The formation of nitro-aromatic compounds under high NO_x and anthropogenic VOC conditions in urban Beijing, China

Yujue Wang¹, Min Hu^{*,1,5}, Yuchen Wang³, Jing Zheng¹, Dongjie Shang¹, Yudong Yang¹, Ying Liu^{1,5},
Xiao Li¹, Rongzhi Tang¹, Wenfei Zhu⁶, Zhuofei Du¹, Yusheng Wu¹, Song Guo¹, Zhijun Wu¹, Shengrong Lou⁶, Mattias Hallquist², and Jian Zhen Yu^{*,3,4}

6 ¹State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and

7 Engineering, Peking University, Beijing 100871, China

- 8 ²Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
- 9 ³Environmental Science Programs, Hong Kong University of Science & Technology, Hong Kong, China
- ⁴Department of Chemistry, Hong Kong University of Science & Technology, Hong Kong, China
- ⁵Beijing Innovation Center for Engineering Sciences and Advanced Technology, Peking University, Beijing 100871, China
- ⁶Shanghai Academy of Environmental Sciences, Shanghai 200233, China
- 13 Correspondence to: Min Hu (<u>minhu@pku.edu.cn</u>); Jian Zhen Yu (<u>jian.yu@ust.hk</u>)
- 14

15 Abstract. Nitro-aromatic compounds (NACs), as important contributors to the light absorption by brown carbon, have been widely observed in various ambient atmospheres; however, their formation in urban atmosphere was little studied. In this 16 17 work, we report an intensive field study of NACs in summer 2016 at an urban Beijing site, characterized by both high-NO_x 18 and anthropogenic VOCs dominated conditions. We investigated the factors that influence NAC formation (e.g., NO₂, VOC precursors, RH and photolysis) through quantification of 8 NACs, along with major components in fine particulate matter, 19 20 selected volatile organic compounds and gases. The average total concentration of the quantified NACs was 6.63 ng/m³, 21 higher than those reported in other summertime studies (0.14- 6.44 ng/m³). 4-Nitrophenol (4NP, 32.4%) and 4-nitrocatechol 22 (4NC, 28.5%) were the top two most abundant NACs, followed by methyl-nitrocatechol (MNC), methyl-nitrophenol (MNP) 23 and dimethyl-nitrophenol (DMNP). The oxidation of toluene and benzene in the presence of NO_x was found to be a more dominant source of NACs than primary biomass burning emissions. The NO₂ concentration level was found to be an 24 25 important factor influencing the secondary formation of NACs. A transition from low- to high-NO_x regimes coincided with a 26 shift from organic- to inorganic-dominated oxidation products. The transition thresholds were $NO_2 \sim 20$ ppb for daytime and $NO_2 \sim 25$ ppb for nighttime conditions. Under low-NO_x conditions, NACs increased with NO₂, while the NO₃⁻ concentrations 27 28 and (NO₃⁻)/NACs ratios were lower, implying organic-dominated products. Under high-NO_x conditions, NAC concentrations did not further increase with NO₂, while the NO₃⁻ concentrations and (NO₃⁻)/NACs ratios showed increasing trends, 29 30 signaling a shift from organic- to inorganic-dominated products. Nighttime enhancements were observed for 3M4NC and 31 4M5NC while daytime enhancements were noted for 4NP, 2M4NP and DMNP, indicating different formation pathways for 32 these two groups of NACs. Our analysis suggested that the aqueous-phase oxidation was likely the major formation pathway of 4M5NC and 3M5NC while photo-oxidation of toluene and benzene in the presence of NO₂ could be more important for 33

the formation of nitrophenol and its derivatives. Using the (3M4NC+ 4M5NC)/4NP ratios as an indicator of the relative contribution of aqueous-phase and gas-phase oxidation pathways to NAC formation, we observed that the relative contribution of aqueous-phase pathways increased at elevated ambient RH and remained constant at RH> 30%. We also found that the concentrations of VOC precursors (e.g., toluene and benzene) and aerosol surface area acted as important factors in promoting NAC formation, and photolysis as an important loss pathway for nitrophenols.

39

40 1 Introduction

41 Organic nitrogen, including nitro-aromatic compounds (NACs), N-heterocyclic compounds, amines and other organic 42 nitrate compounds containing (-NO₂) or (-NO₃) functional groups, represent an important fraction of ambient organic 43 aerosols (Laskin et al., 2009; Wang et al., 2017b; Chow et al., 2016; Ge et al., 2011; Ng et al., 2017). Among organic 44 nitrogen, NACs, with the -NO₂ and -OH functional groups attached to an aromatic ring, have gained much attention due to 45 their light absorbing property and impacts on human health (Mohr et al., 2013; Lin et al., 2017). NACs, including 46 nitrophenols (NPs), nitrocatechols (NCs) and their derivatives, are important contributors to the light absorption by brown 47 carbon (BrC) (Mohr et al., 2013; Teich et al., 2017; Zhang et al., 2013; Xie et al., 2017), contributing 50-80% of the total 48 visible light absorption by BrC emitted from biomass burning (Lin et al., 2017). Moreover, NACs also lead to mutagenesis 49 and genotoxicity, thus posing a threat to human health (Purohit and Basu, 2000; Huang et al., 1995).

50 NACs have been widely observed in various ambient atmospheres, including urban, suburban, rural, as well as background environments, with the quantified concentrations varying from 0.1 ng/m³ in rural background areas to 147.4 51 52 ng/m^3 in urban atmospheres (Iinuma et al., 2010; Teich et al., 2017; Zhang et al., 2010; Mohr et al., 2013; Chow et al., 2016; 53 Wang et al., 2018b). Combustion processes, especially biomass burning, were the most important primary sources of NACs 54 (Harrison et al., 2005; Wang et al., 2018b). The emission factors of NACs from biomass burning were estimated 0.8-11.1 55 mg/kg (Wang et al., 2017a; Hoffmann et al., 2007). Field observation studies indicated NACs are usually associated with 56 fresh or aged biomass burning aerosols, which contributed 10-21% of the total NACs in ambient aerosols (Chow et al., 2016; 57 Kitanovski et al., 2012; Mohr et al., 2013; Iinuma et al., 2010; Wang et al., 2018b). Apart from primary emissions from 58 biomass burning, NACs could also be formed via the oxidation of volatile organic compounds (VOCs) containing a benzene 59 ring (e.g., cresol, catechol, methylcatechol) released by biomass burning in smoke plumes (linuma et al., 2010; Claevs et al., 60 2012). Methyl-nitrocatechols (MNCs) could originate from NO_x oxidation of methylated cresol or methylcatechols, which 61 are released during biomass burning as thermal degradation products of lignin (Iinuma et al., 2010; Finewax et al., 2018; 62 Olariu et al., 2002). 4-Nitrocatechol could be formed via the OH-initiated oxidation of guaiacol, an abundant methoxyphenol 63 emitted from biomass burning, in the presence of NO₂ (Lauraguais et al., 2014). However, under high-NO_x conditions, this 64 pathway seems to be of minor importance to nitrocatechol formation; instead, nitroguaiacols were formed as the major

65 products (Lauraguais et al., 2014).

66 In urban atmosphere, aromatic VOCs such as benzene, toluene, and xylenes are expected to be important precursors to 67 NAC formation (Harrison et al., 2005). The main reactions leading to the secondary formation of NPs, NCs, methyl-nitrophenols (MNPs) and MNCs are shown in Figure 1 (Jenkin et al., 2003; Vione et al., 2001; Vione et al., 2004; 68 69 Vidovic et al., 2018). Nitrophenols and their derivatives (e.g., MNPs) could originate through gas-phase oxidation of phenol, 70 benzene and toluene by OH or NO₃ radicals in the presence of NO₂ (Harrison et al., 2005; Yuan et al., 2016; Sato et al., 2007; 71 Ji et al., 2017; Olariu et al., 2002). Nitrocatechols dominated the composition of NACs formed in benzene/NOx system (Xie 72 et al., 2017). The NC formation could be initiated by OH or NO₃ radicals to form β -hydroxyphenoxy/ ρ -semiquinone radicals, 73 which then react with NO₂ to form the final products (Finewax et al., 2018). Compared with the gas-phase formation of 74 NACs, the formation pathway via aqueous-phase aromatic nitration is less well understood (Kroflic et al., 2018). 75 Nitrophenols could be formed through the hydroxylation and nitration of benzene in the presence of nitrite/nitrous acid or 76 photo-nitration of phenol upon UV irradiation of nitrite in aqueous solutions (Vione et al., 2004; Vione et al., 2001). It has 77 been suggested that nighttime aqueous-phase oxidation is an important formation pathway for methyl-nitrocatechols, 78 especially in polluted high-NO_x environments and in presence of acidic particles (pH around 3) (Vidovic et al., 2018). The 79 proposed aqueous-phase formation processes of MNCs include electrophilic substitution route and consecutive oxidation and 80 conjugated addition route (Frka et al., 2016; Vidovic et al., 2018). The loss pathways for NACs are proposed to include 81 photolysis and reactions with OH, NO₃ radicals or chlorine atoms (Atkinson et al., 1992; Bejan et al., 2007; Bejan et al., 82 2015; Chen et al., 2011; Yuan et al., 2016; Hems and Abbatt, 2018).

83 However, few observational field studies have been conducted to investigate the formation of NACs in urban 84 atmospheres. In this work, we report results from an intensive field campaign conducted in summertime Beijing, aiming to 85 gain understanding of ambient concentration variation characteristics of NACs, relative importance of various proposed 86 formation pathways and major influence factors in high NO_x and anthropogenic VOCs dominated urban atmospheres. A 87 group of 8 NACs (NPs, MNPs, dimethyl-nitrophenols, DMNPs, NCs and MNCs) in 19 day samples and 19 night samples 88 were quantified using high performance liquid chromatography- mass spectrometry (HPLC-MS). Additional data of 89 inorganic aerosol constituents, VOC precursors, inorganic gases and meteorological parameters were also obtained and 90 analyzed to aid the investigation of the secondary formation pathways of NACs and controlling factors. This work provides 91 insights into the secondary formation of NACs in high NO_x and anthropogenic VOCs dominated urban environments.

92 2 Methods

93 2.1 Sample collection

94 As part of the bilateral Sweden-China framework research program on 'Photochemical smog in China', an intensive 95 field campaign was conducted in Beijing, aiming to improve the understanding on secondary chemistry during 96 photochemical smog events in China (Hallquist et al., 2016). The campaign was conducted at Changping (40.14° N, 116.11° 97 E), a regional site northeast of Beijing urban area, from May 15 to June 5, 2016. During this period, the site was influenced 98 by anthropogenic pollutants from Beijing urban areas and under high-NO_x conditions, as suggested by field measurement 99 evidence reported in previous publications related to this campaign (Tang et al., 2018; Wang et al., 2018a). During May 17-100 June 5, the daily average concentrations of benzene, toluene and NO_x were 66-922 ppt, 47-1344 ppt and 4.0-32.3 ppb, 101 respectively.

Day and night ambient PM_{2.5} (particles with aerodynamic diameter less than 2.5 μm) samples were collected on prebaked quartz fiber filters (Whatman Inc.) and Teflon filters (Whatman Inc.) using a high-volume sampler (TH-1000C, Tianhong, China) and a 4-channel sampler (TH-16A, Tianhong, China). The sampling flow rates were 1.05 m³/min and 16.7 L/min, respectively. The daytime samples were collected from 8:30 to 17:30 LT (UTC+8) and the nighttime ones from 18:00 to 8:00 LT (UTC+8) the next morning. Field blank samples were collected by placing filters in the samplers with the pump off for 30 min.

108 2.2 Quantification of NACs

109 An aliquot of 25 cm² was removed from each quartz fiber filter sample and extracted in ultrasonic bath three times 110 using 3, 2 and 1 mL methanol containing 30 µL saturated EDTA solution in methanol-acetic acid consecutively, each time 111 for 30 min. The extracts were then filtered through a 0.25 µm polytetrafluoroethylene (PTFE) syringe filter (Pall Life 112 Sciences), combined, and evaporated to dryness under a gentle stream of high-purity nitrogen. The dried samples were 113 re-dissolved in 50 μ L methanol/water (1:1) containing 100 ppb 4-nitrophenol-2,3,5,6-d₄ as internal standard. The solution 114 was centrifuged and the supernatant was used for analysis, using Agilent 1260 LC system (Palo Alto, CA) coupled to 115 QTRAP 4500 (AB Sciex, Toronto, Ontario, Canada) mass spectrometer. The LC-MS system was equipped with an 116 electrospray ionization (ESI) source operated in negative mode. More details of the extraction and optimized MS parameters 117 have been described in our previous study (Chow et al., 2016).

118 Chromatographic separation was performed on an Acquity UPLC HSS T3 column (2.1 mm×100 mm, 1.8 μ m particle 119 size; Waters, USA) with a guard column (HSS T3, 1.8 μ m). The column temperature was kept at 45 °C and the injection 120 volume was 5.0 μ L. The mobile eluents were (A) water containing 0.1% acetic acid (v/v) and (B) methanol (v/v) containing 121 0.1% acetic acid at a flow rate of 0.19 mL/min. The gradient elution was set as follows: started with 1% B for 2.7 min; 122 increased to 54% B within 12.5 min and held for 1.0 min; then increased to 90% B within 7.5 min and held for 0.2 min; and 123 finally decreased to 1% B within 1.8 min and held for 17.3 min until the column was equilibrated. Chromatograms of NAC

standards and an ambient sample are shown in Figure S1.

125 The quantified NAC species are listed in Table 1. The NACs were identified and quantified using the [M-H]⁻ ions in the 126 extracted ion chromatogram (EIC), using authentic standards or surrogates with the same molecular formula (Table 1). The 127 standards included: 4-nitrocatechol (4NC), 4-nitrophenol (4NP), 2-methyl-4-nitrophenol (2M4NP), 3-methyl-4-nitrophenol 128 (3M4NP) and 2,6-dimethyl-4-nitrophenol (2,6DM4NP) from Sigma–Aldrich (St. Louis, MO, USA); 129 4-methyl-5-nitrocatechol (4M5NC) from Santa Crutz Biotech (Dallas, TX, USA). The recoveries of the target NACs were 130 91-106%. 4M5NC was employed as a surrogate standard to quantify 3M5NC and 3M6NC. However, a recent study 131 suggested that no 3M6NC could be detected in ambient aerosols and the MNC isomer could be an incorrect assignment of 132 3M4NC as 3M6NC (Frka et al., 2016). We cannot exclude the possibility of MNC isomer as 3M4NC due to a lack of 133 authentic standards. Employing 4M5NC as a surrogate standard, the concentrations of 3M6NC could be obviously 134 underestimated due to its poor ionization under ESI condition compared with that of 4M5NC (Frka et al., 2016). The 135 concentration of dimethyl-nitrophenol (DMNP) was the sum of three isomers. 2,6DM4NP was identified based on its 136 retention time matching that of the authentic standard (Figure S1), while we cannot exclude the possibility of the other two 137 DMNP isomers as ethylnitrophenols or methoxylated isomers.

138 **2.3** Other online and offline measurements

139 Other online and offline instruments were also employed to obtain related database, which has been introduced in 140 details in our previous paper (Wang et al., 2018c). In brief, a high resolution time-of-flight aerosol mass spectrometer (AMS) 141 was used to measure the chemical composition of PM₁ (Zheng et al., 2017). The aerosol surface area was calculated based on 142 the measurements of particle number and size distribution by a scanning mobility particle sizer (SMPS, TSI 3936) and an 143 aerosol particle sizer (APS, TSI 3321) (Yue et al., 2009; Wang et al., 2018a). VOCs were measured by a 144 proton-transfer-reaction mass spectrometer (PTR-MS). Gaseous NH₃ was measured using a NH₃ analyzer (G2103, Picarro, 145 California, USA) (Huo et al., 2015). Meteorological parameters, including relative humidity (RH), temperature, wind 146 direction and wind speed (WS) were continuously monitored by a weather station (Met one Instrument Inc.) during the 147 whole campaign.

Organic carbon (OC) and element carbon (EC) were measured on the quartz fiber filter samples using a thermal/optical carbon analyzer (Sunset Laboratory). The organic matter (OM) concentration was calculated by multiplying OC by 1.6 (Turpin and Lim, 2001). The Teflon filter samples were used to quantify the water soluble inorganic ions by an ion chromatograph (IC, DIONEX, ICS2500/ICS2000) following procedures described in Guo et al. (2010). Aerosol acidity and liquid water content (ALWC) was then calculated using the ISORROPIA-II thermodynamic model. ISORROPIA-II was operated in forward mode, assuming the particles are "metastable" (Hennigan et al., 2015; Weber et al., 2016; Guo et al., 154 2015). The input parameters included: ambient RH, temperature, particle phase inorganic species $(SO_4^{2-}, NO_3^{-}, Cl^{-}, NH_4^{+}, K^{+},$ 155 Na⁺, Ca²⁺, Mg²⁺), and gaseous NH₃. More details and validation of the thermodynamic calculations have been described in 156 our previous paper (Wang et al., 2018c).

157 2.4 Estimation of the gas-phase NACs

The concentrations of gas-phase NACs were not measured in this study. They were calculated based on the measured
 particle-phase NAC concentrations and equilibrium absorption partitioning theory (Pankow, 1994a, b; Pankow et al., 2001)
 (Eqs. 1, 2):

161
$$F_p = (1 + \frac{c^*}{c_{OA}})^{-1} = \frac{c_p}{c_g + c_p}$$
(Eq. 1)

where F_p is the fraction of NACs in the particle-phase. C_{OA} is the concentration of organic aerosols (OA), calculated as OC multiplied by 1.6. c_g and c_p are the concentrations of NACs in gas phase and particle phase, respectively. C^* is the effective saturation mass concentration ($\mu g/m^3$), and is calculated using Eq. 2:

165
$$C^* = \frac{M 10^6 \zeta P_V}{760 RT}$$
 (Eq. 2)

where M is the molecular weight of NACs (g/mol). ζ is the activity coefficient of the species (assumed =1). *R* is the gas constant (8.314 J/(mol K)), *T* is the temperature (K), and P_{ν} (Pa) is the saturation pressure. P_{ν} at the average temperature during the campaign (296 K) is calculated using the multiphase system online property prediction tool developed by University of Manchester (UManSysProp, http://umansysprop.seaes.manchester.ac.uk). The vapor pressures were estimated using Nannoolal approach (Nannoolal et al., 2008), and the boiling points were estimated using the Joback and Reid approach (Joback and Reid, 1987).

172 The estimated P_{ν} , F_{p} and gas-phase concentrations of NACs are listed in Table S1. 4NP and methyl-nitrophenols 173 (2M4NP and 3M4NP) were predicted to be mainly in the gas phase ($F_p < 10\%$) while DMNP, 4NC and MNC (3M6NC, 174 3M5NC and 4M5NC) were mainly in the particle phase ($F_p > 60\%$). The gas-phase DMNP and MNC ($F_p > 95\%$) will not be 175 further discussed in this study. While the equilibrium model gives reasonable estimation of F_p and gas-phase concentrations 176 for nitrocacatechols, it overestimates the vapor pressure of NPs by several orders of magnitude (Bannan et al., 2017). The 177 estimated F_p (0.83%) was obviously lower than the measured values for 4NP. For example, Cecinato et al. (2005) measured F_p of 4NP and 3M4NP to be 82% and 78%, respectively in downtown Rome; Le Breton et al. (2018) reported F_p of 178 179 nitrophenol at ~17% using Chemical-Ionization Mass Spectrometer (CIMS) coupled with the Filter Inlet for Gases and 180 AEROsols (FIGAERO) during this campaign. We note that CIMS could not distinguish the isomers (e.g., 2NP) of 4NP, 181 however, the measured F_p values showed us the range of particulate fraction of 4NP during the campaign. The equilibrium 182 absorption partitioning model could underestimate the F_p of 4NP by ~20 times. Thus, the gas-phase 4NP concentration was 183 roughly calculated using the measured F_p (17%) by FIGAERO-CIMS (Le Breton et al., 2018).

Gas-phase NACs could also dissolve into the aqueous-phase particles. The concentrations dissolved into the aqueous phase (C_{aq}) were estimated by Henry's law (Sander, 2015). Henry constants were obtained from Sander et al. (2015) and ALWC was estimated using ISORROPIA-II (see section 2.4). The estimated C_{aq} of 4NP and 3M4NP were 4.4E-4 and 2.4E-5 ng/m³, contributing <0.02% to their concentrations in particle phase. The contribution of dissolution into aqueous-phase particles for NC and MNC is expected to be lower, due to the much lower gas-phase concentrations than that of 4NP. For this reason, we will not further consider the dissolution of NACs into particle aqueous phase.

190 3 Results and Discussion

191 **3.1** Concentration and composition of NACs

192 The average concentration of quantified NACs was 6.63 ng/m³, ranging from 1.27 to 17.70 ng/m³ in summer in Beijing. 193 Figure 2 compares the total NAC concentrations across this and prior studies, and the individual NAC concentrations are 194 compared in Figure S2 and Table S2. The total NAC concentration in this work was higher than those measured in other 195 studies conducted in summer in mountain, rural or urban environments (Teich et al., 2017; Kitanovski et al., 2012; Kahnt et 196 al., 2013; Zhang et al., 2013; Chow et al., 2016; Wang et al., 2018b), and comparable to those reported in the studies in 197 summertime Wangdu, China (Teich et al., 2017; Wang et al., 2018b) (Figure 2). Most NAC species (NC, MNP and MNC), 198 except for DMNP and NP, also showed elevated concentrations in Changping, compared with those reported in other 199 summertime studies (Figure S2). Influenced by the outflow from urban Beijing air masses, the site was under typical 200 high-NO_x conditions (Wang et al., 2018a), implying abundant potential secondary formation of NACs during the observation 201 period. A recent study suggested that nocturnal biogenic VOCs (BVOCs) oxidation would transfer from low- to high- NO_x 202 regimes and nearly all the BVOCs would be oxidized by NO₃ radicals, at a NO₅/BVOCs ratio higher than 1.4 (Edwards et al., 203 2017). If we approximate the BVOC concentrations to be the sum of isoprene, MVK+MACR (methyl vinyl ketone and 204 methacrolein), and monoterpenes, the NO_x/BVOC ratios were higher than 8 (nighttime ratios higher than 20) (Figure S3). If 205 we further consider the major anthropogenic VOCs (toluene, benzene), NO_x/VOCs ratios were higher than 5 (nighttime 206 ratios higher than 10) (Figure S3). The high- NO_x conditions during the campaign were expected to facilitate the oxidation of 207 aromatic hydrocarbons and the subsequent secondary formation of NACs. Other emissions from biomass burning and coal 208 combustion were also observed to be contributors of organic aerosols during the campaign (Tang et al., 2018), and they 209 could also be the precursor sources of NACs. Biomass burning episodes occurred during Wangdu campaign, indicating NAC 210 emissions from biomass burning (Teich et al., 2017; Tham et al., 2016), which explain the high NAC levels in summer in 211 Wangdu. The NAC concentrations during summer (including this study) are generally lower than those during spring, 212 autumn or winter, which could be due to stronger contributions from combustion sources (e.g., biomass burning and coal 213 combustion) during spring, autumn or winter than those during summer (Chow et al., 2016; Wang et al., 2018b; Kitanovski

et al., 2012; Kahnt et al., 2013).

215 The NAC compositions are shown in the inserted pie chart in Figure S2. 4-Nitrophenol and 4-nitrocatechol were the 216 most abundant ones among all the quantified NAC species, accounting for 32.4 % and 28.5 % of the total quantified NACs, 217 followed by methyl-nitrocatechols (4M5NC, 3M5NC and 3M6NC, 16.2%), methyl-nitrophenol (2M4NP and 3M4NP, 15.6%) 218 and dimethyl-nitrophenol (8.3%) (Table 1). The contribution of NP and NC could be larger when considering both gas- and 219 particle-phases. The average concentration of 4NC in both gas- and particle-phases was estimated 2.2 ng/m³ using 220 equilibrium absorption partitioning model. The total concentration of 4NP (13 ng/m³) in both gas- and particle-phases was 221 approximated using the measured F_p (17%) by FIGAERO-CIMS (Le Breton et al., 2018). Nitrophenols and nitrocatechols 222 were generally reported among the most abundant NAC species in previous studies (Table S2 and the references therein). 223 Nitrophenols could be formed via the oxidation of anthropogenic VOCs (e.g., benzene) in the presence of NO_2 and 224 nitrocatechols were found to dominate the composition of NAC products formed in benzene/NO_x system in laboratory 225 studies (Xie et al., 2017; Harrison et al., 2005; Yuan et al., 2016; Sato et al., 2007; Ji et al., 2017; Olariu et al., 2002). Thus, it 226 is not a surprise to observe the high concentrations of nitrophenol and nitrocatechol in the typical high-NO_x and 227 anthropogenic VOCs dominated environments in summer in Beijing.

228 The contribution of NP among the total NACs at Changping was higher than that in summer in Hong Kong, while that 229 of MNC was lower (Table S2 and the inserted pie charts in Figure S2). This NAC composition difference between 230 Changping and Hong Kong may be a result of different formation pathways for NPs and MNC and different environmental 231 conditions at the two sites. The gas-phase oxidation of aromatic hydrocarbons (e.g., phenol, benzene) in the presence of NO_2 232 is a major source of NPs (Harrison et al., 2005; Yuan et al., 2016; Sato et al., 2007; Ji et al., 2017; Olariu et al., 2002), while 233 aqueous-phase oxidation represents the important formation pathway for atmospheric MNC (Frka et al., 2016; Vidovic et al., 234 2018). The ambient RH in Hong Kong (>70%) was significantly higher than that in summer in Beijing (5-81%, 37% on 235 average), thus the relative contribution of aqueous-phase pathways could be more dominant in Hong Kong, promoting the 236 aqueous-phase formation of MNC. The influence of ambient RH on NAC formation will be further discussed in Section 3.4. 237 In comparison, more abundant gas-phase formation of nitrophenol was expected in summer in Beijing, under higher 238 anthropogenic VOCs, high NO_x and low RH conditions. In addition, the lower temperature in summer in Changping was 239 more favorable for the partitioning of nitrophenols from gas phase into particle phase.

240 3.2 Temporal variations and sources of NACs

Temporal variations of the total quantified NAC concentrations are shown in Figure 3, along with particulate organics, nitrate, potassium ion, toluene, benzene, acetonitrile, wind speed and RH. During the field campaign, four pollution episodes (episodes I, II, III, IV), marked by grey shading in Figure 3, were identified through observation of elevated organic aerosols. Elevated NAC concentrations were observed during pollution episodes, coinciding with the increasing of toluene, benzene, 245 acetonitrile and potassium. The correlations between NACs and other chemical components are shown in Table S3. The 246 potassium ion was employed to indicate particulate emissions from biomass burning. As the biomass burning-derived 247 immediate VOC precursors to NACs were not detected in this study, acetonitrile was used to track the variations of VOCs 248 released by biomass burning. It was noticed that NACs showed stronger correlations with toluene (r=0.70**), benzene 249 (r=0.64**) or acetonitrile (r=0.61**) than with potassium (r=0.49**). The "**" following the numerical value denotes 250 significant correlation at the 0.01 level. This appeared to suggest that the NO_x oxidation of anthropogenic VOCs and 251 precursor VOCs from biomass burning was a more important source of NACs than primary biomass burning emission in 252 summer in Beijing. A lower correlation between particulate NACs and EC (Table S3, r=0.39**) was also in agreement with 253 the suggestion of the less importance of primary emissions to NACs during the campaign. We note that only particulate NAC 254 concentrations were used to do the correlation analysis. Two atmospheric processes, namely photolysis and gas-to-particle 255 partitioning, could influence the abundance of particle-phase NACs, especially for NP and MNPs, since majority of them 256 was expected to be in the gas phase (Table S1). As such, correlations of particle-phase NP and MNPs with other species may 257 less reliably reflect the underlying associations with the correlation species. As for the relative importance of anthropogenic 258 VOCs and biomass burning-derived VOCs, we do not have direct field measurement data for the differentiation. However, 259 previous studies suggested that the sources of anthropogenic VOCs in summer in Beijing were dominated by vehicle 260 emissions (>50%), with minor contributions from solvent evaporation and biomass burning (Wang et al., 2014; Liu et al., 261 2008). Modelling studies incorporating emission inventories of the relevant VOC precursors could address this issue and are 262 suggested in future investigation of NAC sources. We note that biomass burning could often be of an anthropogenic origin. 263 Within this work, the term "anthropogenic VOCs" does not include VOCs from human-caused biomass burning activities.

264 To further investigate the formation of NACs, we examined the time series and day-night variations of individual NAC 265 species (Figures 4, S4 and S5). Daytime enhancements of 4NP, 2M4NP and DMNP, nighttime enhancements of 3M4NC and 266 4M5NC were observed, and other NAC species did not show discernible day-night variations (Figures 4, S4 and S5), 267 indicating different formation pathways among NAC species. Good inter-species correlations were observed among 268 nitrophenol and its derivatives (2M4NP, 3M4NP, DMNP, r=0.56-0.88), as well as among nitrocatechol and its derivatives 269 (3M6NC, 3M5NC, 4M5NC, r=0.49-0.84). This signaled that the formation and loss pathways as well as the influence factors 270 were likely similar within NP and NC groups. In comparison, the correlations of NACs across the two groups, i.e., between 271 nitrophenol derivatives (MNP, DMNP) and nitrocatechol derivatives (MNC, r=0.05-0.45), were lower (Table S3), suggesting 272 different formation pathways and influence factors. NC and its derivatives showed stronger correlations with toluene, 273 benzene, acetonitrile and K^+ , compared with NP and its derivatives (Table S3). This was more likely associated with the fact 274 that particle-phase NPs only account for a minor part of the atmospheric NP abundance due to the high vapor pressure of 275 NPs (Table S1). The abundance of particulate NP could largely depend on gas-to-particle partitioning, which is strongly 276 affected by temperature, as well as their gas-phase loss pathways (e.g., photolysis) (Bejan et al., 2007; Yuan et al., 2016;

Sangwan and Zhu, 2018). NC and MNC were mainly present in the particle phase (Table S1). The oxidation degradation rates and photolysis of NC and MNC were therefore much lower. A recent laboratory study found that OH uptake by MNC particles was suppressed by a factor of 4 at RH 15-30% in comparison with dry condition, as a result of competitive co-adsorption of water molecules that occupied reactive sites (Slade and Knopf, 2014). During the campaign, the ambient RH was 37%. Such an RH condition rendered that the OH uptake by particles was suppressed and therefore heterogeneous oxidation of MNC was likely not important.

283 Nighttime enhancements of 4M5NC and 3M5NC were observed during the whole observation period (Figure 4). A 284 strong correlation between 4M5NC and 3M5NC and their similar temporal variations likely indicated shared similarity in 285 their formation pathways. Previous studies suggested that aqueous-phase oxidation (including photooxidation and nighttime 286 oxidation) is an important formation pathway for atmospheric MNC, especially in polluted high-NO_x environments and 287 relatively acidic particles (pH around 3) (Vidovic et al., 2018; Frka et al., 2016). 4M5NC and 3M5NC showed relatively 288 stronger correlations with RH compared with other NAC species (Table S3), implying the importance of water in their 289 formation processes and the aqueous-phase pathway. During the campaign, the acidic particles (a pH in the range of 2.0-3.7) 290 and the high-NO_x conditions (Wang et al., 2018c; Wang et al., 2018a) provided suitable environments for the aqueous-phase 291 oxidation formation of MNC. The nighttime enhancements of 4M5NC and 3M5NC were more obvious during episode I than 292 during episodes II-IV (nighttime/daytime concentrations at 1.9-3.1 vs. 0.9-1.5) (Figure 4), which suggested that nighttime 293 aqueous-phase formation pathways played more important roles during the first episode. The daytime correlations between 294 4M5NC or 3M5NC and RH or NO₂ were stronger than the nighttime ones (Table S4). The aqueous-phase NO_x oxidation 295 could be more dependent on ambient RH and NO₂ levels during the daytime, due to the lower RH and NO₂ concentrations 296 than those at night (Figures 3, S3). MNCs also showed good correlations with acetonitrile and potassium, as MNCs could 297 also be formed via the oxidation of biomass burning-derived VOC precursors (e.g., cresol) (linuma et al., 2010; Finewax et 298 al., 2018; Olariu et al., 2002). 3M6NC (or 3M4NC isomer) showed different temporal variations from 4M5NC or 3M5NC 299 (Figures 4, S4) and their correlations were lower than that between 4M5NC and 3M5NC (Tables S3, S4), possibly 300 suggesting different formation pathway for 3M6NC (or 3M4NC isomer) from those of 4M5NC or 3M5NC. Quantum 301 calculations have predicted the formation of 3M5NC via aqueous-phase electrophilic substitution and nitration by NO₂⁺, 302 while the formation of 3M6NC was negligible due to higher activation barriers for nitration of 3-methylcatechol to form 303 3M6NC (Frka et al., 2016). A dominant presence of 3M5NC in ambient aerosols was also expected according to theoretical 304 predictions (Frka et al., 2016). The 3M5NC concentration was higher than that of 3M6NC in summer in Beijing, consistent 305 with the suggestion from computation study by Frka et al. (2016).

Different from the nighttime enhancements of 4M5NC and 3M5NC, 4NP, 2M4NP and DMNP showed daytime enhancements during the whole campaign (Figures 4, S5). Previously, Yuan et al. (2016) also suggested the daytime gas-phase oxidation of aromatics could represent the major source of NPs, while the contribution from nighttime reaction of 309 phenol with NO₃ radicals was relatively lower (Yuan et al., 2016). The daytime enhancements of NP and its derivatives 310 (2M4NP, DMNP) were more prominent during episodes II-IV than episode I (daytime/nighttime concentrations at 3.1-4.5 vs. 311 1.8-2.0) (Figure 4), which indicated that gas-phase photochemical oxidation plays a more important role during the later 312 period of the campaign. We did not find good correlation between 4NP and NO₂ when considering the whole campaign 313 period (Table S3), while good correlations were observed when treating the daytime and nighttime conditions separately 314 (Table S4). The strong correlations between 4NP and benzene, toluene or NO_2 during daytime and nighttime indicated its 315 formation via oxidation of benzene and toluene in the presence of NO₂ (Table S4). The formation mechanisms of nitrophenol 316 were different during daytime (OH-initiated photooxidation of aromatics in the presence of NO₂) and nighttime 317 (NO₃-initiated oxidation of aromatics) (Harrison et al., 2005; Yuan et al., 2016; Sato et al., 2007; Ji et al., 2017; Olariu et al., 318 2002), thus the role and influence of NO_2 on NAC formation were different. For DMNP, 2M4NP and 3M4NP, they also 319 showed good correlations with benzene, toluene and NO₂ during daytime, but the correlations were absent at night. Instead, 320 their correlations with RH were higher at night, implying the possible formation via aqueous-phase pathways.

321 3.3 The NO₂ control of NACs formation

The analysis in section 3.2 suggests that NO_x oxidation of anthropogenic VOC precursors represented the dominant sources of NACs in summer in Beijing. To further investigate the impacts of NO_2 on NAC secondary formation, we plot the concentrations of NACs, nitrate (NO_3^-) and the NO_3^-/NAC ratios as a function of NO_2 levels (Figure 5). The variation of ($NO_3^-)/NACs$ ratios was employed to illustrate the relative abundance of inorganic nitrate and oxidized organic nitrogen. The variations during daytime and nighttime were separately considered due to the different atmospheric conditions and oxidation mechanisms.

328 Generally, higher concentrations of NACs and nitrate were observed with elevated NO₂ concentration levels, in a 329 nonlinear fashion (Figure 5). During the daytime, NACs increased with NO₂, and NO₃⁻ concentrations and (NO₃⁻)/NACs 330 ratios were lower at low-NO_x conditions (NO₂< 20ppb). As NO₂ increased to higher than 20 ppb, NAC concentrations did 331 not increase with NO₂ anymore, signaling the transition from NO_x-sensitive to NO_x-saturated regimes for NAC secondary 332 formation. At the same time, the NO_3^- concentrations and $(NO_3^-)/NACs$ ratios showed increasing trends compared with those 333 under low-NO_x conditions (NO₂< 20ppb) (Figure 5a, b, c). It was likely that the daytime NO₂ was in excess for the oxidation 334 of ambient VOCs and the NAC formation at NO₂> 20 ppb. Then the excess NO₂ would be oxidized to form inorganic nitrate, 335 producing a shift of products from organic- to inorganic-dominated conditions. Similarly, during nighttime a transition was 336 observed at NO₂ ~25 ppb in which oxidation products were shifted from organic- to inorganic-dominance (Figure 5d, e, f). 337 At NO₂> 25 ppb, the nighttime NAC formation became independent of NO₂ concentrations and inorganic nitrate dominated 338 the NO_x oxidation products. The simplified mechanisms and schematic diagram of the competing formation of inorganic 339 nitrates and NACs are shown in Figure S6. The nighttime NO₂ transition value (~25 ppb) was higher than the daytime one

- 340 (~20 ppb). The higher concentrations of anthropogenic VOC precursors (Figure S3) and different oxidation mechanisms
- 341 (Figure 1) were the potential reasons for elevated NO₂ transition value at night.

342 The compositional variation of inorganic nitrate and NACs described in this work serves as an example in illustrating 343 that the transition from low- to high- NO_x regimes and the corresponding oxidation products shifting from organic- to 344 inorganic-dominated conditions exist in polluted urban atmospheres that are characterized by high NO_x and anthropogenic 345 VOCs. However, the mechanisms as well as transition thresholds were less understood compared with the well-known 346 BVOCs/NO_x atmospheres. More comprehensive investigation in urban atmospheres is needed to develop more quantitative 347 understanding of the NO_x regime transition. As only a limited number of VOC species were measured in this study, the NO_x 348 regime transition value was expressed by NO₂ concentrations rather than NO₂/VOC or NO_x/VOC ratios. We also note that 349 the NO_x regime transition values in other atmospheres could be quite different. The NO_x regime transition values deserve 350 further investigation through comprehensive lab simulation and field observations to seek a more robust parameter that can 351 be applied to various atmospheric environments.

352 The analysis in the previous section indicates that the formation pathways of different NAC species vary from each 353 other; thus the role and influence of NO₂ on their formation are different. The NAC compositions under similar NO₂ 354 concentration levels were averaged, with a bin size of 10 ppb NO₂. The variation of NAC compositions as a function of NO₂ 355 levels is shown in Figure 6 to investigate the influence of NO₂ on NAC compositions. The contributions of NCs (standard 356 deviation< 12% within each NO₂ bin) increased and those of NPs (standard deviation< 12% within each NO₂ bin) decreased 357 at elevated NO₂ concentrations. The NAC composition remained relatively constant at NO₂ >20 ppb, which was 358 approximately the transition value from low- to high-NO_x regimes. The role of elevated NO₂ in promoting formation of NCs 359 was more obvious than that for NPs. The oxidation of aromatics (e.g., benzene, toluene and VOCs emitted from biomass 360 burning) in the presence of NO₂ represents the major formation pathway of NCs. The formation of NCs would increase with 361 increasing of ambient NO₂. As particle-phase NP and MNP were strongly dependent on the gas-to-particle partitioning and 362 gas-phase loss (e.g., photolysis), their increasing trends as a function of NO_2 were not as obvious as those of NC and MNC.

363 3.4 Other influence factors on NACs formation

Nitration of aromatic hydrocarbons (e.g., benzene and toluene) represents the major source of NACs in summer in Beijing. NACs generally increased with the increasing of anthropogenic toluene and benzene (Figure 7). During daytime, when toluene was higher than 0.6 ppb and benzene higher than 0.4 ppb, the NACs concentrations did not increase further with VOC concentrations (Figure 7a, b). It was likely that toluene or benzene was in excess and the NAC formation became independent of these precursors. Similarly, the nighttime formation of NACs would become insensitive to these precursors when toluene was higher than 1 ppb and benzene higher than 0.6 ppb (Figure 7c, d). The transition value of toluene or benzene was higher at night than during the daytime. This could be due to the significantly higher NO₂ levels (significant at 371 p= 0.01 level) (Figure S3), with higher capacity to oxidize VOC precursors, and different oxidation mechanisms at night.

372 Though the total NACs didn't show good correlations with ambient RH, good correlations between 3M4NC, 4M5NC 373 and RH were observed (Table S3, Figure 8). Nitrophenols and methyl-nitrophenols, dominated by gas-phase formation 374 pathways, were less affected by ambient RH. Aqueous-phase oxidation represented the major formation pathway of 3M4NC 375 and 4M5NC during the campaign, based on the analysis in section 3.2 and previous studies (Vidovic et al., 2018; Frka et al., 376 2016). Elevated ambient RH would favor the water uptake of aerosols and decrease the aerosol viscosity, which favors the 377 uptake of organic precursors or other gas molecules into the particles, mass diffusion of reactants, and chemical reactions 378 within the particles (Vaden et al., 2011; Booth et al., 2014; Renbaum-Wolff et al., 2013; Shrestha et al., 2015; Zhang et al., 379 2015), and thereby enhance the formation of 3M4NC and 4M5NC in aqueous phase.

380 The (3M4NC+ 4M5NC)/4NP mass concentration ratios were employed to indicate the relative contribution of 381 aqueous-phase and gas-phase pathways to NAC formation. The variations of (3M4NC+ 4M5NC)/4NP ratios as a function of 382 ambient RH during daytime and nighttime are shown in Figure 9. During daytime, this ratio increased with RH when 383 RH<30%, indicating elevated contribution of aqueous-phase pathways to NAC formation with higher RH conditions. The 384 ratio remained stable at RH>30% during both daytime and nighttime, suggesting the relative contribution of aqueous-phase 385 and gas-phase pathways would not increase further with increasing RH beyond RH > 30% (Figures 9a and 9b). The ratio 386 during the nighttime was obviously higher than during the daytime, indicating that the aqueous-phase oxidation played more 387 important roles for NAC formation at night. The results implied the importance of aqueous-phase oxidation for the 388 secondary formation of oxidized organic nitrogen at elevated ambient RH. Due to the limited sample number obtained by 389 filter-based analysis in this study, the influence of RH or aerosol liquid water content on NAC formation needs further 390 confirmative investigation using controlled laboratory studies.

The NAC concentrations also showed good correlations with aerosol surface area (Figure 8b). Higher aerosol surface area would facilitate the partitioning of gas-phase NAC products or precursors into particle phase and the aqueous-phase or heterogeneous oxidation processes (Kroflic et al., 2015; Bauer et al., 2004; Fenter et al., 1996; Vidovic et al., 2018). Photolysis is an important loss pathway of NACs and could be the dominant sink for nitrophenols in the gas phase (Bejan et al., 2007; Yuan et al., 2016). The highest value of $J(O^1D)$ of each day was used to roughly represent the photolysis intensity. The daytime NAC concentrations showed negative correlations with $J(O^1D)$ (Figure 8c, Table S4), suggesting photolysis as an important sink for NACs during the daytime.

398

399 4 Conclusions

) Nitroaromatic compounds (NACs) measurements from an intensive field campaign conducted in summer in Beijing

were examined to investigate the abundance and formation characteristics of NACs under high-NO_x and anthropogenic VOCs dominated atmosphere. The average concentration of eight quantified NACs was 6.63 ng/m^3 , generally higher than those reported in other summertime studies elsewhere. Among the eight NACs, 4-nitrophenol (32.4%) and 4-nitrocatechol (28.5%) were the most abundant, consistent with previous studies, and followed by methyl-nitrocatechol, methyl-nitrophenol and dimethyl-nitrophenol.

406 Our analysis indicates that the secondary formation via oxidation of anthropogenic VOC precursors (e.g., toluene, 407 benzene) in the presence of NO₂ represented a more important source of NACs than primary biomass burning emissions in 408 summer in Beijing. We also observed a transition of oxidation products from organic- to inorganic-dominated conditions as 409 NO_x shifted from low- to high-NO_y regimes. The transition occurred at NO₂ of ~20 ppb for the daytime and ~25 ppb for the 410 nighttime atmosphere. Under low-NO_x conditions, NACs were observed to increase with NO₂, and the NO₃⁻ concentrations 411 and $(NO_3)/NACs$ ratios were lower. Under high-NO_x conditions, the NAC concentration did not further increase with NO₂ 412 while the NO_3^{-1} concentrations and $(NO_3^{-1})/NACs$ ratios would show increasing trends. The shift in relative abundance of 413 inorganic nitrate and NACs observed in this work serves as an example in illustrating the demarcation of the low- and 414 high-NO_x regimes in the anthropogenic VOCs-NO_x interacted conditions in polluted urban atmospheres and indicates that 415 NO₂ plays important roles in the formation of NACs. The reaction mechanisms are, however, still unclear and deserve 416 further laboratory and field investigation in future studies.

417 Different day-night variations were observed between the two sub-groups of NACs (i.e, nitrophenols and 418 nitrocatechols). Obvious nighttime enhancements of 3M4NC and 4M5NC and daytime enhancements of 4NP, 2M4NP and 419 DMNP were noted, indicating their different formation pathways. The aqueous-phase oxidation pathways are presumed to be 420 important for the formation of 4M5NC and 3M5NC, under the conditions with high NO_x concentrations and acidic particles 421 during the campaign. Photo-oxidation of toluene and benzene in the presence of NO₂ were more important for the formation 422 of nitrophenols. Subsequently, the (3M4NC+ 4M5NC)/4NP mass ratio was employed to probe the relative contribution of 423 aqueous-phase and gas-phase pathways to NAC formation. This ratio would initially increase with RH and remain relatively 424 consistent at RH> 30%, indicating elevated contribution of aqueous-phase pathways to NAC formation under higher RH 425 conditions. Aqueous-phase pathways played more important roles in NAC formation at night than during the daytime.

VOC precursors, aerosol surface area and photolysis were also important factors influencing the NAC formation. NACs generally increased with the increasing of toluene and benzene, implying nitration of aromatic hydrocarbons (e.g., benzene and toluene) may represent the major secondary source of NACs in our study location. The NAC formation would become independent of toluene and benzene, when the daytime concentrations were higher than 0.6 and 0.4 ppb, or the nighttime ones higher than 1 and 0.6 ppb. In addition, aerosol surface area was also an important factor promoting the NAC formation and photolysis could be an important loss pathway of nitrophenols during the daytime.

434

435 Data availability. The data presented in this article are available from the authors upon request (minhu@pku.edu.cn).

436

437 The Supplement related to this article is available online

438

Author contributions. MiH, MaH, and SG organized the field campaign. YJW and YCW conducted the offline analysis and
 analyzed the data. YJW wrote the manuscript with input from JY. All authors contributed to the measurements, discussing

441 results and commenting on the manuscript.

442

443 *Competing interests.* The authors declare that they have no conflict of interest.

444

445 Acknowledgements. This work was supported by National Natural Science Foundation of China (91544214, 91844301,

446 41421064, 51636003); National research program for key issues in air pollution control (DQGG0103); National Key

447 Research and Development Program of China (2016YFC0202000: Task 3); Hong Kong Research Grant Council (16212017);

448 bilateral Sweden-China framework program on 'Photochemical smog in China: formation, transformation, impact and

449 abatement strategies' by the Swedish Research council VR under contract (639-2013-6917); Project funded by China

- 450 Postdoctoral Science Foundation (2019M650354).
- 451

452 **References:**

- Atkinson, R., Aschmann, S. M., and Arey, J.: Reactions of hydroxyl and nitrogen trioxide radicals with phenol, cresols, and
 2-nitrophenol at 296 ± 2 K, Environ. Sci. Technol., 26, 1397-1403, 10.1021/es00031a018, 1992.
- Bannan, T. J., Booth, A. M., Jones, B. T., O'Meara, S., Barley, M. H., Riipinen, I., Percival, C. J., and Topping, D.: Measured
 saturation vapor pressures of phenolic and nitro-aromatic compounds, Environ. Sci. Technol., 51, 3922-3928,
 10.1021/acs.est.6b06364, 2017.
- Bauer, S. E., Balkanski, Y., Schulz, M., Hauglustaine, D. A., and Dentener, F.: Global modeling of heterogeneous chemistry
 on mineral aerosol surfaces: influence on tropospheric ozone chemistry and comparison to observations, J. Geophys. Res.,
 [Atmos.], 109, 10.1029/2003jd003868, 2004.
- Bejan, I., Barnes, I., Olariu, R., Zhou, S., Wiesen, P., and Benter, T.: Investigations on the gas-phase photolysis and OH
 radical kinetics of methyl-2-nitrophenols, Phys. Chem. Chem. Phys., 9, 5686-5692, 10.1039/b709464g, 2007.
- Bejan, I., Duncianu, M., Olariu, R., Barnes, I., Seakins, P. W., and Wiesen, P.: Kinetic study of the gas-phase reactions of
 chlorine atoms with 2-chlorophenol, 2-nitrophenol, and four methyl-2-nitrophenol isomers, J. Phys. Chem. A, 119,
 4735-4745, 10.1021/acs.jpca.5b02392, 2015.
- Booth, A. M., Murphy, B., Riipinen, I., Percival, C. J., and Topping, D. O.: Connecting bulk viscosity measurements to
 kinetic limitations on attaining equilibrium for a model aerosol composition, Environ. Sci. Technol., 48, 9298-9305,
 10.1021/es501705c, 2014.
- 469 Cecinato, A., Di Palo, V., Pomata, D., Tomasi Sciano, M. C., and Possanzini, M.: Measurement of phase-distributed
 470 nitrophenols in Rome ambient air, Chemosphere, 59, 679-683, 10.1016/j.chemosphere.2004.10.045, 2005.

- Chen, J., Wenger, J. C., and Venables, D. S.: Near-ultraviolet absorption cross sections of nitrophenols and their potential
 influence on tropospheric oxidation capacity, J. Phys. Chem. A, 115, 12235-12242, 10.1021/jp206929r, 2011.
- 473 Chow, K. S., Huang, X. H. H., and Yu, J. Z.: Quantification of nitroaromatic compounds in atmospheric fine particulate
- 474 matter in Hong Kong over 3 years: field measurement evidence for secondary formation derived from biomass burning
 475 emissions, Environ. Chem., 13, 665-673, 10.1071/en15174, 2016.
- Claeys, M., Vermeylen, R., Yasmeen, F., Gomez-Gonzalez, Y., Chi, X. G., Maenhaut, W., Meszaros, T., and Salma, I.:
 Chemical characterisation of humic-like substances from urban, rural and tropical biomass burning environments using
- 478 liquid chromatography with UV/vis photodiode array detection and electrospray ionisation mass spectrometry, Environ.
 479 Chem., 9, 273-284, 10.1071/EN11163, 2012.
- 480 Edwards, P. M., Aikin, K. C., Dube, W. P., Fry, J. L., Gilman, J. B., de Gouw, J. A., Graus, M. G., Hanisco, T. F., Holloway,
- 481 J., Huber, G., Kaiser, J., Keutsch, F. N., Lerner, B. M., Neuman, J. A., Parrish, D. D., Peischl, J., Pollack, I. B., Ravishankara,
- 482 A. R., Roberts, J. M., Ryerson, T. B., Trainer, M., Veres, P. R., Wolfe, G. M., Warneke, C., and Brown, S. S.: Transition from
- high- to low-NO_x control of night-time oxidation in the southeastern US, Nature Geosci., 10, 490-495, 10.1038/NGEO2976, 2017.
- Fenter, F. F., Caloz, F., and Rossi, M. J.: Heterogeneous kinetics of N_2O_5 uptake on salt, with a systematic study of the role of surface presentation (for N_2O_5 and HNO₃), J. Phys. Chem., 100, 1008-1019, 10.1021/jp9503829, 1996.
- Finewax, Z., de Gouw, J. A., and Ziemann, P. J.: Identification and quantification of 4-nitrocatechol formed from OH and
 NO₃ radical-initiated reactions of catechol in air in the presence of NO_x: implications for secondary organic aerosol
 formation from biomass burning, Environ. Sci. Technol., 52, 1981-1989, 10.1021/acs.est.7b05864, 2018.
- Frka, S., Sala, M., Kroflic, A., Hus, M., Cusak, A., and Grgic, I.: Quantum chemical calculations resolved identification of
 methylnitrocatechols in atmospheric aerosols, Environ. Sci. Technol., 50, 5526-5535, 10.1021/acs.est.6b00823, 2016.
- 492 Ge, X., Wexler, A. S., and Clegg, S. L.: Atmospheric amines Part I. A review, Atmos. Environ., 45, 524-546,
 493 10.1016/j.atmosenv.2010.10.012, 2011.
- Guo, H., Xu, L., Bougiatioti, A., Cerully, K. M., Capps, S. L., Hite, J. R., Carlton, A. G., Lee, S. H., Bergin, M. H., Ng, N. L.,
 Nenes, A., and Weber, R. J.: Fine-particle water and pH in the southeastern United States, Atmos. Chem. Phys., 15,
 5211-5228, 10.5194/acp-15-5211-2015, 2015.
- Guo, S., Hu, M., Wang, Z. B., Slanina, J., and Zhao, Y. L.: Size-resolved aerosol water-soluble ionic compositions in the
 summer of Beijing: implication of regional secondary formation, Atmos. Chem. Phys., 10, 947-959,
 10.5194/acp-10-947-2010, 2010.
- Hallquist, M., Munthe, J., Hu, M., Wang, T., Chan, C. K., Gao, J., Boman, J., Guo, S., Hallquist, A. M., Mellqvist, J.,
 Moldanova, J., Pathak, R. K., Pettersson, J. B. C., Pleijel, H., Simpson, D., and Thynell, M.: Photochemical smog in China:
 scientific challenges and implications for air-quality policies, Natl. Sci. Rev., 3, 401-403, 10.1093/nsr/nww080, 2016.
- Harrison, M. A. J., Barra, S., Borghesi, D., Vione, D., Arsene, C., and Iulian Olariu, R.: Nitrated phenols in the atmosphere: a
 review, Atmos. Environ., 39, 231-248, 10.1016/j.atmosenv.2004.09.044, 2005.
- Hems, R. F. and Abbatt, J. P. D.: Aqueous phase photo-oxidation of brown carbon nitrophenols: reaction kinetics, mechanism,
 and evolution of light absorption, ACS Earth and Space Chemistry, 2, 225-234, 10.1021/acsearthspacechem.7b00123, 2018.
- Hennigan, C. J., Izumi, J., Sullivan, A. P., Weber, R. J., and Nenes, A.: A critical evaluation of proxy methods used to
 estimate the acidity of atmospheric particles, Atmos. Chem. Phys., 15, 2775-2790, 10.5194/acp-15-2775-2015, 2015.
- Hoffmann, D., Iinuma, Y., and Herrmann, H.: Development of a method for fast analysis of phenolic molecular markers in
 biomass burning particles using high performance liquid chromatography/atmospheric pressure chemical ionisation mass
 spectrometry, J. Chromatogr., A, 1143, 168-175, 10.1016/j.chroma.2007.01.035, 2007.
- Huang, Q., Wang, L., and Han, S.: The genotoxicity of substituted nitrobenzenes and the quantitative structure-activity
 relationship studies, Chemosphere, 30, 915-923, 10.1016/0045-6535(94)00450-9, 1995.
- Huo, Q., Cai, X., Kang, L., Zhang, H., Song, Y., and Zhu, T.: Estimating ammonia emissions from a winter wheat cropland
- 515 in North China Plain with field experiments and inverse dispersion modeling, Atmos. Environ., 104, 1-10,
- 516 10.1016/j.atmosenv.2015.01.003, 2015.
- 517 Iinuma, Y., Boge, O., Grafe, R., and Herrmann, H.: Methyl-nitrocatechols: atmospheric tracer compounds for biomass
- 518 burning secondary organic aerosols, Environ. Sci. Technol., 44, 8453-8459, 10.1021/es102938a, 2010.

- Jenkin, M. E., Saunders, S. M., Wagner, V., and Pilling, M. J.: Protocol for the development of the Master Chemical
 Mechanism, MCM v3 (Part B): tropospheric degradation of aromatic volatile organic compounds, Atmos. Chem. Phys., 3,
 181-193, DOI 10.5194/acp-3-181-2003, 2003.
- Ji, Y., Zhao, J., Terazono, H., Misawa, K., Levitt, N. P., Li, Y., Lin, Y., Peng, J., Wang, Y., Duan, L., Pan, B., Zhang, F., Feng,
 X., An, T., Marrero-Ortiz, W., Secrest, J., Zhang, A. L., Shibuya, K., Molina, M. J., and Zhang, R.: Reassessing the
- atmospheric oxidation mechanism of toluene, Proc. Natl. Acad. Sci. USA, 114, 8169-8174, 10.1073/pnas.1705463114, 2017.
- aunospheric oxidation mechanism of foldene, Froc. Nati. Acad. Sci. USA, 114, 8109-8174, 10.1075/pnas.1705405114, 2017.
- Joback, K. G. and Reid, R. C.: Estimation of pure-component properties from group-contributions, Chem. Eng. Commun.,
 57, 233-243, 10.1080/00986448708960487, 1987.
- Kahnt, A., Behrouzi, S., Vermeylen, R., Safi Shalamzari, M., Vercauteren, J., Roekens, E., Claeys, M., and Maenhaut, W.:
 One-year study of nitro-organic compounds and their relation to wood burning in PM₁₀ aerosol from a rural site in Belgium,
 Atmos. Environ., 81, 561-568, 10.1016/j.atmosenv.2013.09.041, 2013.
- 530 Kitanovski, Z., Grgic, I., Vermeylen, R., Claeys, M., and Maenhaut, W.: Liquid chromatography tandem mass spectrometry
- 531 method for characterization of monoaromatic nitro-compounds in atmospheric particulate matter, J. Chromatogr., A, 1268,
- **532** 35-43, 10.1016/j.chroma.2012.10.021, 2012.
- Kroflic, A., Grilc, M., and Grgic, I.: Unraveling pathways of guaiacol nitration in atmospheric waters: nitrite, a source of
 reactive nitronium ion in the atmosphere, Environ. Sci. Technol., 49, 9150-9158, 10.1021/acs.est.5b01811, 2015.
- Kroflic, A., Hus, M., Grilc, M., and Grgic, I.: Underappreciated and complex role of nitrous acid in aromatic nitration under
 mild environmental conditions: the case of activated methoxyphenols, Environ. Sci. Technol., 10.1021/acs.est.8b01903,
 2018.
- 538 Laskin, A., Smith, J. S., and Laskin, J.: Molecular characterization of nitrogen-containing organic compounds in biomass
- 539 burning aerosols using high-resolution mass spectrometry, Environ. Sci. Technol., 43, 3764-3771, 10.1021/es803456n, 2009.
- Lauraguais, A., Coeur-Tourneur, C., Cassez, A., Deboudt, K., Fourmentin, M., and Choʻd, M.: Atmospheric reactivity of
 hydroxyl radicals with guaiacol (2-methoxyphenol), a biomass burning emitted compound: secondary organic aerosol
 formation and gas-phase oxidation products, Atmos. Environ., 86, 155-163, 10.1016/j.atmosenv.2013.11.074, 2014.
- Le Breton, M., Wang, Y., Hallquist, Å. M., Pathak, R. K., Zheng, J., Yang, Y., Shang, D., Glasius, M., Bannan, T. J., Liu, Q.,
 Chan, C. K., Percival, C. J., Zhu, W., Lou, S., Topping, D., Wang, Y., Yu, J., Lu, K., Guo, S., Hu, M., and Hallquist, M.:
 Online gas- and particle-phase measurements of organosulfates, organosulfonates and nitrooxy organosulfates in Beijing
 utilizing a FIGAERO ToF-CIMS, Atmos. Chem. Phys., 18, 10355-10371, 10.5194/acp-18-10355-2018, 2018.
- Lin, P., Bluvshtein, N., Rudich, Y., Nizkorodov, S. A., Laskin, J., and Laskin, A.: Molecular chemistry of atmospheric brown
 carbon inferred from a nationwide biomass burning event. Environ. Sci. Technol., 51, 11561-11570, 10.1021/acs.est.7b02276.
- 549 2017.
- Liu, Y., Shao, M., Fu, L., Lu, S., Zeng, L., and Tang, D.: Source profiles of volatile organic compounds (VOCs) measured in
 China: Part I, Atmos. Environ., 42, 6247-6260, 10.1016/j.atmosenv.2008.01.070, 2008.
- 552 Mohr, C., Lopez-Hilfiker, F. D., Zotter, P., Prevot, A. S., Xu, L., Ng, N. L., Herndon, S. C., Williams, L. R., Franklin, J. P.,
- Zahniser, M. S., Worsnop, D. R., Knighton, W. B., Aiken, A. C., Gorkowski, K. J., Dubey, M. K., Allan, J. D., and Thornton,
- J. A.: Contribution of nitrated phenols to wood burning brown carbon light absorption in Detling, United Kingdom during
- 555 winter time, Environ. Sci. Technol., 47, 6316-6324, 10.1021/es400683v, 2013.
- Nannoolal, Y., Rarey, J., and Ramjugernath, D.: Estimation of pure component properties, Fluid Phase Equilib., 269, 117-133,
 10.1016/j.fluid.2008.04.020, 2008.
- 558 Ng, N. L., Brown, S. S., Archibald, A. T., Atlas, E., Cohen, R. C., Crowley, J. N., Day, D. A., Donahue, N. M., Fry, J. L.,
- 559 Fuchs, H., Griffin, R. J., Guzman, M. I., Herrmann, H., Hodzic, A., Iinuma, Y., Jimenez, J. L., Kiendler-Scharr, A., Lee, B.
- 560 H., Luecken, D. J., Mao, J., McLaren, R., Mutzel, A., Osthoff, H. D., Ouyang, B., Picquet-Varrault, B., Platt, U., Pye, H. O.
- 561 T., Rudich, Y., Schwantes, R. H., Shiraiwa, M., Stutz, J., Thornton, J. A., Tilgner, A., Williams, B. J., and Zaveri, R. A.:
- 562 Nitrate radicals and biogenic volatile organic compounds: oxidation, mechanisms, and organic aerosol, Atmos. Chem. Phys.,
 563 17, 2103-2162, 10.5194/acp-17-2103-2017, 2017.
- Olariu, R. I., Klotz, B., Barnes, I., Becker, K. H., and Mocanu, R.: FT-IR study of the ring-retaining products from the reaction of OH radicals with phenol, o-, m- and p-cresol, Atmos. Environ., 36, 3685-3697, 10.1016/S1352-2310(02)00202-9,
- 566 2002.

- Pankow, J. F.: An absorption model of the gas/aerosol partitioning involved in the formation of secondary organic aerosol,
 Atmos. Environ., 28, 189-193, 10.1016/1352-2310(94)90094-9, 1994a.
- 569 Pankow, J. F.: An absorption model of gas/particle partitioning of organic compounds in the atmosphere, Atmos. Environ., 28,
- 570 185-188, 10.1016/1352-2310(94)90093-0, 1994b.
- 571 Pankow, J. F., Seinfeld, J. H., Asher, W. E., and Erdakos, G. B.: Modeling the formation of secondary organic aerosol. 1.
- 572 Application of theoretical principles to measurements obtained in the α -pinene/, β -pinene/, pabinene/, Δ 3-carene/, and 573 cyclohexene/ozone systems, Environ. Sci. Technol., 35, 1164-1172, 10.1021/es001321d, 2001.
- 574 Purohit, V. and Basu, A. K.: Mutagenicity of nitroaromatic compounds, Chem. Res. Toxicol., 13, 673-692,
 575 10.1021/tx000002x, 2000.
- 576 Renbaum-Wolff, L., Grayson, J. W., Bateman, A. P., Kuwata, M., Sellier, M., Murray, B. J., Shilling, J. E., Martin, S. T., and
- 577 Bertram, A. K.: Viscosity of α-pinene secondary organic material and implications for particle growth and reactivity, Proc.
- 578 Natl. Acad. Sci. USA, 110, 8014-8019, 10.1073/pnas.1219548110, 2013.
- Sander, R.: Compilation of Henry's law constants (version 4.0) for water as solvent, Atmos. Chem. Phys., 15, 4399-4981,
 10.5194/acp-15-4399-2015, 2015.
- Sangwan, M. and Zhu, L.: Role of methyl-2-nitrophenol photolysis as a potential source of OH radicals in the polluted
 atmosphere: implications from laboratory investigation, J. Phys. Chem. A, 122, 1861-1872, 10.1021/acs.jpca.7b11235, 2018.
- Sato, K., Hatakeyama, S., and Imamura, T.: Secondary organic aerosol formation during the photooxidation of toluene: NO_x
 dependence of chemical composition, J. Phys. Chem. A, 111, 9796-9808, 10.1021/jp071419f, 2007.
- Shrestha, M., Zhang, Y., Upshur, M. A., Liu, P., Blair, S. L., Wang, H. F., Nizkorodov, S. A., Thomson, R. J., Martin, S. T.,
 and Geiger, F. M.: On surface order and disorder of alpha-pinene-derived secondary organic material, J. Phys. Chem. A, 119,
 4609-4617, 10.1021/jp510780e, 2015.
- Slade, J. H. and Knopf, D. A.: Multiphase OH oxidation kinetics of organic aerosol: the role of particle phase state and
 relative humidity, Geophys. Res. Lett., 41, 5297-5306, 10.1002/2014gl060582, 2014.
- Tang, R., Wu, Z., Li, X., Wang, Y., Shang, D., Xiao, Y., Li, M., Zeng, L., Wu, Z., Hallquist, M., Hu, M., and Guo, S.: Primary
 and secondary organic aerosols in summer 2016 in Beijing, Atmos. Chem. Phys., 18, 4055-4068, 10.5194/acp-18-4055-2018,
 2018.
- Teich, M., van Pinxteren, D., Wang, M., Kecorius, S., Wang, Z., Müller, T., Močnik, G., and Herrmann, H.: Contributions of
 nitrated aromatic compounds to the light absorption of water-soluble and particulate brown carbon in different atmospheric
 environments in Germany and China, Atmos. Chem. Phys., 17, 1653-1672, 10.5194/acp-17-1653-2017, 2017.
- 596 Tham, Y. J., Wang, Z., Li, Q., Yun, H., Wang, W., Wang, X., Xue, L., Lu, K., Ma, N., Bohn, B., Li, X., Kecorius, S., Größ, J.,
- Shao, M., Wiedensohler, A., Zhang, Y., and Wang, T.: Significant concentrations of nitryl chloride sustained in the morning:
 investigations of the causes and impacts on ozone production in a polluted region of northern China, Atmos. Chem. Phys., 16,
 14959-14977, 10.5194/acp-16-14959-2016, 2016.
- 600 Turpin, B. J. and Lim, H. J.: Species contributions to $PM_{2.5}$ mass concentrations: revisiting common assumptions for 601 estimating organic mass, Aerosol Sci. Tech., 35, 602-610, doi 10.1080/02786820152051454, 2001.
- Vaden, T. D., Imre, D., Beranek, J., Shrivastava, M., and Zelenyuk, A.: Evaporation kinetics and phase of laboratory and
 ambient secondary organic aerosol, Proc. Natl. Acad. Sci. USA, 108, 2190-2195, 10.1073/pnas.1013391108, 2011.
- Vidovic, K., Lasic Jurkovic, D., Sala, M., Kroflic, A., and Grgic, I.: Nighttime aqueous-phase formation of nitrocatechols in
 the atmospheric condensed phase, Environ. Sci. Technol., 52, 9722-9730, 10.1021/acs.est.8b01161, 2018.
- Vione, D., Maurino, V., Minero, C., and Pelizzetti, E.: Phenol photonitration upon UV irradiation of nitrite in aqueous
 solution I: effects of oxygen and 2-propanol, Chemosphere, 45, 893-902, 10.1016/s0045-6535(01)00035-2, 2001.
- Vione, D., Maurino, V., Minero, C., Lucchiari, M., and Pelizzetti, E.: Nitration and hydroxylation of benzene in the presence
 of nitrite/nitrous acid in aqueous solution, Chemosphere, 56, 1049-1059, 10.1016/j.chemosphere.2004.05.027, 2004.
- 610 Wang, H. C., Lu, K. D., Guo, S., Wu, Z. J., Shang, D. J., Tan, Z. F., Wang, Y. J., Le Breton, M., Lou, S. R., Tang, M. J., Wu,
- 611 Y. S., Zhu, W. F., Zheng, J., Zeng, L. M., Hallquist, M., Hu, M., and Zhang, Y. H.: Efficient N₂O₅ uptake and NO₃ oxidation
- 612 in the outflow of urban Beijing, Atmos. Chem. Phys., 18, 9705-9721, 10.5194/acp-18-9705-2018, 2018a.
- 613 Wang, L., Wang, X., Gu, R., Wang, H., Yao, L., Wen, L., Zhu, F., Wang, W., Xue, L., Yang, L., Lu, K., Chen, J., Wang, T.,
- 614 Zhang, Y., and Wang, W.: Observations of fine particulate nitrated phenols in four sites in northern China: concentrations,

- 615 source apportionment, and secondary formation, Atmos. Chem. Phys., 18, 4349-4359, 10.5194/acp-18-4349-2018, 2018b.
- 616 Wang, M., Shao, M., Chen, W., Yuan, B., Lu, S., Zhang, Q., Zeng, L., and Wang, Q.: A temporally and spatially resolved
- 617 validation of emission inventories by measurements of ambient volatile organic compounds in Beijing, China, Atmos. Chem. 618 Phys., 14, 5871-5891, 10.5194/acp-14-5871-2014, 2014.
- 619 Wang, X., Gu, R., Wang, L., Xu, W., Zhang, Y., Chen, B., Li, W., Xue, L., Chen, J., and Wang, W.: Emissions of fine 620 particulate nitrated phenols from the burning of five common types of biomass, Environ. Pollut., 230, 405-412, 621 10.1016/j.envpol.2017.06.072, 2017a.
- 622 Wang, Y., Hu, M., Lin, P., Guo, Q., Wu, Z., Li, M., Zeng, L., Song, Y., Zeng, L., Wu, Y., Guo, S., Huang, X., and He, L.: 623 Molecular characterization of nitrogen-containing organic compounds in humic-like substances emitted from straw residue 624 burning, Environ. Sci. Technol., 51, 5951-5961, 10.1021/acs.est.7b00248, 2017b.
- 625 Wang, Y., Hu, M., Guo, S., Wang, Y., Zheng, J., Yang, Y., Zhu, W., Tang, R., Li, X., Liu, Y., Le Breton, M., Du, Z., Shang, D.,
- 626 Wu, Y., Wu, Z., Song, Y., Lou, S., Hallquist, M., and Yu, J.: The secondary formation of organosulfates under interactions
- 627 between biogenic emissions and anthropogenic pollutants in summer in Beijing, Atmos. Chem. Phys., 18, 10693-10713, 628 10.5194/acp-18-10693-2018, 2018c.
- 629 Weber, R. J., Guo, H., Russell, A. G., and Nenes, A.: High aerosol acidity despite declining atmospheric sulfate concentrations over the past 15 years, Nature Geosci., 9, 282-285, 10.1038/ngeo2665, 2016. 630
- 631 Xie, M., Chen, X., Hays, M. D., Lewandowski, M., Offenberg, J., Kleindienst, T. E., and Holder, A. L.: Light absorption of 632 secondary organic aerosol: composition and contribution of nitroaromatic compounds, Environ. Sci. Technol., 51, 633 11607-11616, 10.1021/acs.est.7b03263, 2017.
- 634 Yuan, B., Liggio, J., Wentzell, J., Li, S.-M., Stark, H., Roberts, J. M., Gilman, J., Lerner, B., Warneke, C., Li, R., Leithead, A.,
- 635 Osthoff, H. D., Wild, R., Brown, S. S., and de Gouw, J. A.: Secondary formation of nitrated phenols: insights from 636 observations during the Uintah Basin Winter Ozone Study (UBWOS) 2014, Atmos. Chem. Phys., 16, 2139-2153, 637 10.5194/acp-16-2139-2016, 2016.
- 638 Yue, D., Hu, M., Wu, Z., Wang, Z., Guo, S., Wehner, B., Nowak, A., Achtert, P., Wiedensohler, A., Jung, J., Kim, Y. J., and 639 Liu, S.: Characteristics of aerosol size distributions and new particle formation in the summer in Beijing, J. Geophys. Res., 640 114, 10.1029/2008jd010894, 2009.
- 641 Zhang, X., Lin, Y. H., Surratt, J. D., and Weber, R. J.: Sources, composition and absorption Angstrom exponent of 642 light-absorbing organic components in aerosol extracts from the Los Angeles Basin, Environ. Sci. Technol., 47, 3685-3693, 643 10.1021/es305047b, 2013.
- 644 Zhang, Y., Sanchez, M. S., Douet, C., Wang, Y., Bateman, A. P., Gong, Z., Kuwata, M., Renbaum-Wolff, L., Sato, B. B., Liu,
- 645 P. F., Bertram, A. K., Geiger, F. M., and Martin, S. T.: Changing shapes and implied viscosities of suspended submicron 646 particles, Atmos. Chem. Phys., 15, 7819-7829, 10.5194/acp-15-7819-2015, 2015.
- 647 Zhang, Y. Y., Müller, L., Winterhalter, R., Moortgat, G. K., Hoffmann, T., and Pöschl, U.: Seasonal cycle and temperature
- 648 dependence of pinene oxidation products, dicarboxylic acids and nitrophenols in fine and coarse air particulate matter, Atmos. 649 Chem. Phys., 10, 7859-7873, 10.5194/acp-10-7859-2010, 2010.
- 650 Zheng, J., Hu, M., Du, Z. F., Shang, D. J., Gong, Z. H., Qin, Y. H., Fang, J. Y., Gu, F. T., Li, M. R., Peng, J. F., Li, J., Zhang,
- 651 Y. O., Huang, X. F., He, L. Y., Wu, Y. S., and Guo, S.: Influence of biomass burning from South Asia at a high-altitude
- 652 mountain receptor site in China, Atmos. Chem. Phys., 17, 6853-6864, 10.5194/acp-17-6853-2017, 2017.

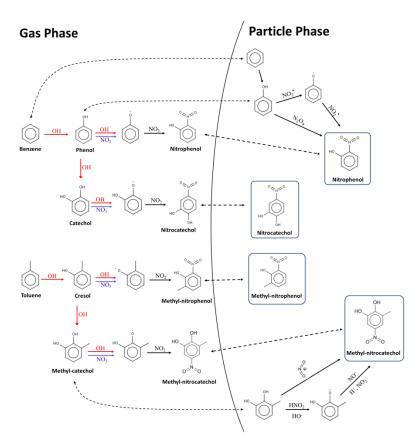


Figure 1 Schematic presentation of NAC secondary formation pathways via the oxidation of benzene, toluene, phenol and
methycatechol in the gas phase and particle phase (Jenkin et al., 2003; Frka et al., 2016; Vione et al., 2004; Vione et al., 2001;
Vidovic et al., 2018).

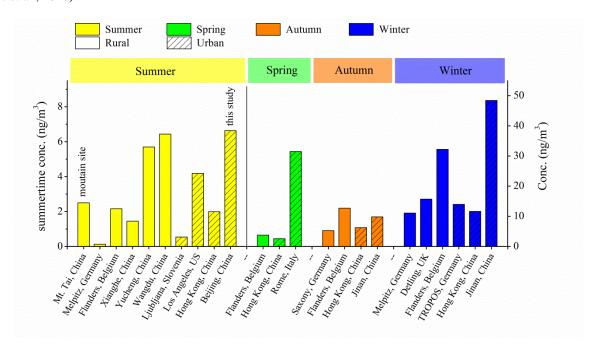


Figure 2 Summary of NAC concentrations across this and prior studies (see Table S2 for the data and references therein).
The NAC concentrations in summer correspond to the left axis and other seasons correspond to the right axis.



Figure 3 Time series of (a) wind speed (WS) and relative humidity (RH), (b) benzene and toluene, mass concentrations of (c) K^+ , (d) organics and nitrate, and (e) NACs. The pollution episodes, with elevated organic aerosols, are marked by gray shading.

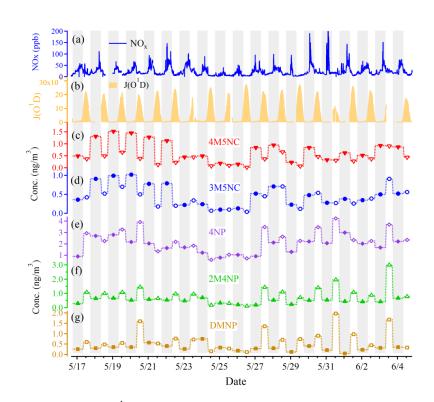
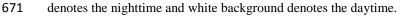



Figure 4 Time series of (a) NO_x, (b) J(O¹D), (c) 4-methyl-5-nitrocatechol (4M5NC), (d) 4-methyl-5-nitrocatechol (3M5NC),
(e) 4-nitrophenol (4NP), (f) 2-methyl-4-nitrophenol (2M4NP), and (g) dimethyl-nitrophenol (DMNP). The gray background

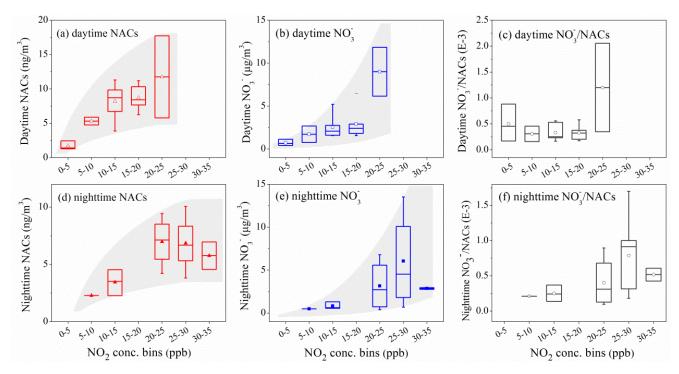


Figure 5 Concentration of NACs, nitrate and NO₃/NAC ratios as a function of NO₂ concentration bins during daytime and

nighttime. The markers represent the mean values and whiskers represent 25 and 75 percentiles.

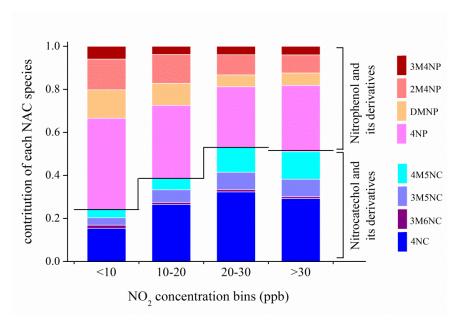


Figure 6 Variation of NAC composition as a function of NO₂ concentration bins.

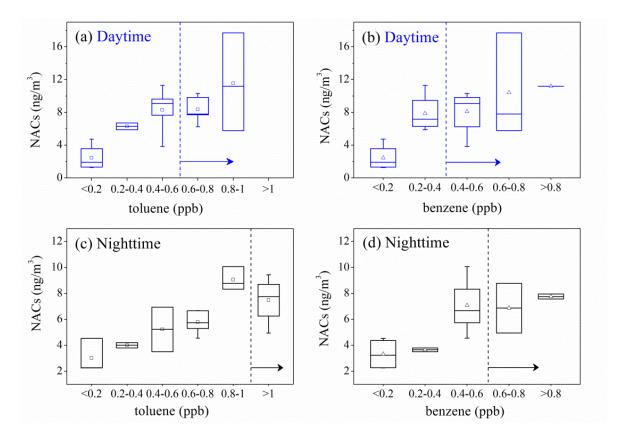


Figure 7 Concentration of NACs as a function of toluene and benzene concentration bins during daytime and nighttime. The
markers represent the mean values and whiskers represent 25 and 75 percentiles.

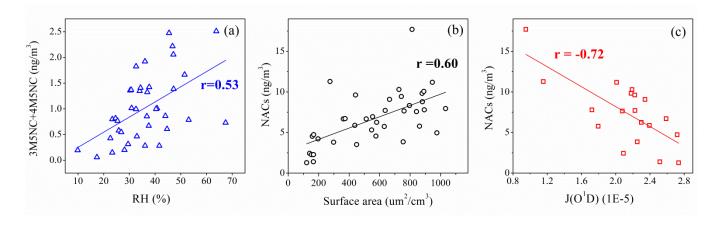


Figure 8 Correlation analysis (a) between (3M5NC+4M5NC) and RH, (b) between NACs and aerosol surface area, (c)

between NACs and $J(O^1D)$.

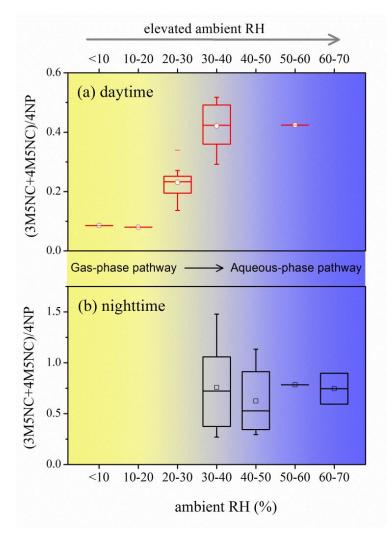


Figure 9 (3M5NC+4M5NC)/4NP concentration ratio as a function of ambient RH during (a) daytime and (b) nighttime.

Table 1 The quantified nitro-aromatic compounds in this study

compounds	formula	[M-H] ⁻	retention time (min)	standard	structure	range	average (n=38
4NP	C ₆ H ₄ NO ₃	138.02	21.3	4NP	O2N OH	0.60-4.24	$2.15\!\pm\!0.93$
3M4NP	C ₇ H ₆ NO ₃ ⁻	152.03	23.9	3M4NP	OH CH ₃ NO ₂	0.08-0.64	0.27 ± 0.12
2M4NP	C ₇ H ₆ NO ₃	152.03	24.9	2M4NP	O2N CH3	0.11-2.99	0.76 ± 0.55
DMNP	C ₈ H ₈ NO ₃ ⁻	166.05	26.0, 26.3, 26.9	2,6DM4NP	H ₃ C NO ₂	0.04-1.97	0.55 ± 0.45
Total NP							3.72
4NC	C ₆ H ₄ NO ₄ ⁻	154.01	18.9	4NC	OH NO ₂ OH	0.16-6.89	1.89±1.28
4M5NC	C ₇ H ₆ NO ₄	168.03	21.8	4M5NC	H ₃ C O ₂ N OH	0.02-1.52	0.56 ± 0.40
3M6NC	C ₇ H ₆ NO ₄	168.03	23.2	4M5NC	CH ₃ OH NO ₂	0.02-0.19	0.07 ± 0.03
3M5NC	C ₇ H ₆ NO ₄	168.03	23.5	4M5NC	O ₂ N OH	0.04-1.02	0.44 ± 0.27
Total NC							2.96