMS in Europe, GlobEmissions in the Qatar and South 
Africa, MarcoPolo-Panda in various regions in China. 

We have included discussion of these inventories in the revised introduction: 

On page 3 line 1-3: “Gridded bottom-up emission inventories typically use spatial 
proxies (like population and GDP) to allocate provincial-level emission values, which 
are derived from activity statistics and emission factor data, to individual locations 
(Zhao et al., 2011; Janssens-Maenhout et al., 2015; Zhao et al., 2015).”. 

On page 3 line 7-10: “For a small area, emission factors and activity data of the major 
sources can be collected by on-site surveys to allow construction of a high-resolution 
inventory (Zhao et al., 2015; Granier et al., 2019), such as Zhao et al. (2015) for Nanjing. 
However, on-site surveys are extremely time consuming and resource demanding, 
difficult to be applied to a large domain in a timely manner.” 

On page 4 line 1-10: “Top-down estimates can be further combined with bottom-up 
inventories and spatial proxies to increase the spatial resolution, such as from 
0.25°×0.25° in the DECSO derived emissions to 0.01°×0.01° for 2014 during the 
MarcoPolo Project (Hooyberghs et al., 2016; Timmermans et al., 2016) and similar 
inventories over Qatar and South Africa (Maiheu and Veldeman, 2013).” 

In this work, high resolution refers to emissions at a resolution equal or higher than 
0.05°×0.05°. We have made this clear on page 2 line 23 and page 4 line 9. 

2. The authors mention that their method is not computationally expensive and can 
be applied world-wide, but a rough calculation shows that their algorithm will take at 
least 10 year to calculate the emissions for the whole world, which is not faster than 
many other methods they refer to on page 3. 

First, our method is designed for urban and surrounding areas, rather than everywhere 
of the globe. Second, in this case study, the calculation is completed on only one CPU 
core, while the CTMs adopted in top-down method generally ask for parallel computing 
with many cores. For a multi-domain study, our method can easily adopt parallel 
computation with more cores. Third, we have upgraded the codes on the FEniCS 
platform, the necessary citations of which are included. Right now, the emission 
calculation for the YRD takes less than one hour, faster than our previous calculation 
by a factor of 30-40. Thus, with one computational core, applying our method to the 



globe on a 0.05°×0.05° grid for 4 years would take about a few months. 

3. The authors say that the methods are limited in time period, spatial domain and 
horizontal resolution. This is very different for all the referred methods. The methods 
of Miyazaki et al and of Stavrakou et al. have already been applied on a global scale, 
while other methods are also not theoretically limited to a certain domain. In general, 
the methods mentioned can be applied to any time period as long as satellite 
observations are available. 

We have clarified this point in the revised introduction (page 3 line 25 – page 4 line 1): 

“These more sophisticated methods have often been applied to relatively short time 
periods (e.g., Gu et al., 2016 for one month), small spatial domains (e.g., Tang et al., 
2013 in Texas), and/or at coarse horizontal resolutions (e.g., Miyazaki et al., 2012 at 
2.8° and Stavrakou et al., 2008 at 5°×5°).” 

4. The authors suggest that only (Lin et al., 2012) and Stavrakou et al. (2013) provide 
uncertainties of the CTM, while they are also presented by Miyazaki et al. (2012) and 
Ding et al. (2017). 

The statement and the citations are modified on page 4 line 6-8: “CTM-based studies 
typically provide an estimate of the overall model error, although Lin et al. (2012) and 
Stavrakou et al. (2013) present errors in the individual model processes (e.g., key 
chemical reactions and meteorological parameters).” 

5. What are pros and cons of the introduced method? The pros are mentioned, but 
what is the downside of averaging a time period of 2012-2016. Specifically, in this 
period strong trends are appearing in NO2 over China. 

We have shortened the study time period from summer 2012-2016 to summer 2012-
2015. According to the National Bureau of Statistics of China (http://data.stats.gov.cn/), 
NOx emissions have dropped substantially from 2015 to 2016. Thus, including summer 
2016 may not be the best practice to derive emissions. 

We have also evaluated the emission for each year from 2012 to 2015. The average 
emissions of those years over 2012-2015 and the emissions evaluated from all VCD 
data together (as in the main text) are similar. Slope and interception of their linear 
regression are 0.95 and 0.08, and their correlation coefficient is 0.98 (see the figure 
below).  

We discussion the limitation of our method in Section 2.  

On page 9 line 9-11: “Also, combining data from multiple years to derive an averaged 
NO2 distribution for simulation (rather than conducting the simulations for individual 

http://data.stats.gov.cn/


years and months) leads to an additional uncertainty.” 

We have also added the revised conclusion section a paragraph summarizing the 
limitations of our method: 

On page 25 line 11-20: “Our inversion method also has a few shortcomings. The derived 
emissions do not separate the individual contributions of anthropogenic sectors (i.e., 
power plants, industry, transportation, and residential). The spatial resolution of the 
estimated emissions is limited by that of satellite VCD data, although a special 
oversampling technique has been used to help achieve the highest spatial resolution 
possible for emissions. The PHLET model is assumed to be 2-dimensional by 
simplifying the vertical distribution of NO2 and not accounting for the spatial variability 
in the vertical shape, similar to previous studies. The adjoint model assumes the 
observational error covariance matrix to be diagonal, without fully considering the 
effect of correlations between individual grid cells. Also, we assume a spatially uniform 
relationship between NO2 VCDs and NO2 lifetimes, which may lead to an 
underestimate in the lifetimes at low-NO2 locations over the eastern sea.” 

 

6. The period is focusing on the summer time. What are the expected results for the 



winter-period. Will this change the spatial resolution? Will the magnitude of the 
emissions change a lot? 

To achieve highest spatial resolution possible, we have intended to focus on the summer 
months, when the lifetimes of NOx are the shortest.  

The lifetimes of NO2 would be longer in winter, and therefore, the effects of transport 
and diffusion are more significant. The spatial relation of NO2 VCDs and NOx 
emissions would be lower in winter. Thus, it would be much more difficult to derive 
the emissions at a high resolution, and the influences of transport errors would be much 
larger. 

7. It should at least be mentioned that there is no sector information in the derived 
emissions, which is an advantage of bottom-up inventories 

We have added on page 25 line 11-12: “Our inversion method also has a few 
shortcomings. The derived emissions do not separate the individual contributions of 
anthropogenic sectors (i.e., power plants, industry, transportation, and residential).” 

Also note that as stated on page 3 line 14-17: “Top-down inversion typically provides 
the total emission data, although emissions from individual sources can be further 
derived by integrating a priori data (often from bottom-up inventories) about source-
specific information such as diurnal and seasonal variabilities (e.g., Lin et al., 2010; 
Lin, 2012) and spatial variabilities (Timmermans et al., 2016).” 

8. Although the gridding is on a 0.05° resolution the actual spatial resolution of the 
resulting emissions seems much lower. An indication of the intrinsic resolution can be 
obtained from the largest gradients in the emissions. I cannot detect clear structures 
with a 0.05° resolution. One would at least expect some power plants to show up as 
clear spots in this region. Maybe the method is still limited by the OMI resolution? 

The highest emission is at one grid cell in north Shanghai, and its difference from eight 
surrounding grid cells are 0.39 kg km-2 h-1 (2.6%). The mean gradient of the emissions 
is 0.079 kg km-3 h-1. 

We admit the intrinsic resolution of our derived emissions is limited by the pixel sizes 
of OMI. We have added in the revised conclusion section that  

On page 25 line 12-14: “The spatial resolution of the estimated emissions is limited by 
that of satellite VCD data, although a special oversampling technique has been used to 
help achieve the highest spatial resolution possible for emissions.” 

Also, in Sect. 4.2 on page 22 line 5-7: “This is because our top-down estimate is limited 
by the intrinsic resolution of NO2 VCDs, i.e., our oversampling approach does not fully 



compensate for the large sizes of OMI pixels. Therefore, the large spatial gradient of 
NOx emissions is smoothed to some extent in our dataset.” 

We have also discussed emissions related to power plants. As detailed in the revised 
Sect. 4.2 on page 20 line 10-18: 

“The filled circles in Fig. 6g show the locations of coal-fired power plants in 2016 from 
Carbon Brief (www.carbonbrief.org; last access: 2019/6/27). The radius of a circle 
denotes the power generation capacity. Figure 6h further shows the GPED v1.0 bottom-
up NOx emissions for power plants on a 0.1°×0.1° grid in 2016. Coal-fired power plants 
in the YRD are normally near the urban centers, traffic lines or other sources. Our top-
down NOx emission map shows large emission values near the power plants (Fig. 6b), 
although it cannot isolate the sole contribution of power plants. At the GPED power 
plant locations, the correlation between our and GPED emissions reaches 0.26, due to 
the influence by non-power plant sources; note that the correlation between GPED 
emissions and POMINO NO2 VCDs are only about 0.21.” 

9. The structure of the paper is somewhat confusing and therefore I suggest moving 
appendix C and E to the main text. Section 2.1 is too short to understand the method of 
determining emissions. 

We have substantially improved the structure of the manuscript to accommodate both 
reviewers’ suggestions. A flowchart has been added to Sect. 2.1 in order to illustrate the 
procedures of our inversion method. Section 2.3 has been divided into 5 subsections for 
clarification. Section 2.3.1-2.3.3 describe the model setting and assumptions. Sect. 
2.3.4 shows how the SCM matrix is applied to PHLET simulated VCDs, with the 
detailed procedures shown in Appendix B. Section 2.3.5 summarizes the uncertainty 
estimates. The part (former Appendix D) about solving the observation error covariance 
matrix and the adjoint model has been moved to Sect. 2.4, supplemented with an 
extended discussion on assuming the covariance to be diagonal. The OSSE-like test 
(former Appendix E) based on GEOS-Chem simulated NO2 data has been moved to a 
new Sect. 5. 

10. In section 2.3: The contributions of lightning, biomass burning and aircraft 
emissions are neglected. The authors explained that the contributions of these emissions 
are small. In the inversion method, both soil and anthropogenic emissions are derived. 
In section 4, it is calculated that the soil emissions contribute 0.9% of the inverted 
emissions. This looks like a very small amount. However, biomass burning is 
considered as a significant source in the YRD, especially in summer. On a scale of 
0.05°×0.05° lots of biomass burning activity will exist. Give some more detailed 
information and explain why lightning, biomass burning and aircraft emissions are 
neglected. 

As now clarified in Sect. 2.3.2 on page 10 line 13-21: 



“Lightning emissions, biomass burning emissions, aircraft emissions, transport from 
neighboring regions, and convection can lead to NO2 at higher altitudes over the YRD 
area. However, the amount of NO2 aloft is much smaller than near-ground NO2 due to 
large ground sources (Lin, 2012). Thus, we regard NO2 aloft as the regional background, 
and do not include it in Eq. 1. Also, for near-ground NO2 over the YRD area, the 
contribution of downward vertical transport is negligible compared to the contribution 
of ground sources. Aircraft emissions contribute little to the total ground source, 
because 78% of aircraft emissions occur at the high altitudes (9–12 km) (Ma and Xiuji, 
2000). Therefore, PHLET only accounts for near-ground NO2 from ground soil, 
biomass burning and anthropogenic sources (energy, industry, transportation, and 
residential).” 

11. The model error is set to be the sum of the quadrature of errors contributed by 
several aspects. However, there is no explanation on how the authors set some errors, 
for example the treatment of background NO2 concentrations. The authors use wind 
fields from ECMWF on a coarse resolution and regridded to a high resolution. The error 
of regridded wind field on high resolution can be quite large. The authors consider error 
of wind speed, but how about the wind direction? The error set for the wind looks 
optimistic. 

Error estimates for individual parameters and processes are based on the literature, our 
sensitivity tests, and/or expert judgement. For most parameters, the reasoning of 
choosing specific values is given when the error terms are introduced. 

For background NO2, our choice (0.54×1015 molecules cm-2) is based on the 
consideration that background NO2 would be very small (e.g., smaller than 1×1015 
molecules cm-2; Cui et al., 2016). Doubling the background only has marginal effects 
on our emission estimate especially at modest- and high-NO2 locations. Spatially 
averaged, the error due to the choice of our background value is estimated as 5%. 

For errors introduced by winds, we have clarified in Sect. 2.3.3 on page 11 line 17-19 
that 

“We assess the model errors introduced by the uncertainties in the wind field and 
effective diffusion coefficients by Monte Carlo simulations in which the wind speeds 
are changed according to their uncertainties. The resulting relative uncertainty in the 
modeled NO2 VCDs is about 20%. ” 

12. References: All the references should be carefully checked if they are in the correct 
format, especially the names of authors. Many articles are missing or articles should be 
removed throughout the whole text. It is advisable to let a native speaker make the 
necessary corrections. 

The references have been checked and some necessary citations have been added. 



Specific comments 

1. Page 1, Line 14: lacking => missing 

Changed. 

2. Page 1, Line 17: The inversion => The model used in the inversion 

We have change it into ‘the top-down inversion method’ which refers to the whole 
process. 

3. Page 1, Line 18: We construct a model called PHLET (..) 

Changed. 

4. Page 1, Line 19 Metrix => Matrix 

Changed. 

5. Page 2, Line 5 tied => related 

Changed. 

6. Page 2, Line 7 features => structures 

Changed. 

7. Page 2, Line 8-9: This last sentence is kind of obvious. It should be moved from 
the abstract to the conclusions/outlook, but I suggest to just remove it. 

Removed. 

8. Page 2, Line 21: split the sentence into 2 separate sentences to make it more 
understandable. 

Changed. Now on page 2 line 18. 

9. Page 2, line 24: on => of 

Changed. 

10. Page 2, line 24: how is a “very high resolution” defined? 

We have made it clear to be 0.05°×0.05° on page 2 line 23 and page 4 line 9. 



11. Page 3, Line 1: Bottom-up emissions do not only use spatial proxies but are also 
based on gathered statistical information of industrial output, car emissions, etc. 

The statement has been modified. 

12. Page 3, Line 4: Please define “high” 

We have made it clear to be 0.05°×0.05° on page 2 line 23 and page 4 line 9. 

13. Page 3, Line 20-21: What do the authors mean by “low-cost” and “high-resolution” 

Low cost refers to the low requirement on computation resources described on page 6 
line 13-16: 

“With one computational core (Intel○R  Xeon○R  Gold 6130 CPU @ 2.10GHz), 

derivation of NOx emissions over the YRD here takes less than one hour after necessary 
input data are prepared. Applying the framework to multiple areas would take a similar 
amount of time by using one computational core for each area.” 

As for high resolution, we have made it clear to be 0.05°×0.05° on page 2 line 23 and 
page 4 line 9. 

14. Page 3, Line 22: Here it is mentioned that these inventories are important for trends 
and variability. I agree, but the method presented in this paper do not give the possibility 
to study trends and variability, which should be mentioned somewhere in the conclusion. 

As now clarified in Sect. 6 on page 24 line 22-24: 

“Although this study derives the averaged emissions over summer 2012–2015, 
calculations of emissions at higher temporal resolutions (e.g., every 2 years) is possible 
to better capture the interannual variability and trends.” 

15. Page 3, Line 22-23: Why is it important to understand air pollution with the advent 
of TROPOMI? I would say it is the other way around: TROPOMI is important for 
understanding air pollution. 

The sentence has been removed. Discussion about TROPOMI is on page 25 line 25-
page 2 line 2 now. 

16. Page 3, line 24: Constructing => construct 

Changed. 



17. Page 4, line 1 other 13 => 13 other 

Changed. In addition, we have added two more cities which were missed in the original 
manuscript. 

18. Page 4, line 1: explain the acronym POMINO 

Changed. On page 6 line 22. 

19. Page 4, line 3: change to “a model called PHLET”  

Changed. 

20. Page 4, line 5: delete “concentration dependent”  

Changed. 

21. Page 4, line 17: Why is this the finest spatial information possible?  

As described in Sect. 2.2 on page 7 line 25 – page 8 line 4, The oversampling 
approach takes advantage of the fact that the exact location of footprint of the OMI 
instrument slightly changes from one day to another, so does the exact location of 
footprint of a satellite pixel at a given VZA. Thus, sampling from multiple days 
increases the horizontal resolution of data. Besides, the SCM matrix is constructed 
base on the pixels, and thus the finest spatial information is preserved. 

22. Page 4, line 19: What Is SCM? This is explained much later in the text. 

We have re-structured the manuscript and have clarified the use of SCM in Sect. 2.3.4, 
supplemented by Appendix B. 

23. Page 4, line 21-22: Without further explanation this does not explain the method. 

A flowchart has been added in order to illustrate the procedures of our inversion method 
on page 5 line 8 -page 6 line 4. 

24. Page 4, line 22: Which fixed formula is used?  

It refers to Eq. C5 in Appendix C. The statement has been modified. 

25. Page 5, line 1: Which nonlinear relationship do the authors mean here? There are 
3 quantities mentioned: (1) emissions, (2) lifetimes and (3) VCDs. 

Between lifetimes and NO2 VCDs. Changed now on page 6 line 8. 



26. Page 5, line 4: A long time period is mentioned. What do the authors mean, a long 
time period to average or multiple 5 years periods? And why are these long time periods 
not presented in this paper? 

We meant summer 2012-2016. 

We have shortened the study time period from summer 2012-2016 to summer 2012-
2015. According to the National Bureau of Statistics of China (http://data.stats.gov.cn/), 
NOx emissions have dropped substantially from 2015 to 2016. Thus, including summer 
2016 may not be the best practice to derive emissions. 

27. Page 5, line 5: It is mentioned that the calculation takes about 36 hours after 
necessary input data? What are the necessary input data? How long does it take to 
prepare the input data? 

The necessary input data are the OMI product (i.e. POMINO) and wind field. The time 
it takes to prepare those data depends on the Internet conditions, as in other studies. 
Running our codes to process these input data takes 30-40 minutes for the YRD domain 
here. 

28. Page 5, line 5: If the inversion takes 36 hours for a 5x5 degree domain, a global 
calculation will take about 10000 hours, which is about 10 year. 

See ‘general comments 2’. And as stated on page 6 line 14-16, applying the framework 
to multiple areas would take a similar amount of time by using one computational core 
for each area. 

29. Page 5, line 8: a reference for OMI is missing. 

Added. 

30. Page 6, line 2-7: Removing the 30 outer pixel and the row anomaly will strongly 
reduce the number of pixels used in this research. How may pixels be still used? 

22007 pixels. Added. 

31. Page 6, line 8: space => grid 

Changed. Corresponding texts are now in Sect. 2.3.4 

32. Page 6, line 11: The footprint does not change, the location of the footprint changes 
from one day to another. 

Changed. 

http://data.stats.gov.cn/


33. Page 6, line 14: the year of the reference to Fioletov is missing. 

The sentence has been changed. 

34. Page 6, line 17: For purpose => For the purpose 

Changed, now on page 8 line 5. 

35. Page 7, Line 7: The assumptions of the PHLET model are not mentioned in Beirle 
et al. This reference should be removed. 

A similar assumption on the vertical shape of NO2 is taken in Beirle et al. (2011), as 
their model does not include information about the (horizontal and temporal) changes 
in the vertical shape of NO2. In their online supporting information, “At the OMI 
observation time under cloud free conditions, the megacity emissions undergo rapid 
vertically mixing (within some km distance from the source)”. 

36. Page 7, Line 10: The transport from neighbouring regions is missing in this list 
while this is an important contribution. 

We consider the transport from outside the study domain as part of the regional 
background. We write in the revised Sect. 2.3.2 (page 10 line 13-16) that 

“Lightning emissions, biomass burning emissions, aircraft emissions, transport from 
neighboring regions, and convection can lead to NO2 at higher altitudes over the YRD 
area. However, the amount of NO2 aloft is much smaller than near-ground NO2 due to 
large ground sources (Lin, 2012). Thus, we regard NO2 aloft as the regional background, 
and do not include it in Eq. 1.” 

37. Page 7, Line15-16: Can the authors give a reference for this statement. 

The reference about aircraft emission is given. The statement has been adjusted since 
the biomass burning NOx should be taken into consideration. 

38. Page 7, Line 17-20: This is quite some assumption about the background value. 
What is the basis of this assumption? Why is the uncertainty set to 5%? 

For background NO2, our choice (0.54×1015 molecules cm-2) is based on the 
consideration that background NO2 would be very small (e.g., smaller than 1×1015 
molecules cm-2; Cui et al., 2016). Doubling the background only has marginal effects 
on our emission estimate especially at modest- and high-NO2 locations. Spatially 
averaged, the error due to the choice of our background value is estimated as 5%. 

39. Page 8, line 14: What is the source of the wind data? 



Described in Sect. 2.3.3. The data are from ERA5. 

40. Page 9, Line 20: space => grid 

Changed. 

41. Page 11, Line 7-8: I would suggest mentioning the average number of iterations 
(about 60?) needed to reach convergence and remove Fig C1. Is the value of 390 chosen 
based on this Figure and the fact that it is stable or are there other motivations? 

There are 50 times of iterations before the convergence is reached according to the rate 
of decline of J. J is reduced from an initial value of 6585.2 to a stabilized value of 73.6. 

We think the figure is important for the demonstration of how fast J is reduced. Thus, 
we have elected to keep the figure (Fig. 2). 

42. Page 12, Line 6: It becomes clearer if the short appendix C is just put into the text 
here. 

Adjusted. 

43. Page 12, Line 11: “inverted emission” is not the correct term. The concentrations 
are inverted to get the emissions. This “emission inversion” and “inverted emissions” 
is appearing in many places in the text. 

Changed throughout the text. 

44. Page 12, Line 11-12: What is the value of error on the lifetime? I suggest 
mentioning also the values of the calculated errors in the text. 

As described on page 15 line 11-14, 

“The error in the lifetime is derived from the errors in NOx loss (estimated in Appendix 
C) and NO2 VCDs, according to the common manner of error synthesis.” 

45. Page 14, line 1: inverted => derived 

Changed. 

46. Page 14, line 14: Since there is a lot of agriculture in the YRD region a soil 
contribution of 0.9% seems very small and needs some explanation. A discussion on 
biomass burning emissions (which occur in the agricultural regions) can be helpful here 
as well. 



The soil emissions in GEOS-Chem already account for the effects of both fertilizer and 
natural soil. We cannot conclude whether the relative contribution of soil emissions (to 
the total) has been underestimated, because of the dominant emissions from power 
plants, transportation, industry and residential activities. 

We have clarified that biomass burning is part of the sources of our derived emissions.  
In Sect. 4.2 where we compare our derived “anthropogenic” emissions with other 
anthropogenic inventories, the GFED v4 biomass burning inventory is adopted to be 
subtracted from our derived emissions. 

47. Page 15, Line 1: Figure 2e is mentioned without discussing 2a-d. 

Figure a-d have been discussed before.  

Now we have re-arranged the figures. Additional figures have been added, considering 
comments from both referees. 

48. Page 15, Line 13: Please mention the basis of the coloring of Fig 2f. 

As stated on page 18 line 20-22, The data points are colored to indicate the different 
ranges of VCDs at individual grid cells. 

49. Page 15, Line 19: Why are the emissions not directly compared to bottom-up 
inventories instead of these proxies that are used in the bottom-up inventories. For 
example, a comparison with the MarcoPolo-Panda or the Zhao et al. inventory can give 
more insights. 

In Sect. 4.3 we compare our emissions with other inventories besides MEIC. 

50. Page 17, Line 5-6: To separate the anthropogenic emissions, GEOS-Chem is used 
to calculate soil emissions. What are the uncertainties of the soil emissions calculated 
by GEOS-Chem? 

We have discussed the errors in soil emissions and biomass burning emissions in Sect. 
4.2 on page 21 line 13-19: 

“Soil emissions are calculated by the nested GEOS-Chem (Fig. 7c), with the 
uncertainties assumed to be within 50% (Wang et al., 1998; J. Yienger and Ii Levy, 
1995). Biomass burning emissions (Fig. 7b) are taken from the Global Fire Emissions 
Database (GFED4; www.globalfiredata.org/data.html; last access: 2019/7/10) (Giglio 
et al., 2013), with the uncertainties estimated to be within 10% over the YRD (Giglio 
et al., 2009; Giglio et al., 2013). Summed over the study domain, the soil sources 
contribute about 0.5% of our emissions while biomass burning contribute about 5.1%.” 



51. Page 17, Line 6: Figure 3ows? 

Typo. Corrected. 

52. Page 17, Line 8: Comparing Figure 3e and 3f is only useful if they are at the same 
resolution. Thus, Figure 3e should be regrided to the coarser resolution of Figure 3f. 

All data are presented on 0.05°×0.05° grid. 

53. Page 18, Lines 6-15: There is some repetition of the text of the previous sections 

Rephrased. 

54. Page 18, Line 19-20: I would remove the last sentence about the programming 
language, which is not very relevant in a scientific paper 

We have elected to keep the sentence, because we consider that programing with Python, 
a popular and easily used language, is an important feature that the potential users of 
our codes may appreciate. 

55. Page 22: Line 17: Since one observation of the satellite is used in several grid cells, 
I doubt if the assumption that covariance matrices are diagonal matrices is correct. A 
discussion is needed here. 

Since we use several pixels to get the mean VCD for each grid cell, and grid cells nearby 
each other may shares the same pixels partly although weight differently. Therefore, we 
admit that making the covariance matrix to be diagonal may be an imperfect assumption, 
although a similar assumption has been used in many previous studies (Keiya and 
Itsushi, 2006; Cao et al., 2018).  

To partly account for the uncertainty lead by such approximation, we assume relatively 
high errors in the VCDs, as shown in Sect. 2.2: 

On page 8 line 5-13: “For the purpose of emission estimate, we assume that the error 
of VCD at a satellite pixel (𝜎𝜎𝑝𝑝) contains an absolute error of half of the mean VCD over 
the domain (i.e.,1.9×1015 molecules cm-2) and a relative error of 30% (Lin et al., 
2010;Boersma et al., 2011;Lin et al., 2015a;Beirle et al., 2011). We further add in 
quadrature an additional error (𝜎𝜎𝑔𝑔) when a satellite pixel is projected to the grid cells at 
a finer resolution; this error is important in the urban-rural fringe zone. For a given grid 
cell, 𝜎𝜎𝑔𝑔 is set to be 50% of the standard deviation of VCDs at its eight surrounding 
grid cells. Sampling over multiple days reduces the random error by a factor of s =

��(1 − 𝑐𝑐) 𝑛𝑛 + 𝑐𝑐⁄ � , where c represents the fraction of systematic error (assumed to be 

50%) and 𝑛𝑛 the number of days with valid data (Eskes et al., 2003; Miyazaki et al., 



2012). Thus, the total error for the temporally averaged VCD at a given grid cell is 

𝜎𝜎𝑠𝑠 = ��𝜎𝜎𝑝𝑝2 + 𝜎𝜎𝑔𝑔2� ∙ 𝑠𝑠 .” 

We have also summarized the limitation in the conclusion section: 

On page 25 line 16-18: “The adjoint model assumes the observational error covariance 
matrix to be diagonal, without fully considering the effect of correlations between 
individual grid cells.” 

56. References: Most references contain many spelling errors and omissions. 

Checked. 

57. Figure 2d: The lifetime is very short over the ocean, contradicting to what is usually 
seen in the literature. 

We agree that the lifetime over the ocean might be underestimated and the emission 
there is therefore overestimated. Some discussions are added on page 17 line 6-11 and 
on page 25 line 12-13. 

58. Figure 2e: Although the gridding is on 0.05 degree resolution the actual spatial 
resolution of this image seems much lower. An indication if the intrinsic resolution can 
be obtained from the largest gradients in the emissions. I cannot detect clear structures 
with a 0.05 degree resolution. One would at least expect some power plants to show up 
as clear spots in this region. 

Maybe the method is still limited to the OMI resolution. I would like to see some 
discussion about this. 

Please see our response to general comment 8. 

59. Figure 2f: The plot is more logical when the x-axis and y-axis are reversed. I also 
suggest drawing a line for the 100% relative error in this plot as a helpline to guide the 
eye. 

Changed. 

60. Figure 2 caption: What are the magnitudes of POMINO that are mentioned. In 
Figure 2f it is too small to see. 

Changed. 

61. Figure 3e: This has to be regrided to the resolution of 2f for comparison. 



Adjusted. 

62. Figure 3: I miss information on power plants, which are a major source of NOx. 

See our response to general comment 8. 

63. Figure 4: The crosses in the plot, indicating the amount of grid cells, are too small. 

The crosses have been deleted for simplicity. 

64. Figure D1: I do not understand why we need two colors for the dots. 

The blue points stand for the grid cells where the VCDs is lower than  5 × 1015 
molecules cm-2, and the evaluated local net sources at these grid cells are used to derive 
the relation between the NOx loss and NO2 VCDs by fitting the fixed formula. An 
explanation is added on page 30 line 7. 

65. Figure D2: The lifetime depends a lot on chemistry, temperature and precipitation. 
Therefore, the plot seems very simplified. 

We agree, but this is the best we can do without involving a computationally much 
costlier 3-D chemical transport model. We note that previous studies with simplified 
models have often assumed a single value for lifetime for each city or other emission 
sources (Beirle et al., 2011; Liu et al., 2016).  

We have added a discussion of the limitations of our method, including about the 
lifetime, in the revised conclusion section on page 25 line 18-20: 

“Also, we assume a spatially uniform relationship between NO2 VCDs and NO2 
lifetimes, which may lead to an underestimate in the lifetimes at low-NO2 locations 
over the eastern sea.” 
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Abstract 

Emission datasets of nitrogen oxides (NOx) at high horizontal resolutions (e.g., 0.05° × 0.05°0.05°×0.05°) 

are crucial for understanding human influences at fine scales, air quality studies, and pollution control. 

Yet high-resolution emission data are often lackingmissing or contain large uncertainties especially for 

the developing regions. Taking advantage of long-term satellite measurements of nitrogen dioxide (NO2), 15 

here we develop a computationally efficient method to invertingestimating NOx emissions in major urban 

areas at the 0.05° × 0.05°0.05°×0.05° resolution. The top-down inversion method accounts for the 

nonlinear effects of horizontal transport, chemical loss, and deposition. We construct a model called 

PHLET (2-dimensional Peking University High-resolution Lifetime-Emission-Transport (PHLET) 

model,), its adjoint model (PHLET-A), and a Satellite Conversion MetrixMatrix approach to relate 20 

emissions, lifetimes, simulated NO2, and satellite NO2 data. The inversion method is applied to summer 
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months of 2012–2015 in the Yangtze River Delta area (YRD, 118°E-123°E, 29°N-34°N), a major polluted 

region of China, using the POMINO NO2 vertical column density product retrieved from the Ozone 

Monitoring Instrument. A systematic analysis of inversion errors is performed, including using an 

Observing System Simulation Experiment-like test. Across the YRD area, the inverted summer average 

emission rangesemissions obtained in this work range from 0 to 12.015.3 kg km-2 h-1, and the 5 

lifetimelifetimes (due to chemical loss and deposition) from 1.40.6 to 3.63 h. Our inverted emission 

dataset reveals fine-scale spatial information tiedrelated to nighttime light, population density, road 

network, and maritime shipping., and land use (from a Google Earth photo). We further compare our 

emissions with multiple inventories. Many of the inverted fine-scale emission featuresstructures are not 

well represented or not included in the widely used Multi-scale Emissions Inventory of China. Our 10 

inversion method can be applied to other regions and other satellite sensors such as the TROPOspheric 

Monitoring Instrument. (MEIC). 

1. Introduction 

Nitrogen oxides (NOx = NO + NO2) are a main precursor of particulate matter, ozone, and other 

atmospheric pollutants. NOx strongly influence the atmospheric oxidative capacity, affect the climate, and 15 

are toxic to many organisms. NOx are emitted from natural (soil, biomass burning, and lightning) and 

anthropogenic (transportation, energy, industry, and residential) sources (Lin, 2012).(Lin, 2012). Over 

the past decade, China has experienced rapid growth in the Gross Domestic Product (GDP, by 8.3% a-1 

on average from 2008 to 2017), fossil fuel consumption (by 5.5% a-1 from 2007 to 2015), and urbanization 

(National Bureau of Statistics of China, http://data.stats.gov.cn/).. These socioeconomic changes have 20 

been accompanied by a rapid change in NOx emissions in the urban and surrounding areas. With the large 

and continuously increasing urban population and motor vehicles, NOx pollution is particularly severe in 

large cities such as Beijing and Shanghai (Barnes and Rudziński, 2013;Lin et al., 2016).(Barnes and 

Rudziński, 2013;Lin et al., 2016). Many coastal cities like Shanghai have also experienced enormous 

growth in the shipping business and resulting. Therefore, pollution along the coastal line has become a 25 
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serious problem associated with the growing volumegrowth of global economic trade. Emissions; and 

emissions from seaborne transport play an increasingly important role in the global air pollution (Fu et 

al., 2017).(Fu et al., 2017). Understanding the urban pollution and its environmental impacts requires 

accurate quantitative knowledge onof NOx emissions at a very high horizontal resolution, (e.g., 

0.05°×0.05°), which is stilltypically lacking especially for the developing countries. 5 

Gridded bottom-up emission inventories typically use spatial proxies (like population and GDP) to 

allocate provincial-level emission values to individual locations (Zhao et al., 2011;Janssens-Maenhout et 

al., 2015), which, which are derived from activity statistics and emission factor data, to individual 

locations (Zhao et al., 2011; Janssens-Maenhout et al., 2015; Zhao et al., 2015). Such a gridding method 

may lead to large uncertainties at high resolutions (Zhao et al., 2011; Zheng et al., 2017; Geng et al., 10 

2017). , because the mismatch between proxies and emissions becomes more significant and emitting 

facilities are harder to allocate accurately as the resolution increases (Zheng et al., 2017). For a small area, 

emission factors and activity data of the major sources can be collected by on-site surveys to allow 

construction of a high-resolution inventory (Zhao et al., 2015; Granier et al., 2019), such as Zhao et al. 

(2015) for Nanjing. However, on-site surveys are extremely time consuming and resource demanding, 15 

difficult to be applied to a large domain in a timely manner.  

Top-down inversion using satellite retrieval products of tropospheric vertical column densities (VCDs) 

of nitrogen dioxide (NO2) is a widely used independent estimate of NOx emissions (Martin et al., 2003; 

Stavrakou et al., 2008; Lin et al., 2010; Mijling and R., 2012; Gu et al., 2014; Beirle et al., 2015; Miyazaki 

et al., 2016; Ding et al., 2017a). . Top-down inversion typically provides the total emission data, although 20 

emissions from individual sources can be further derived by integrating a priori data (often from bottom-

up inventories) about source-specific information such as diurnal and seasonal variabilities (e.g., Lin et 

al., 2010; Lin, 2012) and spatial variabilities (Timmermans et al., 2016).  

The traditional top-down methods based on local mass balance (LMB) or its variants assume a weak 

effect of horizontal transport (Martin et al., 2003; Lamsal et al., 2011; Lin, 2012; Gu et al., 2014; Boersma 25 
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et al., 2015). These algorithms work relatively well at low resolutions (> 50 km) given the relatively short 

lifetime of NOx (hours to 1 day), but may introduce large uncertainties when applied to higher resolutions 

– for example, emissions in the rural-urban fringe zone cannot be identified accurately. The Adjoint 

Model and Kaman Filter methods better account for horizontal transport, although their applicability is 

limited by expensive computational costs (Stavrakou et al., 2008;Mijling and R., 2012;Miyazaki et al., 5 

2016;Qu et al., 2017;Ding et al., 2017a). These more sophisticated methods are typically applied to 

limited time periods, limited spatial domains, and/or low horizontal resolutions (Gu et al., 2014;Ding et 

al., 2017b;Miyazaki et al., 2012;Stavrakou et al., 2008;Qu et al., 2017;Huang et al., 2014).. These more 

sophisticated methods have often been applied to relatively short time periods (e.g., Gu et al., 2016 for 

one month), small spatial domains (e.g., Tang et al., 2013 in Texas), and/or at coarse horizontal resolutions 10 

(e.g., Miyazaki et al., 2012 at T41 grid, i.e.; ~2.8°, and Stavrakou et al., 2008 at 5°×5°). Top-down 

estimates can be further combined with bottom-up inventories and spatial proxies to increase the spatial 

resolution, such as from 0.25°×0.25° in the DECSO derived emissions to 0.01°×0.01° for 2014 during 

the MarcoPolo Project (Hooyberghs et al., 2016; Timmermans et al., 2016) and similar inventories over 

Qatar and South Africa (Maiheu and Veldeman, 2013). The LMB, Adjoint Model and Kaman Filter 15 

approaches normally use 3-dimentional chemical transport models (CTMs) to relate emissions to VCDs. 

With a few exceptions (Lin et al., 2012;Stavrakou et al., 2013), CTM-based studies typically provide an 

estimate of the uncertaintiesoverall model error, although Lin et al. (2012) and Stavrakou et al. (2013) 

present errors in CTMs are not often assessed comprehensively due to expensive computational costs.the 

individual model processes (e.g., key chemical reactions and meteorological parameters). A 20 

computationally low-cost method for space-based high-resolution (0.05°×0.05°) NOx emission 

inversionestimate will be helpful for understanding the urban pollution and its trends and variability. This 

is particularly true with the advent of fine spatial resolution satellite sensors such as the TROPOspheric 

Monitoring Instrument (TROPOMI). 

This study presents a computationally low-cost space-based top-down approach to constructingconstruct 25 

high-resolution NOx emission inventoryinventories for the urban and surrounding areas. The approach is 
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applied to the Yangtze River Delta (YRD) area (118°E-123°E, 29°N-34°N, which includes Shanghai, 

Nanjing, Hangzhou and 15 other 13 cities) on a 0.05°×0.05° grid, using the POMINO NO2 VCD data 

retrieved from the Ozone Monitoring Instrument (OMI). We derive the average NOx emissions for the 

summer months (June, July, and August) of 2012–20162015. We construct a model called PHLET (2-

dimensional (2-D) Peking University High-resolution Lifetime-Emission-Transport (PHLET) model ) 5 

and its adjoint model (PHLET-A) to facilitate the emission inversionestimate. The concentration-

dependent lifetimelifetimes of NOx isare estimated as well, in order to account for the nonlinear NOx 

chemistry. 

Section 2 presents the data and method for top-down inversion of high-resolution NOx emission 

inversion.emissions. Inversion uncertainties are analyzed explicitly. We also test theSection 3 presents 10 

spatial distributions of NO2 VCDs, the derived local net sources (which are used subsequently to derive 

NOx emissions and lifetimes), NOx lifetimes, and their uncertainties. Section 4 analyzes the top-down 

emission data estimated here, including comparisons with spatial proxies (population density, night light 

brightness, power plant locations, road network, marine shipping routes, and a Google Earth photo for 

land use indication), the Multi-scale Emissions Inventory of China (MEIC) (Zheng et al., 2014; Liu et al., 15 

2015), the DECSO top-down emissions (Mijling et al., 2013; Ding et al., 2017b), and the MarcoPolo 

emissions (Hooyberghs et al., 2016; Timmermans et al., 2016). Section 5 tests our inversion method by 

applying it to the NO2 VCDs simulated by the GEOS-Chem CTM, in a manner similar to the Observing 

System Simulation Experiment (OSSE). Section 3 presents the top-down estimate of NOx emissions, 

lifetimes, and their uncertainties. Comparison with the Multi-scale Emissions Inventory of China (MEIC) 20 

is also provided. Section 4Section 6 concludes the study.  

2. Data and Method 

2.1. A general framework to retrieve NOx emissions at a high resolution 

The high-resolution NOx emission retrieval framework consists of multiple steps., as illustrated in the 

flowchart (Fig. 1). First, (Sect. 2.2), the POMINO NO2 VCD data over summer 2012–20162015 are 25 
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averaged on a 0.05°×0.05° grid, using a special oversampling technique that preserves the finest spatial 

information possible. A Satellite Conversion Matrix (SCM), which will be applied to PHLET simulated 

NO2 VCDs at the second step, is also calculated based on the OMI pixel parameters.  

Second, (Sect. 2.3), the PHLET model is constructed to simulate the local net source (i.e., emission – loss) 

and horizontal transport of NO2 VCDVCDs on the 0.05°×0.05° grid. A Satellite Conversion Matrix (SCM) 5 

approachThe SCM is used for spatial conversion between the PHLET grid space and the then applied to 

PHLET simulated VCDs to mimic how each satellite pixel space. averages the spatial distribution of NO2, 

in order to ensure the spatial sampling consistency between PHLET and POMINO. This process is needed 

because satellite pixels represent the NO2 spatial distribution at a coarser (than PHLET) resolution with 

irregular shapes of individual pixels.  10 

Third, (Sect. 2.4), the PHLET-A adjoint model is constructed to, together with PHLET, invert and 

POMINO VCDs, derive the local net source from satellite NO2 VCD data. at each 0.05°×0.05° grid cell. 

We construct a cost function to quantify the difference between the distribution of POMINO VCDs and 

that simulated by PHLET at the 0.05°×0.05° grid. The inversion process to derive the local net sources is 

equivalent to minimization of the cost function.  15 

Finally, (Sect. 2.5), the emission and lifetime of NOx at each 0.05°×0.05° grid cell is derived from the 

inverted local net source term, by assumingfitting a fixed formula within the small study domain for the 

nonlinear relationship between lifetime and VCD. Alifetimes and VCDs. The formula is assumed to be 

fixed, i.e., the relationship is applicable to all grid cells within the small study domain.  

Furthermore, a rigorous error analysis for the framework and models is also conducted, including using 20 

(Sect. 2.6). This analysis is complemented by an OSSE-like test. based on the GEOS-Chem simulated 

distribution of NO2 VCDs (Sect. 5). 

Our inversion method explicitly accounts for horizontal transport and the nonlinear relationship between 

NOx emissions, lifetimes, and NO2 VCDs. With a few reasonable assumptions, the method is 
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computationally efficient, suitable for speedily conducting high-resolution emission inversionestimates 

in multiple areas and across a long time period. In the case of YRD here, with (2012-2015 in this study). 

Both PHLET and PHLET-A are numerically solved based on FEniCS, a popular open source solver 

(Farrell et al., 2012; Funke and Farrell, 2013; Alnaes et al., 2015). With one computational core (Intel○R  

Xeon○R  Gold 6130 CPU @ 2.10GHz), the inversion calculationderivation of NOx emissions over the YRD 5 

here takes about 36 hoursless than one hour after necessary input data are prepared. Applying the 

framework to multiple areas would take a similar amount of time by using one computational core for 

each area. 

2.2. Tropospheric NO2 VCDs retrieved from OMI 

OMI is a UV/VIS nadir solar backscatter spectrometer on board the Aura satellite. OMI provides daily 10 

global coverage. Each complete swath of OMI consists of 60 ground pixels, the sizes of which increase 

from 13 km × 24 km at nadir to about 40 km × 150 km at the swath edge in accordance to the view 

zenith angle (VZA) from 0° to 57° (de Graaf et al., 2016). 

OMI is a UV/VIS nadir solar backscatter spectrometer on board the Aura satellite (Levelt et al., 2006). 

OMI provides daily global coverage. Each complete swath of OMI consists of 60 ground pixels, the sizes 15 

of which increase from 13 km × 24 km  at nadir to about 40 km × 150 km  at the swath edge in 

accordance to the view zenith angle (VZA) from 0° to 57° (de Graaf et al., 2016). 

We use Level-2 tropospheric NO2 VCD data from the POMINO (Peking University Ozone Monitoring 

Instrument NO2 product) (Lin et al., 2014; Lin et al., 20152015a). As described in detail in Lin et al. 

(2014; 2015), POMINO is an OMI-based regional NO2 product that includes a number of important 20 

features. Briefly, POMINO adopts the tropospheric slant column density (SCD) data from DONIMO v2 

and conducts an improved calculation of tropospheric air mass factors (AMFs) and VCDs (i.e., VCD = 

SCD / AMF) (Boersma et al., 2011)(Boersma et al., 2011). Key features of the POMINO algorithm 

include explicit representation of aerosol scattering and absorption (by combining aerosol data from daily 

nested GEOS-Chem (at 0.3125° long. × 0.25° lat.) simulations and monthly MODIS/Aqua aerosol optical 25 
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depth (AOD) data), explicit representation of the angular dependence of surface reflection, high-

resolution NO2 profiles from GEOS-Chem (at 0.3125° long. × 0.25° lat.), consistent retrievals of clouds 

(a prerequisite for the NO2 retrieval) and NO2, and use of a parallelized, LIDORT-driven AMFv6 package. 

POMINO NO2 VCDs are consistent with ground-based MAX-DOAS data (Liu et al., 2018b2019). 

To better relate NOx emissions to NO2 VCDs at the 0.05°×0.05° resolution, we only employ the NO2 data 5 

in summer (June, July, and August), in which season the lifetimelifetimes of NO2 isare the shortest (a few 

hours). We combine data over 2012–20162015 to increase the sample size. The change in NO2 VCD from 

June to August is relatively small, reducing the effect of intra-seasonal variability when invertingderiving 

NOx emissions from summer mean NO2 VCDs. We screen out the 30 outer pixels with VZA larger than 

30° (cross-track width larger than 36 km) that greatly smear the spatial gradient of NO2, pixels with cloud 10 

radiance fraction exceeding 50%, and pixels with AOD larger than 3 (i.e., when the aerosol data used in 

the NO2 retrieval are unreliable). We also exclude data with raw anomaly problems 

(http://projects.knmi.nl/omi/research/product/rowanomaly-background.php). and the NO2 retrieval is 

subject to an excessive error) (Lin et al., 2014;Lin et al., 2015b;Liu et al., 2018a). We also exclude data 

with raw anomaly problems (http://projects.knmi.nl/omi/research/product/rowanomaly-background.php). 15 

After data screening, we obtain valid data from 22,007 pixels. We then convert the pixel-specific Level-

2 data to the 0.05°×0.05° grid. 

To convert from the satellite pixel spacepixels to the 0.05°×0.05° grid spacecells, we use an oversampling 

method that employ satellite data on multiple days to enhance the horizontal resolution(Zhang et al., 2014) 

(Zhang et al., 2014). For each 0.05°×0.05° grid cell, we average all pixels covering the grid cell from all 20 

valid days, using area-based weighting. The oversampling approach takes advantage of the fact that the 

exact footprintlocation of the OMI instrumentfootprint slightly changes from one day to another, so does 

the exact location of the footprint of a satellitean OMI pixel at a given VZA. Thus, sampling from multiple 

days increases the horizontal resolution of data. Our oversampling approach is different from Fioletov et 

al., whoprevious studies, which filled a grid cell with data from pixels within a certain distance (e.g., 30 25 

http://projects.knmi.nl/omi/research/product/rowanomaly-background.php
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km), which implied a) and would result in spatial smoothing (Fioletov et al., 2011; Krotkov et al., 2016; 

Sun et al., 2018). 

For the purpose of emission inversionestimate, we assume that the error of VCD at a satellite pixel (𝜎𝜎𝑝𝑝) 

contains an absolute error of 0.5 × 1015half of the mean VCD over the domain (i.e., 1.9×10-15 molecules 

cm-2) and a relative error of 30% (Lin et al., 2010; Boersma et al., 2011;Lin et al., 2015; Beirle et al., 5 

2011; Lin et al., 2015a). We further add in quadrature an additional error (𝜎𝜎𝑔𝑔) when a satellite pixel is 

projected to the grid cells at a finer resolution; this error is important in the urban-rural fringe zone. For a 

given grid cell, 𝜎𝜎𝑔𝑔 is set to be 1550% of the standard deviation of VCDs at its eight surrounding eight 

grid cells. Sampling over multiple days reduces the random error by a factor of s = ��(1 − 𝑐𝑐) 𝑛𝑛 + 𝑐𝑐⁄ �, 

where c represents the fraction of systematic error (assumed to be 50%) and 𝑛𝑛 the number of days with 10 

valid data (Eskes et al., 2003; Miyazaki et al., 2012). Thus, the total error for the temporally averaged 

VCD at a given grid cell is 𝜎𝜎𝑠𝑠 = �(𝜎𝜎𝑝𝑝2 + 𝜎𝜎𝑔𝑔2) ∙ 𝑠𝑠. 

2.3. The PHLET model simulation 

We construct the PHLET model on the 0.05° × 0.05° grid to interpret the relationship 

between local net source (emissions – loss), horizontal transport, and VCD of NO2 in 15 

a 2-D gridded space (Eq. (1)) in the sense of long-time average. PHLET simulates the 

horizontal transport of NOx through a time averaged advection process and an 

“effective” diffusion process, which represents the residual from the temporally 

averaged advection. The model assumes a horizontally homogeneous vertical shape of 

NO2 concentrations, and that NO2 is concentrated near the surface (Beirle et al., 20 

2011). The assumption is implicitly used in many previous studies for polluted areas 

(Liu et al., 2016;Beirle et al., 2011). The corresponding uncertainty in the modeled 

NO2 VCDs is set as 15% (Lin et al., 2014;Boersma et al., 2011).  
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Although lightning emissions, biomass burning emissions, aircraft emissions, and the 

vertical transport can lead to NO2 at higher altitudes over the YRD area, the amount 

of NO2 aloft is much smaller than NO2 near the ground due to large anthropogenic 

pollution emitted from the ground (Lin, 2012). We regard NO2 aloft as the regional 

background, and do not include it in Eq. 1 – as such, PHLET accounts for anthropogenic 5 

and soil NOx emitted from the surface but not other types of emission sources. [For 

NOx near the ground in the YRD area, the contribution of lightning, biomass burning, 

and aircraft emissions is negligible compared to the major anthropogenic (energy, 

industry, transportation, residential) sources.] To ensure the consistency between 

PHLET and OMI NO2 data, we assume the background value to be half of the minimum OMI 10 

NO2 VCD among all grid cells (i.e. 0.54 × 1015molecules cm-2), and then subtract the 

background value from the gridded OMI data when comparing with PHLET simulations. We 

construct the PHLET model on the 0.05°×0.05° grid to interpret the relationship between local net source 

(i.e., emission – loss), horizontal transport, and VCDs of NO2 in a 2-D gridded space (Eq. 1) in the sense 

of long-time average. PHLET simulates the horizontal transport of NOx through a time averaged 15 

advection process and an “effective” diffusion process, which represents the residual from the temporally 

averaged advection. The vertical distribution is simplified as in Sect. 2.3.2. The loss process of NOx is 

represented based on the lifetime. 

2.3.1 Governing equation of PHLET 

PHLET is an equilibrium model for the local net source, VCDs and horizontal transport of NO2 at each 20 

grid cell. The corresponding uncertainty in the modeled NO2 VCDs is set as 5%.  

Equation (1) presents the governing equation in PHLET: 
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𝜕𝜕𝜕𝜕(𝑥𝑥,𝑦𝑦)
𝜕𝜕𝜕𝜕

 =  𝑟𝑟 ∙ 𝐿𝐿(𝑥𝑥,𝑦𝑦) − 𝑽𝑽(𝑥𝑥,𝑦𝑦) ∙  𝛻𝛻𝛻𝛻(𝑥𝑥, 𝑦𝑦)  + 𝛻𝛻 ∙ (𝐊𝐊(𝑥𝑥, 𝑦𝑦) ∙  𝛻𝛻𝛻𝛻(𝑥𝑥,𝑦𝑦)) ∙ �𝐊𝐊(𝑥𝑥,𝑦𝑦) ∙  𝛻𝛻𝛻𝛻(𝑥𝑥,𝑦𝑦)� = 0

   (1) 

𝛻𝛻(𝑥𝑥,𝑦𝑦) represents the tropospheric NO2 VCD (in molecules cm-2) withdue to sources over the regional 

background removedYRD. The value of 𝛻𝛻(𝑥𝑥,𝑦𝑦) after the model reaches equilibrium (𝜕𝜕𝜕𝜕(𝑥𝑥,𝑦𝑦)
𝜕𝜕𝜕𝜕

 =

0 for every x and y) gives the distribution of NO2 VCDs to at equilibrium (𝜕𝜕𝜕𝜕(𝑥𝑥,𝑦𝑦)
𝜕𝜕𝜕𝜕

 = 0 for every x 5 

and y). The discrete form of PHLET is set on the 0.05°×0.05° grid. The simulated VCDs will be 

comparedapplied with the SCM and compared to the gridded, OMI data (after the contribution of 

horizontally homogeneous regional background value excludedis subtracted from the OMI data. As 

such, we, see Sect. 2.3.2).  

We assume a steady state of NO2 in the PHLET model, and PHLET, although NO2 observed by the 10 

satellite instrument may be in a transient state. We assign an uncertaintyerror of 15% to simulated 𝛻𝛻(𝑥𝑥,𝑦𝑦) 

to account for the possibility that NO2 may not be fully in steady state.possible range of NO2 variability 

at the overpass time of the instrument. Also, combining data from multiple years to derive an averaged 

NO2 distribution for simulation (rather than conducting the simulations for individual years and months) 

leads to an additional uncertainty, which is set to be 10%.% based on a comparison between the emissions 15 

estimated from multiple years together (here) and the average of emissions estimated from individual 

years (in a sensitivity test). 

𝐿𝐿(𝑥𝑥,𝑦𝑦) represents the local net source term (in molecules cm-2 s-1, equivalent to 2.63 × 10-12 kg km-2 h-1) 

combining), which combines the effects of ground emissions (anthropogenic + soil + biomass burning; 

see discussion in Sect. 2.3.2), deposition, and chemistry of NOx. At equilibrium, the domain average of 20 

modeled 𝐿𝐿(𝑥𝑥,𝑦𝑦) reaches zero, become there are no horizontal fluxes into or out of the domain boundaries. 

𝐿𝐿(𝑥𝑥,𝑦𝑦) can be separated into an emission term, and a loss term: 
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𝐿𝐿(𝑥𝑥,𝑦𝑦) = 𝐸𝐸(𝑥𝑥,𝑦𝑦) − 𝜕𝜕(𝑥𝑥,𝑦𝑦)
𝑟𝑟∙𝜏𝜏(𝑥𝑥,𝑦𝑦)

          (2) 

where 𝐸𝐸(𝑥𝑥, 𝑦𝑦)  denotes the gridded 𝑟𝑟 emissions of NOx, and 𝜏𝜏(𝑥𝑥,𝑦𝑦)  the lifetimes associated with 

deposition and chemical loss. 𝑟𝑟 represents the ratio of NO2 over NOx concentration. The daytime NOx 

chemical system reaches equilibrium rapidly and 𝑟𝑟 varies little (Beirle et al., 2011; Valin et al., 2013). 

We set 𝑟𝑟 to be 0.76 with an uncertainty of 10% (Seinfeld et al., 2006; Beirle et al., 2011). 5 

𝑽𝑽(𝑥𝑥,𝑦𝑦) ∙  𝛻𝛻𝛻𝛻(𝑥𝑥,𝑦𝑦)  represents the time averaged advection term.  . We set 𝑟𝑟  to be 0.76 with an 

uncertainty of 10% (Seinfeld et al., 2006;Beirle et al., 2011). 𝑽𝑽(𝑥𝑥,𝑦𝑦) denotes the mean wind vector (in m 

s-1) averaged over summer 2012–2015. The wind data are taken from the European Centre for Medium-

range Weather Forecasts (ECMWF) ERA5 dataset (see details in Sect. 2.3.3).  

𝐿𝐿(𝑥𝑥,𝑦𝑦) can be separated into an emission term and a loss term: 10 

𝐿𝐿(𝑥𝑥,𝑦𝑦) = 𝐸𝐸(𝑥𝑥,𝑦𝑦) − 𝜕𝜕(𝑥𝑥,𝑦𝑦)
𝑟𝑟∙𝜏𝜏(𝑥𝑥,𝑦𝑦)

          (2) 

where 𝐸𝐸(𝑥𝑥, 𝑦𝑦) denotes the gridded emission of NOx, and 𝜏𝜏(𝑥𝑥,𝑦𝑦) the lifetime of NO2 associated 

with deposition and chemical loss.  

𝑽𝑽(𝑥𝑥,𝑦𝑦) ∙  𝛻𝛻𝛻𝛻(𝑥𝑥,𝑦𝑦) represents the time averaged advection term.  𝑽𝑽(𝑥𝑥, 𝑦𝑦) denotes the mean wind 

vector (in m s-1) averaged over summer 2012–2016. To solve the advection process, we follow 15 

the Walcek scheme (Walcek, 2000); the SHASTA scheme (Schere, 1983) leads to similar results. 

𝛻𝛻 ∙ (𝐊𝐊(𝑥𝑥, 𝑦𝑦) ∙  𝛻𝛻𝛻𝛻(𝑥𝑥,𝑦𝑦)) represents the diffusion term, where 𝐊𝐊(𝑥𝑥, 𝑦𝑦) denotes the “effective” diffusion 

coefficient tensor (in m2 s-1). The diffusion term accounts for transport by the residual winds deviating 

from the temporally averaged wind vector 𝑽𝑽(𝑥𝑥,𝑦𝑦). Appendix A shows how to determine the diffusion 

coefficient and solve the diffusion process.tensor.   20 
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2.3.2 The discrete formVertical shape and regional background of NO2 

PHLET assumes a horizontally homogeneous vertical shape of NO2 concentrations, and that NO2 is 

concentrated near the surface (Beirle et al., 2011). The assumption is implicitly used in many previous 

studies for polluted areas (Beirle et al., 2011; Liu et al., 2016; Liu et al., 2017). The corresponding 

uncertainty in the modeled NO2 VCDs is set as 15% (Boersma et al., 2011; Lin et al., 2014).  5 

Lightning emissions, biomass burning emissions, aircraft emissions, transport from neighboring regions, 

and convection can lead to NO2 at higher altitudes over the YRD area. However, the amount of NO2 aloft 

is much smaller than near-ground NO2 due to large ground sources (Lin, 2012). Thus, we regard NO2 

aloft as the regional background, and do not include it in Eq. 1. Also, for near-ground NO2 over the YRD 

area, the contribution of downward vertical transport is negligible compared to the contribution of ground 10 

sources. Aircraft emissions contribute little to the total ground source, because 78% of aircraft emissions 

occur at the high altitudes (9–12 km) (Ma and Xiuji, 2000). Therefore, PHLET only accounts for near-

ground NO2 from ground soil, biomass burning and anthropogenic sources (energy, industry, 

transportation, and residential). 

To ensure the consistency between PHLET and OMI NO2 data, we assume the background value to be 15 

half of the minimum OMI NO2 VCD among all grid cells (i.e., 0.54×1015 molecules cm-2), and then 

subtract the background value from the gridded OMI data when comparing with PHLET simulations. The 

corresponding uncertainty in the modeled NO2 VCDs is set as 5%.  

2.3.3 on the 0.05° × 0.05° grid. Initial conditions, lateral boundary conditions, and wind data 
input 20 

To run PHLET, the NO2 VCDs at the domain edges, as the lateral boundary conditions (LBCs), are set as 

the corresponding OMI NO2 VCDs. For initial conditions, the VCD and the local net source at each grid 

cell inside the domain boundaries isare set to beas zero, and the local net source term is assigned to be a 

low value (0.02 kg km-2 h-1, or 7.60 × 109 molecules cm-2 s-1).. The horizontal distributiondistributions 

of modeled NO2 VCDs and local net sources at equilibrium doesdo not depend on the initial conditions. 25 
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At equilibrium, the domain average of modeled 𝐿𝐿(𝑥𝑥,𝑦𝑦) reaches zero, become there are no horizontal 

fluxes into or out of the domain boundaries.  

For horizontal transport, we use 3-hourly wind fields from the European Centre for Medium-range 

Weather Forecasts (ECMWF) ERA5 dataset 

(https://confluence.ecmwf.int//display/CKB/ERA5+data+documentation; last access: 2018/7/2). The 5 

resolution of raw ERA5 data is  0.28125°  on the reduced Gaussian grid, which is regridded to 

0.05° × 0.05°0.05°×0.05° by using the online program offered by ECMWF (see Fig. A1A). We adopt 

the mean wind field of the lowest 14 vertical levels (out of 157 levels in total); these 14 levels represent 

the altitudes from surface to about 500 m (Hersbach and Dee, 2016;Beirle et al., 2011).(Beirle et al., 

2011;Hersbach and Dee, 2016). Over the study period, the prevailing wind is northwesterly, and the wind 10 

speed is small over land (Fig. A1A). For both zonal and meridional wind speeds, the uncertainty in the 

average wind speed is set to be 10%, which is similar to the temporal standard deviation of the wind speed. 

and may partly account for the fact that lower-resolution wind data are used. We assess the model errors 

introduced by the uncertainties in the wind field and effective diffusion coefficients by Monte Carlo 

simulations; the in which the wind speeds are changed according to their uncertainties. The resulting 15 

relative uncertainty in the modeled NO2 VCDs is about 520%. 

2.3.4 Application of SCM 

Re-mapping of PHLET simulated NO2 VCDs in accordance to satellite pixels is important. Given the size 

of OMI pixels, the OMI NO2 data smooth to some extent the actual horizontal distribution of NO2. To 

ensure consistent spatial sampling between PHLET and OMI data, for each day we project the PHLET 20 

modelled NO2 VCD data (in the original 0.05° × 0.05°0.05°×0.05° grid space) to the satellite pixel 

spacepixels to mimic how OMI “sees” the ground, remove the pixels with invalid OMI data, and then 

project the model data back to the 0.05° × 0.05°0.05°×0.05° grid. The last two procedures are the same 

as done for OMI data. The whole process of grid conversion is done through the SCM approach 

https://confluence.ecmwf.int/display/CKB/ERA5+data+documentation
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(Appendix B). Although PHLET simulates summer average NO2 VCDs (rather than daily values), we 

repeat the grid conversion process for as many days as there are valid OMI data. 

2.3.5 Summary of model errors  

The model error 𝜎𝜎𝑚𝑚 is set to be the sum in quadrature of errors contributed by the abovementioned steady 

state assumption (15%), the time averaging over multiple years and months (10%), the assumption of 5 

horizontally constant vertical shape of NO2 (15%), the NO2/NOx ratio (10%), the treatment of background 

NO2 concentration (5%), and the error in the wind data and the calculation of effective diffusion 

coefficients (520%). 

2.4. PHLET-A: The adjoint model of PHLET 

We construct the PHLET-A adjoint model to obtain an optimized horizontal distribution of the local net 10 

source term (L in Eq. (1))) under the given OMI NO2 VCDs, wind field, and other parameters. PHLET-

A accounts for the complex nonlinear effects of 2-dimensional transport and loss processes. We define a 

scalar cost function (Eq. (3)) to quantify the difference between OMI NO2 VCDs and PHLET simulated 

NO2 VCDs. 

We first define a scalar cost function (Eq. 3) to quantify the difference between OMI NO2 VCDs and 15 

PHLET simulated (and SCM applied) NO2 VCDs. 

𝐽𝐽 = (𝑪𝑪𝑶𝑶𝑶𝑶𝑶𝑶 − 𝑪𝑪𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷)𝑇𝑇𝐒𝐒𝐨𝐨−𝟏𝟏(𝑪𝑪𝑶𝑶𝑶𝑶𝑶𝑶 − 𝑪𝑪𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷)       (3) 

Because PHLET does not require a priori knowledge about the local net source, the cost function does 

not include the a priori term either. The vector  𝑪𝑪  denotes gridded NO2 VCDs. 𝐒𝐒𝐨𝐨  denotes the 

observational error covariance matrix consisting of a satellite data error covariance matrix (𝐒𝐒𝐬𝐬) and a 20 

PHLET model error covariance matrix (𝐒𝐒𝐦𝐦): , as derived in Appendix C. 

Applying Lagrange identity and integrating by parts, we𝐒𝐒𝐨𝐨 = 𝐒𝐒𝐬𝐬 + 𝐒𝐒𝐦𝐦     

        (4) 
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For simplicity and following previous studies (Keiya and Itsushi, 2006; Cao et al., 2018), both 𝐒𝐒𝐬𝐬 and 

𝐒𝐒𝐦𝐦 are assumed to be diagonal, with the diagonal elements set to be 𝜎𝜎𝑓𝑓2 and 𝜎𝜎𝑚𝑚2 , respectively. Grid cells 

nearby may share the same pixels, although the area-based weights would be different. This means that 

nearby grid cells may not be fully independent, leading to a weakness of the diagonal assumption here. 

The associated uncertainty is partly accounted for by an error term based on the variability of NO2 VCDs 5 

(i.e., 50% of the standard deviation across the surrounding grid cells; see Sect. 2.2). 

We then derive PHLET-A and its initial and lateral boundary conditions by applying Lagrange identity 

and integrating by parts (Marchuk, 1994; Sandu et al., 2005; Martien et al., 2006; Hakami et al., 2007): 

𝜕𝜕𝜕𝜕(𝑥𝑥,𝑦𝑦)
𝜕𝜕𝜕𝜕

+ 𝛻𝛻(𝑽𝑽(𝑥𝑥, 𝑦𝑦) ∙ 𝜆𝜆(𝑥𝑥,𝑦𝑦)) + 𝛻𝛻 ∙ (𝐊𝐊(𝑥𝑥,𝑦𝑦) ∙ 𝛻𝛻𝜆𝜆(𝑥𝑥,𝑦𝑦)) = 0      (45) 

𝜆𝜆(𝑥𝑥,𝑦𝑦)|𝜕𝜕=𝑇𝑇 = 𝛿𝛿𝛿𝛿
𝛿𝛿𝜕𝜕(𝑥𝑥,𝑦𝑦)

|𝜕𝜕=𝑇𝑇           (56) 10 

𝜆𝜆(𝑥𝑥,𝑦𝑦)|𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑟𝑟𝑦𝑦 = 0                                                                                                                          (67) 

As shown in Eq. Here, T stands for the time when the domain-wide NO2 VCDs come to equilibrium, i.e., 

the start time of the adjoint simulation. By discrete adjoint sensitivity analysis, the gradient of cost 

function to emission is obtained: 

𝛿𝛿𝛿𝛿
𝛿𝛿𝐿𝐿𝑖𝑖,𝑗𝑗

5, PHLET-A represents the sensitivity of cost function (𝐽𝐽) to local net source (𝑷𝑷) where 𝜆𝜆 stand for 15 

the adjoint variable (Marchuk, 1994; Sandu et al., 2005). T stands for the time when the domain-wide 

NO2 VCDs come to equilibrium, i.e., the start time of the adjoint simulation. By discrete adjoint sensitivity 

analysis, the gradient of 𝐽𝐽 to 𝑷𝑷  is obtained: 

𝛿𝛿𝛿𝛿
𝛿𝛿𝐿𝐿𝑖𝑖,𝑗𝑗

= 𝑟𝑟 ∙ 𝛥𝛥𝑥𝑥 ∙ 𝛥𝛥𝑦𝑦 ∙ 𝛥𝛥𝛥𝛥 ∙ ∑ 𝜆𝜆𝑖𝑖,𝑗𝑗,𝑘𝑘𝑘𝑘                                                                                                          (78) 
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where the indices i, j, and k denote zonal, meridional, and time, respectively. The gradient is then used in 

an iterative optimization algorithm (Appendix C(shown by the blue arrows in Fig. 1) to minimize the cost 

function 𝐽𝐽 , i.e., to minimize the weighted difference between model simulated and OMI NO2. The 

iteration stops when 𝐽𝐽 is reduced from an initial value of 7937 to a stabilized value below 390 (Fig. C1). 

The numerical solution to obtain an optimized 𝑷𝑷  that minimizes 𝐽𝐽 is as follows. Given a starting point 5 

of  𝑷𝑷, we derive a search direction by the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method (Li and 

Fukushima, 2001; Bousserez et al., 2015). Then, by practicing backtracking line search based on the 

Armijo–Goldstein condition (Armijo, 1966), we obtain a revised 𝑷𝑷 for the next iteration. The numerical 

calculation is done through FEniCS. It takes 50 iterations of PHLET and PHLET-A runs before the 

convergence is reached, according to the rate of reduction in 𝐽𝐽. The value of  𝐽𝐽 is reduced from an initial 10 

value of 6585.2 to a stabilized value of 73.6 (Fig. 2). 

The uncertainty of the optimized 𝑷𝑷 is given by the Hessian of the cost function, which is approximated 

by the BFGS method (Brasseur and Jacob, 2017): 

𝐒𝐒 = 2 ∙ (∇𝑷𝑷2J)−1            (9) 

2.5. Deriving emission and loss from the local net source term 15 

The optimized local net source term combines the contributions of emission (anthropogenic + soil) and 

loss (chemical loss + deposition). We further separate emission from loss by assuming a fixed formula 

within our small study domain for the nonlinear relationship between lifetimelifetimes and VCDVCDs of 

NO2.  

In the summertime daytime, the dominant sink of NOx is reactions with the radicals to produce nitric acid 20 

and organic nitrogen species. The NOx chemistry quickly reaches a steady state under high solar radiation 

and air temperature in the early afternoon (Murphy et al., 2006; Valin et al., 2013) when OMI passes over 

the YRD. The chemical lifetime of NOx depends on the concentrations of NOx and non-methane volatile 

organic compounds (NMVOC), radiation, temperature, and other factors. Within our small study domain, 
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we assume the net effect of all factors except NOx concentrations to be spatially homogeneous. As such, 

the chemical lifetime of NOx at steady state is a sole function of NOx concentration (and thus NO2 VCD, 

given the constant NO2/NOx ratio). Appendix DC shows in detail how to deduce the chemical lifetime of 

NOx from NO2 VCD, to account for the effect of dry deposition, to separate emission and lifetime from 

the local net source term, and to quantify the errors involved using Monte Carlo simulations.  5 

2.6. Uncertainty estimate for invertedtop-down emissions 

For a particular grid cell, our invertedthe derived emission is affected by the error involved in the 

inversionestimate of 𝐿𝐿 (embedded in satellite data and model simulations) and the error in the separation 

of emission and lifetime from  𝐿𝐿 . The satellite data error 𝜎𝜎𝑠𝑠  is analyzed in Sect. 2.2. The model 

inducedrelated error 𝜎𝜎𝑚𝑚 is analyzed in Sect. 2.3. The error of 𝐿𝐿, 𝜎𝜎𝐿𝐿, is connected with 𝜎𝜎𝑠𝑠 and 𝜎𝜎𝑚𝑚 through 10 

the adjoint simulation (Sect. 2.4), and is given by Hessian of the cost function J (Appendix CSect. 2.4). 

The error involved in the separation of emission and lifetime, 𝜎𝜎𝑓𝑓 , is contributed by the assumption on the 

NO2/NOx ratio rr (Sect. 2.3.1), the simplified treatment of deposition and chemical processes of NOx 

(Appendix DC), and the assumed relationship between lifetimelifetimes and VCDVCDs (Appendix DC). 

𝜎𝜎𝑓𝑓 is estimated by 500 times of data fitting of L at individual grid cellswith different fitting parameters 15 

(Appendix DC).  

Thus, the error in inverted emission, 𝜎𝜎𝑒𝑒 , is equal to the sum in quadrature of 𝜎𝜎𝐿𝐿  and 𝜎𝜎𝑓𝑓 , i.e., 𝜎𝜎𝑒𝑒 =

�𝜎𝜎𝐿𝐿2 + 𝜎𝜎𝑓𝑓2. The error in the inverted lifetime is derived from the errors in a similar wayNOx loss 

(estimated in Appendix C) and NO2 VCDs, according to the common manner of error synthesis. 

Appendix E further presents an OSSE-like test to estimate the reliability of our emission inversion method, 20 

by examining to what extent the method can invert the emissions used in a nested GEOS-Chem simulation 

(0.3125° long.  × 0.25° lat.) for summer 2014. Overall, the inverted emission data capture the mean 

value and spatial variability of the GEOS-Chem emissions, with a linear regression slope of 0.98, a 
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correlation of 0.93, and a mean bias of 0.25 kg km-2 h-1 (16%). This test suggests the high reliability of 

our inversion method. 

3. High-resolution spatial distributions of NO2 VCDs, local net sources, and lifetimes over the 
YRD 

Figure 1a3a shows the number of days with valid OMI data in summer 2012–20162015 over the YRD 5 

area on the 0.05°×0.05° grid. The number of days varies from about 1412 to 113 (56101 (48 on average). 

There is a “band” pattern in the spatial distribution, due to the difference in the number of satellite orbits 

covering each grid cell (not shown). This band pattern is not obvious in the distribution of OMI NO2 

VCDs (Fig. 1b3b), suggesting that the temporally averaged VCD values are less sensitive to the number 

of days (1412 or more) used for temporal averaging. There are fewer valid data in severely polluted 10 

locations. The effect of sampling size on the uncertainty in OMI NO2 is accounted for in our study (Sect. 

2.2). 

Figure 1b3b shows the gridded horizontal distribution of OMI NO2 VCDs. The background value 

(0.54×1015 molecules cm-2) has not been removed. NO2 VCDs are high over the major urban centers along 

the Yangtze River and the coastal line, especially Shanghai, Nanjing (Capital of Jiangsu Province), 15 

Hangzhou (Capital of Zhejiang Province), and the Ningbo-Zhoushan area (with intensive maritime 

shipping activities). The maximum VCD value exceeds 14 × 1015 16×1015 molecules cm-2 in north 

Shanghai. NO2 VCDs are larger than 1 × 10151×1015 molecules cm-2 at all grid cells, reflecting the 

influence of local anthropogenic sources and/or pollution transported from nearby cities (Cui et al., 2016). 

NO2 VCDs are lower than 3 × 1015(Cui et al., 2016). NO2 VCDs are lower than 5×1015 molecules cm-2 20 

along the boundaries of our study domain. 

Across the grid cells, the absolute errors in OMI NO2 VCDs are about 0.58– 3.4 × 10151.6–4.9×1015 

molecules cm-2 (Fig. 2a4a), and the relative errors are about 24%–5430%–157% (Fig. 2b4b). In general, 

the grid cells with larger NO2 VCDs have larger absolute errors but smaller relative errors. Over the 
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eastern sea and the southwestern corner of the domain, NO2 VCDs are relatively small (Fig. 1b3b), thus 

their absolute errors are small (Fig. 2a4a), but their relative errors are very large (Fig. 2b). 4b). 

Figure 1c4c shows the spatial distribution of the inverted local net source L (emission – loss). A positive 

(negative) value of L indicates that the emission is larger (smaller) than the loss. The values of L are the 

greatest (8.911.7 kg km-2 h-1) over the major urban areas with high NO2 VCDs, and are low (<-3.2(< -1.0 5 

kg km-2 h-1) in many areas with low NO2 loadings. However, theThe values of L are the lowest ((-7.6.9)– 

(-2)–(-3.2.0) kg km-2 h-1) at places in the urban-rural fringe zones with NO2 hotspots nearby; this feature 

reflects that NO2 is transported from the urban centers and destroyed in the fringe zones. The absolute 

errors of L vary from 0.6 to 4.5 kg km-2 h-1. The spatial correlation between the absolute errors of L (Fig. 

2c) are highly consistent with4c) and those of the NO2 VCDVCDs (Fig. 2a), with a spatial correlation of 10 

0.95.4a) is about 0.5. The absolute errors of L are notable in the urban-rural fringe zones where L is small 

but NO2 VCD is high, because the deviation of L at these areas is very sensitive to errors in the assumed 

transport and loss process. 

Figure 1d3d shows the inverted lifetimederived lifetimes of NO2 on the 0.05°×0.05° grid. The lifetime 

rangeslifetimes range from 1.40.6 to 3.63 h across the study domain., with an average of 2.0 h. The 15 

lifetime is below 1.5lifetimes are about 0.6 h at grid cells with NO2 VCDs of about 2 × 1015  1.6×1015 

molecules cm-2, increasing to 2.20.8 h at grid cells with the lowest VCDs (< 2 × 1015 (around 1.0×1015 

molecules cm-2), and exceeding 3 h at many polluted grid cells, i.e., the urban centers. The mean lifetime 

over the study domainnonlinear dependence of lifetimes on VCDs is about 2.0 h. expected from our 

inversion method (Appendix DC).  Appendix C further shows the chemical lifetimelifetimes to be 1.7–20 

0.6.6–3.8 h and the deposition lifetimelifetimes to be constantly at 7.830.4 h across all grid cells. The 

nonlinear dependence of lifetime on VCD is expected from our inversion method (Appendix D). The  

Figure 4d shows that the absolute uncertaintyuncertainties in the inverted lifetime islifetimes are greater 

than 1.0 h at the NO2 hotspot locations, between 0.756 and 1.0 h over the eastern sea and the southwest 

of the study domain, and about 0.74 h at many other locations (Fig. 2d).. The lifetimes at high-NO2 25 
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locations (up to 3.3 h) are consistent with previous studies, e.g., one single value of 4.7±1.4 h for Shanghai 

in summer 2005–2013 by (Liu et al., 2016). The short lifetimes at low-NO2 locations over the eastern sea 

may be underestimated, due to the assumption that non-NO2 factors (especially NMVOC) are spatially 

homogeneous within the study domain (Appendix C). In particular, the concentrations of NMVOC over 

the eastern sea may be overestimated by this assumption, based on the OMI formaldehyde data (De Smedt 5 

et al., 2015). 

4. High-resolution spatial distribution of NOx emissions over the YRD 

4.1. Spatial distribution of inverted emissions 

Figure 1e5a shows the invertedderived horizontal distribution of summer 2012–20162015 average NOx 

emissions on the 0.05°×0.05° grid. The inverted emissions include the contributions of ground 10 

anthropogenic (energy, industry, transportation, and residential), soil and biomass-burning sources. As 

discussed in Sect. 4.3, soil emissions contribute little (0.95%) to the total emissionemissions over the 

study domain. , and biomass burning contributes about 5.1%. 

Figure 1e5a shows that NOx emissions vary from 0 to 12.015.3 kg km-2 h-1 across the grid cells. The 

highest emission value occurs in north Shanghai, close to Wusongkou where Shanghai Port is located, 15 

which has become the largest container terminal all overin the world in 2010 (Fu et al., 2012).(Fu et al., 

2012). High emission values also occur at places along the Yangtze River and the coastal line. Along the 

Yangtze River, the highest emission value occurs in Nanjing City. Along the coastal line, there is an 

emission hotspot in the Ningbo-Zhoushan area. The general spatial distribution of inverted NOx emissions 

is consistent with that of OMI NO2 VCDs (correlation = 0.8269), reflecting the short lifetimelifetimes of 20 

NOx and thus a modest effect of horizontal transport. Nonetheless, emissions are much more concentrated 

at a few sparse locations than NO2 VCDs are, and many locations near the emission hotspots have very 

low emissions but relatively large NO2 VCDs, suggesting that the effect of horizontal transport cannot be 

ignored at such a high resolution.  
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Figure 2e5b shows the absolute uncertaintieserrors of NOx emissions at individual grid cells. The emission 

uncertainty varieserrors vary from 0.17 to 1.4.5 kg km-2 h-1 across all grid cells. The largest uncertainty 

occurs in north Shanghai, corresponding to the highest VCD (Fig. 1b3b) and emission (Fig. 1e5a) values. 

The spatial pattern of absolute emission uncertaintieserrors (Fig. 2e5b) is closer to the pattern of NO2 

VCDs (Fig. 1b3b, correlation = 0.9151) than to the pattern of emissions (Fig. 1e5a, correlation = 0.75). 5 

The emission uncertainties33). There are spatially more homogeneoushotspots in the distribution of 

emission errors than in the distributions of VCDs and emissions are, because the emission 

uncertaintieserrors can be high at locations with low VCDs and emissions. The spatial pattern of emission 

uncertaintieserrors is consistent with that of L uncertaintieserrors (Fig. 2c4c, correlation = 0.85).1.0), 

indicating that the errors in deriving emissions from the local net sources are rather homogenous. Figure 10 

5c further shows that the relative errors of emissions are high (> 100%) over low-emission locations but 

much lower over emission hotspots. 

The scatter plot in Fig. 2f shows the emission uncertainty as a function of emission at each grid cell. 

Although the emission uncertainty tends to be higher when the inverted emission value increases,5d 

shows the relationship between absolute emission errors and emissions at individual grid cells. The 15 

relationship is highly nonlinear, and there is large data spread. The data spread reaches its maximum value 

when emissions are the lowest, declines where the emissions are low. The data spread tends to be smaller 

when emissions exceed 5 kg km-2 h-1. The emission errors tend to decrease as emissions increase until 

about 5 kg km-2 h-1, after which the emission errors tend to increase with the increasing emissions, and is 

relatively small when emissions exceed 3 kg km-2 h-1. The . The data points in Fig. 2f5d are further colored 20 

to indicate the different ranges of VCDs at individual grid cells. It is clear that the , and they show that 

grid cells with low emissions but high emission uncertainties have large higher NO2 VCDs. These grid 

cells are located in the urban-rural fringe zones with significant NO2 pollution transported from nearby 

urban centers have larger emission errors and smaller data spread.  
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4.2. ComparingComparison between our invertedtop-down emissions with nighttime light, 
population density, and road networkspatial proxies 

This section compares our inverted NOx emission dataset (Fig. 6b) with several spatial proxies widely 

used in bottom-up inventories, including nighttime light brightness (0.5′ × 0.5′, Fig. 3a6c), population 

density (Fig. 6d), road network (Fig. 6e), ship route density (0.1° × 0.1°, Fig. 3b), and road network (Fig. 5 

3cFig. 6f), power plant locations (Fig. 6g), and a satellite photo from Google Earth that indicates the 

extent of land use (Fig. 6i). These proxies broadly represent the intensity of human activities and are 

highly related to NOx emissions (Geng et al., 2017)(Geng et al., 2017). 

Figure 3a6c shows the spatial distribution of nighttime light brightness in 2012. The data are taken from 

Version 4 DMSP-OLS Nighttime Lights Time Series at a horizontal resolution of 0.5’×0.5’ 10 

(https://www.ngdc.noaa.gov/eog/dmsp/downloadV4composites.html; last access: 2018/08/19). The 

brightness is represented digitally from 0 to 63 bits. The nighttime light reflects the intensity of household 

activity, commercial activity, and resource consumption (Elvidge et al., 2013). When regridded to 

0.05° × 0.05°0.05°×0.05°, the spatial correlation between nighttime light brightness and NOx emissions 

is about 0.70, i.e., the nighttime light brightness can explain 49% of the spatial variability in NOx 15 

emissions in the YRD area. 61 over land. 

Figure 3b6d shows the population density data, which are taken from the Gridded Population of the World 

v4 (GPWv4) at a horizontal resolution of 0.1°×0.1° 

(http://sedac.ciesin.columbia.edu/data/collection/gpw-v4/sets/browse; last access: 2018/08/19) (Center 

for International Earth Science Information Network - CIESIN - Columbia University, 2016).(Center for 20 

International Earth Science Information Network - CIESIN - Columbia University, 2016). This dataset 

provides population density data for every five years (2000, 2005, 2010, 2015, etc.). Data in 2012, 2013 

and 2014 are estimated by fitting a natural spline to the 2000, 2005, 2010, and 2015 values. Data in 2016 

are estimated by fitting a natural spline to the 2005, 2010, 2015, and 2020 values. The population density 

varies greatly from the urban centers to the countryside. In north Shanghai, the population density exceeds 25 

5 × 1033.5×103 km-2. The NOx emission hotspots match the population hotspots, and the lowest-emission 
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locations have little population. When regridded to 0.05° × 0.05°0.05°×0.05°, the spatial correlation 

between population densities and NOx emissions is 0.5250 over land.  

Figure 3c6e shows our NOx emissions overlaid with the OpenStreetMap road network data 

(http://download.geofabrik.de; last access: 2018/6/27). The network includes both highways and local 

roads. In the southern areas (between 29°N and 31°N), the spatial distribution of NOx emissions largely 5 

coincides with the road network. The spatial coincidence is less obvious in the north because of the 

influence of non-mobile sources. NOx emissions are notable along the three major national highways 

connecting Jinhua City (one of the largest hubs of light industry products in China), Hangzhou City, and 

Ningbo City. NOx emissions are also identifiable along the national highway from Hangzhou City to 

Huangshan City. Pairs of NOx emissions and traffic hubs are located to the west of the Taihu Lake and in 10 

the urban centers. These results suggest the capability of our inverted emission dataset in capturing the 

contribution of traffic sources. 

4.3. Comparing our inverted emission dataset to the MEIC inventory 

This section compares our inverted emission data to the widely used MEIC anthropogenic bottom-up 

inventory over summer 2012–2016 (www.meicmodel.org; last access: 2018/7/2). The MEIC data are 15 

available at the 0.25° × 0.25° resolution. Because our emission data include the slight contribution of soil 

sources, we use the nested GEOS-Chem to calculate soil emissions (Fig. 3d), and then subtract these soil 

emissions from our data. Figure 3ows the resulting “anthropogenic” portion of our inverted emissions. 

Summed over the study domain, the soil sources contribute 0.9% of our inverted emissions.  

Figures 3e and 3f show that compared to MEIC,Figure 6f shows the mean density of marine shipping 20 

routes over the eastern sea in 2016 (www.marinetraffic.com; last access: 2019/6/27). Over the northern 

parts of the eastern sea, the route density map shows certain north-south and northwest-southeast lines. 

High route densities are also evident close to the ports. These features are consistent with the distributions 

of NO2 VCDs (Fig. 6a) and NOx emissions (Fig. 6b, same as Fig. 5a).  

http://download.geofabrik.de/
http://www.marinetraffic.com/
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The filled circles in Fig. 6g show the locations of coal-fired power plants in 2016 from Carbon Brief 

(www.carbonbrief.org; last access: 2019/6/27). The radius of a circle denotes the power generation 

capacity. Figure 6h further shows the GPED v1.0 bottom-up NOx emissions for power plants on a 

0.1°×0.1° grid in 2016. Coal-fired power plants in the YRD are normally near the urban centers, traffic 

lines or other sources. Our top-down NOx emission map shows large emission values near the power 5 

plants (Fig. 6b), although it cannot isolate the sole contribution of power plants. At the GPED power plant 

locations, the correlation between our and GPED emissions reaches 0.26, due to the influence by non-

power plant sources; note that the correlation between GPED emissions and POMINO NO2 VCDs are 

only about 0.21. 

Figure 6i shows a satellite photo taken in 2018 from Google Earth (earth.google.com; last access: 10 

2019/7/4). The grey areas in the photo represent developed lands and the dark green areas indicate un-

developed places. The majority of lands over the YRD have been developed. Although the lands over the 

southwest are less influenced by humans than the areas like Shanghai are, many places of the southwest 

have been developed as cities, towns and roads. This explains the spotted emission sources (Fig. 6b) 

retrieved from the satellite NO2 VCDs. 15 

4.3. Comparison between our emission dataset and other inventories 

This section compares our emission data to several inventories for the region, including the MEIC bottom-

up anthropogenic inventory in summer 2012–2015 (www.meicmodel.org; last access: 2018/7/2) (Liu et 

al., 2015;Zheng et al., 2014), the MarcoPolo (bottom-up + top-down hybrid) anthropogenic inventory in 

summer 2014 (www.marcopolo-panda.eu/products/toolbox/emission-data/; last access: 2019/5/4) 20 

(Hooyberghs et al., 2016;Timmermans et al., 2016), and the DECSO v5.1qa top-down emissions in 

summer 2012–2015 (www.globemission.eu/region_asia/datapage.php; last access: 2018/11/14) (Mijling 

et al., 2013;Ding et al., 2017b). MEIC and DESCO emission data are available at the 0.25°×0.25° 

resolution, and MarcoPolo are at 0.01°×0.01°. When compared with our emissions, these emission data 

are regridded to 0.05°×0.05°.  25 

http://www.carbonbrief.org/
http://earth.google.com/
http://www.meicmodel.org/
http://www.marcopolo-panda.eu/products/toolbox/emission-data/
http://www.globemission.eu/region_asia/datapage.php
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Our emission data and the DECSO inventory are top-down estimates and include the contributions of soil 

and biomass-burning sources. Thus, we estimate soil and biomass burning emissions from independent 

sources, and then subtract these emissions from our and DECSO emission datasets. Soil emissions are 

calculated by the nested GEOS-Chem (Fig. 7c), with the uncertainties assumed to be within 50% (J. 

Yienger and Ii Levy, 1995;Wang et al., 1998). Biomass burning emissions (Fig. 7b) are taken from the 5 

Global Fire Emissions Database (GFED4;  www.globalfiredata.org/data.html; last access: 2019/7/10) 

(Giglio et al., 2013), with the uncertainties estimated to be within 10% over the YRD (Giglio et al., 

2009;Giglio et al., 2013). Summed over the study domain, the soil sources contribute about 0.5% of our 

emissions while biomass burning contribute about 5.1%. Figure 7a shows the resulting “anthropogenic” 

portion of our emissions. 10 

Compared with MEIC (Fig. 7d) and DECSO (Fig. 7e), our high-resolution anthropogenic emission dataset 

(Fig. 7a) provides much more detailed spatial information. Our dataset identifies the emission hotspots 

and their contrast with nearby low-emission areas (e.g., in the urban-rural fringe zones) better than MEIC 

doesand DECSO do. The contribution of mobile sources along the road network is clearer in our dataset. 

Our emission data contain sources over the nearby sea (i.e., from shipping), along the coastal line, and in 15 

the southwest of the domain, which are not included in MEIC. In Hangzhou CityCompared with DECSO, 

our dataset suggests the highesthigher emissions to be toon the southnorthern parts of Qiantang River 

(markedthe sea, which may be due to our underestimate of NOx lifetimes (Sect. 3) and/or errors in purple 

line in Fig. 1b), whereas the MEIC inventory suggests north. The total emission in MEIC is smaller than 

ours by 28.3% over the entire study domain and by 10.4% over landDECSO estimate.  20 

Figure 4 compares emissions in several cities between our and MEIC inventory. A total of 14 cities within 

the domain are selected, and for each city the NOx emissions are summed over the grid cells within the 

municipal administrative boundaries. The MEIC inventory is re-gridded to 0.05° × 0.05° for this purpose. 

Among the cities, emission values differ from -51.4% to +61.3% between the two datasets. In Shanghai, 

Suzhou and Wuxi, our dataset is lower than MEIC by 27.1%, 43.7%, and 51.4%, respectively. MEIC uses 25 

the industrial GDP as a spatial proxy to attribute provincial-level industrial emissions to individual 
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counties and grid cells (Geng et al., 2017). This may overestimate the emissions in Suzhou and Wuxi, 

since much of the industrial GDP in the two cities is contributed by high-tech industries with low 

emissions.  

Figure 4 also shows that in Zhoushan, Huai’an and Yancheng, our dataset is higher than MEIC by 61.3%, 

55.5%, and 55.1%, respectively. Zhoushan (around 30°N, 122°E) has many isles and marine ports, as 5 

identifiable on the nighttime light map (Fig. 3a). The marine ports in the Ningbo-Zhoushan area contribute 

about 10% of the total shipping emissions in China (Endresen et al., 2003;Fu et al., 2017). Our dataset 

accounts for emissions from marine shipping and ports, whereas MEIC does not.  

Section 4.2 showsMarcoPolo emissions (regridded to 0.05°×0.05°, Fig. 7f) show more detailed spatial 

information than our emission dataset (Fig. 7a) does. This is because our top-down estimate is limited by 10 

the intrinsic resolution of NO2 VCDs, i.e., our oversampling approach does not fully compensate for the 

large sizes of OMI pixels. Therefore, the large spatial gradient of NOx emissions is smoothed to some 

extent in our dataset. On the other hand, the domain that MarcoPolo covers (118.135°E, 29.635°N −

122.125°E, 32.625°N) is much smaller than ours, and emissions of 9 cities (including Zhou Shan, Ningbo, 

Nantong, Hangzhou, Huai’an, Yancheng, Yangzhou, Taizhou, Shaoxing) and marine shipping emissions 15 

are not included in MarcoPolo.  

At 0.05°×0.05°, the spatial correlation at the 0.05° × 0.05° resolutioncorrelations between our inverted 

NOx emissions and thespatial proxies to beare 0.7061 for nighttime light brightness and 0.5250 for 

population density. (Sect. 4.2). These values can be compared to the respective results for MarcoPolo on 

the 0.05°×0.05° grid (0.35 and 0.55, respectively). When regridded to 0.25° × 0.25°, the correlation 20 

becomes higher: 0.25°×0.7925°, the correlations between our emissions and these spatial proxies become 

higher: 0.70 for nighttime light brightness and 0.6369 for population density. AsThe weaker correlation 

at a higher resolution reflects that as the spatial resolution gets finer, the chance that NOx emissions are 

collocated with population or nighttime light becomes smaller (Zheng et al., 2017)(Zheng et al., 2017), 

because of the influences of NOx-emitting factories, power plants, and mobile sources. By comparison, 25 
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the correlationcorrelations between the MEIC inventory and these proxies on the 0.25° ×

0.25°0.25°×0.25° grid isare 0.8380 for nighttime light and 0.7181 for population density, higher than . 

The respective correlation values for DECSO are 0.66 and 0.46. The lower correlation values for our 

emission dataset. This difference is in part because our dataset dataset and DESCO than for MEIC partly 

reflect that top-down emissions better accountsaccount for the influences of land mobile and offshore 5 

shipping sourcestransportation, which are spatially not tied closely to nighttime light and population at 

this resolution.  

Figure 8 compares city-level emissions between our and other inventories. A total of 18 cities within the 

domain are selected, and for each city the NOx emissions are summed over the grid cells within the 

municipal administrative boundaries. All inventories are gridded at 0.05°×0.05° for this purpose. The 10 

MarcoPolo inventory does not include emissions for several cities, thus the respective color bars are 

missing from Fig. 8. Among the cities, emission values differ from -5.8% to +67.5% between our 

emissions and the mean values of all four inventories (ours, DECSO, MEIC and MarcoPolo (if available)). 

For most cities, our emissions are consistent with at least one of the other three inventories, often the 

DESCO top-down inventory, after accounting for errors in our emission estimate. In Yancheng, Huai’an 15 

and Ningbo, our emission values are higher than the averages of ours, DECSO and MEIC by 67.5%, 57.5% 

and 34.6%, respectively. Ningbo (around 29.8°N, 121.5°E) is a coastal city with many isles and marine 

ports, as identifiable on the nighttime light map (Fig. 6c). The marine ports in the Ningbo-Zhoushan area 

contribute about 10% of the total shipping emissions in China (Endresen et al., 2003;Fu et al., 2017). Our 

dataset and DECSO account for emissions from marine shipping and ports, whereas MEIC does not. 20 

5. OSSE-like test of our top-down emission derivation method by using GEOS-Chem simulated 
NO2 data 

This section further presents an OSSE-like test to estimate the reliability of our emission derivation 

method, by examining to what extent the method can re-produce the emissions used in a nested GEOS-

Chem simulation. Specifically, we use the nested GEOS-Chem v9-02 (Yan et al., 2016;Liu et al., 25 
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2018b;Ni et al., 2018) to simulate the NO2 VCDs in the early afternoon (around the overpass time of OMI) 

in summer 2014 on the 0.3125° longitude ×0.25° latitude grid. The simulated NO2 data are shown in Fig. 

9a and the emission inputs are shown in Fig. 9b. Next, we convert the GEOS-Chem NO2 VCDs into the 

0.05°×0.05° grid, and parameterize PHLET with the wind field adopted by GEOS-Chem, following the 

procedures in Sect. 2.3. Then we use PHLET, PHLET-A, and the lifetime-emission separation method to 5 

estimate the NOx emissions. Finally, we compare the derived emissions (re-mapped to the 0.3125°×0.25° 

grid) to those used in GEOS-Chem. 

Figure 9c and 9d shows the horizontal distributions of our “anthropogenic” emissions and emission errors, 

respectively. The contribution of soil and biomass burning emissions (as simulated by GEOS-Chem) are 

subtracted from the dataset. Figure 9e shows the differences between the derived anthropogenic emissions 10 

and those used in GEOS-Chem. The emission difference at each grid cell varies from−3.0 to 5. 4 kg km-

2 h-1, which is attributed to the limitation of our inversion method. The domain average difference is 0.28 

kg km-2 h-1, or 18% of GEOS-Chem emissions. The scatter plot in Fig. 9f suggests excellent consistency 

between the derived and the GEOS-Chem emissions, with a linear regression slope of 1.06 and correlation 

of 0.94. The emission differences for most grid cells are within the uncertainties of the derived emissions 15 

(shaded area). 

5.6. Concluding remarks 

This study presents a satellite-based NOx emission inversiontop-down method forto estimating NOx 

emissions over urban and surrounding areas at verya high horizontal resolution. As a demonstration, the 

method is applied to the YRD area at the 0.05° × 0.05° 0.05°×0.05° resolution in summer 2012–20 

20162015, based on the POMINO NO2 product. We construct a simplified, computationally efficient 2-

D lifetime-emission-transport model (PHLET) and its adjoint model (PHLET-A) to, together with other 

procedures, facilitate the emission inversionestimate. The reliability of our inversion method is supported 

by 1) a rigorous step-by-step derivation of models, assumptions, and parameters used, 2) a comprehensive 

uncertainty analysis, and 3) an OSSE-like test with GEOS-Chem simulated NO2 data. Our inverted 25 
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emission dataset in the YRD area on the 0.05° × 0.05° 0.05°×0.05° grid shows fine-scale spatial 

information that is tied to nighttime light, population density, road network, and maritime shipping, and 

land use indicated from a Google Earth photo. Our dataset reveals many fine-scale spatial characteristics 

not well represented or not included in the widely used MEIC inventory. lower-resolution inventories 

such as MEIC and DECSO. Although this study derives the averaged emissions over summer 2012–2015, 5 

calculations of emissions at higher temporal resolutions (e.g., every 2 years) is possible to better capture 

the interannual variability and trends. 

Our emission inversion method is useful for understanding how human activities have altered the 

atmospheric environment at fine resolutions. Many crucial human activities, such as urbanization, are 

conducted at very fine spatial scales. How the resulting emissions affect air quality, public health, and 10 

geo-health are still poorly understood due to lack of high-resolution emission data. This problem is 

particularly severe in the developing countries, because of their rapid paces of urbanization and great 

inadequacies in emission-related information such as economic statistics and emission factors. This poses 

a grand challenge for emission control and environmental management. Thus, our inversion method and 

resulting emission data offer useful independent high-resolution information to monitor the fine-scale 15 

emission sources, to improve the bottom-up inventory, to model the urban pollution chemistry and the 

effect of urbanization, and to conduct spatially targeted emission control.  

Our inversion method also has a few shortcomings. The derived emissions do not separate the individual 

contributions of anthropogenic sectors (i.e., power plants, industry, transportation, and residential). The 

spatial resolution of the estimated emissions is limited by that of satellite VCD data, although a special 20 

oversampling technique has been used to help achieve the highest spatial resolution possible for emissions. 

The PHLET model is assumed to be 2-dimensional by simplifying the vertical distribution of NO2 and 

not accounting for the spatial variability in the vertical shape, similar to previous studies. The adjoint 

model assumes the observational error covariance matrix to be diagonal, without fully considering the 

effect of correlations between individual grid cells. Also, we assume a spatially uniform relationship 25 
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between NO2 VCDs and NO2 lifetimes, which may lead to an underestimate in the lifetimes at low-NO2 

locations over the eastern sea.  

Our emission inversion method and models have a few important features enabling their global 

applications. PHLET and PHLET-A are written in the Python language, which can be readily used with 

low financial costs. The PHLET model offers computationally efficient simulations of the NOx chemistry, 5 

deposition, and transport. At a low computational cost, our inversion method is able to account for the 

nonlinear relationship between NOx concentration, chemical loss, deposition, and transport. With the 

advent of TROPOMI and other satellite sensors with unprecedented spatial resolutions, our inversion 

approach can be applied to these measurements for continuous inference of emissions at finer and finer 

resolutions. As a final point, PHLET and PHLET-A are written in the Python language, which can be 10 

readily used with low financial costs. 
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Appendix A. Solving the diffusion process 

The diffusion term can be simplified as follows: 5 

𝛻𝛻 ∙ �𝐊𝐊(𝑥𝑥,𝑦𝑦) ∙ 𝛻𝛻𝛻𝛻(𝑥𝑥, 𝑦𝑦)� =  𝜕𝜕
𝜕𝜕𝑥𝑥

( 𝐾𝐾𝑥𝑥 ∙
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥

) + 𝜕𝜕
𝜕𝜕𝑦𝑦

( 𝐾𝐾𝑦𝑦 ∙
𝜕𝜕𝜕𝜕
𝜕𝜕𝑦𝑦

)       (A1) 

𝐾𝐾𝑥𝑥 and 𝐾𝐾𝑦𝑦 are the diffusion coefficients in the zonal and meridional directions, respectively. Given these 

coefficients, we solve the equation with the algorithm described in (Brasseur and Jacob, 2017). 

We derive the diffusion coefficients based on a random walk assumption (Schirmacher, 

2015)(Schirmacher, 2015): 10 

𝐾𝐾𝑥𝑥 𝑏𝑏𝑟𝑟 𝑦𝑦  =   1
2
𝑉𝑉𝑥𝑥 𝑏𝑏𝑟𝑟 𝑦𝑦

′2 𝛥𝛥0,                                                                                                                      (A4) 

𝑉𝑉𝑥𝑥 𝑏𝑏𝑟𝑟 𝑦𝑦
′ is the deviation of wind speed in the zonal or meridional direction. 𝛥𝛥0 is 3 hours, the sampling 

interval of ERA5 wind data. Figure A1A shows the time averaged wind vector and the distribution of 𝐾𝐾𝑥𝑥 

and 𝐾𝐾𝑦𝑦. The relative uncertainty in wind speed is assumed to be 10%, close to the temporal standard 

deviation of wind speed. The uncertainties of 𝐾𝐾𝑥𝑥 and 𝐾𝐾𝑦𝑦 are set to be 20%, about twice of the relative 15 

uncertainty in wind speed. The calculated 𝐾𝐾𝑥𝑥  ranges from 30397 𝑚𝑚2𝑠𝑠−2 over land to 203783 𝑚𝑚2𝑠𝑠−2 

over sea. The 𝐾𝐾𝑦𝑦  ranges from 25811 𝑚𝑚2𝑠𝑠−2  over land to 297053  𝑚𝑚2𝑠𝑠−2  over sea. These diffusion 

coefficients tend to be slightly underestimated, because the variabilities of wind speed at higher 

frequencies (than 3-hourly) are not accounted for. This means that PHLET may underestimate the 

horizontal transport slightly. 20 
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Appendix B. Satellite Conversion Matrix to account for the smoothing effect of satellite pixels 

The SCM is essentially a tool to preform quick conversion between grids, regular or not. In the YRD area, 

there are 100 ×  100 =  10000 grid cells on the 0.05° × 0.05°0.05°×0.05° grid. We use the SCM (A 

matrix: [10000, 10000]) to convert from its original grid (X vector: [10000, 1]) to the final grid (Y vector: 

[10000, 1]), i.e., 𝒀𝒀 = 𝐀𝐀𝑿𝑿. The 10000 elements in one specific row of A represent the weights of the 10000 5 

elements of X to an element in Y. Apparently, A is a sparse matrix. The following description shows how 

A is constructed.  

First, the VCDs specific to satellite pixels are reconstructed from the model grid cells. Each model grid 

cell (MGC) is divided into 10 ×  10 =  100 finer grid cells (FGCs), each having the same area. Suppose 

the number of MGCs fully or partially covered by a given pixel p is Nc, and the number of FGCs in a 10 

given MGC i covered by p is gi
p, then the total number of FGCs covered by p is: 

 Gp = ∑ gi
pNc

i=1              (B1) 

Thus, the average VCD for the pixel p can be reconstructed as follows: 

VCDp = ∑ gi
p

Gp
Nc
i=1 ∙ VCDi           (B2) 

Equation (B2) essentially means how a satellite pixel smooths the VCD. The blue portion of Fig. B1B 15 

denotes the projection from MGC i to pixel p. 

The next step represents how the oversampling approach is applied to satellite-smoothed VCD data. 

Suppose the number of satellite pixels fully or partially covering aan MGC j is Np, then the total number 

of FGCs being part of the intersection of the Np pixels and MGC j is: 

Gj = ∑ gj
pNp

p=1              (B3) 20 

Finally, the average VCD for the MGC j converted from the Np pixels is: 
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VCD′j = ∑
gj
p

Gj

Np
p=1 ∙ VCDp           (B4) 

The pink portion of Fig. B1B denotes the projection from pixel p to MGC j. Thus, the element of SCM 

converting from MGC i to MGC j can be derived as follows: 

Aj,i = ∑
gj
p

Gj

Np
p=1 ∙ gi

p

Gp
           (B5) 

Appendix C. Solving the observation error covariance matrix and the adjoint model 5 

The observation error covariance matrix (𝐒𝐒𝐨𝐨) consists of a satellite data error covariance matrix (𝐒𝐒𝐬𝐬) and 

a PHLET model error covariance matrix (𝐒𝐒𝐦𝐦):  

𝐒𝐒𝐨𝐨 = 𝐒𝐒𝐬𝐬 + 𝐒𝐒𝐦𝐦             (C1) 

Both 𝐒𝐒𝐬𝐬 and 𝐒𝐒𝐦𝐦 are assumed to be diagonal, with the diagonal elements set to be 𝜎𝜎𝑠𝑠2 and 𝜎𝜎𝑚𝑚2 , respectively. 

As shown in Eq. (7), PHLET-A represents the sensitivity of cost function (𝐽𝐽) to local net source (𝑷𝑷) 10 

(Marchuk, 1994;Sandu et al., 2005). Given a starting point of  𝑷𝑷 , we can derive a search direction by the 

Cautious Broyden-Fletcher-Goldfarb-Shanno (CBFGS) method (Li and Fukushima, 2001;Bousserez et 

al., 2015). Then, by practicing backtracking line search based on the Armijo–Goldstein condition (Armijo, 

1966), we can evaluate an optimized 𝑷𝑷. The uncertainty of 𝑷𝑷 is given by the Hessian of the cost function, 

which is approximated by the CBFGS method (Brasseur and Jacob, 2017): 15 

𝐒𝐒 = 2 ∙ (∇𝑷𝑷2J)−1           (C2) 

Appendix D. Deriving NO2 lifetime from VCD 

We assume a steady state of radicals (HOx), where the production rate of HOx is equal to the loss rate 

through three types of termination reactions: between the hydroxyl radical (OH) and  NO2, between NO 
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and peroxyl radicals to form organic nitrates, and between peroxyl radicals (Murphy et al., 2006;Valin et 

al., 2011): 

P(HOx) = k1𝛻𝛻𝑂𝑂𝑂𝑂𝛻𝛻𝑁𝑁𝑂𝑂2 + αk2eff
k1𝜕𝜕𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝜕𝜕𝑁𝑁𝑂𝑂

k2eff𝜕𝜕𝑁𝑁𝑁𝑁
𝛻𝛻𝑁𝑁𝑂𝑂 + 6k3eff(

k1𝜕𝜕𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝜕𝜕𝑁𝑁𝑂𝑂
k2eff𝜕𝜕𝑁𝑁𝑁𝑁

)2     (D1C1) 

Here P(HOx) is the production rate, and the right -hand side of Eq. (D1C1) is the loss rate. CNO2 and COH 

denote the concentrations of NO2 and OH, respectively. Since the conversion between the peroxyl radicals 5 

(HO2 + RO2) and OH is in steady state, the term k1𝜕𝜕𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝜕𝜕𝑁𝑁𝑂𝑂
k2eff𝜕𝜕𝑁𝑁𝑁𝑁

 expresses the “effective” total concentration 

of peroxyl radicals in terms of the concentrations of NMVOC, OH and NO. Assuming P(HOx), 𝛻𝛻𝑁𝑁𝑁𝑁𝑁𝑁𝑂𝑂𝜕𝜕 

and all reaction constants to be constant (Valin et al., 2011)(Valin et al., 2011), and given that 𝛻𝛻𝑁𝑁𝑂𝑂 =

𝛻𝛻𝑁𝑁𝑂𝑂2 ∙
1−𝑟𝑟
𝑟𝑟

, Eq. (D1C1) can be simplified as Eq. (D2C2): 

a𝛻𝛻𝑂𝑂𝑂𝑂𝛻𝛻𝑁𝑁𝑂𝑂2 + b𝛻𝛻𝑂𝑂𝑂𝑂 + c( 𝜕𝜕𝑁𝑁𝑂𝑂
𝜕𝜕𝑁𝑁𝑁𝑁2

)2 = 1          (D2C2) 10 

Here a, b, c are the coefficients. Because the chemical lifetimelifetimes of NO2 is determined by 𝛻𝛻𝑂𝑂𝑂𝑂 

(𝜏𝜏𝑐𝑐 = 1
k1𝜕𝜕𝑁𝑁𝑂𝑂

) , we can deduce the relationship between 𝛻𝛻𝑁𝑁𝑂𝑂2 and 𝜏𝜏𝑐𝑐: 

a′
𝜏𝜏𝑐𝑐

+ b′
𝜏𝜏𝑐𝑐∙𝜕𝜕𝑁𝑁𝑁𝑁2

+ c′( 1
𝜏𝜏𝑐𝑐∙𝜕𝜕𝑁𝑁𝑁𝑁2

)2 = −1         (D3C3) 

NO2 is lost primarily through reaction with OH and secondarily through dry deposit (𝜕𝜕𝑁𝑁𝑁𝑁2
𝜏𝜏𝑑𝑑

), thus its 

lifetime (𝜏𝜏) is also determined by these two loss processes. Therefore,  15 

𝜏𝜏𝑐𝑐 = 1
1
𝜏𝜏−

1
𝜏𝜏𝑑𝑑

            (D4C4) 

In the areas of low emissions, the emission term can be neglected in Eq. 2, thus the local net source 𝐿𝐿 =

−
𝑪𝑪𝑵𝑵𝑶𝑶𝟐𝟐
𝑟𝑟∙𝜏𝜏

. Therefore Eq. D3C3 becomes Eq. D5C5, which connects L and 𝛻𝛻𝑁𝑁𝑂𝑂2.  
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a′
r(𝑷𝑷+k𝑪𝑪𝑵𝑵𝑶𝑶𝟐𝟐)

𝑪𝑪𝑵𝑵𝑶𝑶𝟐𝟐
+ b′

r(𝑷𝑷+k𝑪𝑪𝑵𝑵𝑶𝑶𝟐𝟐)

𝑪𝑪𝑵𝑵𝑶𝑶𝟐𝟐
2 + c′(

r(𝑷𝑷+k𝑪𝑪𝑵𝑵𝑶𝑶𝟐𝟐)

𝑪𝑪𝑵𝑵𝑶𝑶𝟐𝟐
3 )2 = 1       (D5C5) 

where k = 1
𝜏𝜏𝑑𝑑

. We determine the coefficients a′, b′, c′, and k in Eq. D5C5 by conducing nonlinear fitting 

of OMI NO2 VCD data and L values in the low emission areas (see below). This procedure establishes 

the nonlinear relationship between 𝜏𝜏 and VCD, which is then applied to the entire study domain. 

The low-emission areas have small values of VCD and large negative values of L. Figure D1aC shows a 5 

scatter plot for the invertedderived local net source L and VCD at each individual grid cell of the study 

domain.  The data scatter reflects the combined effect of emission, loss, and horizontal transport. We then 

fit the quantiles of L where the VCD is relatively low (< 5 × 1015 molecules cm-2) into Eq. 6 through a 

nonlinear quantile fitter based on Tensor flow., shown as blue points in Fig. C) into Eq. C5 through a 

nonlinear quantile fitter based on Tensorflow(Abadi et al., 2016). Using the quantile fitting also means 10 

that the low-emission grid cells do not need to be explicitly identified prior to the fitting. The quantile 

fitting gives L as a function of VCD (when emissions are neglected), through which the relationship 

between lifetimelifetimes and VCDVCDs is derived. We conduct the fitting by 50050 times, each by 

linearly changing the assumed percentile threshold of L from 0.011% to 105%, to determine the fitted 

median value (red line in Fig. D1aC) and uncertainty (gray shaded areas, 95% CI). The uncertainty is 15 

caused by the assumption on the NO2/NOx ratio r, the simplification of the relationship between 

lifetimelifetimes and VCDVCDs, and possible misjudgment of low-emission areas. 

The orange line in Fig. D1bC presents the relationship between NO2 VCDVCDs and chemical 

lifetimelifetimes (𝜏𝜏𝑐𝑐) derived based on the mean value of the fitting. The value of 𝜏𝜏𝑐𝑐 varies from 1.7 to 

0.6.6 to 3.8 h with an average of 1.2.8 h. The lifetime declineslifetimes decline rapidly with increasing 20 

VCDVCDs from 0 to 2 ×  1015 molecules cm-2, and then grows gradually with increasing VCDVCDs. 

This result is consistent with Valin et al. (2011). By comparison, the value of 𝜏𝜏𝑏𝑏  is 7.830.4 h and is 

spatially homogeneous under the assumption here. The total lifetime (𝜏𝜏) varies from 1.40.6 to 3.63 h (Fig. 

D1bC, blue line) across the study domain. 
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Appendix E. Testing our emission inversion method using GEOS-Chem simulated NO2 data 

We apply our emission inversion method to the NO2 VCD data simulated by the nested GEOS-Chem 

CTM. Specifically, we use GEOS-Chem v9-02 (Liu et al., 2018a;Ni et al., 2018;Yan et al., 2016) to 

simulate the NO2 VCDs in the early afternoon (around the overpass time of OMI) in summer 2014 on the 

0.3125° × 0.25° grid. The simulated NO2 data are shown in Fig. E1a. Next, we convert the GEOS-Chem 5 

NO2 VCDs into the 0.05° × 0.05° grid, and parameterize PHLET with the wind field adopted by GEOS-

Chem, following the procedures in Sect. 2.3. Then we use PHLET, PHLET-A, and the lifetime-emission 

separation method to estimate the NOx emissions. Finally, we compare the inverted emissions (re-mapped 

to the 0.25° × 0.3125° grid) to those used in GEOS-Chem. 

Figure E1c and E1d shows the horizontal distributions of our inverted “anthropogenic” emissions and 10 

emission uncertainties, respectively. The contribution of soil emissions (as simulated by GEOS-Chem) is 

subtracted from the inverted dataset. Figure E1e shows the differences between the inverted 

anthropogenic emissions and the GEOS-Chem anthropogenic emissions. The emission difference at each 

grid cell varies from −4.5 to 5.8 kg  km-2 h-1, which is attributed to the limitation of our inversion method. 

The domain average difference is 0.25 kg km-2 h-1, or 16% (with respect to GEOS-Chem emission value). 15 

The scatter plot in Fig. E1f suggests excellent consistency between the inverted and the GEOS-Chem 

emissions, with a linear regression slope of 0.98 and correlation of 0.93. The inverted emissions tend to 

be overestimated in the low-emission areas, but the differences are within the uncertainties of the inverted 

emissions (shaded area). 
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Figure 1.1. The flowchart of the framework of our methodology. The blue arrows show the iterative 
process. 
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Figure 2. Cost function descending with iteration. 
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Figure 3. (a) Number of days with valid data in each grid cell over summer months of 2012–20162015. 
(b) POMINO NO2 VCDs averaged over summer 2012–20162015. Cities and locations mentioned in this 
paper are denoted. The Yangtze River is marked as a blue line, and the Qiantang River (passing Hangzhou) 
a purple line.. (c) InvertedDerived local net source. (d) InvertedDerived NOx lifetime due to both chemical 5 
loss and deposition. (e) Inverted NOx emissions from anthropogenic and soil sources. 
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Figure 24. (a) Absolute error (1 σ) of POMINO NO2 VCD at each grid cell at 𝟎𝟎.𝟎𝟎𝟎𝟎° × 𝟎𝟎.𝟎𝟎𝟎𝟎° the 
0.05°×0.05° resolution. (b) Relative error (1 σ) of POMINO NO2 VCD. (c) Absolute error (1 σ) of the 
invertedderived local net source. (d) Absolute error (1 σ) of the invertedderived NOx lifetime due to 
chemical loss and deposition.  (e)  5 
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Figure 5. (a) Our NOx emissions from anthropogenic, biomass burning and soil sources together. The blue 
corsses indicate where the relative errors exceed 100%. (b) Absolute errorerrors (1 σ) of inverted NOx 
emission. (f) our NOx emissions. (c) Relative errors of our emissions. (d) Absolute errorerrors (1 σ) of 
inverted NOx emissionemissions as a function of inverted NOx emissionemissions at eachindividual grid 5 
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cellcells. Data points are coloured according to the magnitudes of POMINO NO2 VCDs. The dashed line 
indicates an error of 100%. 
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Figure 3. (a

Figure 6. (a) POMINO NO2 VCDs averaged over summer 2012–2015, which is same as Fig. 1a. but based 
on a different color scale. (b) Our NOx emissions from anthropogenic, biomass-burning and soil sources 
together, same as Fig. 3a. (c) Nighttime light brightness on a 𝟎𝟎.𝟎𝟎′ × 𝟎𝟎.𝟎𝟎′ grid in 2012. (bd) Population 5 
density averaged over 2012–2016 on a 𝟎𝟎.𝟏𝟏° × 𝟎𝟎.𝟏𝟏°  grid. (c) 2015. (e) Road network (grey lines) 
superimposed upon the inverted NOx emissions. (dred lines). (f) Mean density of marine shipping routes 
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in 2016 (data source: www.marinetraffic.com). (g) Locations of coal-fired power plants in 2016 from 
Carbon Brief. (h) GPED v1.0 bottom-up NOx emissions from coal-fired power plants. (i) A satellite photo 
from Google Earth taken in 2018.  

 
Figure 7. (a) Our “anthropogenic” NOx emissions, by subtracting soil and biomass burning emissions 5 
from the derived emissions. (b) GFED4 biomass burning NOx emissions. (c) Soil NOx emissions 
calculated by a nested GEOS-Chem simulation (0.25° × 0.3125°) and regraded. (d) MEIC NOx emissions 
over summer 2012–2015. (e) DECSO v5.1qa top-down emissions in summer 2012–2015. (f) MarcoPolo 
bottom-up inventory in summer 2014; note that this inventory does not cover the grid cells shown in grey). 
All data are regridded to the 0.05° × 0.05° grid. (e) Inverted “anthropogenic” NOx emissions on a 0.05° 10 
× 0.05° grid. City names and boundaries are given. (f) MEIC NOx emissions on a 0.25° × 0.25° grid. 
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Figure 48. Total anthropogenic NOx emission in each city for summer 2012–2016 inverted here versus 
from the MEIC inventory.2015 derived here, in comparison with other emission datasets. Soil NOx 
emissions calculated by the nested GEOS-Chem and biomass burning NOx emissions from GFED4 have 5 
been subtracted from our inverted emission data and DECSO. Black vertical lines denote the uncertainty 
(1σ). Red points denote the numbers of grid cells covered by each city at different resolutions (0.05° × 
0.05° in our inverted dataset and 0.25° × 0.25° in MEIC). σ) of our emissions. 
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Figure 9. (a) GEOS-Chem simulated NO2 VCDs at the 0.3125°×0.25° resolution for summer 2014. (b) 
Anthropogenic NOx emissions used in GEOS-Chem. (c) Anthropogenic emissions derived based on 
GEOS-Chem simulated NO2 VCDs and our inversion method. (d) Absolute errors (1 σ) of derived 
emission data. (e) Differences between the derived emissions and GEOS-Chem emissions (derived minus 5 
GEOS-Chem). (f) Scatter plot for the derived emissions (y-axis) and GEOS-Chem emissions (x-axis). 
The red line represents least square linear fitting. The shading represents the fitting by accounting for 
errors in the derived emission data, i.e., derived emissions + 1 σ for the upper bound, and derived 
emissions – 1 σ for the lower bound. The black dotted line denotes the 1:1 line. 
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Figure A1A. The effective diffusion coefficients for summer 2012–20162015 on a 0.05° × 0.05° grid. 5 
Overlaid is the temporal mean wind vector, which is plotted for every 5 × 5 = 25 grid cells to enhance the 
readability. 
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Figure B1B. Illustration of how the original PHLET model grid cell i is projected to the satellite pixel p 
and then to the final grid cell j through the SCM approach. The size of the satellite pixel is scaled down 
to be comparable with the size of a model grid cell, for illustration purposepurposes. 
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Figure C1. Variation of the cost function 𝑱𝑱 with iteration times. 

 
Figure D1C. (a) Scatter plot for POMINO NO2 VCDs (x-axis) and invertedderived local net sources (y-
axis) across individual grid cells. Grid cells with NO2 VCDs below (above) 5 × 1015 molecules cm-2 are 5 
coloured in blue (orange). The red line and shading denote the median and uncertainty (95%1 σ CI) of 
the quantile fitting, respectively, to estimate the nonlinear relationship between NO2 VCD and lifetime, 
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based on data in the low-emission areas. (b) The derived relationship between NO2 VCD and lifetime 
across the range of NO2 VCDs in the YRD area. 

 
Figure E1. (a) GEOS-Chem simulated NO2 VCDs at the 𝟎𝟎.𝟑𝟑𝟏𝟏𝟐𝟐𝟎𝟎° × 𝟎𝟎.𝟐𝟐𝟎𝟎° resolution for summer 2014. 
(b) Anthropogenic NOx emissions used in GEOS-Chem. (c) Inverted anthropogenic emissions based on 5 
GEOS-Chem simulated NO2 VCDs. (d) Absolute errors (1σ) of inverted emission data. (e) Differences 
between the inverted emissions and GEOS-Chem emissions (inverted minus GEOS-Chem). (f) Scatter 
plot for the inverted emissions (y-axis) and GEOS-Chem emissions (x-axis). The red line represents least 
square linear fitting. The shading represents the fitting by accounting for errors in the inverted emission 
data, i.e., inverted emissions + 1σ for the upper bound, and inverted emissions – 1σ for the lower bound. 10 
The black dotted line denotes the 1:1 line. 
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