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Abstract

In recent papers (Alfonso et al., 2013; Alfonso and Raga, 2017) the sol-gel transition was proposed as
15 amechanism for the formation of large droplets required to trigger warm rain development in cumulus
clouds. In the context of cloud physics, gelation can be interpreted as the formation of the “lucky
droplet” that grows by accretion of smaller droplets at a much faster rate than the rest of the population
and becomes the embryo for raindrops. However, all the results in this area have been theoretical or
simulation studies. The aim of this paper is to find some observational evidence of gel formation in
20  clouds by analyzing the distribution of the largest droplet at an early stage of cloud formation, and to
show that the mass of the gel (largest drop) is a mixture of a Gaussian and a Gumbel distributions, in
accordance with the pseudo-critical clustering scenario described in Gruyer et al. (2013) for nuclear

multi-fragmentation.

25 1. Introduction
A fundamental, ongoing problem in cloud physics is associated with the discrepancy between the times
modeled and observed for the formation of precipitation in warm clouds. Observational studies show

that precipitation can develop in less than 20 minutes. For example, in Goke et al. (2007), an analysis
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of radar observations in the framework of the Small Cumulus Microphysics Study (SCMS),

30 demonstrated that maritime clouds increased their reflectivity from -5 dBZ to +7.5 dBZ in a
characteristic time of 333 s. Simulations of the collision and coalescence process, such as those
described in the review published by Beard and Ochs (1993), require longer times for precipitation
formation, unless giant nuclei (aerosols with diameters greater than 2 pm) are incorporated in the
simulation.

35  Numerous mechanisms have been proposed to close the gap between observations and simulations.
Some theories explain this phenomenon as an increase in collision efficiencies due to turbulence
(Wang et al., 2008; Pinsky et al., 2008). Other research points to the supersaturation fluctuations
resulting from homogeneous (Warner, 1969) and inhomogeneous mixing (Baker et al., 1980), which
allow some droplets to grow faster by condensation in areas with larger supersaturation. Cooper (1989)

40  found evidence of faster growth of the larger droplets due to the variability that results from mixing
and random positioning of droplets during cloud formation. Shaw et al. (1998) explored the possibility
that vortex structures in a turbulent cloud cause variations in droplet concentration and supersaturation
(at the centimeter scale), allowing droplets in areas of higher concentration to grow more rapidly. Their
calculations show an important widening of the spectrum from this mechanism. Roach (1976) showed

45  that the growth of larger droplets increases from radiative cooling at the top of stratiform clouds, and
by the addition of sulfate cloud condensation nuclei (CCN) activated as droplets as a result of aqueous
phase chemical reactions (Zhang et al., 1999). In the same manner Feingold and Chuang (2000)
proposed the theory that certain organic compounds (film-forming compounds) can create a layer
around droplets that inhibit their growth, causing a fraction of droplets to grow under conditions of

50  higher supersaturation with the consequent widening of the spectrum. The existence of giant CCN is
another of the proposed mechanisms. Even at concentrations as low as 1 per liter, they can contribute

significantly to the broadening of the spectrum (Johnson 1982, Feingold et al., 1999).
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More recently, the sol-gel transition has been proposed as a possible mechanism for the formation of
embryonic drops that trigger the formation of precipitation (Alfonso et al., 2010, 2013). Although this
55  phenomenon is not as well known in the field of cloud physics, the sol-gel transition (also known as
"gelation™ in the English literature), has been widely studied in other fields of research to explain, for
example, the formation of planets (Wetherill, 1990), of aerogels in aerosol physics (Lushnikov, 1978),
or the emergence of giant components in percolation theory (Aldous, 1997).
In the framework of cloud physics, the sol-gel phenomenon can be defined as the transition from a
60  continuous system of small droplets, to another system with a continuous spectrum plus a giant drop
(runaway droplet, embryonic drop, gel) that interacts with the system increasing its mass by accretion
with the smallest drops.
The recent studies that address this topic in cloud physics (Alfonso et al., 2013; Alfonso and Raga,
2017) analyze the problem from the theoretical and simulation point of view. The aim of the study
65  reported here is to find observational evidence of gel formation, taking as a reference recent studies in
percolation theory and nuclear physics, which can shed some light on the gel (largest droplet) size
distribution during the initial stage of precipitation formation.
The paper is organized as follow: Section 2 presents an overview of previous results for both infinite
and finite systems. An analysis of the largest droplet distribution from synthetic data obtained from
70  Monte Carlo simulations (for the product and hydrodynamic kernels, respectively) is presented in
section 3, section 4 is devoted to the analysis of experimental data, and finally, in section 5 we discuss
our results accompanied by the relevant conclusions.
2. Anoverview of previous theoretical and experimental results
2.1 Results for infinite systems in coagulation and percolation theory
75  The most commonly accepted approach to model the collision coalescence process in cloud models

with detailed microphysics relies upon the Smoluchowski kinetic equation or kinetic collection
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equation (KCE), governing the time evolution of the average number of particles. The discrete form

of this equation can be written as (Pruppacher and Klett, 1997):

DS KEINGDNGNGY KEING )

80  where N(i,t) is the average number of droplets with mass x;, and K(i,j) is the coagulation kernel related
to the probability of coalescence of two drops of masses xi and x;. In Eq. 1, the time rate of change of
the average number of droplets with mass x; is determined as the difference between two terms: the
first term describes the average rate of production of droplets of mass xi due to coalescence between
pairs of drops whose masses add up to mass xi, and the second term describes the average rate of

85  depletion of droplets with mass x; due to their collision and coalescence with other droplets.
However, the KCE may have a serious limitation in some cases (Lushnikov, 2004) and, hence, cannot
accurately describe the coagulation process. The limitation lies essentially in the fact that the
coagulation equation inevitably creates particles with infinite mass. For example, for a multiplicative
coagulation kernel (K(i,j)=Cxix; ), an attempt to calculate the second moment of the droplet mass

90  spectrum:

Mz(t)=_NZdXi2N(i,t) (2
leads to the result:
_ M)
M) =12, (1)e ®
T =[CM, ()] (4)

95  Then, after t=Tgel the second moment may become undefined, and the total mass of the system starts
to decrease. This result applies to infinite (with negligible fluctuations and correlations) coagulating
systems in the thermodynamic limit, which is the limit for a large number K of particles where the

volume V is taken to grow in proportion with the number of particles. Then K,V — o, K /V — N <o

.The infinite system interpretation of the sol-gel transition assumes the presence of a gel phase (which
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100 s not predicted by the KCE equation), and introduces an additional assumption as to whether or not
the gel interacts with the infinite size clusters that are not described by the KCE equation.

The other scenario considers that coagulation takes place in a system with a finite number of monomers
in a finite volume. This approach is based on the scheme developed by Markus (1968) and Bayewitz
et al. (1974), and was studied by Lushnikov (1978, 2004), Tanaka and Nakazawa (1993) and

105 Matsoukas (2015) by using analytical tools, and more recently by Alfonso (2015) and Alfonso and
Raga (2017) numerically. Within this approach there is no mass loss, and the phase transition is
manifested in the emergence of a giant particle that contains a finite fraction of the total mass of the
system. Solutions in the post-gel regime were obtained analytically by Lushnikov (2004), Tanaka and
Nakazawa (1993, 1994) and Matsoukas (2015), and numerically by Alfonso and Raga (2017).

110  The sol-gel transition has been observed experimentally (for example: aerogels in aerosol physics),
and in other theoretical models such as that of percolation where there is a close analogy between
percolation and droplet coagulation. In bond percolation, each lattice corresponds to a monomer, and
a proportion p of active bonds is set randomly between sites. Then clusters of size s are defined as an
ensemble of s occupied sites connected by active bonds. For a definite value of p=pc, a macroscopic

115  cluster appears, corresponding to the sol-gel transition.

Recent results in percolation theory show that the largest cluster follows the Gumbel distribution for
subcritical percolation (Bazant, 2000) and, at the critical point, follows the Kolmogorov-Smirnov (K-
S) distribution (Botet and Ptoszajczak, 2005). The K-S distribution is the distribution of the maximum
value of the deviation between the experimental realization of a random process and its theoretical

120  cumulative distribution and it has the cumulative distribution:

> K _k2r2z
Ki(2)= D (-1) e " (5a)
k=—0
or the equivalent expression:

6 & sk
Ki(2)= [ 3 e e (5b)

k=—00
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Botet and Ploszajczak (2005) also found evidence (from numerical solutions of the KCE equation)
125 that, for multiplicative coalescence (with a collection kernel proportional to the product of the masses),
the largest cluster follows the distribution in Eg. 5 at the time of the phase transition. At this point, a
hypothesis is formed in which the results obtained in percolation are extrapolated in order to find the
probability distribution of the largest (runaway) droplet at t=TgeI.
2.2 Some theoretical and experimental results for finite systems in coagulation theory and nuclear
130  physics.
We will now consider some results obtained for finite systems in coagulation theory (Botet, 2011) and
in nuclear physics (Gruyer et al., 2013). Unlike those in infinite systems, fluctuations and correlations
in a finite system are not negligible. We must emphasize that phase transitions cannot take place in a
finite system. For this type of systems, the notion of pseudo-critical region is introduced.
135  Some interesting simulation and experimental results were obtained for these systems in Botet (2011)
for the Smoluchowski model (1) and in Gruyer et al., (2013) for nuclear multi-fragmentation. Botet et
al. (2011) found, from stochastic simulations of coagulation process with the product kernel (for a
system of N=512 monomers), that the distribution of the largest cluster in the pseudo-critical region
can be described as a mixture of the well-known Gaussian and Gumbel distributions:
140 f(X,0,w, B, 1, 0) =60Gumbel (X, 14, £) + (1- &)Gauss(X, 1, o) (6)
where 6 is the mixing fraction of each distribution. The Gumbel distribution is one of the asymptotic

distributions from Extreme Value Theory (EVT) and has the form:

_eOxw)/B

Gumbel(x, &, ) =€ (7
where u is the position parameter and S the scale parameter. The distribution in Eq. 6 has its origin in
145  the fact that, for finite systems, in the pseudo-critical zone, the system experiences large fluctuations
and the gel distribution is a combination of both distributions, a Gumbel and a Gaussian (Gruyer et al,

2013). A similar result was obtained by Botet (2011) using synthetic data from stochastic simulations,

for collision probabilities proportional to the product of the masses.
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The fundamental hypothesis of our work is that the gel mass (largest drop) in the initial phase of

150 precipitation formation, is distributed as a mixture of two asymptotic distributions: one Gumbel and
one Gaussian, following the pseudo-critical clustering scenario described in Gruyer et al. (2013).

3. Analysis of the largest droplet distribution obtained from synthetic data.
3.1 Results for the product kernel (K(i,j)=Cxix;)

10 The empirical distributions of the largest droplet mass (Mmax) were obtained from Monte Carlo
simulations, following Botet (2011). The species accounting formulation (Laurenzi and Diamond,
2002) of the stochastic simulation algorithm (SSA) of Gillespie (1975) is used for the stochastic
simulation in this work.

160  Our methodology of synthetic data analysis consists in generating N-realizations (at each time step)
using the algorithm of Gillespie. For each realization, there is a certain distribution of droplets. The
largest droplet mass obtained from each distribution at each realization (for a fixed time step) would
be the distribution to be fitted to the distribution in Eq. 6. Then, the sample size would be equal to the
number of realizations of the Monte Carlo algorithm.

165  Simulations were performed for the product kernel (K(i,j)=Cxixj), with an initial mono-disperse
distribution of 100 droplets of 14 um in radius (droplet mass 1.15x10®g) in a cloud volume of 1 cm?,
with C=5.49x10° cm® s, The empirical distribution of the maxima was obtained for 1000 realizations
of the stochastic algorithm.

Figures 1(a)-1(d) present the largest droplet mass empirical distributions obtained at four different

170  times. Note that Eq. 6 provides a good fit for the distribution of the mass of the largest droplet (M,

) both around and far from the sol-gel transition time (Tger), which was calculated from Eg. 4 and found
equal to 1378 s.

Figure 2 presents the time evolution of the coefficient&, which represents the mixing fraction in Eq.
6, for the time interval [500s, 2000s]. Despite the noisy behavior of the coefficient € (due to the

175  finiteness of the system), there is a decreasing trend with time, showing larger values of @ (~0.65) for
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times close to 500s and values down to 0.2 at the end of the time interval. This figure indicates that,
although the largest droplet distribution is adequately described by a mixture of Gaussian and Gumbel
distributions, it has a larger Gumbel component (see Eq.6) during the early stages of the coagulation
process. As time progresses, the Gaussian contribution becomes more important (smaller values of &)
180 in providing a better fit to the largest droplet mass distribution.
These findings are in accordance with Gruyer et al. (2013) and Botet (2011): at an early stage of
coagulation development, correlations are negligible, and consequently, the largest fragments can be
considered independent random variables. Therefore, the probability distribution of the largest
fragment is given by the Limit Theorem for Extremal Variables, which states that the maximum of a
185  sample independent and identically distributed random variables can only converge in distribution to
one of three possible distributions: Gumbel, Fréchet or Weibull.
As the coagulation process continues, fluctuations and correlations between droplets increase and the
system reaches a critical point (Alfonso and Raga, 2017), where the largest droplets are no longer
independent random variables, the Limit Theorem for Extremal Variables no longer applies, and the
190 largest droplet distribution is no longer described by a Gumbel distribution. At later times, away from
the pseudo-critical region, the Gaussian contribution is the most important part of the largest droplet
mass distribution. This can be explained by the additive nature of the process at this stage (Botet, 2011;
Gruyer et al. 2013; Clusel and Bertoin, 2008), and the central Limit Theorem applies.
In the intermediate zone (which can be defined as the pseudo-critical zone), the distribution is well
195  described by a mixture of Gumbel and Gaussian distributions and the weights associated with each
distribution are comparable. It would be expected to observe #=0.5 at the infinite system critical
point, Tger , found to be 1378s from Eq. (4). However, due to the finiteness of the system, the critical
point corresponds approximately to a value 8=0.35 (see Fig. 2).
We can find whether or not a system is in the pseudo-critical region by defining the following ratio

200  (Botet, 2011; Gruyer et al., 2013):
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where Wg,pq =6 and w, =1-6 are the relative weights of the Gumbel and Gaussian

Gaussian
distributions, respectively (see Eq. 6). By definition 7 =+1,-1 corresponds to pure Gaussian and
Gumbel distributions. If —1< 7 <1 the system is in the pseudo-critical domain.

Alternatively, Botet (2011) estimates the limits of the pseudo-critical region as the times where the

largest droplet mass standard deviation o(M ) calculated from Eq. 9 is small.

a(Mm)=\/§2(M‘m—<MW>)Z ©)

In Eq. (9), Nr is the number of iterations of the stochastic simulation algorithm of Gillespie (1975),
M., the mass of the largest particle and (M, ) its ensemble mean over all the realizations.

Even though the second moment of the distribution M, (z) diverges (see Eq. 3) for the infinite system,
there is no divergence of the second moment for a finite system (with no critical behavior). For that
case, the standard deviation for the largest particle mass, (M, ), is expected to reach a maximum in

the vicinity of T, = [CMZ(tO)]fl. Moreover, computing the time evolution of the normalized standard

deviation o(M,,,)/(M,,,) instead of o(M,,) yielded better results in estimating T, in Inaba
(1999), Alfonso et al. (2008, 2010, and 2013) and Alfonso and Raga (2017).

Figure 3a shows the time evolution of G(Mmax)/<Mmax> as an example, for the system defined at the
beginning of this section. Note that the maximum occurs at T=1315 s, close to Tge=1378 s calculated
from Eq. (4), and the time when the maximum of o(M,,)/(M,,,)occurs is a reliable estimate of the

sol-gel transition time for the corresponding infinite system.

Botet (2011) defines o =0.1o,,, as the limits of the pseudo-critical interval, which corresponds to

t,; =0.37T,, and t,, =1.5T , (see Figure 3b). While Eq. (8) could be used to determine if a sample
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collected inside a cloud is in the pseudo-critical region, Eq. (9) implies that the time evolution of
o(M,..) is needed and therefore, a practical application is only viable in the case of synthetic data

obtained from stochastic simulations, or cloud droplet data collected dynamically at different times or

225  cloud levels.

3.2. Numerical results for turbulent conditions
In our simulations, turbulent effects were considered by implementing the turbulence induced collision

enhancement factor PRy, (x.x;)that is calculated in Pinsky et al. (2008) for a cumulonimbus with

230  dissipation rate e=0.1 m?s3and Reynolds number Re;=2x10*, and for cloud droplets with radii <21um.
The turbulent collection kernel has the form:

Ko (X5 X;) = Pryy, (%5, X)) K (%, X;) (10)

where K, (x;,%;) is hydrodynamic kernel, which considers collisions between droplets under pure

gravity conditions and has the form:

235 Kg(xi,xj):ﬂ(ri+rj)2N(xi)—V(xj)\E(ri,rj) (11)
The hydrodynamic kernel takes into account the fact that droplets with different masses (xi and x; and
corresponding radii, ri and rj) have different terminal velocitiesV (x;), which are functions of their
masses. In Eq. 10, E(r;i ,I;) are the collection efficiencies calculated according to Hall (1980).

Monte Carlo simulations were performed with an initial bi-modal distribution (200 droplets of 10 um

240  in radius, and 50 droplets of 12.6 um) for a cloud volume of 1 cm®. The empirical distribution for the
largest droplet mass was generated by extracting the maximum from the droplet distribution at each
realization, for a fixed time step. Additionally, the ratio o:(M,,)/(M,.,) is evaluated from 1000
realizations of the Monte Carlo algorithm (see Fig. 4), that reaches its maximum at around 1815 s, and
serves as an estimate for the sol-gel transition time for the infinite system. Four empirical probability

245  distributions were fitted to the combined distribution (Eq. 6) for times in the vicinity of T, . The results

gel *

10
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are displayed in Figures 5(a)-5(d). Note that also for this case, the combined distribution (Eq. 6)
provides a good fit for the largest droplet mass. Moreover, the coefficient @ decreases in time (check

Fig. 5), in concordance with section 3.1.

250 4. Analysis of the largest droplet (gel) radius distribution from observations.

In this section, the methodology of analysis described before is applied to a dataset of cloud droplet
size distribution (2-50 pm) collected with a Droplet Measurement Technologies fog monitor (FM-120)
installed on a hilltop in Are, Sweden. The FM-120 is a single particle optical spectrometer (Spiegel et

255 al., 2012) that derives size from light scattered from individual droplets that pass through a focused
laser beam. The equivalent optical size ranges from 2-50 um. The fog monitor sample volume has a
cross sectional area of 0.25 mm? and a flow speed of 14 m/s. The raw data consists of each droplet’s
radius and inter-arrival time (elapsed time since previous particle). More than seven million droplets
were processed over a period of 4 hours.

260  The block maxima (BM) approach in extreme value theory (EVT) was applied, which requires dividing
the observation period into non-overlapping periods of equal size and restricts attention to the
maximum observation in each period [see Gumbel (1958)].

Following the BM approach, considering the sectional area and flow speed, the time series was divided
into consecutive unit blocks of 1cm? in volume, corresponding to a cloud length of approximately 400

265 cm (~0.3 s interval in the time series). The droplet distributions in each unit block, are equivalent to
the distributions obtained for each realization (for a fixed time) of the Monte Carlo algorithm described
in the previous section, and each block can be interpreted as an independent realization of a stochastic
process.

The maximum (radius of the largest droplet) is recorded from each consecutive unit block in order to

270  generate the distribution for comparison with the theoretical combined distribution described in Eq 6.
The sample size corresponds to the number of consecutive blocks in which the time series was divided,

which in this case is 49647 blocks which is equivalent to about 4 hours of data. Figure 6 displays the

11
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number of droplets in each block, which fluctuate between 0 and 392, with an average of 146. Since

each block is considered as a realization of a random process, the largest droplet radius series must be
275  fitted to the combined distribution in Eq. 6 for samples with certain conditions of homogeneity.

The average sample size (number of unit blocks) for which the largest droplet maxima can be fitted to

the combined distribution in Eq. 6 is then estimated. This expected value can be calculated from the

following procedure:

The conditional probability P(Admixture\x), where X is the sample size, is calculated using Monte

280  Carlo simulations. This calculation uses a given number of consecutive blocks with a mixture of
distributions. The simulations are carried out by randomly choosing Nwta Samples from the
measurements (that consist of consecutive blocks) of size x, fitting the data to the distribution in Eq.
6, and determining if they do or do not follow that distribution. The decision is based on application
of the Kolmogorov-Smirnov (K-S) goodness of fit test for a confidence level ¢ =0.05. The

285  experimental statistics for the K-S test can be obtained by arranging the data in ascending order (xi,

X2, ..., xn), and deriving the maximum difference between the rank statistics (i-1)/n and the theoretically

J (12)

If this value of D, is smaller than a certain threshold value D7, we accept that the data obeys the

calculated cumulative density function F(x,):

i-1

D :max(maxF(xi)—n , max %—F(xi)

n !
I<i<n

290  probability distribution under consideration and the null hypothesis Ho cannot be rejected at a
significance level a. The significance level o refers to the probability of the assumed distribution

pattern being rejected. The limiting values of D;can be calculated from the K-S cumulative

distribution (See Eqgs. 5a and 5b). Tables with limiting values can be found, for example in Gnedenko

(2017).

12
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295  However, given that the parameters of the distribution F(x) were estimated from the observed data,
theoretical limiting values provided by the K-S cannot be used. In this case, the limiting values D7

are smaller than the case with known parameters and must be obtained via Monte Carlo simulations

(See Appendix A for more details). Then, the conditional probability can be calculated as:

P(Admixture|x) = Ny /N (13)

total
300  where No is the number of cases for which the null hypothesis Ho) at a=0.05 cannot be rejected.

However, what is really needed is the conditional probability P(X\Admixture), that is the probability

that a sample has size x, given that the data (viewed as a time series of maxima for each block) in that
sample follow a mixture of distributions. This probability can be calculated using Bayes’ theorem from

the expression:

305 P(x| Admixture) oc P(Admixture|x)(x) (14)
By writing this theorem in the form (13), we are assuming that the marginal likelihood is considered
as anormalization factor. Therefore, P(X\Admixture) can be computed using expression (14) and then
normalized under the requirement that it is a probability mass function (pmf). In (14), the prior
probability z(x) is assumed to have a uniform distribution. Then, the expected value <x> can be

310 calculated from the expression:

(x)=>P(x| Admixture)x (15)
Turning to a concrete example, Nwtai=100 samples with sizes x=100, 200,..., 1000 were randomly
selected from the data; and the probability P(Admixture\x) calculated following (13). The probability
mass function P(x\Admixture) (pmf) was obtained by applying the procedure previously described

315  and the expected value was found to be (x) =544 (about 163 s).

A thorough statistical analysis was conducted by fitting M, to the combined distribution in Eq. 6 for

100 samples with sizes at and below the average (100, 200, 300, .., 500) that were randomly selected

13
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from the entire data (49647 blocks). For each random sample three null (Ho) hypotheses were verified:
i) the sample comes from a mixture of distributions (6): ii) the sample comes from a Gumbel
320  distribution; iii) the sample comes from a Gaussian distribution. The three hypotheses were examined
by the K-S method with limiting values calculated from Monte Carlo simulations (see Table Al).
The results for sample sizes 100, 200, 300, 400 and 500 are shown in Table 1. As an example, for case
1 (sample size 100) the null hypothesis Ho at 0=0.05 was rejected for 13, 35 and 92 samples for the
mixture, Gaussian and Gumbel distributions, respectively. For case 2 (sample size 200), the null
325  hypothesis was rejected for 27, 58 and 96 samples. For n=500 for the mixture of distributions (6), the
null hypothesis Ho was rejected for 50 samples. For the Gumbel distribution, the null hypothesis was
rejected for all the samples (100) and the null hypothesis for the Gaussian distributions was rejected
for 83 samples.
The results shown in Table 1, confirm that for all sample sizes, the mixture of distributions provides a
330  better fit than the Gumbel and Gaussian distributions, confirming the correctness of the choice of the
mixture of distributions (Eq. 6) for modelling the largest droplet radius. As an example, Figs. 7a-d
present, for a sample size of n=500, the largest droplet mass empirical distributions obtained for four

different samples that are distributed following the mixture, and the corresponding fit of Eq. 6.

335 5. Discussion and conclusions
An infinite system has two possible evolutionary phases: the ordered phase and the disordered or
statistical phase. In the disordered phase there is a continuous droplet distribution and a near-equality
of the largest and second largest mass. After the sol-gel transition, there is an ordered phase
characterized by the existence of a giant macroscopic droplet (gel) coexisting with an ensemble of
340  microscopic particles.
A finite system can be in the ordered, disordered and pseudo-critical phases, according to the scenario

described in Botet (2011) and Gruyer et al. (2013). The ratio 7, defined in Eq. 8, takes values between
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n=+1,-1, which correspond to pure Gaussian and Gumbel distributions, and when —-1<# <1 the
system is in the pseudo-critical domain. In the disordered phase, fluctuations and correlations are
negligible, there are only a few collision events, and Mmax is the largest part of randomly distributed
droplets. In that case, the distribution of the mass of the largest droplets follow a Gumbel distribution.
At later times in the evolution of the finite system, there are many collision events and Mmax is the
result of the coalescence of other droplets. There is an additive process, the central limit theorem
applies and the mass (or radius) of the largest droplets follows a Gaussian distribution.

In the pseudo-critical phase, the fluctuations and correlations are no longer negligible and the
distribution is of neither one nor the other asymptotic forms (Gumbel or Gaussian). In this case, the fit
of the largest droplet mass (gel), is a mixture of a Gumbel (disordered state) and Gaussian (ordered
state) distributions. As was demonstrated in the preceding section, this combined distribution (Eq. 6)
is a good approximation to the largest droplet distribution (gel) in the pseudo-critical region. The fact
that the mixture of distributions provides a better fit than the Gumbel and Gaussian distributions shows
that the samples selected in our study are mainly in the pseudo-critical phase. To confirm this fact, the
ratio  was calculated for 1000 samples of size n=500 selected randomly from the data. Figure 8
shows that for 90% of the samples the ratio 7 lies in the interval [-0.9, 0.9], clearly indicating that
samples are in the pseudo-critical region.

We could show that the gel radius (largest droplet) is well described as a mixture of the two asymptotic
distributions, because the effect of the collision-coalescence process was in some way isolated for the
orographic cloud data analyzed in this report. A similar analysis could be performed for the early stage
of a convective cloud formation, before some other processes, e.g. entrainment, mixing, turbulence or
ice formation, could obscure the finite system pseudo-critical scenario, and the gel formation that is
basically a consequence of the collision-coalescence process could no longer be observed.

In this work, the early stage of formation of a warm cloud is viewed in the context of critical

phenomena theory, and can be thought of as being in ordered, disordered or pseudo critical phases.
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The disordered phase corresponds to a cloud with a droplet spectrum formed mainly by the cloud
condensation nuclei activation process, with an almost random distribution of particles, and the
370  distribution of the mass of the largest droplets is Gumbel. In the pseudo-critical phase a giant droplet
(gel) locally coexists with a continuous ensemble of small droplets. As the system considered is finite,
there is no sudden change from disordered to ordered phase (sol-gel transition), but rather there is a
pseudo-critical phase in which fluctuations are important and the gel distributes according to Eq. 6.
The analysis presented here of the largest droplet distribution provides useful insight into the early
375  stages of cloud development in warm clouds. In follow up studies, the analysis of cloud data at different
time or distance from cloud base would be helpful in identifying the pseudo-critical phase and tracking

the transition from the disordered to the ordered phase dynamically.
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6. Appendix A
When parameters of a distribution are estimated from the data, the limiting values provided for the

Kolmogorov-Smirnov criterion cannot be used. In this case, approximate limiting values and p-values

385  can be obtained via Monte Carlo simulations. First, the parameter vector q?:(é, i i B 6—)
is estimated for a given sample of size n, and the test statistics (Eq. 12) are calculated assuming that
the sample is distributed according to F (x;&) , returning a value of D, . Next, a sample of sizen F (xﬁ))
variates is generated and the parameter vector ¢31 is estimated. The test statistics is again calculated
assuming that the sample is distributed according to F(x;cT)l). Such a calculation was made for

390  different sample sizes (n=100, 200,..., 500) 1000 times, and the distribution pattern of D, was derived

(See Table Al). Then, 5% percent point (for a=0.05) from the greater side was taken as the estimated
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D#=*% limiting values. The estimate of p-value is calculated as the relative number of occasions is

which the test statistics is at least as large as Dn. The numerically calculated K-S limiting values for
the three distributions under analysis (mixture, Gumbel and Gaussian) for 0=0.05 are shown in Table

395 3. As can be checked in Table A1, the values are smaller than the case with known parameters, that

can be estimated (for 0=0.05) as 1.36/ Jn.
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Table 1. For each sample size, number of samples with the null hypothesis Ho rejected at 0=0.05 for

all the distributions.

490
Case Total number of Sample size Fitted At a=0.05
random samples Distributions Reject Ho
(Number of
Samples)
Mixture 13
1 100 100 Gumbel 92
Gaussian 35
Mixture 27
2 100 200 Gumbel 96
Gaussian 58
Mixture 35
3 100 300 Gumbel 98
Gaussian 70
Mixture 40
4 100 400 Gumbel 100
Gaussian 77
Mixture 50
5 100 500 Gumbel 100
Gaussian 83
495
500

21



Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-1210 Atmospheric
Manuscript under review for journal Atmos. Chem. Phys. Chemistry
Discussion started: 18 January 2019 and Physics
© Author(s) 2019. CC BY 4.0 License.

Discussions

Table Al. Estimated limiting values (for 0=0.05) for the Kolmogorov-Smirnov goodness of fit test

for the three distributions.

505
K-S (estimated) limiting values (Dy) for 6=0.05)

Sample size Mixture Gaussian Gumbel
100 0.0725 0.0873 0.0853
200 0.0494 0.0624 0.0630
300 0.0432 0.0517 0.0487
400 0.0369 0.0461 0.0419
500 0.0324 0.0414 0.0396

510

515

520
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FIG. 1. (a)—(d) (dots) largest droplet mass distributions calculated from Monte Carlo simulations at
four different times, for a system with an initial mono-disperse distribution of 100 droplets of 14 um
in radius; (solid line) fit using Eq. 6.
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FIG. 2. Time evolution of the coefficient & in Eq. 6, obtained for a simulation with the product kernel.
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FIG 3. For the finite system, the normalized standard deviation o:(M,,)/ (M, ) of the largest droplet
mass versus time (Fig. 3a). The initial number of droplets was set equal to N=100 droplets of 14 pm
in radius in a volume of 1 cm®. Simulations were performed with the product kernel K(i, j) =CxX,
(with C=5.49x10% cm? g2 s%), and N,=1000 realizations of the stochastic algorithm were performed.

545  The maximum value ofo-(Mmax)/<M is found to be 1315 sec. (dashed vertical line), and is very

max>
close to the sol gel transition time (continuous vertical line) for the infinite system (1378 sec). In Fig.

3b the small end of the pseudo-critical domain is estimated as the time where c(M ) =0.10,.,, .
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FIG. 4. Time evolution of the normalized standard deviation o(M,,,)/(M,,, )of the largest droplet

mass versus time estimated from the Monte Carlo algorithm. The simulations were performed for the
555  hydrodynamic kernel with a bidisperse initial condition (200 droplets of 10 pum in radius, and 50

droplets of 12.6 um) in a volume of 1 cm®.
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FIG. 5 (a)—(d) (dots) Simulated Mmax distributions in a system with an initial bidisperse distribution
(200 droplets of 10 um in radius, and 50 droplets of 12.6 um) at four different times; (full line) fit using
Eq. 6. The simulations were performed for the turbulent hydrodynamic kernel.
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FIG. 6. Time series of the number of droplets per block, sampled at a hilltop in Are, Sweden.
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FIG. 7. For four random samples that are distributed following the admixture distribution (with sample
590  size 500), observed (histogram) and fitted (solid line) using Eq. 6. Also shown for each distribution is

the p-value of the goodness of fit test, and the parameter 6 indicating the weight of the Gumbel

component.
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