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Abstract. This study examines the formation of tropical cyclones (TC) from the large-scale perspective. Using the nonlinear

dynamical transition framework recently developed by Ma and Wang, it is shown that the large-scale formation of TCs can

be understood as a result of the Principle of Exchange of Stabilities in the barotropic model for the Intertropical Convergence

Zone (ITCZ). Analyses of the transition dynamics at the critical point reveal that the maximum number of TC disturbances

that the Earth’s tropical atmosphere can support at any instant of time has an upper bound of ∼ 12 for current atmospheric5

conditions. Additional numerical estimation of the transition structure on the central manifold at the critical point of the ITCZ

model confirms this important finding, which offers an explanation for a fundamental question of why the Earth’s atmosphere

can support a limited number of TCs globally each year.
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1 Introduction10

The life cycle of a tropical cyclone (TC) is typically divided into several stages including early genesis, tropical disturbance,

tropical depression, tropical storm, hurricane, and finally the dissipation. Among these five stages, the tropical cyclogenesis

(TCG), defined as a period during which a weak atmospheric disturbance grows into a mesoscale tropical depression with a

close isobar and the maximum surface wind > 17 m s−1 (Karyampudi and Pierce, 2002; Tory and Montgomery, 2006), is

perhaps the least understood due to its unorganized structure as well as ill-defined characteristics of TCs. During this genesis15

period (typically 2-5 days), synergetic interactions among various dynamical and thermodynamic processes at different scales

can result in an eventually self-sustained, warm-core vortex before the subsequent intensification can take place. These early

formation processes are so intricate that no single or distinct mechanism could operate for all TCs, rendering the genesis

forecasting very challenging in practice. Such a multi-facet nature of TCG is the main factor preventing us from obtaining a

complete understanding of TC formation and development at present.20

Early studies by Gray (1968, 1982) provided a list of necessary climatological conditions for TCG to occur, which include:

(i) an underlying warm sea surface temperature (SST) of at least 26oC; (ii) a finite-amplitude low-level cyclonic disturbance;
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(iii) weak vertical wind shear; (iv) a tropical upper tropospheric trough; and (v) a moist lower to middle troposphere. While

the above conditions for genesis have been well documented in numerous observational and modeling studies since then,

it is intriguing that the actual number of TCs composes a small fraction of the cases that meet all these conditions in the

tropical region every year. Moreover, TCG varies wildly among different ocean basins due to relative importance of large-

scale disturbances, local forcings, and surface conditions, thus inheriting strong regional characteristics that common criteria5

may not be applied everywhere. For example, TC genesis in the North Atlantic basin often shows strong connection to active

tropical waves originated from the South African Jet (Avila and Pasch, 1992; DeMaria, 1996; Molinari et al., 1999). In the

northwestern Pacific basin, studies by Yanai (1964); Gray (1968, 1982); Mark and J. (1993); Ritchie and Holland (1997); Harr

et al. (1996); Nakato et al. (2010) showed that the genesis is mostly related to Intertropical Convergence Zone (ITCZ) and

monsoon activities. In the northeastern Pacific, vortex interaction associated with the topographic and tropical waves seems10

to generate abundant disturbances that act as the seeds of TC genesis (Zehnder et al., 1999; Molinari et al., 1997; Wang and

Magnusdottir, 2006; Halverson et al., 2007; Kieu and Zhang, 2010).

Other large-scale conditions that can interfere with TCG have been also reported in previous studies such as the Saharan

air layer (SAL; Dunion and Velden (2004)), upper-level potential vorticity anomalies (Molinari and Vollaro, 2000; Davis

and Bosart, 2003), mixed Rossby-gravity waves Aiyyer and Molinari (2003), the ITCZ breakdown (Ferreira and Schubert,15

1997; Wang and Magnusdottir, 2006), or multiple vortex merges (Simpson et al., 1997; Ritchie and Holland, 1997; Wang

and Magnusdottir, 2006; Kieu and Zhang, 2008; Kieu, 2015). Along with this diverse nature of genesis in different basins,

observational and modeling studies of TC development have shown that the evolution of tropical disturbances during the early

genesis stage often encompasses a wide range of scales from convective-scale hot towers, mesoscale convective systems, to

large-scale quasi-balanced lifting and cloud-radiation feedbacks (e.g., Riehl and Malkus, 1958; Yanai, 1964; Gray, 1968; Zhang20

and Bao, 1996; Ritchie and Holland, 1997; Simpson et al., 1997). In this regard, TCG is a truly multi-scale process that relative

importance of different mechanisms must be carefully examined when studying the TC genesis in real atmospheric conditions.

Recent effort in the TC genesis research has been shifted from examining local mechanisms to a broader perspective of how

environmental conditions can produce and maintain TC disturbances during TC early development (Wang and Magnusdottir,

2006; Dunkerton et al., 2009; Montgomery et al., 2010; Wang et al., 2012; Lussier et al., 2013; Zhu et al, 2015; Wu and Shen,25

2016; Patricola et al., 2018). The most current attempt in quantifying the large-scale factors governing the genesis in the North

Atlantic basin focuses on the so-called “pouch” conceptual model, which treats an early TC embryo as a protected region

within large-scale easterly waves (Wang et al., 2010, 2012; Dunkerton et al., 2009; Montgomery et al., 2010). To some extent,

this pouch idea can be considered as an advance of the requirement of an incipient disturbance for genesis to occur that was

originally put forth by Gray (1968). Much of the development along this “pouch” idea has been on tracking wave packets in30

the co-moving frame required to protect the mid-level disturbances (the so-called Kelvin cat-eye in Dunkerton et al. (2009);

Lussier et al. (2013)).

Despite much progress over last decades, several outstanding issues in the TC genesis study still remain. From the global

perspective, a particular question of what is the maximum number of TCs that the Earth’s tropical atmosphere can form

and support in any given day has not been adequately addressed. Answering this question will help explain a long-standing35
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question of why the Earth has only a specific number of ∼ 100 TCs globally every year. A recent modeling study of the global

TC formation by Kieu et al. (2018) demonstrated indeed that the daily number of genesis events is intriguingly bounded (<10),

even in a perfect environment. This number is quite consistent with a simple scale analysis based on the typical scale of TCs

with a diameter ∼ 3000-km, which shows that there should have less than 14 TCs on the Earth’s atmosphere at any given

time, assuming that the radius of the Earth is ∼6400 km. Using idealized simulations for a tropical channel, Kieu et al. (2018)5

showed in fact that genesis occurs in episodes of 7-10 storms each time with a frequency between the episodes of 12-16 days.

This episodic development at the global scale as well as the upper bound of ∼ 10 storms for each episode as obtained from

these idealized experiments suggests that there must have some large-scale environmental conditions or intrinsic properties

of the tropical dynamics, which control the genesis processes beyond the basin-specific mechanisms as discussed in Patricola

et al. (2018) .10

While recent advance in global numerical models can reasonably capture the very early stage of the TCG and serve as

guidance for operational genesis forecasts, analytical models of TC development have been confined mostly to the later stage

of TC development such that the axisymmetric characteristics of disturbances could be employed. The axisymmetry is critical

for the theoretical purposes, because it reduces the Navier-Stokes equations to a set of approximated equations for which some

balance constraints and simplifications can be employed.15

Given various basin-specific mechanisms that could produce TCs beyond axisymmetric models for an individual TC, the

main objective of this study is to focus specifically on a large-scale mechanism behind the formation of tropical disturbances

associated with ITCZ breakdown. This special pathway is very typical at the global scales whereby converging winds from

the two hemispheres could set up the right environment for large-scale stability to develop (Gray, 1968; Yanai, 1964; Zehnder

et al., 1999; Molinari et al., 2000; Ferreira and Schubert, 1997; Wang and Magnusdottir, 2006). Indeed, satellite observations20

often show that the ITCZ tends to undulate and break into a series of mesoscale vorties or disturbances, some of which may

eventually grow into TCs (Agee, 1972; Hack et al., 1989; Ferreira and Schubert, 1997). This is especially apparent in the WPAC

basin where early studies by Gray (1968, 1982) showed that TC genesis primarily occurs along the ITCZ, which accounts for

nearly 80 percent of genesis occurrences in this area.

Although the ITCZ breakdown appears to be a slow process as compared to other pathways such as vortex merger (e.g.,25

Wang and Magnusdottir, 2006; Kieu and Zhang, 2008, 2010) or tropical easterly waves (e.g., Zehnder et al., 1999; Molinari

et al., 1997; Halverson et al., 2007; Dunkerton et al., 2009; Montgomery et al., 2010; Wang et al., 2012), it is an inherent

property of the tropical atmosphere at the global scale that could provide a source of large-scale disturbances responsible for

TCG. To minimize the complication due to the basin-specific features, we thus limit our study of the global TC formation to

an idealized aqua-planet configuration to facilitate the analytical analyses in this study.30

The rest of the paper is organized as follows. In the next section, an analytical model for the large-scale TC genesis based on

the ITCZ breakdown model is presented. Section 3 presents detailed analyses of the principle of exchange of stabilities for the

ITCZ model as well as the stability analyses of the dynamical transition. Numerical examination will be discussed in Section

4, and concluding remarks are given in the final section.
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2 Formulation

A unique characteristic of the ITCZ that provides a favorable environment for TC genesis to occur is the highly unstable

zone along the ITCZ where trade winds from the two hemispheres converge. Such a zone with strong horizontal shear is

well documented along the tropical belt where the potential vorticity gradient changes sign, providing a necessary condition

for disturbances to grow according to Rayleigh’s theorem (Charney and Stern, 1962; Ferreira and Schubert, 1997). Thus, a5

disturbance embedded within the ITCZ can trigger a nonlinear growth and extract the energy from the background, resulting

in a potential amplification of the disturbance with time.

Because of such a dominant role of the ITCZ in the global TC formation, a natural model for global TCG should take into

account the large-scale ITCZ breakdown processes. This ITCZ breakdown model is particularly suitable for an aqua-planet

that does not have other triggering mechanisms such as land-sea interaction or terrain effects. For this reason, we will consider10

the ITCZ breakdown as a starting model for the TC genesis at the global scale in this study. Inspired by the modeling studies

of the ITCZ breakdown based on the shallow water equation (e.g., Ferreira and Schubert, 1997), we examine a similar model

for the ITCZ dynamics on the horizontal plane for which the governing equation for the ITCZ can be reduced to an equation

for the potential vorticity as follows

d∆ψ

dt
= νe∆

2ψ+F −α∆ψ−β ∂ψ
∂x

, (1)15

where the horizontal streamfunction ψ has been introduced as a result of the continuity equation, νe is horizontal eddy viscosity,

α is a relaxation time, ∆ is the Laplacian operattor, and F is an external force that represents the either a source/sink of mass

within the ITCZ or vorticity source 1. Note here that the derivative on the left hand side of Eq. (1) is the total derivative such

that the horizontal advection of the vorticity is included. As discussed in Ferreira and Schubert (1997), the mass source/sink

term F is important for the ITCZ dynamics, because the horizontal dynamics could not fully capture the vertical mass flux20

within the ITCZ. Unlike the original ITCZ model in Ferreira and Schubert (1997), we have however introduced in the above

model (1) an explicit drag forcing term to represent the impacts of eddy diffusion as discussed in (e.g., Rambaldi and Mo,

1984; Legras and Ghil, 1985; Ferreira and Schubert, 1997). The governing equation (1) for the horizontal streamfunction has

been extensively used in previous studies to examine the quasi-geostrophic dynamics under different large-scale conditions

(e.g., Charney and DeVore, 1979; Legras and Ghil, 1985; Rambaldi and Mo, 1984; Schar, 1990).25

To be specific for our TCG problem, we will apply Eq. (1) for a zonally periodic tropical channel, which is defined as

Ω = [0,Lx]× [0,Ly] , (2)

where Ly is the half-width of the tropical channel and Lx is the zonal length of the channel. This domain roughly represents a

region where the ITCZ can be treated as a long band wrapping around the Equator. For the current Earth condition,Lx ∼ 40,000

km, and Ly ∼ 1,000− 1,500 km (i.e., 10-15o), and so by definition Lx� Ly .30

1In Charney and DeVore (1979), the relaxation time α is proportional to the ratio of the Ekman depth DE over the depth of the fluid H , while the external

forcing term F can be treated as a large-scale vorticity source.
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Table 1. Parameters of the model

V ariable Range Remark

Uo 10-20 m s−1 Mean easterly flow in the tropical lower troposphere

Ly 1200-1500 km Width of the tropical channel Ω

Lx ∼40,000 km Length of the tropical channel domain Ω

a
2Ly

Lx
Aspect ratio of the tropical channel

α 10−5− 10−7s−1 Relaxation time

ν 10− 104m2s−1 Horizontal eddy viscosity coefficient

β 2× 10−11s−1 Variation of the Coriolis parameter with latitudes

γ 10−10− 10−11s−2 Magnitude of the external mass source/sink in the ITCZ breakdown model

Before we can analyze the ITCZ breakdown model, it is necessary to have first an explicit expression for the forcing term F .

In the early study by Ferreira and Schubert (1997), F represents a mass sink that is a piecewise unit step function of latitudes.

To account for the existence of the zonal jet in mid-latitude regions, Legras and Ghil (1985) however used a forcing of the

form F = α∇ψ∗, where ψ∗ is a given streamfunction that represents the zonal jet around 50oN . Given our focus on the ITCZ

dynamics, we will choose this forcing term such that its corresponding steady state can best represent the typical background5

flow in the tropical lower troposphere. A zonally symmetric functional form for the F that meets this requirement is

F = γ sin
πy

Ly
(3)

where γ denotes the strength of the forcing. Note that this forcing amplitude is not arbitrary, because its value dictates the zonal

mean flow in the tropical region as will be shown below.

While the forcing term given by Eq. (3) differs from the unit step function in Ferreira and Schubert (1997), it turns out that10

(3) allows a steady solution consistent with the typical flow associated with to the ITCZ. Indeed, the steady state solution ψS

of (1) that results from this zonally symmetric forcing is

ψS =
−γL4

y

νeπ4 +αL2
yπ

2
sin

πy

Ly
. (4)

The horizontal flow corresponding to this steady streamfunction is illustrated in Fig. 1, which shows an easterly flow to the

north and a westerly flow to the south of an ITCZ during a typical northern Hemisphere summer as expected.15

Given the above forcing F and its corresponding steady state, the problem of the ITCZ breakdown is now mathematically

reduced to the study of the stability of the steady-state (4) as the model parameters vary. To this end, it is more convenient

to re-write Eq. (1) in the non-dimensional form such that our subsequent mathematical analyses can be simplified. Given the

governing equation (1), it is apparent that the natural scaling for time, streamfunction, and distance can be chosen respectively

as follows:20

t=
1

Lyβ
t∗, ψ = LyU0ψ

∗, (x,y) = Ly(x∗,y∗), F =
αU0

Ly
F ∗,
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where the asterisk denotes the nondimensional variables, and U0 is a given characteristic horizontal velocity that determines

the strength of the zonal mean flow in the tropical region. Nondimensionalizing Eq. (1) and neglecting the asterisks hereinafter,

the nondimensional form for Eq. (1) becomes

∂∆ψ

∂t
+ εJ(ψ,∆ψ) =E∆2ψ+F −A∆ψ− ∂ψ

∂x
, (5)

where5

ε=
U0

L2
yβ

is the Rossby number,

E =
νe
L3
yβ

is the Ekman number,

A=
α

Lyβ
is the ratio of the relaxation time to the inherent time related to the Earth’s rotation rate.

For the sake of mathematical convenience, we will hereinafter extend the domain from [0,Ly] to [−Ly,Ly] such that the

boundary conditions become meridionally symmetric along the Equator at y = 0. This mathematical extension of the domain10

will simplify much calculations, while it has no effect on our solutions so long as we limit the final solution in the original

domain [0,Lx]× [0,Ly] and maintain the Neumann boundary at y = 0 as shown below. The nondimensionalized domain is

therefore given by

Ω =

[
0,

2

a

]
× [−1,1] .

where the scale factor a≡ 2Ly/Lx is introduced to simplify our spectral analyses. Given the above nondimensionlization, the15

non-dimensional form of the forcing (3) is now simply

F = γ1 sinπy, (6)

where the nondimensional parameter γ1 = γL
αU0

denotes the ratio of the vorticity forcing amplitude γ to the vorticity response

U0, and the non-dimensional form of the steady state (4) is

ψS =− Aγ1
Eπ4 +Aπ2

sinπy. (7)20

We examine next the stability of the steady state (7) and how this critical point would bifurcate into different states as

the model parameters vary, using Ma and Wang’s dynamical transition framework (Ma and Wang, 2013). To this goal, it is

necessary to study the behaviors of a perturbation ψ′ around the given steady state (4) in the form ψ = ψS +ψ′. This step

is not an approximation but to simply shift the location of the stability analyses to the equilibirium ψS , much like shifting

the coordinate origin from 0 to a new critical point in any linear stability analyses. Note that in Ma and Wang’s dynamical25

transition framework, the full nonliterary is maintained such that the analyses on the central manifold can be subsequently

carried out. Thus, no assumption of ψ′� ψS is needed for the dynamical transition. With this partition, the corresponding

governing equation for the perturbation ψ′ then becomes

∂∆ψ

∂t
+ εJ(ψ,∆ψ) =E∆2ψ−A∆ψ− ∂ψ

∂x
+R

dψ̃S
dy

∂∆ψ

∂x
−Rd

3ψ̃S
dy3

∂ψ

∂x
, (8)
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where all the primes are hereinafter omitted for the sake of convenience, and a non-dimensional number R and ψ̃S are defined

as follows

R=
γ1ε

Eπ3 +Aπ
, ψ̃S =− sinπy

π
. (9)

Physically, the non-dimensional number R is a ratio between the external forcing amplitude γ1 and the sum of the viscous and

linear damping terms. As will be shown below, this number turns out to be a key bifurcation parameter that determines the5

dynamical transition of the ITCZ breakdown model.

Given the nature of the ITCZ model, the periodic boundary conditions will be then imposed in the zonal direction, and the

free boundary conditions in the meridional direction for the perturbation equation (8) are applied at y =−1 and y = 1 such

that

ψ(t,0,y) = ψ

(
t,

2

a
,y

)
,

ψ(t,x,−1) = ψ(t,x,1) = 0,

∂2ψ

∂y2
(t,x,−1) =

∂2ψ

∂y2
(t,x,1) = 0.

(10)10

The periodic boundary conditions along the west-east direction are naturally expected because of the cyclic property of the

tropical channel around the Equator, while the free boundary conditions along the south-north direction will ensure that there

is no meridional exchange (i.e., no v-wind component) at y =−1 and y = 1. Apparently, the Neumann boundary condition at

y = 0 is still valid after the domain extension because of the continuity of the solution at y = 0 in the interior region.

To further reduce the governing equation of the perturbation as given by Eq. (8), we rewrite Eq. (8) in terms of an abstract15

functional notation that is standard in the study of the nonlinear dynamical transition. Introduce three differential operators

L, G, and A as follows.

Aψ ≡∆ψ, (11)

Lψ ≡ E∆2ψ−A∆ψ− ∂ψ

∂x
+R

dψ̃S
dy

∂∆ψ

∂x
−Rd

3ψ̃S
dy3

∂ψ

∂x
, (12)

Gψ ≡ εJ(∆ψ,ψ). (13)20

Physically, L is the Laplacian operator, G is a linear operator that contains the advection associated with the background flow,

and A is a nonlinear operator representing the Jacobian effect. Eq. (8) for the perturbation streamfunction with boundary

condition (10) can be then put into the following abstract operator form

∂Aψ
∂t

= Lψ−G(ψ). (14)

As seen in this abstract form, the operators A and L are linear, whereas G is a nonlinear operator due to the Jacobian’s term.25

A typical analysis of Eq. (14) is to examine first the spectra of eigenvalues and eigenvectors of the linear component L. We

then determine the stability characteristics of the linear system, and finally construct the central manifold function with the full
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nonlinear terms included so that the stable and/or unstable properties of the new states of Eq. (8) can be quantified as the model

parameters vary. The outcomes from these analyses are i) the conditions on the large-scale environment that could determine

the stability of the steady state as well as the upper bound on the number of unstable disturbances, and ii) the structure of

new states after the dynamical transition that the large-scale flows must possess to allow for the formation of initial tropical

disturbances. These outcomes are important, because they could allow us to quantify the maximum number of environmental5

tropical embryos that the ITCZ can support in the tropical channel, thus addressing the question of how many TCs that we

would most expect in the tropical region at any given time.

3 An upper bound on unstable modes

3.1 Eigenmode analyses

We start first with the search for the entire spectrum of the eigenvalues ρ of the linear operator L in (14). Define a linear10

operator L(ρ) as follows

L(ρ)ψ = Lψ− ρψ, ρ ∈ C, (15)

Then, all eigenvectors of the linear operator L are non-trivial solutions of L(ρ)ψ = 0 with the corresponding eigenvalue ρ.

Because of the periodic boundary condition in the x-direction, it turns out that the eivenvectors cannot be arbitrary. Indeed, the

boundary conditions (10) impose a strict constraint on the possible functional forms of ψ such that every eigenvector ψ of L15

must be expressed in the following separable form

ψm(x,y) = eiπmaxΨ(y), (16)

wherem ∈ Z is any integer representing the zonal eigenmodes, and Ψ(y) is the perturbation amplitude. Denote the correspond-

ing eigenvalue ρm for each meridional mode m, a substitution of the preceding separable form into the eigenvalue equation

L(ρm)ψ = 0 yields20 LmΨ = ρmAmΨ,

Ψ(−1) = Ψ(1) = Ψ′′(−1) = Ψ′′(1) = 0,
(17)

where each prime in Eq. (17) hereinafter denotes a derivative of the streamfunction with respect to y, and the following

notations have been introduced:

LmΨ≡E(D2− a2m2π2)2Ψ−A(D2− a2m2π2)Ψ− imaπΨ

+ imaπRψ̃′S(D2− a2m2π2)Ψ− imaπRψ̃′′′S Ψ,
(18)

AmΨ = (D2− a2m2π2)Ψ, and (19)25

D ≡ d/dy. (20)
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Applying the boundary conditions Ψ(−1) = Ψ(1) = Ψ′′(−1) = Ψ′′(1) = 0 to Eq. (17), it can be seen that all even-order deriva-

tives of the perturbation amplitude Ψ(y) vanish at the boundaries, i.e.,

Ψ(2n)(−1) = Ψ(2n)(1) = 0, n= 0,1, · · · , (21)

where n represents the order of derivative with respect to the y direction. This important property of the perturbation amplitude

Ψ(y) results in a constraint that Ψ(y) must be expressed in the following form5

Ψ(y) =
∑
n≥0

φn cos

(
n+

1

2

)
πy+

∑
n≥1

φ̃n sinnπy, (22)

where φn and φ̃n are the coefficients to be determined by the eigenvalue equation. As a result, every solution ψm(x,y) of

L(ρ)ψ = 0 can be expressed as

ψm(x,y) =
∑
n≥0

ineimaπxφm,n cos

(
n+

1

2

)
πy+

∑
n≥1

ineimaπxφ̃m,n sinnπy, m ∈ Z, (23)

where we have re-defined the expansion coefficients as inφm,n and inφ̃n instead of φm,n and φ̃n as in (22) for the sake of10

convenience.

In what follows, we will determine the wavenumber m such that the eigenvector ψm given by (23) becomes first unstable,

i.e., the real part of the corresponding eigenvalue ρm becomes positive, as the control parameter R increases (requirements for

the existence of the first unstable mode are known as the Principle of Exchange of Stabilities (PES) conditions. See Appendix

A). It can be verified that for any complex eigenvalue ρm ∈ C, ψm and L(ρ)ψm will have the same functional form. Thus, let15

us denote

L(ρm)ψm =L(ρm)
∑
n≥0

ineimaπxφm,n cos

(
n+

1

2

)
πy+L(ρm)

∑
n≥1

ineimaπxφ̃m,n sinnπy (24)

≡
∑
n≥0

ineimaπxϕm,n cos

(
n+

1

2

)
πy+

∑
n≥1

ineimaπxϕ̃m,n sinnπy = 0. (25)

Apparently, (23) is an eigenvector of the eigenvalue equation L(ρm)ψ = 0 if and only if the above identity is true ∀(x,y). As

a result, explicit calculation of each term in Eq. (24) will lead to20

ϕm,n =Bm,n+1φm,n+1 +Cm,nφm,n−Bm,n−1φm,n−1 = 0, n≥ 1, (26)

ϕm,0 =Bm,1φm,1 +Cm,0φm,0 + i(Am,0φm,0−φm,0) = 0, n= 0, (27)

ϕ̃m,n =Dm,n+1φ̃m,n+1 +Em,nφ̃m,n−Dm,n−1φ̃m,n−1 = 0, n≥ 2 (28)

ϕ̃m,1 =Dm,2φ̃m,2 +Em,1φ̃m,1 = 0, n= 1, (29)
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where the coefficients Am,n,Bm,n,Cm,n,Dm,n,Em,n are
Am,n = a2m2 + (n+ 1/2)

2

Bm,n+1 = (1−Am,n+1)

Cm,n =
2π3EA2

m,n+2π(A+ρm)Am,n−2iam
amπ2R

, n≥ 0, |m| ≥ 1,

B0,n+1 = (1−A0,n+1) A0,n = (n+ 1/2)
2

C0,n = 2π3EA2
0,n + 2π(A+ ρm)A0,n

, n≥ 0, m= 0,

(30)

Dm,n = (1− Ãm,n), Ãm,n = a2m2 +n2

Em,n =
Eπ3Ã2

m,n+π(A+ρm)Ãm,n−i2am
amπ2R

, n≥ 1, |m| ≥ 1,

D0,n = (1− Ã0,n), Ã0,n = n2

E0,n = Eπ3Ã2
0,n +π(A+ ρm)Ã0,n

, n≥ 1, m= 0.

(31)

Given the conditions (26)-(29), a simple way to obtain the amplitudes φm,n and φ̃m,n is to group all coefficients φm,n in each

of these identities. This can be done effectively by multiplying the conjugate coefficient φm,n and a factor Bm,n on both sides5

of (26)-(27), and similarly φ̃m,n and a factor Dm,n on both sides of (28)-(29). Adding the resulting identities together and

taking the sum over n allows us to extract a relationship between the amplitudes of φm,n and the eigenvalue ρm as follows:∑
n≥0

Bm,nϕm,nφm,n = 0, (32)

∑
n≥1

Dm,nϕ̃m,nφ̃m,n = 0. (33)

Note that all pairs of the form (Bm,n+1Bm,nφm,n+1φm,n,Bm,n+1Bm,nφm,n+1φm,n) in Eq. (32) are conjugated to each other10

so that their sum will produce a purely imaginary number. As a result, the real parts of (32) and (33) must come from the term

involving Cm,n and can be therefore obtained as∑
n≥0

Bm,nAm,n(Eπ2Am,n +A+<[ρm])|φm,n|2 = 0, (34)

∑
n≥1

Dm,nÃm,n(Eπ2Ãm,n +A+<[ρm])|φ̃m,n|2 = 0, (35)

where < denotes an operator of taking a real part of a complex number. By imposing the physical requirement on the existence15

of the eigenmodes with φm,n 6= 0 and φ̃m,n 6= 0, Eqs. (34)-(35) can provide a great insight into the stability and structure of

the eigenmodes that we will now turn into.

3.2 Upper bound on the unstable eigenmode

Eqs. (34)-(35) contain a number of powerful properties. First, note that the real part of the eigenvalue ρm for m= 0 must be

negative, if exist, due to the properties that the coefficients A> 0, A0,n > 0, B0,n ≤ 0 and D0,n ≤ 0. Indeed, if we assume that20

10



there exists an eigenvector ψm such that <[ρm]> 0 for m= 0, then it can be directly seen from the quadratic form of (34) that

φ0,n = 0, φ̃0,n = 0, n≥ 0,

and so there would exist no solution at all, which contradicts our assumption of the existence of the eigenvector for m= 0.

Thus, the zonally symmetric mode with m= 0 is always stable. Because this stable mode does not allow us to examine any

transition behaviors, this special mode will not be considered hereafter.5

For m 6= 0, it can be seen also from (34) that all possible unstable eigenvectors with m 6= 0 must satisfy the following

constraints



φm,n = 0, when, a≥
√
3
2 , m ∈ Z;

φm,n = 0, when,
√
3
4 ≤ a <

√
3
2 , |m| ≥ 2,

φm,n = 0, when,
√
3
6 ≤ a <

√
3
4 , |m| ≥ 3,

· · ·
... · · ·

φm,n = 0, when,
√
3

2k ≤ a <
√
3

2k−2 , |m| ≥ k

φ̃m,n = 0, n≥ 1, for all a > 0.

(36)

These constraints can be explicitly confirmed if we note again that the condition (36) will ensure that the coefficientsAm,n > 0

and Bm,n < 0. If we assume that there exists any unstable eigenvector ψm with some zonal wavenumber m 6= 0 such that10

the corresponding eigenvalue ρm satisfies <[ρm]> 0, then Eq. (34) immediately indicates that φm,n = 0,∀ |m| ≥ k and n ∈
Z+ ∪{0} (i.e., ψm = 0), and so no such unstable eigenvector ψm can exist at all. Therefore, we obtain a remarkable result

that any possible unstable modes must be bounded by the condition |m| ≤ k, where k is an integer satisfying the following

relationship
√

3

2k
≤ a <

√
3

2k− 2
. (37)15

To help understand the significance of this result, consider a tropical channel domain between 10oS-10oN in the Earth’s

atmosphere (i.e., Ly ∼ 1200 km) and Lx ∼ 40,000 km such that a≡ 2Ly/Lx ≈ 0.06. Using the condition
√
3

2k ≤ a <
√
3

2k−2 ,

one obtains an upper bound zonal wavenumber k = 12. For the current Earth’s tropical atmosphere, this upper bound m≤ 12

appears to be consistent with the most unstable modem= 13 obtained from the idealized simulations by Ferreira and Schubert

(1997). In particular, it can be further seen from the constraint (37) that a narrower tropical channel width (i.e., smaller Ly)20

would lead to a smaller aspect ratio a, and so higher the upper bound k. In this regard, our result could offer further insight

into how the upper bound in the unstable zonal wavenumber varies in different planets or climates with potentially different

values of the aspect ratio a. It should be mentioned that the constraint (37) does not allow us to know exactly in advance

which wavenumber m< k will become first unstable, because the condition |m|< k includes a range of m whose real part

<[ρm] could be positive. Nonetheless, the above result is still very significant due to its explicit indication that the unstable25

wavenumbers cannot be arbitrary but must be upper bounded. Any eigenvectors with |m| ≥ k must be stable and cannot grow.

11



A natural consequence of the above result is that not only the total number of TC disturbances has an upper limit, but the

size of these disturbances must also be limited (i.e., the size of each disturbance is ∼ Lx/m). If we assume that each of these

disturbances could be eventually responsible for one TC embryo, the upper limit in the number of the disturbances as found

from the above condition would imply a lower bound on the overall size of TCs, which has to be larger than 3000 km in

diameter. That is, the TC size on our current Earth’s atmosphere cannot be arbitrarily small, but must be larger than a limit of5

∼ 103 km, a fact that has been long observed but not fully explained so far. Of course, this TC size implication by no means

eliminates the existence of a small TC such as midgets at the higher latitudes, because our analytical results provide only

an estimate for the size of an area where a TC disturbance can emerge. Determining the actual size of a fully-developed TC

requires, however, various complex factors beyond the scope of the TC genesis that is presented in this study (e.g., Chavas et

al., 2016).10

We emphasize here that the condition on the unstable modes derived from the eigenvalue <[ρm] as seen from (36) is just a

necessary condition, and it is by no means sufficient to specifically know which zonal wavenumber in the range of [1,k] will

become unstable. Thus, it is necessary to examine how the real part of the eigenvalue <[ρm] varies as the model parameter

R increases for each value of m. Note that the non-dimensional number R encodes several important large-scale conditions

including the Rossby number, the Ekman number, and the strength of the background flow U0 as seen in (9). As these large-15

scale conditions change,R will vary as well. Depending on how the eigenvalue ρm varies as a function ofR, there may emerge

a first unstable zonal wavenumber m with a positive eigenvalue <[ρm] that we need to quantify.

To ensure the existence of such a positive eigenvalue as R increases, it is vital to show that <[ρm] must be an increasing

function of R such that the real part can become positive as R increases. The specific wavenumber m for which <[ρm] first

becomes positive will possess the structure that dictates the new dynamical transition of the system according to the PES20

conditions. Due to the complication in deriving the exact expression for ρm, details of the derivations of <[ρm] as a function

of R are provided in Appendix 2. An important conclusion from these derivations is that limR→+∞<[ρm(R)] = +∞, which

implies that there indeed exists a critical value R∗ at which <[ρm](R∗) = 0. This requirement is critical, since it directly

indicates that the PES conditions are ensured. More strictly speaking, this result means that there exists a positive integer

n≤ k and a critical Reynolds number R∗ > 0 such that the following PES conditions25 

<[ρn,1] = <[ρ−n,1]


> 0 if R>R∗,

= 0 if R=R∗, ∀n=m1, , · · · ,ml

< 0 if R<R∗,

,

<[ρm,k]< 0, if (m,k) 6= (mi,1), 1≤ i≤ l,

=[ρn,1(R)] 6= 0 for R≥R∗,

(38)

must hold true. Corresponding to the first unstable mode m and eigenvalue ρn,1, its eigenvector is then given by

ψm =

∞∑
n=0

ineimaπxφm,n cos

(
n+

1

2

)
πy, 1≤ |m| ≤ k.

12



Note that these eigenvectors are unstable for R≥R∗ and |m|< k only, because all other eigenvectors (|m|> k) are always

stable as shown by the condition (36).

Due to the complicated expression for the eigenvalue ρm(R) as shown in Appendix 2, the valueR∗ cannot be exactly derived

but must be numerically approximated for each m. The proof of limR→+∞<[ρm(R)] = +∞ provided in Appendix 2 ensures

that R∗ always exists, and so it should be found numerically. Fig. 2 shows the critical value R∗m as a function of 2/a for each5

value of m, which is obtained by using a numerical approximation. Note that for each value of a, there will exist only one

value k that satisfies
√
3

2k ≤ a <
√
3

2k−2 and a value m< k such that <[ρm,1] = 0. By searching for the value of R∗m that ensures

<[ρm,1] = 0, we obtain for each m≤ k a curve R∗m =R∗m(a) that determines the onset of the dynamical transition. Because

the eigenvalues and the eigenfunctions corresponding to −m are the complex conjugate of the respective eigenvalues and the

eigenfunctions corresponding to m, only the cases of nonnegative m need to be examined.10

As shown in Figure 2, there are several key differences between the asymptotic limits of a very small and a very large

a. Specifically, for a larger value of a (i.e., a wider tropical region), the smaller wavenumbers m will become unstable first,

starting with m= 5, and then decreases for a larger R. For the smaller value of a (i.e., a narrower tropical channel), the larger

wavenumbers will however become unstable first as shown in Figure 2. For example, for the typical scales of the Earth’s tropical

region with Lx ≈ 40,000 km, and Ly ≈ 1,200 km, 2/a= Lx/|Ly ≈ 33.3. According to Fig. 2, the wavenumber m= 9 will15

become unstable first asR crosses the valueR∗ = 4. Thus, the dynamical transition form= 9 will produce a new unstable wave

structure corresponding to m= 9 at the bifurcation point. As the parameter R increases, other unstable modes corresponding

to m= 8,7,6... start to emerge, thus producing a spectrum of unstable structures as a result of the dynamical transition.

To focus on how the first unstable mode changes with the aspect ratio a instead of the critical number R∗ as shown in Figure

2, Figure 3 shows the first unstable mode m as a function of a, assuming all of the same parameter values used in Figure 2.20

It can be seen in this Figure 3 that for each value of a, there is only one wavenumber n= n(a) for which R∗n = minm∈NR
∗
m.

This is the critical value R∗ =R∗n at which the dynamical transition will occur according to the PES conditions. Apparently,

one can better see in this figure how the first unstable mode depends on the aspect ratio of the tropical channel, with a higher

wavenumber for a narrower tropical region. The same behavior is also valid for a range of values of the Ekman number E and

Rossby number ε, which are not shown here because they do not provide any further information.25

4 Bifurcation structure

While the stability analyses in the previous section could show an upper bound on possible unstable modes, the structure of

these unstable modes as well as the subsequent effects of the nonlinear terms have not been discussed. The existence of an

eigenvalue with a zero real part at R=R∗ immediately imposes that the stability analyses must require all nonlinear terms so

that the behaviors of dynamical transitions can be captured. Depending on the multiplicity of the eigenvalues when the PES30

conditions are met, one can however reduce the full nonlinear system (14) to a set of ordinary differential equations on a central

manifold at R=R∗ and construct a central manifold function to examine the bifurcation and the structure of new states with

all nonlinear terms included. Standard procedures of stability analyses on the central manifold for the ITCZ model show that

13



there exists indeed a supercritical Hopf bifurcation for R>R∗, with a new stable state approximated as follows (see Ma and

Wang, 2013)

ψ = ψS +

(
<(ρn,1)

|<(A)|

) 1
2

fn(x,y, t) +h.o.t. (39)

provided that the nondimensional parameter R is sufficiently close to R∗, i.e.,

0<
R−R∗

R∗
� 1.5

Using a higher-order approximation around the critical point on the extended central manifold, one can obtain a better

manifold function that better approximate ψ for R>R∗. Nonetheless, the smooth behaviors of the eigenvector at R=R∗

for the supercritical Hopf bifurcation suffices to indicate that the structure of the solution at R=R∗ can well represent the

behavior of the new stable solution near R=R∗ as dictated by the dynamical transition theorem in Ma and Wang (2013).

Technically, there may appear either Hopf bifurcation or double Hopf bifurcation, depending on the transition multiplicity at10

the critical value. This subtlety will introduce much more complex analysis of the bifurcation and transversal intersections of

the parameter planes that we will not present herein.

While these higher-order derivations of the central manifold function require some technical details that are beyond the scope

of this study, it is possible to approach the transition dynamics by numerically solving the eigenvalue problem (18). Specifically,

we notice that the x dependence can be obtained by simply searching for the first unstable modem asR approaches the critical15

valueR∗. Using this numerical approach to find the critical value ofR∗, the entire spectrum of eigenvectors associated with the

potential new stable states after the dynamical transition can be found for each set of large-scale environmental parameters. We

note again at this point that the exact mode m at which the eigenvector becomes first unstable is dependent on R as shown in

Figures 2 and 3. The only constraint we can be certain of is that |m|< k. Thus, a new stable mode for R>R∗ emerged under

the case of the supercritical Hopf bifurcation could inherit all structure of a zonal mode |m|< k at R=R∗. This numerical20

approach is powerful, as it allows one to search for not only the critical parameter R∗ at which the PES conditions are ensured,

but also the structure of new stable states for any value of R>R∗ after the bifurcation point.

To illustrate the results from this numerical approach, we consider the following set of the large-scale environmental condi-

tions in the typical tropical region

Ly ∼ 1000km, U0 ∼ 10m s−1, α∼ 10−6s−1, β ∼ 10−11m−1s−1, ν = 1000m2s−1,25

which result in a Rossby number ε≈ 0.5 and an Ekman number E ≈ 0.05. Further use of Eq. (4) for the steady state and note

that U0 = ∂ψS/∂y, one then obtains an estimation for the forcing amplitude γ ≈ 7× 10−10s−2. From the definition of the

nondimensional number R, we then get R≈ 4.8, which is above the critical value R∗ ≈ 4 for m= 9 as shown in Figure 2.

Thus, the PES conditions are satisfied, and a new stable structure must emerge after the dynamical transition as a consequence

of the supercritical Hopf bifurcation. As such, the eigenvalue problem (17) can be solved for the first eigenvector and its dual30

eigenvector, given the value R= 4.8. Note that this estimation of R is most sensitive to the strength of the shear flow U0, the
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beta effect β, and the scale Ly but not on the eddy diffusion coefficient ν. To some extent, this insensitivity of the dynamical

transition on the diffusion is expected, because the large-scale eddy diffusion process is often negligible.

For this numerical method, we use a Legendre-Galerkin method where the unknown fields are expanded using a basis of

N polynomials, which are compact-combinations of the Legendre polynomials satisfying the four boundary conditions (17)

(See Shen et al. (2011) for the details of this numerical method). For the convergence of the numerical scheme, N = 100 is5

sufficient. Once the eigenvector problem is solved, a further approximation on the central manifold can be applied so that the

stability of new stable states can be examined around the critical point on the central manifold.

Figure 4 shows a new state as a result of the dynamical transition for R>R∗ under the supercritical Hopf bifurcation

case that is obtained from the numerical procedures described above. Among several significant features of this numerical

solution, the most noteworthy one is that the new state possesses a large-scale structure consistent with the ITCZ breakdown as10

observed in the idealized simulations by Ferreira and Schubert (1997). Specifically, the tropical channel contains 10 large-scale

disturbances; each has the horizontal scale of about 5000 km that could serve as embryos for the subsequent TC formation.

Furthermore, the disturbances in this new state move to the left with a period of T ∼ 3.2116 (i.e., T ≈ 4 days in the physical

dimensional unit) as a result of nonzero imaginary part of the eigenvalues. For different domain configurations such as different

planets or future climates with different tropical width, the unstable structure and/or wave speed may be different, and so the15

maximum number of the TC-favorable disturbances will change as well.

That these large-scale structure of disturbances moving to the left with a time-scale of ∼ 4 days as a consequence of the

dynamical transition shown above is interesting, because these westward moving disturbances are to some extent similar to

easterly waves in the real atmosphere. While it is entirely possible that these easterly waves are a mode of the equatorial

mixed-Rossby waves, it should be noted that the numerical procedure of finding new stable modes on the central manifold20

presented in this study does not allow us to separate different modes of easterly waves. As such, these easterly waves could

be a combination of different modes of west-ward moving Rossby waves and mixed-gravity waves that we may not be able to

separate. In any case, the easterly waves that are often associated with TC genesis can be now seen as a natural consequence of

the dynamical transition, even for barotropic flows. Such a consistency between the observed and theoretical estimation of the

large-scale modes in the tropical region suggests that the barotropic instability and its inherent nonlinear dynamics can account25

for the pre-conditioning environment for TC genesis.

As a final remark, the large-scale structure shown in Figure 4 does not itself dictate that the disturbances have to grow

and turn into TCs. Instead, these structures are simply new stable periodic solutions associated with the supercritical Hopf

bifurcation after the dynamical transition occurs. That is, for R<R∗, the stable structure is the steady state as given in Figure

2, whereas the new stable structure shown in Figure 4 will emerge after R>R∗. As soon as these stable structures emerge,30

subsequent dynamic-thermodynamic feedback may be triggered and result in further growth of the disturbances within each

wave. For a larger value ofR, the stability of the periodic state may no longer be ensured, because the central manifold function

must be re-evaluated and a new structure may arise. The subsequent intensification of any tropical disturbances as a result of

the new unstable structure would require additional detailed physics that are, however, not the focus of this work, and so will
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not be discussed hereinafter. In this regard, the new stable periodic state shown in Figure 4 can serve only as a pre-conditioning

environment for incipient disturbances to grow.

5 Conclusion

In this study, we examined the dynamical mechanisms underlying the large-scale formation of tropical cyclones (TCs) using

a barotropic model for the Intertropical Convergence Zone (ITCZ) driven by an external mass forcing. Assuming a forcing5

function that mimics the mass sink/source in the ITCZ, it was shown that the large-scale steady flow (i.e., the critical point or

equilibrium) in the ITCZ model loses its stability for a bounded range of the wavenumber |m|< k if large-scale environmental

conditions including the magnitude of the mean flow, the Ekman number, and the Rossby number satisfy certain constraints.

That the number of the unstable modes in the tropical region is upper bounded could offer an explanation for a fundamental

question of why the Earth’s tropical atmosphere can support a limited number of TCs globally each year.10

Using the Principle of Exchange of Stabilities condition for the ITCZ model, we found that the ITCZ model undergoes

a bifurcation and associated dynamical transition, which helps determine the maximum number of TC disturbances that the

Earth’s atmosphere can generate. Specifically, a theoretical estimation of the largest zonal wavenumber k that can support the

unstable structure as a result of the ITCZ breakdown is k = 12, assuming the typical scales of the Earth’s tropical channel in

which the zonal scale of the tropical channel is about order of magnitude larger than the width of the channel. Such a dynamical15

constraint on the maximum number of TC disturbances is remarkable, as it suggest an intrinsic large-scale mechanism that

controls the climatology of the TC numbers beyond the basin-specific features as recently noted in Patricola et al. (2018). Of

interest, this constraint on the largest wavenumber of the unstable eigenmodes imposes not only an upper limit on the number

of TC disturbances in the tropical region, but also a lower bound on the size of TC disturbances. This lower bound on the size

of the tropical disturbances may help explain why TCs cannot be arbitrary small, but must be larger than a certain limit in the20

tropical region.

To verify our theoretical analyses, a numerical method is used to search for the new structure on the central manifold of the

ITCZ model as the model parameter R is larger than a critical value R∗. Here, the key parameter R controlling the bifurcation

in our ITCZ model is given by

R=
γεπ

Eπ4 +Aπ2
,25

where γ is parameter measuring the strength of the ITCZ mass sink/source, A is the parameter measure the effect of surface

drag, ε is a parameter measuring the mean zonal flow, and E is the Ekman number representing the eddy viscosity. Our

numerical results confirmed that for R>R∗, a new large-scale state emerges as a result of the supercritical Hopf bifurcation

whose structure depends on the value R. For R sufficiently close to the critical value R∗, the new periodic state possesses

a type of wave motion with two groups of symmetric disturbances across the Equator. These new stable periodic solutions30

describe a type of westward-moving disturbances within the ITCZ, very similar to the classical easterly waves in the tropical

region. These findings obtained from the ITCZ breakdown model in this study thus provide new insights into the formation of

16



TC disturbances in the Earth’s tropical atmosphere, as well as a rigorous mathematical proof for the annually bounded number

of TCs at the global scale.

Appendix A: Principle of Exchange of Stabilities

The Principle of Exchange of Stabilities (PES) for a dynamical system basically refers to a critical condition for which the

eigenvalues of the linear operator first cross a prescribed value. More precisely, the PES can be precisely stated as follows.5

Let Lλ and G represent the linear and nonlinear parts of a dynamical system in the abstract form:

du

dt
= Lλ(u) +G(u,λ) (A1)

where λ ∈ R is the model parameter, and u ∈ Rn represents the state of the system. By defniition, Lλ is a parameterized linear

operator that depends continuously on λ. Consider the eigenvalue equation given by

Lλe = β(λ)e, (A2)10

where e is eigenvector, and β(λ) ∈ C the eigenvalue. Let βj(λ) ∈ C|j ∈ N be the eigenvalues (counting multiplicity) of Lλ. If

we have
<[βj(λ)]


< 0 if λ < λ0,

= 0 if λ= λ0, ∀1≤ i≤m

> 0 if λ < λ0,

,

<[βj(λ0)]< 0, ∀j ≥m+ 1,

(A3)

then the system is said to satisfy the PES condition at λ0, which signifies a bifurcation of the system from one state to another.

For dissipative systems, the PES condition has a much more powerful implication than a simple bifurcation, as it ensures a15

dynamical transition that can be completely categorized by three different types of transition including the continuous transi-

tion, the catastrophic transition, and the random transition. See Ma and Wang (2013) for more details of the PES conditions for

nonlinear systems.

Appendix B: Existence of the critical number R∗

For
√
3

2k+2 ≤ a <
√
3

2k and 1≤m≤ k (k = 1,2, · · ·), it is easy to see from (34) that we must have20

φm,0 6= 0,

because otherwise we will have φm,n = 0,n≥ 0, and there would exist no eigenvectors. For the sake of convenience, we

will hereinafter replace ψm by ψm

Bm,0φm,0
, and similarly replace φm,n by φm,n

Bm,0φm,0
. Equations (26)-(27) are then re-written as
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follows:

Bm,n+1φm,n+1 +Cm,nφm,n−Bm,n−1φm,n−1 = 0, n≥ 1,

Bm,1φm,1 +Cm,0φm,0 + i(Am,0φm,0−φm,0) = 0, n= 0,
(B1)

and∑
n≥0

Bm,nAm,n(Eπ2Am,n +A+<[ρm])|φm,n|2 = 0. (B2)

Denote5

dm,n =
Cm,n
Bm,n

,

and let

ηm,n =Bm,nφm,n,

(B1) can be further rewritten as

ηm,n+1 + dm,nηm,n− ηm,n−1 = 0, n≥ 1,

ηm,1 + dm,0− i= 0, n≥ 0.
(B3)10

This reduced equation (B3) allows us to deduce a number of important constraints. Indeed, we re-arrange (B3) as follows:

− dm,0 + i= ηm,1, ηm,0 = 1,

ξm,n =
ηm,n
ηm,n−1

=
1

dm,n +
ηm,n+1

ηm,n

,

− dm,0 + i=
1

dm,1 + ξm,2
=

1

dm,1 + 1
dm,2+ξm,3

.

(B4)

It is readily seen from (B3) that ηm,n = 0 for all n≥ 0 whenever there exists a l ≥ 0 for which ηm,l = 0. This means that

ξm,n 6= 0 for all n≥ 0. From (B4) one can derive that

ηm,n ≡ ξm,1ξm,2 · · ·ξm,n, n≥ 1. (B5)15

Therefore, for
√
3

2k+1 ≤ a <
√
3

2k (k = 1,3,3, ...), (B2) can be equally rewritten as:
∑
n≥0<[dm,n]|ηm,n|2 = 0,

<[dm,n]< 0(n≥ 1),<[dm,0]> 0,
m≤ k. (B6)

One can deduce from the third equality of (B4) that

ρm =−A−π2EAm,0 +
2iam+ iamπ2R (1−Am,0)

2πAm,0
+

−amπR(1−Am,0)
2Am,0

d1 + ξm,2
. (B7)
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Let’s define a function F using right hand side of (B7), i.e.,

F (ρm,R) =−A−π2EAm,0 +
2iam+ iamπ2R (1−Am,0)

2πAm,0
+

−amπR(1−Am,0)
2Am,0

d1 + ξm,2
.

Due to the fact that

<dm,n < 0(n≥ 1),

we can obtain that5

|F (ρm,R)| ≤
∣∣∣∣−A−π2EAm,0 +

2iam+ iamπ3R (1−Am,0)

2πAm,0

∣∣∣∣
+

∣∣∣−amπR(1−Am,0)
2Am,0

∣∣∣
|<[d1]|

=KR.

Define a set ΩR as

ΩR =

{
z ∈ C

∣∣∣∣∣<[z]>−A−Eπ2

(
1

4
+ a2

)
, |z| ≤KR

}
,

the Brown Fixed Point Theorem implies then that F has a fixed point in ΩR, i.e., there exists ρm(R) such that10

ρm(R) = F (ρm(R),R).

At last, we prove that ρm(R) is a continuous function of R and =ρm(R) 6= 0. Let G(ρm,R) be the function given by

G(ρm,R) = F (ρm,R)− ρm.

If we can prove

∂G

∂ρm
6= 015

then the Implicit Function Theorem implies that ρm(R) is indeed a continuous function of R. From the definition of G and

(B7), we obtain∣∣∣∣ ∂G∂ρm
∣∣∣∣=

∣∣∣∣∣∑
n=1

(−1)n+1 (1−Am,0)Am,n
Am,0 (1−Am,n)

η2m,n(ρm(R))− 1

∣∣∣∣∣
≥ 1−

∑
n=1

(1−Am,0)Am,n
Am,0 (1−Am,n)

|ηm,n|2

> 1−
∑
n=1

(1−Am,0)Am,n
(
<[ρm(R)] +A+Eπ2Am,n

)
Am,0 (<[ρm(R)] +A+Eπ2Am,0)(1−Am,n)

|ηm,n|220

= 0.
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To prove =[ρm(R)] 6= 0, we use the proof by contradiction. Direct calculation gives

|=[dm,n]|
|<[dm,n]|

=
|2π=[ρm(R)]Am,n− 2am|∣∣2π3EA2
m,n + 2π(A+<[ρm(R)])Am,n

∣∣
If =ρm(R) = 0, we can deduce that

|=[dm,n]|
|<[dm,n]|

=
|2am|∣∣2π3EA2

m,n + 2π(A+<[ρm(R)])Am,n
∣∣

>
|2am|∣∣2π3EA2

m,n+1 + 2π(A+<[ρm(R)])Am,n+1

∣∣ =
|=[dm,n+1]|
|<[dm,n+1]|

,5

through which and combining the continuous fraction

−dm,0 + i=
1

d1 + ξm,2
=

1

dm,1 + 1
dm,2+ξm,3

we get

|=[ηm,1]|
|<[ηm,1]|

<
|=[dm,1]|
|<[dm,1]|

,

i.e.,10

|−=[dm,0] + i|
|−<[dm,0]|

<
|=[dm,1]|
|<[dm,1]|

⇒

|−=[dm,0] + i|
|=[dm,1]|

<
|−<[dm,0]|
|<[dm,1]|

⇒

1<
|2am+ 1|
|2am|

<
2π3EA2

m,0 + 2π(A+<[ρm(R)])Am,0

2π3EA2
m,1 + 2π(A+<[ρm(R)])Am,1

< 1,

which leads to a contradiction. Hence, =[ρm(R)] 6= 0.
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Figure 1. Illustration of the zonal wind that is derived from the steady-state flow ψS in the ITCZ model (1) with the external forcing given

by Eq. (3). The dotted curve represents the horizontal profile of the mean flow, while the black arrows represent the direction of the mean

flow for the tropical channel domain Ωa. The blue dashed line denotes the location of the ITCZ.

24



Figure 2. Marginal stability curves R∗
m(a) obtained from the constraint on the eigenvalue <ρm,1(R) = 0 for a range of the aspect ratio

0.1≤ a≤ 0.35.
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Figure 3. The dependence of the first critical wave numberm= n on the scale factor a, assuming the Rossby number ε= 0.5 and the Ekman

number E = 0.05 similar to Figure 2.
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Figure 4. Illustration of the streamfunction ψ for the new periodic state on the central manifold near the critical pointR∗ after the dynamical

transition, assuming ε= 0.3, E = 0.05, and R= 3.8717>R∗ = 3.8517. The nondimenional period is T=2.776, which corresponds to a

physical period of ∼ 3.213 days. Superimposed are corresponding vector flows derived from the streamfunction.
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