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Figure S1. Configuration of the CIMS inlet during the KORUS-AQ 2016.
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Description of the Extended Aerosol Inorganics Model

To calculate aerosol liquid water mass concentration and the acidity (pH) of the aerosol, the Extended Aerosol Inorganic5

Model (E-AIM) was used (Clegg et al., 1998; Friese and Ebel, 2010). Prior studies have shown that either E-AIM and the

ISORROPIA-II model can be used to calculate aerosol liquid water concentration and pH, as both thermodynamic models

predict similar values (Hennigan et al., 2015; Song et al., 2018). The E-AIM model was ran in the reverse mode. This has

been found to be the optimal mode (Hennigan et al., 2015; Song et al., 2018), as it minimizes the errors in the measurements,

leading more stable results that better represents the observations. Reverse mode means that total nitrate (aerosol plus gas-10

phase), sulfate, ammonium, relative humidity, and temperature were the inputs of the model. Gas-phase HNO3 was measured

by California Institute 378 of Technology chemical ionization mass spectrometer (CIT-CIMS) (Crounse et al., 2006), and the

aerosol-phase nitrate, sulfate, and ammonium were measured by the University of Colorado AMS (Nault et al., 2018). Total

NHx was not an input, as there was not a gas-phase measurement of NH3. Guo et al. (2016) showed that ISORROPIA was

still able to properly partition total nitrate between the gas- and particle-phase without NH3 as an input when the model was15

ran iteratively to estimate NH3. The E-AIM model was ran similarly, here, and it took approximately 20 iterative runs for

convergence on the NH3 concentration that explained the observed partitioning of nitrate between gas- and particle-phase. To

validate E-AIM modeled predictions, the modeled predicted vs observed partitioning of nitrate between gas- and particle-phase

were compared (Figure S2). Since the partitioning of nitrate between gas- and particle-phase is a function of the amount of

water, temperature, and pH of the aerosol (Guo et al., 2016, 2017), a high correlation and a slope near unity indicates that20

E-AIM is closely representing the pH and aerosol liquid water. The slopes for HNO3 and NO−
3 are 1.07 and 0.89, respectively,

and the R2 for HNO3 and NO−
3 are 0.96 and 0.99, respectively; therefore, E-AIM predicted the observed nitrate partitioning

between gas- and particle-phase, providing confidence in the pH and aerosol liquid water concentration.

Figure S2. (Left) Comparison of E-AIM modeled and measured (CIT-CIMS) gas-phase HNO3. (Right) Comparison of E-AIM modeled and

measured (CU AMS) particle-phase NO−
3
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Figure S3. Aerosol pH calculated with E-AIM constrained with airborne measurements.
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Figure S4. Trace gas measurements at the OP site on May 20th and 22nd.
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Figure S5. Correlation between Cl2 and ClNO2 measured at 7:00 - 9:00 am local time. Each data point is a 5 min averaged value and is color

coded with the calculated production rate of nitrate.
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Figure S6. Diurnal variation of measured ClNO2 (black line) and simulated ClNO2 from photolytic loss (dashed line). For the red and green

dashed lines, the model was constrained with measured ClNO2 at sunrise and at the time when ClNO2 started decreasing, respectively.

JClNO2 used for the photolysis was scaled with airborne measurements. The insert in (b) in the ClNO2 measured on May 5th.
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Figure S7. Airborne ClNO2 data collected at 8:00 - 8:30 am local time during the whole campaign above 600 m. The black dashed box is

the grid used for plotting vertical distribution of ClNO2 in Figure 5. Markers size is proportional to the concentration of ClNO2 and color

coded with altitude.
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Figure S8. Simulated ClNO2 and ClONO produced from gas phase reaction of Cl· + NO2 (i.e., Cl·(g) + NO2(g) + M→ ClNO2(g) + M, k =

3.6× 10−12; Cl·(g) + NO2(g) + M→ ClONO(g) + M, k= 1.63× 10−12, (Burkholder et al., 2015)) The model was constrained with Cl2 and

NO2 observations with J values from the aircraft.
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