
Response to Reviewer 1 (Dr. Daniel Chavas) 

 

 

We would like to thank Reviewer 1 for your constructive comments and suggestions. In this 

revision, we have made a number of changes to take into account your concerns. Please find 

below our point-by-point responses to your comments and our corresponding changes.   

 

Overall this work presents a very compelling, albeit mathematically complex, physical 

argument in a simplified barotropic framework for the upper bound on the number of tropical 

cyclones that emerge from the breakdown of the ITCZ. This upper bound may have a direct 

role in setting the annual number of tropical cyclones on Earth, for which no current theory 

exists. I find the manuscript to be of very high quality in terms of both writing and physical 

framework, though I cannot fully evaluate the mathematical analysis, particularly for the 

Principle of Exchange of Stabilities, as it lies beyond the scope of my expertise. Nonetheless, if 

fully validated, this would appear to be a rather remarkable feat of dynamical systems theory 

for explaining the nature of the breakdown of the ITCZ on an Earth-like planet and its potential 

relevance. 

 

Your encouraging evaluation of our manuscript is much appreciated. We hope that our revision 

below will be now acceptable to you.  

 

Specific comments: 

P2L30: It would seem very relevant here to include the work of Patricola et al. (2018; 

https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1002/2017GL076081), which found that 

filtering out AEWs did not alter the number of storms in the Atlantic, suggesting that 

disturbances from other sources (e.g. ITCZ breakdown) may take their place. 

 

Thank you for pointing out to us this work of Patricola et al. (2018), which is indeed relevant to 

our study. Their finding about the insignificant role of AEWs in modulating the number of the 

TC climatology in the Atlantic basin is noteworthy, as it is consistent with our model presented 

in this study in the sense that our model does not contain any local feature such as the African 

Jet that triggers AEWs. One thing that we wish to note is that the AEWs are just one class of a 

much broader group of easterly waves in the tropical region. While AEWs can be filtered as 

presented in Patricola et al. (2018), the other modes of easterly waves such as mixed equatorial 

Robssy waves can still exist. Anyway, both Petricola et al.’s results and our study herein appear 

to suggest an intrinsic mechanism at the large scale, which controls the climatology of the TC 

numbers beyond the basin-specific features. This work has been now cited in this revision.    

  

P3L5/Figure 1: I’m not sure this figure, taken from Kieu et al. (2018), is appropriate here, as it 

is included without explanation. If the figure is presented within the stated reference then the 

reference alone should suffice without the figure being reproduced. 

 

Our purpose of including this figure here is to highlight the key importance of episodic 

development of TCs at the global scale so one can estimate the global number of TCs annually. 

Essentially, we need two pieces of information to be able to determine how many TCs the 

tropical atmosphere can support annually, which include 1) the maximum number of TCs that 



the tropical atmosphere can produce for any given episode of TC formation, and 2) the 

frequency that the new episode of TC formation will occur. The analytical work herein 

addresses the first question, and the global modelling of TC formation shown in Figure 1 

addresses the second question. Given that we plan to have an upcoming study that specifically 

tackle the second question in much more details, we have removed Figure 1 in this work per 

your suggestion.     

 

P11L25: I’m unsure where “3 x 3000 km” is coming from here. Lx/m = 3333 km. 

 

Thank you. This is our typo. We really meant 3000 km, not 3x3000 km here. This has been 

fixed.   

 

P11L27: I’m not sure I agree with this statement that storm size “must be larger than a limit of 

∼10ˆ3 km” – this may be a lower bound on size for this specific case of an equatorial band of 

TCs of equal size. In reality individual storms may take a range of sizes, and certainly there are 

instances of very small storms that appear to be have a diameter much smaller than this length 

scale. This is not incompatible with the model presented here, reality is simply more complex. 

Given that it is an important parameter (aspect ratio, with Lx fixed), how would one plausibly 

define Ly for the real world? Is there some physical sense of what would represent the poleward 

boundary relevant to the system? 

 

Our main point in this discussion is that if all high zonal wavenumbers must be stable as found 

in this study, then any disturbance corresponding to a large wavenumber (i.e., a small size) that 

could potentially grow into a TC would not occur. So, only those with 𝑚 < 12 (i.e., their 

diameters are > 3000 km) can have a chance, which agree well with the typical scale of a region 

where a TC emerges in the tropical region. Of course, this by no means eliminates the existence 

of a small TC such as midgets at the higher latitudes, because our analytical results can only 

provide an estimate for the size of the” hot spot” where a TC disturbance can develop. Talking 

about the size of a fully-developed TC is beyond our current work, as it involves various 

complex factors as pointed out in your several recent studies on the topic of the TC size. We 

have revised this discussion to avoid misleading impression.        

 

Regarding the width of the tropical region, it is indeed hard to be precisely determined. We 

simply use a typical value of 200 for the tropical channel, based on the definition of the tropics 

up to the tropic of Capricorn (~23.5°). Additional analyses for a few different widths from 15-

20o do not show much difference, because the zonal scale is, after all, always an order of 

magnitude larger than the meridional scale.   

 

P14L34: Aren’t these westward-moving disturbances simply Rossby waves? Based on Fig 2, at 

the ITCZ location (dashed line), Uyy=0 and thus the PV gradient is purely beta. Does their 

phase speed follow the barotropic Rossby wave phase speed for wavenumber equal to the 

unstable wavenumber predicted by the model (4 m/s)? I wonder if Rossby waves are a more 

appropriate analog than African Easterly Waves for the features in the model. 

 

We totally agree. It is entirely possible that that easterly waves here are a mode of the equatorial 

mixed Rossby waves, because the spatial scale as well as the phase speed are consistent with 



westward-moving Rossby wave (meridional mode 𝑛=1). However, we also wish to caution here 

that the numerical procedure of finding the unstable mode on the central manifold presented in 

this section does not allow us to separate different modes of easterly waves. As such, the 

easterly waves here could be a combination of many different modes of west-ward moving 

Rossby waves and mixed gravity waves that we may not be able to link them specifically to the 

equatorial Rossby waves. This has been now mentioned in this revision.    

 

To what extent does this model reproduce the behavior of the traditional model for barotropic 

instability under parallel shear flow and the associated Rayleigh-Kuo conditions for instability? 

Based on Figure 2, it appears that the physical framework is the same. However, I am trying to 

understand the notion that the periodic state is a secondary stable state, which is in contrast to a 

traditional barotropic instability model in which the instabilities would be expected to continue 

to grow. 

 

Our discussion in the previous version was indeed unclear, which may cause some confusion 

here. We would like to note that the periodic state is one of the stable branches of the Hopf 

bifurcation if the model parameter 𝑅 is slightly greater than the critical value. As long as 𝑅 is 

sufficiently close to the critical number 𝑅∗, this periodic state on the central manifold will 

maintain its stable structure. For a larger 𝑅 number, it should be noted that the stability of the 

periodic state may no longer be ensured, because the central manifold function must be re-

evaluated and a complex structure of the model state may arise. To some extent, this is what 

anticipated in the real atmosphere, because not all easterly waves can become unstable and turn 

into TCs. Only under some certain condition do the easterly waves become unstable.    

 

Technical corrections:  

General: Suggest simply using “genesis” rather than “TCG” –acronyms are overused. 

Thank you. We have tried to reduce the use of the TCG acronym as suggested. 

 

P4L15: might note in the text for clarity that Delta here represents the Laplacian, which 

is typically denoted with nablaˆ2 

Thank you. The notation nabla has been now defined explicitly. 

 

P4L17: extra “the 

Corrected. 

 

P4L21: parenthesis error 

Corrected.  

 

P6L11: replace “while” with “though it” 

Modified as suggested. 

 

P5L28: “nonlinearity” 

Corrected 

 

P7L12: I believe this should be no v-wind component 

You are right. We really meant 𝑣-wind here. This has been now corrected.  



 

P8L15: “eigenvector” 

The typo has been corrected 

 

P9L13: “turns out” 

Modified as suggested. 

 

P10L19: “if it exists” 

This sentence has been modified  

 

P13L10: “all the same” 

Modified as suggested.  

 

P14L16: “nondimensional” 

Corrected. 

 

P14L20: issues with the parentheses 

Corrected.  

 

P14L24: “obtained from the” 

The typo has been now corrected. We thank Reviewer 1 again for your various suggestions and 

comments.  

 

  



Response to Reviewer 2 (Dr. Alex Gonzalez) 

 

 

We wish to thank Reviewer 2 for your encouraging comments and very detailed corrections in 

the annotated supplement. In this revision, we have followed your suggestions and made all 

necessary changes. Below please find a list of the changes that we have made in response to 

your comments/suggestions in the annotated PDF. 

 

This paper revisits the well-known topic of the ITCZ breaking down due to barotropic 

instability into individual vortices that can be seeds for tropical cyclones. This paper provides a 

new and unique perspective on the topic, showing extensive mathematical derivations about the 

zonal wavenumber that first becomes unstable in ITCZ breakdown and how this zonal 

wavenumber sets constraints on the size and total number of tropical cyclones on the globe at 

one time. Overall, the paper is well-written and the mathematical derivations appear to be 

accurate. The only concerns I have are about presentation quality. There are issues with the 

authors being too vague about the nomenclature in their derivations, which made it difficult to 

check all of the math. Additionally, the authors are not consistent in physically interpreting 

many of the parameters, which if fixed, would help more general audiences follow the entire 

paper. My concerns seem like they can be addressed relatively quickly, thus I am 

recommending acceptance of the paper after minor revisions. 

 

Page 1, tile: Modified as suggested. 

 

Page 1, line 5-6: Reworded as suggested. 

 

Page 4, line 3: Yes, this is the trade wind. The phrase has been changed to directly indicate this.  

 

Page 4, line 15: Thank you. The definition of the Laplacian operator has been added.  

 

Page 4. This is the total derivative, as it contains the horizontal advection component as well, 

i.e.,  
𝑑Δ𝜓

𝑑𝑡
≡

𝜕(Δ𝜓)

𝜕𝑡
−

𝜕𝜓

𝜕𝑦

𝜕(Δ𝜓)

𝜕𝑥
+

𝜕𝜓

𝜕𝑥

𝜕(Δ𝜓)

𝜕𝑦
  The existence of such horizontal advection is required 

such that the effects of background vorticity gradient can be properly taken into account as you 

commented (see the term that accounts for the background vorticity gradient in Eq. (8) for the 

contribution from the background 𝜓�̃�.)   

 

Page 5, table 1: Yes, the ITCZ latitude can be extended from 1500 km to 2000 km with little 

changes in our analyses or conclusion. This is because the meridional scale is still much less 

than the zonal scale, which is the circumference of the Earth (i.e., 2𝜋𝑅 ∼ 40,000 𝑘𝑚 ≫
2000 𝑘𝑚). Our choice of the ITCZ latitude around 12-150 is simply based on the typical 

latitude of the ITCZ during the peak TC season.    

 

Page 5. The unit of Horizontal eddy viscosity coefficient should be “m^2 s^-1” has been 

corrected. 

 

Page 5, line 6: The phrase has been added as suggested.  

 



Page 5, line 11, 12: changed as suggested. 

 

Page 6, line 12: Thank you. The typos related to the domain size has been now corrected. 

 

Page 6, line 17: we have added the definition of the non-dimensional parameter 𝛾1 here. You 

are right, this is the ratio of the vorticity forcing and vorticity response.  

 

Page 6, line 18:  reworded as suggested.  

 

Page 6, line 23: deleted as suggested. 

 

Page 7, line 6: You are correct. 𝑅 is physically a ratio between the external forcing and the sum 

of the viscous and linear damping terms. This physical meaning has been now included in this 

revision.   

 

Page 7, line 8: the typo has been corrected.  

 

Page 7, line 12: Thank you. This is out typo. It should be no v-wind component, not u-wind 

component for the boundary condition here. This has been corrected.  

 

Page 7, line 13: delete as suggested.  

 

Page 7, line 15: delete as suggested.  

 

Page 7, line 16: The physical meaning of three differential operators have been now added.  

 

Page 7, line 22: Our typo here. It should be partial derivative here after expanding all of the 

terms. 

 

Page 7, line 22: this is our typo. It should be minus sign here.   

 

Page 8, line 16:  reworded as suggested. 

 

Page 8, line 17: The way we choose the zonal wave number 𝑚 is very similar to the way one 

solves, e.g., an oscillating string held fixed between two walls. Basically, the boundary 

condition dictates the possible values of the eigenstates. Given the periodic boundary condition 

in the zonal direction, the eigenvectors include therefore all possible eigenmodes 𝑚, ∀𝑚 ∈ 𝑍+. 

So, this differs from the Fourier expansion for which there exists a pair of dual amplitudes.        

 

Page 8, line 18: Yes, 𝑚 represents zonal wavenumber or meridional mode. This has now been 

stated clearly here. 

 

Page 8, line 19: reworded as suggested.  

 

Page 8, line 21: reworded as suggested. 

 



Page 9, line 1: reworded as suggested. 

 

Page 9, line 2: 𝑛 represents the order of derivative w.r.t to 𝑦 direction. This has been now 

clearly indicated.  

 

Page 9, line 9: We have moved the definition of 𝜙𝑚,𝑛 to the above line to make it clearer. 

 

Page 9, line 13: reworded as suggested. 

 

Page 9, line 17: reworded as suggested.  

 

Page 10, equation (34): Definition of the real part operator has been now included. 

 

Page 10, line 18: deleted as suggested. 

 

Page 10, line 19: modified as suggested. 

 

Page 11, line 3: corrected. 

 

Page 11, line 5: corrected. 

 

Page 11, line 10: reworded as suggested. 

 

Page 11, line 14: A separated equation has been added here. Note that different value of 𝑚 for 

different value of 𝐿𝑦 is what Fig 3 is about (the value of 𝐿𝑦 is encoded in the parameter 𝑎), and 

so we don’t provide a separate table for this equation.  

 

Page 11, line 17: Per your suggestion. we have now added some comment about the result in 

Neito Ferreira and Schubert (1997) of the most unstable zonal wavenumber being wavenumber 

13 here. 

 

Page 11, line 22: changed as suggested. 

 

Page 11, line 23: reworded  as suggested. 

 

Page 11, line 25, 26: This is out typo. It should be 3000 km, not 3x3000 km. This has been 

fixed.  

 

Page 11, line 27: Is there a citation to back up this statement? “that has been long observed but 

not fully explained so far.” 

 

Page 12, line 3: the Rayleigh and/or Fjørtoft necessary conditions for instability has been now 

explicitly mentioned in this revision. 

 

Page 12, line 3: reworded as suggested. 

 



Page 13, line 10: reworded as suggested. 

 

Page 14, line 7: reworded as suggested. 

 

Page 14, line 13: Thank you for commenting on this. Because 𝜈𝜋4 ≪ 𝛼𝐿2𝜋2 in our calculation 

of 𝑅 (see Eq 9), use of  𝜈 = 100, 𝑜𝑟 1000 m2 s-1 would not change much our estimation of the 

critical number  . We have now mentioned this explicitly in this work.  

 

Page 14, line 28: turn “this new state” to “the disturbances in this new state”. 

 

Page 14, line 31: Thank you. The follow vectors have been added in this revision. 

 

Page 15, line 8: changed to “feedbacks”. 

 

Page 15, line 11: changed to “discussed hereinafter”. 

 

Page 15, line 14: delete “,” after (TCs).  

 

Page 15, line 15: corrected as suggested. 

 

Page 15, line 17: reworded as suggested. 

 

Page 15, line 19: reworded as suggested. 

 

Page 15, line 21: reference might help here “Using the Principle of Exchange of Stabilities 

condition for the ITCZ model” 

 

Page 15, line 24: typo, add “.” after generate. 

 

Page 15, line 25: “k~12” = (the word estimation already implies an approximation). 

 

Page 16, line 10: reworded as suggested. 

 

Page 17, line 5: fixed. 

 

Page 19, line 1: fixed. 

 

Figure 3, 4: 𝑚 = 13 has been added. The label axis has been also fixed.  

 

Figure 5:  Fixed. 
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\maketitle 

\begin{abstract} 

This study examines the formation of tropical cyclones (TC) from the 

large-scale perspective. Using the nonlinear dynamical transition 

framework recently developed by Ma and Wang, it is shown that the large-

scale formation of TCs can be understood as a result of the Principle of 

Exchange of Stabilities in the barotropic model for the Intertropical 

Convergence Zone (ITCZ). Analyses of the transition dynamics at the 

critical point reveal that the maximum number of TC disturbances that the 

Earth's tropical atmosphere can support at any instant of time has an 

upper bound of $\sim 12$ for current atmospheric conditions. Additional 

numerical estimation of the transition structure on the central manifold of 

the ITCZ model confirms this important finding, which offers an 

explanation for a fundamental question of why the Earth's atmosphere can 

support a limited number of TCs globally each year. 

%, but also justifies the TC horizontal scale of $\sim 10^3$ km as 

observed. 

\end{abstract} 

 

\copyrightstatement{Reviewed manuscript} 

% 

%  section 

% 

\section{introduction} 

The life cycle of a tropical cyclone (TC) is typically divided into 

several stages including early genesis, tropical disturbance, tropical 

depression, tropical storm, hurricane, and finally the dissipation. Among 

these five stages, the tropical cyclogenesis (TCG), defined as a period 

during which a weak atmospheric disturbance grows into a mesoscale 

tropical depression with a close isobar and the maximum surface wind > 17 

m s$^{-1}$ \citep{KaryampudiPierce2002, ToryMontgomery2006}, is perhaps 

the least understood due to its unorganized structure as well as ill-

defined characteristics of TCs. During this genesis period (typically 2-5 

days), synergetic interactions among various dynamical and thermodynamic 

processes at different scales can result in an eventually self-sustained, 

warm-core vortex before the subsequent intensification can take place. 

These early formation processes are so intricate that no single or 

distinct mechanism could operate for all TCs, rendering the genesis 

forecasting very challenging in practice. Such a multi-facet nature of 

TCG is the main factor preventing us from obtaining a complete 

understanding of TC formation and development at present.  

 

Early studies by \cite{Gray1968, Gray1982} provided a list of necessary 

climatological conditions for TCG to occur, which include: (i) an 

underlying warm sea surface temperature (SST) of at least 26$^o$C; (ii) a 

finite-amplitude low-level cyclonic disturbance; (iii) weak vertical wind 

shear; (iv) a tropical upper tropospheric trough; and (v) a moist lower 

to middle troposphere. While the above conditions for genesis have been 

well documented in numerous observational and modeling studies since 

then, an elusive issue is that the actual number of TCs composes a small 

fraction of the cases that meet all these conditions in the tropical 

region every year. Moreover, TCG varies wildly among different ocean 

basin due to relative importance of large-scale disturbances, local 
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forcings, and surface conditions, thus inheriting strong regional 

characteristics that common criteria may not be applied everywhere. For 

example, TC genesis in the North Atlantic basin often shows strong 

connection to active tropical waves originated from the South African Jet 

\citep{AvilaPasch1992, DeMaria1996, Molinari_etal1999}. In the 

northwestern Pacific basin, studies by \cite{Yanai1964, Gray1968, 

Gray1982, LanderHolland1993, RitchieHolland1997, Harr_etal1996, 

Nakato_etal2015} showed that the genesis is mostly related to 

Intertropical Convergence Zone (ITCZ) and monsoon activities. In the 

northeastern Pacific, vortex interaction associated with the topographic 

and tropical waves seems to generate abundant disturbances that act as 

the seeds of TC genesis \citep{Zehnder_etal1999, Molinari_etal1997, 

WangMagnusdottir2006, Halverson_etal2007, KieuZhang2010}.  

 

Other large-scale conditions that can interfere with TCG have been also 

reported in previous studies such as the Saharan air layer (SAL; 

\cite{DunionVelden2004}), upper-level potential vorticity (PV) anomalies 

\citep{MolinariVollaro2000, DavisBosart2003}, mixed Rossby-gravity waves 

\cite{AiyyerMolinari2003}, the ITCZ breakdown 

\citep{FerreiraSchubert1997, WangMagnusdottir2006}, or multiple vortex 

merges \citep{Simpson1997, RitchieHolland1997, WangMagnusdottir2006, 

KieuZhang2008, Kieu2015}. Along with this diverse nature of genesis in 

different basins, observational and modeling studies of TC development 

have shown that the evolution of tropical disturbances during the early 

genesis stage often encompasses a wide range of scales from convective-

scale hot towers, mesoscale convective systems, to large-scale quasi-

balanced lifting and cloud-radiation feedbacks 

\citep[e.g.,][]{RiehlMalkus1958, Yanai1964, Gray1968, ZhangBao1996a, 

RitchieHolland1997, Simpson1997}. In this regard, TCG is a truly multi-

scale process that relative importance of different mechanisms must be 

carefully examined when studying the TC genesis in real atmospheric 

conditions. 

 

Recent effort in the TC genesis research has been shifted from examining 

local mechanisms to a broader perspective of how environmental conditions 

can produce and maintain TC disturbances during TC early development 

\citep{WangMagnusdottir2006, Dunkerton_etal2009, Montgomery_etal2010, 

Wangetal2012, Lussier_etal2013, Zhuetal2015, WuShen2016, 

Patricola_etal2018}. The most current attempt in quantifying the large-

scale factors governing the genesis in the North Atlantic basin focuses 

on the so-called “pouch” conceptual model, which treats an early TC 

embryo as a protected region within large-scale easterly waves 

\citep{Wangetal2010, Wangetal2012, Dunkerton_etal2009, 

Montgomery_etal2010}. To some extent, this pouch idea can be considered 

as an advance of the requirement of an incipient disturbance for genesis 

to occur that was originally put forth by \cite{Gray1968}. Much of the 

development along this “pouch” idea has been on tracking wave packets in 

the co-moving frame required to protect the mid-level disturbances (the 

so-called Kelvin cat-eye in \cite{Dunkerton_etal2009, Lussier_etal2013}). 

 

Despite much progress over last decades, several outstanding issues  in 

the TC genesis study still remain. From the global perspective, a 

particular question of what is the maximum number of TCs that the Earth's 

tropical atmosphere can form and support in any given day has not been 
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adequately addressed. Answering this question will help explain a long-

standing question of why the Earth has only a specific number of 

$\sim$ 100 TCs globally every year.  A recent modeling study of the 

global TC formation by Kieu et al. (2018) demonstrated indeed that the 

daily number of genesis events is intriguingly bounded (<10), even in a 

perfect environment. This number is quite consistent with a simple scale 

analysis based on the typical scale of TCs with a diameter $\sim$ 3000-

km, which shows that there should have less than 14 TCs on the Earth's 

atmosphere at any given time, assuming that the radius of the Earth is 

$\sim$6400 km. Using idealized simulations for a tropical channel, Kieu 

et al. (2018) showed in fact that genesis occurs in episodes of 7-10 

storms each time with a frequency between the episodes of 12-16 days. 

This episodic development at the global scale as well as the upper bound 

of $\sim$ 10 storms for each episode as obtained from these idealized 

experiments suggests that there must have some large-scale environmental 

conditions or intrinsic properties of the tropical dynamics, which 

control the genesis processes beyond the basin-specific mechanisms as 

discussed in \cite{Patricola_etal2018} .    

 

While recent advance in global numerical models can reasonably capture 

the very early stage of the TCG and serve as guidance for operational 

genesis forecasts, analytical models of TC development have been confined 

mostly to the later stage of TC development such that the axisymmetric 

characteristics of disturbances could be employed. The axisymmetry is 

critical for the theoretical purposes, because it reduces the Navier-

Stokes equations to a set of approximated equations for which some 

balance constraints and simplifications can be employed.  

 

Given the various basin-specific mechanisms that could produce TCs beyond 

the axisymmetric model for an individual TC, the main objective of this 

study is to focus specifically on a large-scale mechanism behind the 

formation of tropical disturbances associated with the ITCZ breakdown. 

This special pathway is very typical at the global scales whereby 

converging winds from the two hemispheres could set up a right 

environment for large-scale stability to develop \citep{Gray1968, 

Yanai1964, Zehnder_etal1999, Molinari_etal2000, FerreiraSchubert1997, 

WangMagnusdottir2006}. Indeed, satellite observations often show that the 

ITCZ tends to undulate and break into a series of mesoscale vorties or 

disturbances, some of which may eventually grow into TCs \citep{Agee1972, 

Hack_etal1989, FerreiraSchubert1997}. This is especially apparent in the 

WPAC basin where early studies by \cite{Gray1968, Gray1982} showed that 

TC genesis primarily occurs along the ITCZ, which accounts for nearly 80 

percent of genesis occurrences in this area. 

 

Although the ITCZ breakdown appears to be a slow process as compared to 

other pathways such as vortex merger 

\citep[e.g.,][]{WangMagnusdottir2006, KieuZhang2008, KieuZhang2010} or 

tropical easterly waves \citep[e.g.,][]{Zehnder_etal1999, 

Molinari_etal1997, Halverson_etal2007, Dunkerton_etal2009, 

Montgomery_etal2010, Wangetal2012}, it is an inherent property of the 

tropical atmosphere at the global scale that could provide a source of 

large-scale disturbances responsible for TCG. To minimize the 

complication due to the basin-specific features, we thus limit our study 
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of the global TC formation to an idealized aqua-planet configuration to 

facilitate the analytical analyses in this study.   

 

The rest of the paper is organized as follows. In the next section, an 

analytical model for the large-scale TC genesis based on the ITCZ 

breakdown model is presented. Section 3 presents detailed analyses of the 

principle of exchange of stabilities for the ITCZ model as well as the 

stability analyses of the dynamical transition. Numerical examination 

will be discussed in Section 4, and concluding remarks are given in the 

final section. 
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\section{Formulation} 

A unique characteristic of the ITCZ that provides a favorable environment 

for genesis to occur is the highly unstable zone along the ITCZ where 

trade winds from the two hemispheres converge. Such a zone with strong 

horizontal shear is well documented along the tropical belt where the 

potential vorticity gradient changes sign, providing a necessary 

condition for disturbances to grow according to Rayleigh's theorem 

\citep{CharneyStern1962, FerreiraSchubert1997}. Thus, a disturbance 

embedded within in the ITCZ can trigger a nonlinear growth and extract 

the energy from the background, resulting in a potential amplification of 

the disturbance.  

 

Because of such a dominant role of the ITCZ in the global TC formation, a 

natural model for TCG should take into account the large-scale ITCZ 

breakdown processes. This ITCZ breakdown model is particularly suitable 

for an aqua-planet that does not have other triggering mechanisms such as 

land-sea interaction or terrain effects. For this reason, we will 

consider the ITCZ breakdown as a starting model for the TC genesis at the 

global scale in this study. Inspired by the modeling studies of the ITCZ 

breakdown based on the shallow water equation by 

\cite{FerreiraSchubert1997}, we examine a similar model for the ITCZ 

dynamics on a horizontal plane in which the governing equation for the 

ITCZ can be reduced to an equation for the potential vorticity as follows  

 

\begin{align}\label{eq1} 

\frac{d \Delta \psi}{dt}=\nu_{e}\Delta^{2}\psi +F-\alpha\Delta\psi-\beta 

\frac{\partial\psi}{\partial x}, 

\end{align} 

where the horizontal streamfunction $\psi$ has been introduced as a 

result of the continuity equation, $\nu_{e}$ is horizontal eddy 

viscosity, $\alpha$ is a relaxation time, $\Delta$ is the Laplacian 

operattor, and $F$ is an external force that represents the either a 

source/sink of mass within the ITCZ or vorticity source \footnote{In 

\cite{CharneyDeVore1979}, the relaxation time $\alpha$ is proportional to 

the ratio of the Ekman depth $D_E$ over the depth of the fluid $H$, while 

the external forcing term $F$ can be treated as a large-scale vorticity 

source.}. Note here that the derivative on the left hand side of Eq. 

\eqref{eq1} is the total derivative such that the horizontal advection of 

the vorticity is included. As discussed in \cite{FerreiraSchubert1997}, 

the mass source/sink term $F$ is important for the ITCZ dynamics, because 

the horizontal dynamics could not fully capture the vertical mass flux 
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within the ITCZ. Unlike the original ITCZ model in 

\cite{FerreiraSchubert1997}, we have however introduced in the above 

model \eqref{eq1} an explicit drag forcing term to represent the impacts 

of eddy diffusion as discussed in \cite[e.g.,][]{RambaldiMo1984, 

LegrasGhil1985, FerreiraSchubert1997}. The governing equation \eqref{eq1} 

for the horizontal streamfunction has been extensively used in previous 

studies to examine the quasi-geostrophic dynamics under different large-

scale conditions \citep[e.g.,][]{CharneyDeVore1979, LegrasGhil1985, 

RambaldiMo1984, Schar1990}. 

 

To be specific for our TCG problem, we will apply Eq. \eqref{eq1} for a 

zonally periodic tropical channel, which is defined as 

\begin{align}\label{eq2} 

\Omega=\left[0,L_{x}\right] 

\times\left[0,L_{y}\right], 

\end{align} 

where $L_{y}$ is the width of the tropical channel in a hemisphere and 

$L_{x}$ is the zonal length of the channel. This domain roughly 

represents a region where the ITCZ can be treated as a long band wrapping 

around the Equator. For the current Earth condition, $L_x \sim 

40,000$ km, and $L_y \sim 1,000-1,500$ km (i.e., 10-15$^o$), and so by 

definition $L_x \gg L_y$.  

% 
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\begin{table}[t] 

\caption{Parameters of the model}\label{t1} 

\begin{tabular}{cll} 

\tophline 

$Variable$ & $Range$ & $Remark$\\ 

\middlehline 

$U_o$ & 10-20 m s$^{-1}$ & Mean easterly flow in the tropical lower 

troposphere \\ 

$L_y$ & 1200-1500 km & Width of the tropical channel $\Omega$ \\ 

$L_x$ & $\sim$40,000 km & Length of the tropical channel domain  

$\Omega$\\ 

$a$  & $\frac{2L_y}{L_x}$ & Aspect ratio of the tropical channel \\ 

$\alpha$  & $ 10^{-5}-10^{-7} \mbox{s}^{-1}$ & Relaxation time \\ 

$\nu$  & $10-10^{4} \mbox{m}^{2} \mbox{s}^{-1}$ & Horizontal eddy 

viscosity coefficient \\ 

$\beta$  & $2\times 10^{-11} \mbox{s}^{-1}$ & Variation of the Coriolis 

parameter with latitudes \\ 

$\gamma$  & $10^{-10}-10^{-11} \mbox{s}^{-2}$ & Magnitude of the external 

mass source/sink in the ITCZ breakdown model \\ 

\bottomhline 

\end{tabular} 

\end{table} 

 

Before we can analyze the ITCZ breakdown model, it is necessary to have 

first an explicit expression for the forcing term $F$. In the early study 

by \cite{FerreiraSchubert1997}, $F$ represents a mass sink that is a 

piecewise unit step function of latitudes. To account for the existence 

of the zonal jet in mid-latitude regions, \cite{LegrasGhil1985} however 

used a forcing of the form $F=\alpha \nabla \psi^*$, where $\psi^*$ is a 
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given streamfunction that represents the zonal jet around $50^o N$. Given 

our focus on the ITCZ dynamics, we will choose this forcing term such 

that its corresponding steady state can best represent the typical 

background flow in the tropical lower troposphere. A zonally symmetric 

functional form for the  $F$ that meets this requirement is 

\begin{align}\label{eq2} 

F=\gamma\sin\frac{\pi y}{L_{y}} 

\end{align} 

where $\gamma$ denotes the strength of the forcing. Note that this 

forcing amplitude is not arbitrary, because its value dictates the zonal 

mean flow in the tropical region as will be shown below.  

 

While the forcing term given by Eq. \eqref{eq2} differs from the unit 

step function in \cite{FerreiraSchubert1997}, it turns out that 

\eqref{eq2} allows a steady solution consistent with the typical flow 

near the ITCZ. Indeed, the steady state solution $\psi_S$ of \eqref{eq1} 

that results from this zonally symmetric forcing is 

\begin{align}\label{steady-state0} 

\psi_{S}=\frac{-\gamma L_{y}^{4}}{\nu_{e}\pi^4+\alpha 

L_{y}^{2}\pi^2}\sin\frac{\pi y}{L_{y}}. 

\end{align} 

The horizontal flow corresponding to this steady streamfunction is 

illustrated in Fig. \ref{fig2}, which shows two opposite easterly and 

westerly flows to the north and the south of an ITCZ during a typical 

Northern Hemisphere summer as expected.  

 

Given the above forcing $F$ and its corresponding steady state, the 

problem of the ITCZ breakdown is now mathematically reduced to the study 

of the instability of the steady-state \eqref{steady-state0} as the model 

parameters such as the forcing amplitude $\gamma$, the relaxation time 

$\alpha$, or the beta effect vary. To this end, it is more convenient to 

re-write Eq. \eqref{eq1} in the non-dimensional form such that our 

subsequent mathematical analyses can be simplified. Given the governing 

equation \eqref{eq1}, it is apparent that the natural scaling for time, 

streamfunction, and distance can be chosen respectively as follows: 

\begin{align*} 

t=\frac{1}{L_y \beta}t^*,~~ 

\psi=L_y U_{0}\psi^*,~~(x,y)=L_y(x^*,y^*),~~ 

F=\frac{\alpha U_{0}}{L_y}F^*, 

\end{align*} 

where the asterisk denotes the nondimensional variables, and $U_{0}$ is a 

given characteristic horizontal velocity that determines the strength of 

the zonal mean flow in the tropical region. Nondimensionalizing Eq. 

\eqref{eq1} and neglecting the asterisks hereinafter, the nondimensional 

form for Eq. \eqref{eq1} becomes 

\begin{align}\label{eq3} 

\frac{\partial\Delta \psi}{\partial t}+\epsilon 

J(\psi,\Delta\psi)=&E\Delta^{2}\psi+ 

F-A\Delta\psi 

-\frac{\partial\psi}{\partial x}, 

\end{align} 

where 

\begin{align*} 

&\epsilon=\frac{U_{0}}{L_y^2\beta}~~ \text{is the Rossby number,} \\ 
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&E=\frac{\nu_{e}}{L_y^{3}\beta}~~ \text{is the Ekman number,}\\ 

&A=\frac{\alpha}{L_y\beta} ~~\text{is the ratio of the relaxation time to 

the inherent time related to the Earth's rotation rate}. 

\end{align*} 

 

For the sake of mathematical convenience, we will hereinafter extend the 

model domain from $[0,L_y]$ to $[-L_y,L_y]$ such that the boundary 

conditions become meridionally symmetric along the Equator at $y=0$. This 

mathematical method of extending the domain will simplify a lot of 

calculations, though it has no effect on our solutions so long as we 

limit the final solution in the original domain $[0,L_x]\times 

[0,L_y]$ and maintain the Neumann boundary at $y=0$ as shown below. The 

non-dimensional extended domain is therefore given by 

\begin{align*} 

\Omega=\left[0,\frac{2}{a}\right] 

\times\left[-1,1\right]. 

\end{align*} 

where the scale factor $a\equiv 2L_y/L_x$ is introduced to simplify our 

spectral analyses. Given the above nondimensionlization, the non-

dimensional form of the forcing \eqref{eq2} is now simply 

\begin{align}\label{eq4} 

F=\gamma_{1}\sin\pi y, 

\end{align} 

where the nondimensional parameter $\quad\gamma_{1}=\frac{\gamma 

L}{\alpha U_{0}}$ denotes the ratio of the vorticity forcing amplitude 

$\gamma$ to the vorticity response $U_0$, and the non-dimensional form of 

the steady state \eqref{steady-state0} is  

\begin{align}\label{steady-state} 

&\psi_{S}=-\frac{A\gamma_{1}} 

{E\pi^4+A\pi^2}\sin\pi y. 

\end{align} 

 

We examine next the stability of the steady state \eqref{steady-state} 

and how this critical point would bifurcate into new states as the model 

parameters vary, using the dynamical transition framework developed by 

\cite{MaWang2013}. To this goal, it is necessary to study the behaviors 

of a deviation $\psi'$ around the given equilibrium \eqref{steady-

state0}. We follow the standard procedure in the dynamical transition and 

expand the solution around the critical point \eqref{eq3} in the form 

$\psi=\psi_{S}+\psi'$. It should be emphasized here that unlike the 

traditional linear stability analyses in which one often assumes $\psi' 

\ll \psi_S$, the dynamical transition framework does not impose such a 

condition on $\psi'$. The sole purpose of introducing the partition 

$\psi=\psi_{S}+\psi'$ is to simply shift the location of the stability 

analyses towards the steady state $\psi_S$, much like shifting the 

coordinate origin from $0$ to a new critical point in any linear 

stability analyses. In Ma and Wang (2013)'s dynamical transition 

framework, the full nonliterary is maintained such that possible analyses 

of the central manifold can be carried out, and so no assumption of 

$\psi' \ll \psi_S$ is needed in our analyses here. With this partition, 

the corresponding governing equation for the perturbation $\psi'$ then 

becomes 

\begin{align}\label{eq5} 

\begin{aligned} 
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\frac{\partial\Delta \psi}{\partial t}+\epsilon 

J(\psi,\Delta\psi)=&E\Delta^{2}\psi 

-A\Delta\psi-\frac{\partial\psi}{\partial x}+ 

R\frac{d\widetilde{\psi}_S}{dy} \frac{\partial\Delta\psi}{\partial x}-

R\frac{d^3\widetilde{\psi_S}}{dy^3} \frac{\partial\psi}{\partial x}, 

\end{aligned} 

\end{align} 

where all the primes are hereinafter omitted for the sake of convenience, 

and a non-dimensional number $R$ and $\widetilde{\psi_S}$ are defined as 

follows 

\begin{equation}\label{eq6} 

R=\frac{\gamma_1\epsilon}{E\pi^3+A\pi},\qquad 

\widetilde{\psi_S}=-\frac{\sin\pi y}{\pi}. 

\end{equation} 

Physically, the non-dimensional number $R$ is a ratio between the 

external forcing amplitude $\gamma_1$ and the sum of the viscous and 

linear damping terms. As will be shown below, this number turns out to be 

a key bifurcation parameter that determines the dynamical transition of 

the ITCZ breakdown model.  

 

Given the nature of the ITCZ model, the periodic boundary conditions will 

be imposed in the zonal direction, and the free boundary conditions in 

the meridional direction for the perturbation equation \eqref{eq5} are 

applied at $y=-1$ and $y=1$ such that 

\begin{align}\label{eq7} 

\begin{aligned} 

 &\psi(t,0,y)=\psi\left(t,\frac{2}{a},y\right),\\ 

 &\psi(t,x,-1)=\psi(t,x,1) 

 =0,\\ 

 &\frac{\partial^{2}\psi}{\partial y^{2}}(t,x,-

1)=\frac{\partial^{2}\psi}{\partial y^{2}}(t,x,1)=0. 

 \end{aligned} 

\end{align} 

The periodic boundary conditions along the west-east direction are 

naturally expected because of the cyclic property of the tropical channel 

around the Equator, while the free boundary conditions along the south-

north direction will ensure that there is no meridional exchange (i.e., 

no $v$-wind component) at $y=-1$ and $y=1$. Apparently, the Neumann 

boundary condition at $y=0$ is still valid after the domain extension 

because of the continuity of the solution at $y=0$ in the interior 

region.     

 

To further reduce the governing equation of the perturbation as given by 

Eq. \eqref{eq5}, we rewrite Eq. \eqref{eq5} in terms of an abstract 

functional notation that is standard in the study of the nonlinear 

dynamical transition. Introduce three differential operators 

$\mathcal{L},~\mathcal{G}$,  and $\mathcal{A}$ as follows. 

\begin{align} 

\label{eq8a} &\mathcal{A}\psi \equiv \Delta\psi,\\ 

\label{eq8b} &\mathcal{L}\psi \equiv E\Delta^{2}\psi-A\Delta\psi-

\frac{\partial\psi}{\partial x} + R\frac{d\widetilde{\psi_S}}{dy} 

\frac{\partial\Delta\psi} {\partial x}-

R\frac{d^3\widetilde{\psi_S}}{dy^3} \frac{\partial\psi}{\partial x},\\ 

\label{eq8c} &\mathcal{G}\psi \equiv \epsilon J(\Delta\psi,\psi). 
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\end{align} 

Physically, $\mathcal{L}$ is the linear Laplacian operator, 

$\mathcal{G}$ is the linear operator that contain the advection 

associated with the background flow, and $\mathcal{A}$ is a nonlinear 

operator representing the Jacobian effect. Eq. \eqref{eq5} for the 

perturbation streamfunction with boundary condition \eqref{eq7} can be 

then put into the following abstract operator form 

\begin{equation} \label{eq9} 

\frac{\partial \mathcal{A}\psi}{\partial t}=\mathcal{L}\psi-

\mathcal{G}(\psi). 

\end{equation} 

As seen in this abstract form, the operators $\mathcal{A}$ and 

$\mathcal{L}$ are linear, whereas $\mathcal{G}$ is a nonlinear operator 

due to the Jacobian's term. A standard procedure to Eq. \eqref{eq9} is to 

employ the traditional bifurcation analyses and examine first the spectra 

of the eigenvalues and eigenvectors of the linear component 

$\mathcal{L}$. We then determine the stability characteristics of the 

linear system, and finally construct the central manifold function with 

the full nonlinear terms included so that the stable and/or unstable 

properties of the new states of Eq. \eqref{eq5} can be quantified as the 

model parameters vary. The outcomes from these analyses are i) the 

conditions on the large-scale environment that could determine the 

stability of the steady state as well as the upper bound on the number of 

tropical unstable disturbances, and ii) the structure of new states after 

the dynamical transition that the large-scale flows must possess to allow 

for the formation of initial tropical disturbances. These outcomes are 

interesting, because they could allow us to quantify the maximum number 

of environmental tropical embryos that the ITCZ can support in the 

tropical channel, thus addressing the question of how many TCs that we 

would most expect in the tropical region at any given time.       
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\section{An upper bound on unstable modes} 

\subsection{Eigenmode analyses} 

We start first with the search for the entire spectrum of the eigenvalues 

$\rho$ of the linear operator $\mathcal{L}$  in \eqref{eq9}. Define a 

linear operator $L(\rho)$ as follows 

\begin{align}\label{eq10} 

L(\rho)\psi&=\mathcal{L}\psi-\rho\psi,~~\rho\in \mathbb{C}, 

\end{align} 

Then, all eigenvectors of the linear operator $\mathcal{L}$ are non-

trivial solutions of $L(\rho)\psi=0$ with a corresponding eigenvalue 

$\rho$. Because of the periodic boundary condition in the $x$-direction, 

it turns out that the eivenvectors cannot be arbitrary. Indeed, the 

boundary conditions \eqref{eq7} impose a strict constraint on the 

possible functional forms of $\psi$ such that every eigenvector $\psi$ of 

$\mathcal{L}$ must be expressed in the following separable form 

\begin{align} 

\psi_m(x,y)=e^{i\pi max}\Psi(y), 

\end{align} 

where $m\in \mathbb{Z}$ is any integer representing the zonal eigenmodes, 

and $\Psi(y)$ is the perturbation amplitude. Denote the corresponding 

eigenvalue $\rho_{m}$ for each meridional mode $m$, a substitution of the 
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preceding separable form into the eigenvalue equation 

$L(\rho_{m})\psi=0$ yields 

\begin{align}\label{eq11} 

\begin{cases} 

\mathcal{L}_{m}\Psi=\rho_{m}\mathcal{A}_{m}\Psi,\\ 

\Psi(-1)=\Psi(1)=\Psi''(-1)=\Psi''(1)=0, 

\end{cases} 

\end{align} 

where each prime in Eq. \eqref{eq11} hereinafter denotes a derivative of 

the streamfunction with respect to $y$, and the following notations have 

been introduced:  

\begin{align} 

&\begin{aligned}\label{eq12} 

\mathcal{L}_{m}\Psi\equiv&E(D^{2}-a^{2}m^{2}\pi^{2})^{2}\Psi-A(D^{2}-

a^{2}m^{2}\pi^{2})\Psi -ima\pi \Psi\\ 

&+ima\pi R\widetilde{\psi}_{S}' (D^{2}-a^{2}m^{2}\pi^{2})\Psi 

-ima\pi R\widetilde{\psi}_{S}''' \Psi, 

\end{aligned}\\  

\label{ODE-eig2} &\mathcal{A}_{m}\Psi=(D^{2}-a^{2}m^{2}\pi^{2})\Psi, 

\mbox{  and} \\ 

&D\equiv d/dy. 

\end{align} 

Applying the boundary conditions $\Psi(-1)=\Psi(1)=\Psi''(-

1)=\Psi''(1)=0$ to Eq. \eqref{eq11}, it can be seen that all even-order 

derivatives of the perturbation amplitude $\Psi(y)$ vanish at the 

boundaries, i.e.,  

\begin{align}\label{eq13} 

\Psi^{(2n)}(-1)=\Psi^{(2n)}(1)=0,\quad n=0,1,\cdots, 

\end{align} 

where $n$ represents the order of derivative with respect to the 

$y$ direction. This important property of the perturbation amplitude 

$\Psi(y)$ results in a constraint that $\Psi(y)$ must be expressed in the 

following form 

\begin{align}\label{eq14} 

\Psi(y)=\sum_{n\geq0}\phi_{n}\cos\left( n+\frac{1}{2}\right)\pi y 

+\sum_{n\geq1}\widetilde{\phi}_{n}\sin n\pi y, 

\end{align} 

where $\phi_{n}$ and $\widetilde{\phi}_{n}$ are the coefficients to be 

determined by the eigenvalue equation. As a result, every solution 

$\psi_{m}(x,y)$ of $L(\rho)\psi=0$ can be expressed as 

\begin{align}\label{eq15} 

\psi_{m}(x,y)=\sum_{n\geq0}i^{n}e^{ima\pi 

x}\phi_{m,n}\cos\left( n+\frac{1}{2}\right)\pi 

y+\sum_{n\geq1}i^{n}e^{ima\pi x}\widetilde{\phi}_{m,n}\sin n\pi y,\quad 

m\in \mathbb{Z}, 

\end{align} 

where we have re-defined the expansion coefficients as 

$i^{n}\phi_{m,n}$ and $i^n \widetilde{\phi}_{n}$  instead of 

$\phi_{m,n}$ and $\widetilde{\phi}_{n}$ as in \eqref{eq14} for the sake 

of convenience. 

 

In what follows, we will determine the wavenumber $m$ such that the 

eigenvector $\psi_{m}$ given by \eqref{eq15} becomes first unstable, 

i.e., the real part of the corresponding eigenvalue $\rho_{m}$ becomes 
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positive, as the control parameter $R$ increases. It can be verified that 

for any complex eigenvalue $\rho_m \in \mathbb{C}$, $\psi_{m}$ and 

$L(\rho)\psi_{m}$ will have the same functional form. Thus, let us denote 

\begin{align}\label{eq16} 

L(\rho_{m})\psi_{m}=& 

L(\rho_{m})\sum_{n\geq0}i^{n}e^{ima\pi 

x}\phi_{m,n}\cos\left( n+\frac{1}{2}\right)\pi 

y+L(\rho_{m})\sum_{n\geq1}i^{n}e^{ima\pi x}\widetilde{\phi}_{m,n}\sin 

n\pi y\\ 

\equiv &\sum_{n\geq0}i^{n}e^{ima\pi 

x}\varphi_{m,n}\cos\left( n+\frac{1}{2}\right)\pi 

y+\sum_{n\geq1}i^{n}e^{ima\pi x}\widetilde{\varphi}_{m,n}\sin n\pi y=0. 

\end{align} 

Apparently, \eqref{eq15} is an eigenvector of the eigenvalue equation 

$L(\rho_{m})\psi=0$ if and only if the above identity is true $\forall 

(x,y)$. As a result, explicit calculation of each term in Eq. 

\eqref{eq16} will lead to 

\begin{align} 

\label{eq17a} &\varphi_{m,n}=B_{m,n+1}\phi_{m,n+1}+C_{m,n}\phi_{m,n} 

-B_{m,n-1}\phi_{m,n-1}=0,~~n\geq1,\\ 

\label{eq17b} 

&\varphi_{m,0}=B_{m,1}\phi_{m,1}+C_{m,0}\phi_{m,0}+i\left(A_{m,0}\phi_{m,

0}- 

\phi_{m,0}\right)=0, ~~n=0,\\ 

\label{eq17c} 

&\widetilde{\varphi}_{m,n}=D_{m,n+1}\widetilde{\phi}_{m,n+1} 

+E_{m,n}\widetilde{\phi}_{m,n}-D_{m,n-1}\widetilde{\phi}_{m,n-1}=0, 

~~n\geq 2\\ 

\label{eq17d}&\widetilde{\varphi}_{m,1}=D_{m,2}\widetilde{\phi}_{m,2}+ 

E_{m,1}\widetilde{\phi}_{m,1}=0, ~~n=1, 

\end{align} 

where the coefficients $A_{m,n}, B_{m,n}, C_{m,n}, D_{m,n}, E_{m,n}$ are 

\begin{align}\label{relation} 

&\begin{aligned} 

&\begin{cases} 

A_{m,n}=a^{2}m^{2}+\left(n+1/2\right)^{2}\\ 

B_{m,n+1}=(1-A_{m,n+1})\\ 

C_{m,n}=\frac{2\pi^{3}EA^{2}_{m,n} 

+2\pi(A+\rho_{m})A_{m,n}-2iam} 

{am\pi^{2} R} 

\end{cases},\quad n\geq0,\quad |m|\geq1,\\ 

&\begin{cases} 

B_{0,n+1}=(1-A_{0,n+1})\quad 

A_{0,n}=\left(n+1/2\right)^{2}\\ 

C_{0,n}=2\pi^{3}EA^{2}_{0,n}+2\pi(A+\rho_{m})A_{0,n} 

\end{cases}, \quad n\geq0,\quad m=0, 

\end{aligned} 

\\ \label{relation00} 

&\begin{aligned} 

&\begin{cases} 

D_{m,n}=(1-\widetilde{A}_{m,n}),\quad 

\widetilde{A}_{m,n}=a^{2}m^{2}+n^2\\ 

E_{m,n}=\frac{E\pi^3\widetilde{A}_{m,n}^{2} 

+\pi(A+\rho_{m}) 
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\widetilde{A}_{m,n}-i2am}{am\pi^{2} R} 

\end{cases},\quad n\geq1,\quad |m|\geq1,\\ 

&\begin{cases} 

D_{0,n}=(1-\widetilde{A}_{0,n}), 

\quad\widetilde{A}_{0,n}=n^2\\ 

E_{0,n}=E\pi^3\widetilde{A}_{0,n}^{2} 

+\pi(A+\rho_{m}) 

\widetilde{A}_{0,n} 

\end{cases}, \quad n\geq1,\quad m=0. 

\end{aligned} 

\end{align} 

Given the conditions \eqref{eq17a}-\eqref{eq17d}, a simple way to obtain 

the amplitudes $\phi_{m,n}$ and $\widetilde{\phi}_{m,n}$ is to group all 

coefficients $\phi_{m,n}$ in each of these identities. This can be done 

effectively by multiplying the conjugate coefficient 

$\overline{\phi_{m,n}}$ and a factor $B_{m,n}$ on both sides of 

\eqref{eq17a}-\eqref{eq17b}, and similarly 

$\overline{\widetilde{\phi}_{m,n}}$ and a factor $D_{m,n}$ on both sides 

of \eqref{eq17c}-\eqref{eq17d}. Adding the resulting identities together 

and taking the sum over $n$ allows us to extract a relationship between 

the amplitudes of $\phi_{m,n}$ and the eigenvalue $\rho_m$ as follows: 

\begin{align} 

\label{condition1} 

&\sum_{n\geq0}B_{m,n}\varphi_{m,n}\overline{\phi_{m,n}}=0,\\ 

\label{condition2} &\sum_{n\geq1}D_{m,n}\widetilde{\varphi}_{m,n} 

\overline{\widetilde{\phi}_{m,n}}=0. 

\end{align} 

Note that all pairs of the form 

$(B_{m,n+1}B_{m,n}\overline{\phi}_{m,n+1}\phi_{m,n}, 

B_{m,n+1}B_{m,n}\phi_{m,n+1}\overline{\phi}_{m,n})$ in Eq. 

\eqref{condition1} are conjugated to each other so that their sum will 

produce a purely imaginary number. As a result, the real parts of 

\eqref{condition1} and \eqref{condition2} must come from the term 

involving $C_{m,n}$ and can be therefore obtained as 

\begin{align} 

\label{real-part} &\sum_{n\geq0}B_{m,n}A_{m,n}(E\pi^{2} 

A_{m,n}+A+\Re[\rho_{m}]) 

|\phi_{m,n}|^{2}=0,\\ 

&\sum_{n\geq1}D_{m,n} 

\label{real-part-2} 

\widetilde{A}_{m,n}(E\pi^{2}\widetilde{A}_{m,n}+A+\Re[\rho_{m}]) 

|\widetilde{\phi}_{m,n}|^{2}=0, 

\end{align} 

where $\Re$ denotes an operator of taking a real part of a complex 

number. By imposing the physical requirement on the existence of the 

eigenmodes with $\phi_{m,n} \ne 0$ and $\widetilde{\phi}_{m,n} \ne 0$, 

Eqs. \eqref{real-part}-\eqref{real-part-2} can provide a great insight 

into the stability and structure of the eigenmodes that we will now turn 

into. 

% 

% subsection 

% 

\subsection{Upper bound on the unstable eigenmode} 
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Eqs. \eqref{real-part}-\eqref{real-part-2} contain a number of very 

powerful properties. First, note that the real part of the eigenvalue 

$\rho_m$ for $m=0$ must be negative, if exist, due to the properties that 

the coefficients $A>0$, $A_{0,n}>0$, $B_{0,n}\leq0$ and $D_{0,n}\leq 0$. 

Indeed, if we assume that there exists an eigenvector $\psi_m$ such that 

$\Re[{\rho_m}]>0$ for $m=0$, then it can be directly seen from the 

quadratic form of \eqref{real-part} that 

\begin{align*} 

\phi_{0,n}=0,~~\widetilde{\phi}_{0,n}=0,\qquad n\geq0,  

\end{align*} 

and so there would exist no solution at all, which contradicts our 

assumption of the existence of the eigenvector for $m=0$. Thus, the 

zonally symmetric mode with $m=0$ is always stable. Because this stable 

mode does not allow us to examine any transition behaviors, this special 

mode will not be considered hereafter. 

 

For $m\neq 0$, it can be seen also from \eqref{real-part} that all 

possible unstable eigenvectors with $m\ne0$ must satisfy the following 

constraints 

\begin{align}\label{eq:constraint} 

\begin{cases} 

\begin{cases} 

\phi_{m,n}=0,~~\text{when}, ~ a\geq\frac{\sqrt{3}}{2},~m\in Z;\\ 

\phi_{m,n}=0,~~\text{when},~ \frac{\sqrt{3}}{4}\leq 

a<\frac{\sqrt{3}}{2},~|m|\geq2,\\ 

\phi_{m,n}=0,~~\text{when},~ \frac{\sqrt{3}}{6}\leq 

a<\frac{\sqrt{3}}{4},~|m|\geq3,\\ 

\cdots\qquad\vdots\qquad\cdots\\ 

\phi_{m,n}=0,~~\text{when},~ \frac{\sqrt{3}}{2k}\leq 

a<\frac{\sqrt{3}}{2k-2},~|m|\geq k 

\end{cases}\\ 

\widetilde{\phi}_{m,n}=0,~~n\geq1, ~~\text{for all} \quad a>0. 

\end{cases} 

\end{align} 

This conclusion can be explicitly confirmed if we note again that the 

constraint \eqref{eq:constraint} will ensure that the coefficient 

$A_{m,n}>0$, and $B_{m,n}<0$. If we assume that there exists any unstable 

eigenvector $\psi_m$ with some wavenumber $m \ne 0$ such that the 

corresponding eigenvalue $\rho_m$ satisfies $\Re[\rho_m]>0$, then Eq. 

\eqref{real-part} immediately indicates that $\phi_{m,n}=0, \forall~ |m| 

\ge k$ and $n\in\mathbb{Z}^{+}\cup\{0\}$ (i.e., $\psi_m=0$), and so no 

such unstable eigenvector $\psi_m$ can exist at all. As a result, we 

obtain a remarkable result that any possible unstable modes must be 

constrained by the condition $|m|\le k$, where $k$ is an integer 

satisfying the following relationship  

\begin{equation}\label{maxm} 

\frac{\sqrt{3}}{2k}\leq a<\frac{\sqrt{3}}{2k-2}.  

\end{equation} 

 

To help understand the significance of this result, we consider a 

tropical channel domain between 10$^o$S-10$^o$N in the Earth's atmosphere 

(i.e., $L_y \sim 1200$ km) and $L_x \sim 40,000$ km such that $a \equiv 

2L_y/L_x \approx 0.06$. Using the condition $\frac{\sqrt{3}}{2k}\leq 

a<\frac{\sqrt{3}}{2k-2}$, we obtain an upper bound wavenumber $k \approx 
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12$. As can be seen from \eqref{maxm}, a narrower tropical channel width 

(i.e., smaller $L_y$) would lead to a smaller the scale ratio $a$, and so 

the upper bound $k$ will be higher. For our typical tropical region, the 

largest integer number $m \le 12$ is consistent with the most unstable 

zonal mode $m=13$ obtained from the modelling study in 

\cite{FerreiraSchubert1997}. %One could in principle choose the tropical 

width $L_y$ such that the upper bound $k$ perfectly matches with the most 

unstable zonal wavenumber 13 as reported in \cite{FerreiraSchubert1997}.  

Although we do not know exactly in advance which wavenumber $m < k$ will 

become unstable, because the condition $|m| < k$ includes a range of 

$m$ whose real part $\Re[\rho_m]$ could be positive, the above result is 

still very significant due to its explicit indication that the unstable 

wavenumbers cannot be arbitrary but must be bounded. Any eigenvectors 

with $|m| \geq k$ must be therefore stable and cannot grow.  

 

%In this regard, this important finding indicates that the unstable modes 

that can grow and produce a favorable condition for TC genesis to occur 

are strongly constrained. %Due to the condition \eqref{eq:constraint}, 

all possible eigenvectors corresponding to unstable modes are therefore 

given by 

%\begin{align}\label{eigv} 

%\psi_{m}=\sum_{n\geq0}i^{n}e^{ima\pi 

x}\phi_{m,n}\cos\left( n+\frac{1}{2}\right)\pi y \mbox{ for } |m|\le k. 

%\end{align} 

A natural consequence of the above result is that not only the total 

number of TC disturbances has an upper limit, but the size of these 

disturbances must also be limited (i.e., the size of each disturbance is 

$\sim L_x/m$). If we assume that each of these disturbances could be 

eventually responsible for one TC embryo, the upper limit in the number 

of the disturbances as found from the above condition would imply a lower 

bound on the overall size of TCs, which has to be larger than $3000$ km 

in diameter. That is, the TC size on the Earth's atmosphere cannot be  

arbitrarily small, but must be larger than a limit of $\sim 10^3$ km, a 

fact that has been long observed but not fully explained so far. Of 

course, this TC size implication by no means eliminates the existence of 

a small TC such as midgets at the higher latitudes, because our 

analytical results basically provide only an estimate for the size of an 

area where a TC disturbance can emerge. Determining the actual size of a 

fully-developed TC requires, however, various complex factors beyond the 

scope of the TC genesis that is presented in this study 

\citep[e.g.,][]{Chavas_etal2016}.                

 

It should be stressed that, the condition on the unstable modes derived 

from the eigenvalue $\Re[\rho_m]$ as seen from \eqref{eq:constraint} is 

just a necessary condition, and it is by no means sufficient to 

specifically know which zonal wavenumber in the range of $[1,k]$ will 

become first unstable. Thus, we examine next how the real part of the 

eigenvalue $\Re{[\rho_m]}$ varies as the model parameter $R$ increases 

for each value of $m$. Note that the non-dimensional number $R$ encodes 

several important large-scale conditions including the Rossby number, the 

Ekman number, and the strength of the background flow $U_0$ as seen in 

\eqref{eq6}. As these large-scale conditions change, $R$ will vary as 

well. Depending on how the eigenvalue $\rho_m$ varies as a function of 
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$R$, there may emerge a first unstable zonal wavenumber $m$ with a 

positive eigenvalue $\Re{[\rho_m]}$ that we need to quantify.  

 

To ensure the existence of such a positive eigenvalue as $R$ increases, 

it is necessary to show that $\Re{[\rho_m]}$ must be an increasing 

function of $R$ such that the real part can become positive as 

$R$ increases according to Fj{\o}rtoft's  theorem. The specific 

wavenumber $m$ for which $\Re{[\rho_m]}$ first becomes positive will 

possess the structure that dictates the new dynamical transition of the 

system, according to the Principle of Exchange of Stabilities (see 

Appendix 1 for the definition of this Principle). Due to the complication 

in deriving the exact expression for $\rho_m$, details of the derivations 

of $\Re{[\rho_m]}$ as a function of $R$ are provided in Appendix 2. An 

important conclusion from these derivations is that 

$\lim_{R\rightarrow+\infty}\Re[\rho_m(R)]=+\infty$, which then implies 

that there indeed exists a critical value $R^*$ at which 

$\Re{[\rho_m]}(R^*) =0$. This requirement is critical, since it directly 

indicates that the Principle of Exchange of Stabilities is ensured. More 

strictly speaking, this result means that there exists a positive integer 

$n\leq k$ and a critical Reynolds number $R^*>0$ such that the following 

conditions 

\begin{equation} \label{PES-1} 

   \begin{cases} 

  \Re [\rho_{n,1}] = \Re [\rho_{-n,1}] 

  \begin{cases} 

  >0 & \text{ if }  R> R^*,\\ 

  =0 & \text{ if }  R= R^*, \; \forall n=m_1,,\cdots,m_l \\ 

  <0 & \text{ if }  R< R^*, 

  \end{cases},\\ 

  \Re [\rho_{m,k}] <0,~~\quad\text{ if } (m, k) \ne (m_{i},1),\quad1\leq 

i\leq l,\\ 

  \Im [\rho_{n,1}( R)] \neq0 \quad\text{for}~~  R\geq R^*, 

\end{cases} 

\end{equation} 

must hold true. Corresponding to the first unstable mode $m$ and 

eigenvalue $\rho_{n,1}$, its eigenvector is then given by 

\begin{align*} 

\psi_{m}=\sum_{n=0}^{\infty}i^{n}e^{ima\pi 

x}\phi_{m,n}\cos\left( n+\frac{1}{2}\right)\pi y,~1\leq|m|\leq k. 

\end{align*} 

Note that these eigenvectors are unstable for $R > R^*$ and $|m|<k$ only, 

because all other eigenvectors $(|m|>k)$ are always stable as shown by 

the condition \eqref{eq:constraint}. 

 

Due to the complicated expression for the eigenvalue $\rho_m(R)$ as shown 

in Appendix 2, the value $R^*$ cannot be exactly derived but must be 

numerically approximated for each $m$. The proof of 

$\lim_{R\rightarrow+\infty}\Re[\rho_m(R)]=+\infty$ provided in Appendix 2 

ensures that $R^*$ always exists, and so it should be found numerically. 

Fig. \ref{fig3} shows the critical value $R_{m}^*$ as a function of 

$2/a$ for each value of $m$, which is obtained by using a numerical 

approximation. Note that for each value of $a$, there will exist only one 

value $k$ that satisfies $\frac{\sqrt{3}}{2k}\leq a<\frac{\sqrt{3}}{2k-

2}$ and a value $m<k$ such that $\Re[\rho_{m,1}] = 0$. By searching for 
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the value of $R_m^*$ that ensures $\Re[\rho_{m,1}] = 0$, we obtain for 

each $m\leq k$ a curve $R_m^{*}=R_m^{*}(a)$ that determines the onset of 

the dynamical transition. Because the eigenvalues and the eigenfunctions 

corresponding to $-m$ are the complex conjugate of the respective 

eigenvalues and the eigenfunctions corresponding to $m$, only the cases 

of nonnegative $m$ need to be examined.  

 

As shown in Figure \ref{fig3}, there are several key differences between 

the asymptotic limits of a very small and a very large $a$. Specifically, 

for a larger value of $a$ (i.e., a wider tropical region), the smaller 

wavenumbers $m$ will become unstable first, starting with $m=5$, which 

then decreases for a larger $R$. For the smaller value of $a$ (i.e., a 

narrower tropical channel), the larger wavenumbers will however become 

unstable first as shown in Figure \ref{fig3}. For example, for the 

typical scales of the Earth's tropical region with $L_x \approx 

40,000$ km, and $L_y\approx 1,200$ km, $2/a = L_x/|L_y \approx 33.3 $. 

According to Fig. \ref{fig3}, the wavenumber $m=9$ will become unstable 

first as $R$ crosses the value $R^*=4$. Thus, the dynamical transition 

for $m=9$ will produce a new unstable wave structure corresponding to 

$m=9$ at the bifurcation point. As the parameter $R$ increases, other 

unstable modes corresponding to $m=8,7,6...$ start to emerge, thus 

producing more unstable structure as a result of the dynamical 

transition.  

 

To focus on the wavenumber that is first unstable instead of the critical 

number $R^*$ as shown in Figure \ref{fig3}, Figure \ref{fig4} shows the 

first unstable mode $m$ as a function of $a$, assuming all of the same 

parameter values used in Figure \ref{fig3}. It can be seen in this Figure 

\ref{fig4} that for each value of $a$, there is only one wavenumber 

$n=n(a)$ for which $R^{*}_{n}=\min_{m\in\mathbb{N}} R^{*}_{m}$. This is 

the critical value $R^*=R_{n}^{*}$ at which the dynamical transition will 

occur according to the PES condition. In addition, one can better see how 

the first unstable mode depends on the aspect ratio of the tropical 

channel, with a higher wavenumber for a narrower tropical region. This 

same behavior is also valid for a range of values of the Ekman number 

$E$ and Rossby number $\epsilon$, which is not shown here because they do 

not provide any further information.   

% 

% Section 

% 

\section{Bifurcation structure} 

While the analyses in the previous section could show an upper bound on 

possible unstable modes, the structure of the unstable modes as well as 

the subsequent effects of the nonlinear terms have not been discussed. 

Depending on the eigenvalues and the structure of the eigenvectors when 

the first dynamical transition takes place, one can reduce the full 

nonlinear system \eqref{eq9} to a central manifold and construct a 

central manifold function to examine the bifurcation and the structure of 

the new state with all nonlinear terms included. Standard procedure in 

dynamical transition \cite{MaWang2013} shows that once the steady-state 

$\psi_{S}$ loses its stability for $R>R^*$, the supercritical Hopf 

bifurcation may occur with a new stable state approximated as follows 

\begin{align}\label{new-state} 
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\psi=\psi_S+\left( \frac{\Re(\rho_{n, 1})}{|\Re 

(A)|}\right)^{\frac{1}{2}} f_n(x, y, t) + h.o.t. 

\end{align} 

assuming that the nondimensional parameter $R$ is sufficiently close to 

$R^*$, i.e., 

\begin{align*} 

0< \frac{R-R^*}{R^*}\ll1. 

\end{align*} 

 

Using a higher-order approximation around the critical point on the 

extended central manifold, it can be shown that the manifold function 

could provide a better approximation for $\psi$ when $R>R^*$ (Kieu et al. 

2018). Nonetheless, the smooth behaviors of the eigenvector at 

$R=R^*$ for the supercritical Hopf bifurcation suffices to indicate that 

the structure of the solution at $R=R^*$ can well represent the behavior 

of the new stable solution near $R=R^*$. Note that there may appear 

either Hopf bifurcation or double Hopf bifurcation, depending on the 

transition multiplicity at the critical value. This subtlety will 

introduce much more complex analysis of the bifurcation and a transversal 

intersection in the parameter plane that we will not present herein.  

 

While these higher-order derivations of the central manifold function 

require some technical details that are beyond the scope of this study 

(see Kieu et al. 2018), it is possible to approach the bifurcation 

structure problem by numerically solving the eigenvalue problem 

\eqref{eq12}. Specifically, we notice that the $x$ dependence can be 

obtained by simply searching for the first unstable mode $m$ as 

$R$ approaches the critical value $R^*$. Using this numerical approach to 

find the critical value of $R^*$, the entire spectrum of eigenvectors 

associated with the potential new stable states after the dynamical 

transition can be found for each set of large-scale environmental 

parameters. We note at this point that the exact mode $m$ at which the 

eigenvector becomes unstable is dependent on $R$ as shown in Figures 

\ref{fig3} and \ref{fig4}. The only constraint we are certain of is that 

$|m| < k$. Thus, the new stable mode for $R>R^*$ could inherit the 

structure of any value of $|m|<k$ at $R=R^*$. This numerical approach is 

powerful, as it allows one to search for not only the critical parameter 

$R^*$ at which the PES condition is ensured, but also the structure of 

new stable states for any value of $R>R^*$ after the bifurcation point.  

 

To illustrate the results from this numerical approach, we assume the 

following set of the large-scale environmental conditions in the typical 

tropical region 

\begin{align*} 

L_y \sim1000\text{km},\quad U_{0}\sim 10\text{m s}^{-1}, 

\quad \alpha\sim10^{-6}\text{s}^{-1},\quad 

\beta\sim10^{-11}\text{m}^{-1}\text{s}^{-1}, \quad \nu = 1000 \text{m}^2 

\text{s}^{-1}, 

\end{align*} 

which result in a Rossby number $\epsilon \approx 0.5$ and an Ekman 

number $E\approx 0.05$. Further use of Eq. \eqref{steady-state0} for the 

steady state and note that $U_0 = \partial \psi_S/\partial y$, one then 

obtains also an estimation for the forcing amplitude $\gamma \approx 

7\times10^{-10} s^{-2}$. From the definition of the nondimensional number 
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$R$, we then get $R\approx 4.8$, which is above the critical value $R^* 

\approx 4$ for $m=9$ as shown in Figure \ref{fig3}. Thus, the PES 

condition is met, and a new stable structure must emerge after the 

dynamical transition. As a result, the eigenvalue problem \eqref{eq11} 

needs to be solved for the first eigenvector and its dual eigenvector, 

given this value for $R$. Note that this estimation of $R$ is most 

sensitive to the strength of the shear flow $U_0$, the beta effect 

$\beta$, and the scale $L_y$ but not on the eddy diffusion coefficient 

$\nu$. To some extent, this is what expected, because the large-scale 

eddy diffusion process is often negligible.    

 

For this numerical method, we use a Legendre-Galerkin method where the 

unknown fields are expanded using a basis of $N$ polynomials, which are 

compact combinations of the Legendre polynomials satisfying the four 

boundary conditions \eqref{eq11} \citep{Shen2011} for the details of this 

numerical method). For the convergence of the numerical scheme, $N = 

100$ is sufficient. Once the eigenvector problem is solved, a further 

approximation on the central manifold can be applied so that we can 

examine the stability of different states around the critical point on 

the central manifold.  

 

Figure \ref{fig5} shows a new state as a result of the dynamical 

transition for $R> R^*$, which is obtained from the numerical procedures 

described above. Among several significant features of this numerical 

solution, the first noteworthy one is that the new state possesses a 

large-scale structure consistent with the ITCZ breakdown as observed in 

the idealized simulations by  \cite{FerreiraSchubert1997}. Specifically, 

the tropical channel contains 10 large-scale disturbances, each has the 

horizontal scale of about 5000 km that could serve as embryos for the 

subsequent TC formation. Furthermore, the disturbances in this new state 

move to the left with a period of $T \sim 3.2116$ (i.e., $T \approx$ 4 

days in the physical dimensional unit) as a result of nonzero imaginary 

part of the eigenvalues. It should be mentioned that the results shown in 

Figure \ref{fig5} hold for the Earth's tropical channel with $L_x/L_y 

\approx 36$ (or equivalently $a\approx 1/17$). For a different domain 

configuration such as different planets or climate with different 

tropical width, the unstable mode may be different and the maximum number 

of the TC-favorable disturbances will change as well.    

 

That these large-scale structure of disturbances moving to the left with 

the temporal scale of $\sim$ 4 days as a consequence of the dynamical 

transition shown above is noteworthy, because these westward moving 

disturbances are to some extent similar to easterly waves in the real 

atmosphere. While it is entirely possible that these easterly waves are a 

mode of the equatorial mixed Rossby waves, it should be noted that the 

numerical procedure of finding the unstable mode on the central manifold 

presented in this section does not allow us to separate different modes 

of easterly waves. As such, these easterly waves could be a combination 

of different modes of west-ward moving Rossby waves and mixed gravity 

waves that we may not be able to be conclusive. In any case, the easterly 

waves that are often associated with the genesis can be now seen as a 

natural consequence of the dynamical transition, even for barotropic 

flows. Such consistency between the observed and theoretical estimation 

of the large-scale modes in the tropical region indicates that the 
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barotropic instability and its inherent nonlinear dynamics can account 

for the pre-conditioning environment for TC genesis.  

 

We should emphasize that the large-scale structure shown in Figure 

\ref{fig5} does not itself dictate that the disturbances have to grow and 

turn into TCs. Instead, these structures are simply new stable periodic 

solutions after the dynamical transition occurs. That is, for $R<R^*$, 

the stable structure is the steady state as given in Figure 2, whereas 

the new stable structure shown in Figure \ref{fig5} will emerge after 

$R>R^*$. As soon as these stable structures emerge, subsequent dynamic-

thermodynamic feedbacks may be triggered, which result in further growth 

of the disturbances within each wave, similar to the pouch model proposed 

in Dunkerton et al. (2012). For the larger value of $R$, the stability of 

the periodic state may no longer be ensured, because the central manifold 

function must be re-evaluated and a new structure may arise. The 

subsequent intensification of any tropical disturbances as a result of 

the new unstable structure would require additional detailed physics that 

are, however, not the focus of this work, and so will not be discussed 

hereinafter. In this regard, the new stable periodic state shown in 

Figure \ref{fig5} serves only as a pre-conditioning environment for 

incipient disturbances to grow.   

 

%While the new stable structure looks promising in explaining the maximum 

potential number of favorable environment for TC genesis to occur, we 

note that the behaviors of the system near the critical point are more 

subtle than the simple dynamical transition. This is because the 

dynamical transition depends on the multiplicity of the complex 

eigenvalues. As discussed in Kieu et al. (2018), the dynamical transition 

will be a continuous transition accompanied by the superciritical Hopf 

bifurcation or catastrophic transition accompanied by the subcritical 

Hopf bifurcation, depending on a transition number determined by the 

nonlinear interactions of the first eigenvector and its dual eigenvector. 

The situation will be even more complicated if the complex eigenvalue 

multiplicity is two. Regardless of the complexity in deriving the 

structure of the new steady state after the dynamical transition, we note 

that the new periodic state will be stable after the transition, which 

emerges as one of the possible modes $m<k$ such that the pre-conditioning 

environment for TC genesis to occur can be met.  

% 

% Section 

% 

\section{Conclusion} 

In this study, we examined the dynamical mechanisms underlying the large-

scale formation of tropical cyclones (TCs) using a barotropic model for 

the Intertropical Convergence Zone (ITCZ) driven by an external mass 

forcing. Assuming a variant type of a forcing that mimics the mass 

sink/source in the ITCZ as previously used in 

\cite{FerreiraSchubert1997}, it was shown that the large-scale steady 

flow (i.e., the critical point) in the ITCZ model  loses its stability 

for a bounded range of the wavenumber $|m|<k$ if large-scale 

environmental conditions including the magnitude of the mean flow, the 

Ekman number, and the Rossby number satisfy certain constraints. That the 

number of the TC disturbances in the tropical region is upper bounded in 

any given day could offer an explanation for a fundamental question of 
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why the Earth's atmosphere can support a limited number of TCs globally 

each year. 

 

Using the Principle of Exchange of Stabilities condition for the ITCZ 

model, we found that the model undergoes a bifurcation and associated 

dynamical transition, which helps further determine the maximum number of 

TC disturbances that the Earth's atmosphere can generate.  % by the 

condition $\frac{\sqrt{3}}{2k}\leq a<\frac{\sqrt{3}}{2k-2}$.  

Specifically, the theoretical estimation of the largest wavenumber 

$k$ that can still support the unstable structure as a result of the ITCZ 

breakdown is $k = 12$, assuming the typical characteristic of the Earth's 

tropical channel in which the zonal scale of the tropical channel is 

about order of magnitude larger than the width of the channel. Such a 

dynamical constraint on the maximum number of TC disturbanes is 

remarkable, as it suggest an intrinsic large-scale mechanism that 

controls the climatology of the TC numbers beyond the basin-specific 

features as recently noted in \cite{Patricola _etal2018}. Of interest, 

this constraint on the largest wavenumber of the unstable eigenmodes 

imposes not only an upper limit on the number of TC disturbances in the 

tropical region, but also results in a lower bound on the size of TC 

disturbances. This lower bound on the size of the tropical disturbances 

may help explain why TCs cannot be arbitrary small, but must be larger 

than a certain limit.      

 

To verify our theoretical analyses, a numerical method is used to search 

for the structure on the central manifold of the ITCZ model as the model 

parameter $R$ is increased to a value larger than a critical value $R^*$. 

Here, the key parameter $R$ controlling the bifurcation in our ITCZ model 

is given by 

\begin{align*} 

R=\frac{\gamma\epsilon\pi}{E\pi^4+A\pi^2}, 

\end{align*} 

where $\gamma$ is parameter measuring the strength of the ITCZ mass 

sink/source, $A$ is the parameter measure the effect of surface drag, 

$\epsilon$ is a parameter measuring the mean zonal flow, and $E$ is the 

Ekman number representing the eddy viscosity. Our numerical results 

confirmed that for $R>R^{*}$, a new large-scale state emerges whose 

structure depends on the value $R$. For $R$ sufficiently close to the 

critical value $R^*$, the new state possesses a new type of periodic 

motion with two groups of symmetric disturbances across the Equator. 

These new stable periodic solutions describe a type of westward-moving 

disturbances within the ITCZ, very similar to the classical easterly 

waves in the tropical region. The findings obtained from the ITCZ 

breakdown model in this study thus provide a new insight into the 

formation of TC disturbances in the Earth's tropical atmosphere, and 

provide a rigorous mathematical proof for the observation of the limited 

number of TCs annually at the global scale. 

 

%Using numerical analyses, it was also found that as the parameter 

$R$ increases, there are one pair (or two pairs) of complex conjugate 

eigenvectors that becomes first critical. In the case with one pair of 

complex conjugate eigenvectors becoming first critical, the transition is 

either continuous or catastrophic as described by a Hopf bifurcation 

depending on the sign of a single non-dimensional transition number. For 
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this case, our numerical results  showed that the system exhibits only 

super-critical Hopf bifurcations, i.e. there exists a stable time-

periodic solution  associated with the mean flow \eqref{steady-state0}. 

For the case of two pairs of complex conjugate eigenvectors becoming 

first critical, there are many possible and interesting transition 

scenarios depending on the relations between four nondimensional 

transition parameters, which in turn depend on the nonlinear interactions 

of the critical modes with the stable modes. This case is non-generic and 

occurs when the control parameter crosses a co-dimension two critical 

point, which is only possible in multi parameter systems such as the one 

considered here. Such a critical point lies at the transversal 

intersection of two neutral stability curves of Hopf bifurcations and is 

known as double Hopf (or Hopf-Hopf) bifurcation in the bifurcation theory 

literature. In this case, our numerical experiments suggest that the 

system admits only one possible transition scenario and it is continuous 

type transitions as in the (single) Hopf case. Moreover, we prove that an 

$S^3$ -attractor bifurcates when this co-dimension two critical point is 

crossed in the parameter space. Under the restricted parameter regime 

dictated by our numerical observations, it is shown that the bifurcated 

attractor has a limit cycle or an invariant torus as a repellor.  
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\appendix 

\section{Principle of Exchange of Stabilities} 

The Principle of Exchange of Stabilities (PES) for a dynamical system 

basically refers to a critical condition for which the eigenvalues of the 

linear operator first cross a prescribed value. More precisely, the PES 

can be precisely stated as follows. 

 

Let $\mathbf{L}_{\lambda}$ and $\mathbf{G}$ represent the linear and 

nonlinear parts of a dynamical system in the abstract form: 

\begin{equation}\label{eq_a1} 

\frac{d\mathbf{u}}{dt} = \mathbf{L}_{\lambda}(\mathbf{u}) + 

\mathbf{G}(\mathbf{u},\lambda) 

\end{equation} 

where ${\lambda} \in \mathbb{R}$ is the model parameter, and $\mathbf{u} 

\in \mathbb{R}^n$ represents the state of the system. By defniition, 

$\mathbf{L}_\lambda$ is a parameterized linear operator that depends 

continuously on $\lambda$. Consider the eigenvalue equation given by 

\begin{equation}\label{eq_a2} 

\mathbf{L}_{\lambda} \mathbf{e} = \beta(\lambda)\mathbf{e}, 



\end{equation} 

where $\mathbf{e}$ is eigenvector, and $\beta(\lambda) \in 

\mathbb{C}$ the eigenvalue. Let ${\beta_j (\lambda) \in \mathbb{C} | j 

\in \mathbb{N}}$ be the eigenvalues (counting multiplicity) of 

$\mathbf{L}_\lambda$. If we have 

\begin{equation} \label{eq_a3} 

   \begin{cases} 

  \Re[\beta_j (\lambda)]  

  \begin{cases} 

  <0 & \text{ if } \lambda <\lambda_0,\\ 

  =0 & \text{ if } \lambda=\lambda_0, \; \forall 1\le i \le m\\ 

  >0 & \text{ if } \lambda<\lambda_0, 

  \end{cases},\\ 

  \Re[\beta_j(\lambda_0)] <0, \; \forall j \ge m+1, 

\end{cases} 

\end{equation} 

then the system is said to satisfy the PES condition at $\lambda_0$, 

which signifies a bifurcation of the system from one state to another. 

For dissipative systems, the PES condition has a much more powerful 

implication than a simple bifurcation, as it ensures a dynamical 

transition that can be completely categorized by three different types of 

transition including the continuous transition, the catastrophic 

transition, and the random transition. See \cite{MaWang2013} for more 

details of the PES conditions for nonlinear systems.  

% 

% Appendix 2 

% 

\section{Existence of the critical number $R^*$} 

For $\frac{\sqrt{3}}{2k+2}\leq a<\frac{\sqrt{3}}{2k}$ and $1\leq m\leq 

k~(k=1,2,\cdots)$, it is easy to see from \eqref{real-part} that we must 

have 

\begin{align*} 

\phi_{m,0}\neq0, 

\end{align*} 

because otherwise we will have $\phi_{m,n}=0,n\geq0$, and there would 

exist no eigenvectors. For the sake of convenience, we will hereinafter 

replace $\psi_{m}$ by $\frac{\psi_{m}}{B_{m,0}\phi_{m,0}}$, and similarly 

replace $\phi_{m,n}$ by $\frac{\phi_{m,n}}{B_{m,0}\phi_{m,0}}$. 

%Let's denote 

%\begin{align*} 

%\phi_{m,n}'=\frac{\phi_{m,n}}{B_{m,0}\phi_{m,0}},~n\geq0, 

%\end{align*} 

%and omitting primes, 

Equations \eqref{eq17a}-\eqref{eq17b} are then re-written as follows: 

\begin{align}\label{relation0} 

\begin{aligned} 

&B_{m,n+1}\phi_{m,n+1}+C_{m,n}\phi_{m,n} 

-B_{m,n-1}\phi_{m,n-1}=0,~~n\geq1,\\ 

&B_{m,1}\phi_{m,1}+C_{m,0}\phi_{m,0} 

+i\left(A_{m,0}\phi_{m,0}- 

\phi_{m,0}\right)=0, ~~n=0, 

\end{aligned} 

\end{align} 

and 
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\begin{align}\label{real-part2} 

&\sum_{n\geq0}B_{m,n} 

A_{m,n}(E\pi^2A_{m,n}+A+\Re[\rho_m]) 

|\phi_{m,n}|^{2}=0. 

\end{align} 

Denote 

\begin{align*} 

d_{m,n}=\frac{C_{m,n}}{B_{m,n}}, 

\end{align*} 

and let 

\begin{align*} 

\eta_{m,n}=B_{m,n}\phi_{m,n}, 

\end{align*} 

\eqref{relation0} can be further rewritten as 

\begin{align}\label{relation1} 

\begin{aligned} 

&\eta_{m,n+1}+d_{m,n}\eta_{m,n} 

-\eta_{m,n-1}=0,\quad n\geq1,\\ 

&\eta_{m,1}+d_{m,0} 

-i=0,\quad n\geq0. 

\end{aligned} 

\end{align} 

This reduced equation \eqref{relation1} allows us to deduce a number of 

important constraints. Indeed, we re-arrange \eqref{relation1} as 

follows: 

\begin{align}\label{relation2} 

\begin{aligned} 

&-d_{m,0}+i=\eta_{m,1},\quad\eta_{m,0}=1,\\ 

&\xi_{m,n}=\frac{\eta_{m,n}}{\eta_{m,n-1}}=\frac{1} 

{d_{m,n}+\frac{\eta_{m,n+1}}{\eta_{m,n}}},\\ 

&-d_{m,0}+i=\frac{1}{d_{m,1}+\xi_{m,2}}= 

\frac{1}{d_{m,1}+\frac{1}{d_{m,2}+\xi_{m,3}}}. 

\end{aligned} 

\end{align} 

It is readily seen from \eqref{relation1} that $\eta_{m,n}=0$ for all 

$n\geq0$ whenever there exists a $l \geq 0$ for which $\eta_{m,l}=0$. 

This means that $\xi_{m,n}\neq0$ for all $n \geq 0$. From 

\eqref{relation2} one can derive that 

\begin{align}\label{expression} 

\eta_{m,n}\equiv \xi_{m,1} 

 \xi_{m,2}\cdots\xi_{m,n},~n\geq1. 

\end{align} 

Therefore, for $ 

\frac{\sqrt{3}}{2k+1}\leq a<\frac{\sqrt{3}}{2k}~(k=1,3,3,...)$, 

\eqref{real-part2} can be equally rewritten as: 

\begin{align}\label{equality} 

\begin{cases} 

\sum_{n\geq0}\Re [d_{m,n}]|\eta_{m,n}|^{2}=0,\\ 

\Re [d_{m,n}]<0(n\geq1), \Re[d_{m,0}]>0, 

\end{cases}\quad 

 m\leq k. 

\end{align} 

One can deduce from the third equality of \eqref{relation2} that 

\begin{align}\label{eigenvalue11} 



\rho_{m}=-A-\pi^{2}EA_{m,0} 

+\frac{2iam+iam\pi^2 R\left(1-A_{m,0}\right)}{2\pi A_{m,0}}+\frac{\frac{-

am\pi R\left(1-A_{m,0}\right)}{2A_{m,0}}}{d_{1}+\xi_{m,2}}. 

\end{align} 

Let's define a function $F$ using right hand side of 

\eqref{eigenvalue11}, i.e., 

\begin{align*} 

F(\rho_{m},R)=-A-\pi^{2}EA_{m,0} 

+\frac{2iam+iam\pi^2 R\left(1-A_{m,0}\right)}{2\pi A_{m,0}}+\frac{\frac{-

am\pi R\left(1-A_{m,0}\right)}{2A_{m,0}}}{d_{1}+\xi_{m,2}}. 

\end{align*} 

Due to the fact that 

\begin{align*} 

&\Re d_{m,n}<0(n\geq1), 

\end{align*} 

we can obtain that 

\begin{align*} 

|F(\rho_{m},R)|\leq&\left|-A-\pi^{2}EA_{m,0} 

+\frac{2iam+iam\pi^3 R\left(1-A_{m,0}\right)}{2\pi 

A_{m,0}}\right|\\&+\frac{\left|\frac{-am\pi 

 R\left(1-A_{m,0}\right)}{2A_{m,0}}\right|}{|\Re [d_{1}]|}=K_{R}. 

\end{align*} 

 

\noindent Define a set $\Omega_{R}$ as 

\begin{align*} 

\Omega_R=\left\{z\in C\Bigg| \Re [z]>-A-

E\pi^2\left(\frac{1}{4}+a^2\right),~|z|\leq K_R\right\}, 

\end{align*} 

the Brown Fixed Point Theorem implies then that $F$ has a fixed point in 

$\Omega_{R}$, i.e., there exists $\rho_{m}(R)$ 

such that 

\begin{align*} 

\rho_{m}(R)=F(\rho_{m}(R),R). 

\end{align*} 

 

At last, we prove that $\rho_{m}(R)$ is a continuous function of $R$ and 

$\Im\rho_{m}(R)\neq0$. 

Let $G(\rho_{m},R)$ be the function given by 

\begin{align*} 

G(\rho_{m},R)=F(\rho_{m},R)-\rho_{m}. 

\end{align*} 

If we can prove 

\begin{align*} 

\frac{\partial G}{\partial \rho_{m}}\neq0 

\end{align*} 

then the Implicit Function Theorem implies that $\rho_{m}(R)$ is indeed a 

continuous function of $R$. From the definition of $G$ and 

\eqref{eigenvalue11}, we obtain 

\begin{align*} 

\left|\frac{\partial G}{\partial \rho_{m}}\right| 

&=\left|\sum_{n=1}(-1)^{n+1}\frac{\left(1-A_{m,0}\right)A_{m,n}}{A_{m,0} 

\left(1-A_{m,n}\right)}\eta_{m,n}^{2}(\rho_{m}(R)) 

-1\right|\\ 

&\geq1-\sum_{n=1}\frac{\left(1-A_{m,0}\right)A_{m,n}} 
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{A_{m,0} \left(1-A_{m,n}\right)}|\eta_{m,n}|^{2}\\ 

&>1-\sum_{n=1}\frac{\left(1-A_{m,0}\right)A_{m,n} 

\left(\Re[\rho_{m}(R)]+A+E\pi^2A_{m,n}\right)}{A_{m,0} 

\left(\Re[\rho_{m}(R)]+A+E\pi^2A_{m,0}\right) \left(1-

A_{m,n}\right)}|\eta_{m,n}|^{2}\\ 

&=0. 

\end{align*} 

To prove $\Im[\rho_{m}(R)]\neq0$, we use the proof by contradiction. 

Direct calculation gives 

\begin{align*} 

\frac{\left|\Im [d_{m,n}]\right|}{\left|\Re[ d_{m,n}]\right|} 

=\frac{\left|2\pi \Im[\rho_{m}(R)] A_{m,n}-

2am\right|}{\left|2\pi^{3}EA^{2}_{m,n} 

+2\pi(A+\Re[\rho_{m}(R)])A_{m,n}\right|} 

\end{align*} 

If $\Im\rho_{m}(R)=0$, we can deduce that 

\begin{align*} 

&\frac{\left|\Im [d_{m,n}]\right|}{\left|\Re [d_{m,n}]\right|} 

=\frac{\left|2am\right|}{\left|2\pi^{3}EA^{2}_{m,n} 

+2\pi(A+\Re[\rho_{m}(R)])A_{m,n}\right|}\\&>\frac{\left|2am\right| 

}{\left|2\pi^{3}EA^{2}_{m,n+1} 

+2\pi(A+\Re[\rho_{m}(R)])A_{m,n+1}\right|}=\frac{\left|\Im 

[d_{m,n+1}]\right|}{\left|\Re [d_{m,n+1}]\right|}, 

\end{align*} 

through which and combining the continuous fraction 

\begin{align*} 

-d_{m,0}+i=\frac{1}{d_{1}+\xi_{m,2}}= 

\frac{1}{d_{m,1}+\frac{1}{d_{m,2}+\xi_{m,3}}} 

\end{align*} 

we get 

\begin{align*} 

\frac{\left|\Im [\eta_{m,1}]\right|}{\left|\Re 

[\eta_{m,1}]\right|}<\frac{\left|\Im [d_{m,1}]\right|}{\left|\Re 

[d_{m,1}]\right|}, 

\end{align*} 

i.e., 

\begin{align*} 

&\frac{\left|-\Im [d_{m,0}]+i\right|}{\left|-\Re 

[d_{m,0}]\right|}<\frac{\left|\Im [d_{m,1}]\right|}{\left|\Re 

[d_{m,1}]\right|}\Rightarrow\\ 

&\frac{\left|-\Im [d_{m,0}]+i\right|}{\left|\Im 

[d_{m,1}]\right|}<\frac{\left|-\Re [d_{m,0}]\right|}{\left|\Re 

[d_{m,1}]\right|}\Rightarrow\\ 

&1<\frac{\left|2am+1\right|}{\left|2am\right|} 

<\frac{2\pi^{3}EA^{2}_{m,0} 

+2\pi(A+\Re[\rho_{m}(R)])A_{m,0}}{2\pi^{3}EA^{2}_{m,1} 

+2\pi(A+\Re[\rho_{m}(R)])A_{m,1}}<1, 

\end{align*} 

which leads to a contradiction. Hence, $\Im[\rho_{m}(R)]\neq0.$ 
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%\caption{A time series of the number of TC genesis events detected each 

day from an idealized simulation of TC formation in a tropical channel at 

a homogeneous horizontal resolution of 27 km, using the Weather Research 

and Forecasting (WRF-ARW) model (Kieu et al. 2018).}\label{fig1} 
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\includegraphics[width=0.8\textwidth]{figure2}\\ 

\caption{Illustration of the zonal wind that is derived from the steady-

state flow $\psi_{S}$ in the ITCZ model \eqref{eq1} with the external 

forcing given by Eq. \eqref{eq2}. The dotted curve represents the 

horizontal profile of the mean flow, while the black arrows represent the 

direction of the mean flow for the tropical channel domain $\Omega_a$. 

The blue dashed line denotes the location of the ITCZ.} \label{fig2} 
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\includegraphics[width=1.0\textwidth,height=0.5\textwidth]{Figure1_r1} 

\caption{Marginal stability curves $R_{m}^*(a)$ obtained from the 

constraint on the eigenvalue $\Re\rho_{m,1}(R)=0$ for a range of the 

aspect ratio $0.1\leq a\leq0.35$.} \label{fig3} 
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\includegraphics[width=1.0\textwidth,height=0.5\textwidth]{Figure2_r1} 

\caption{The dependence of the first critical wave number $m=n$ on the 

scale factor $a$, assuming the Rossby number $\epsilon = 0.5$ and the 

Ekman number $E=0.05$ similar to Figure 2.}\label{fig4} 
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\includegraphics[width=1.1\textwidth]{Figure3_r1}\\ 

\caption{Illustration of the streamfunction $\psi$ for the new periodic 

state on the central manifold near the critical point $R^*$ after the 

dynamical transition, assuming $\epsilon=0.3$, $E=0.05$, and 

$R=3.8717>R^*=3.8517$. The nondimenional period is T=2.776, which 

corresponds to a physical period of $\sim $ 3.213 days. Superimposed are 

corresponding vector flows derived from the streamfunction.}\label{fig5} 
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%  \caption{Sea level pressure (shaded) distribution as obtained from a 

simulation of the tropical cyclone formation using the Weather Research 

and Forecasting model for the tropical channel.}\label{fig6} 
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