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Abstract 

In recent papers (Alfonso et al., 2013; Alfonso and Raga, 2017) the sol-gel transition was proposed as 

a mechanism for the formation of large droplets required to trigger warm rain development in cumulus 15 

clouds. In the context of cloud physics, gelation can be interpreted as the formation of the “lucky 

droplet” that grows by accretion of smaller droplets at a much faster rate than the rest of the population 

and becomes the embryo for raindrops.  However, all the results in this area have been theoretical or 

simulation studies. The aim of this paper is to find some observational evidence of gel formation in 

clouds by analyzing the distribution of the largest droplet at an early stage of cloud formation, and to 20 

show that the mass of the gel (largest drop) is a mixture of a Gaussian and a Gumbel distributions, in 

accordance with the pseudo-critical clustering scenario described in Gruyer et al. (2013) for nuclear 

multi-fragmentation. 

 

1. Introduction 25 

A fundamental, ongoing problem in cloud physics is associated with the discrepancy between the times 

modeled and observed for the formation of precipitation in warm clouds. Observational studies show 

that precipitation can develop in less than 20 minutes. For example, in Göke et al. (2007), an analysis 
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of radar observations in the framework of the Small Cumulus Microphysics Study (SCMS), 

demonstrated that maritime clouds increased their reflectivity from -5 dBZ to +7.5 dBZ in a 30 

characteristic time of 333 s. Simulations of the collision and coalescence process, such as those 

described in the review published by Beard and Ochs (1993), require longer times for precipitation 

formation, unless giant nuclei (aerosols with diameters greater than 2 μm) are incorporated  in the 

simulation. 

Numerous mechanisms have been proposed to close the gap between observations and simulations. 35 

Some theories explain this phenomenon as an increase in collision efficiencies due to turbulence 

(Wang et al., 2008; Pinsky et al., 2008). Other research points to the supersaturation fluctuations 

resulting from homogeneous (Warner, 1969) and inhomogeneous mixing (Baker et al., 1980), which 

allow some droplets to grow faster by condensation in areas with larger supersaturation. Cooper (1989) 

found evidence of faster growth of the larger droplets due to the variability that results from mixing 40 

and random positioning of droplets during cloud formation. Shaw et al. (1998) explored the possibility 

that vortex structures in a turbulent cloud cause variations in droplet concentration and supersaturation 

(at the centimeter scale), allowing droplets in areas of higher concentration to grow more rapidly. Their 

calculations show an important widening of the spectrum from this mechanism. Roach (1976) showed 

that the growth of larger droplets increases from radiative cooling at the top of stratiform clouds, and 45 

by the addition of sulfate cloud condensation nuclei (CCN) activated as droplets as a result of aqueous 

phase chemical reactions (Zhang et al., 1999). In the same manner Feingold and Chuang (2000) 

proposed the theory that certain organic compounds (film-forming compounds) can create a layer 

around droplets that inhibit their growth, causing a fraction of droplets to grow under conditions of 

higher supersaturation with the consequent widening of the spectrum. The existence of giant CCN is 50 

another of the proposed mechanisms. Even at concentrations as low as 1 per liter, they can contribute 

significantly to the broadening of the spectrum (Johnson 1982, Feingold et al., 1999). 
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More recently, the sol-gel transition has been proposed as a possible mechanism for the formation of 

embryonic drops that trigger the formation of precipitation (Alfonso et al., 2010, 2013). Although this 

phenomenon is not as well known in the field of cloud physics, the sol-gel transition (also known as 55 

"gelation" in the English literature), has been widely studied in other fields of research to explain, for 

example, the formation of planets (Wetherill, 1990), of aerogels in aerosol physics (Lushnikov, 1978), 

or the emergence of giant components in percolation theory (Aldous, 1997). 

In the framework of cloud physics, the sol-gel phenomenon can be defined as the transition from a 

continuous system of small droplets, to another system with a continuous spectrum plus a giant drop 60 

(runaway droplet, embryonic drop, gel) that interacts with the system increasing its mass by accretion 

with the smallest drops. 

The recent studies that address this topic in cloud physics (Alfonso et al., 2013; Alfonso and Raga, 

2017) analyze the problem from the theoretical and simulation point of view. The aim of the study 

reported here is to find observational evidence of gel formation, taking as a reference recent studies in 65 

percolation theory and nuclear physics, which can shed some light on the gel (largest droplet) size 

distribution during the initial stage of precipitation formation. 

The paper is organized as follow: Section 2 presents an overview of previous results for both infinite 

and finite systems.  An analysis of the largest droplet distribution from synthetic data obtained from 

Monte Carlo simulations (for the product and hydrodynamic kernels, respectively) is presented in 70 

section 3, section 4 is devoted to the analysis of experimental data, and finally, in section 5 we discuss 

our results accompanied by the relevant conclusions. 

2. An overview of previous theoretical and experimental results  

2.1 Results for infinite systems in coagulation and percolation theory 

The most commonly accepted approach to model the collision coalescence process in cloud models 75 

with detailed microphysics relies upon the Smoluchowski kinetic equation or kinetic collection 
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equation (KCE), governing the time evolution of the average number of particles. The discrete form 

of this equation can be written as (Pruppacher and Klett, 1997): 




 
i-1

j=1 j=1

N(i,t) 1
= K(i-j,j)N(i-j)N(j)-N(i) K(i,j)N(j)

t 2
                                          (1) 

where N(i,t) is the average number of droplets with mass xi, and K(i,j) is the coagulation kernel related 80 

to the probability of coalescence of two drops of masses xi and xj.  In Eq. 1, the time rate of change of 

the average number of droplets with mass xi is determined as the difference between two terms: the 

first term describes the average rate of production of droplets of mass xi due to coalescence between 

pairs of drops whose masses add up to mass xi, and the second term describes the average rate of 

depletion of droplets with mass xi due to their collision and coalescence with other droplets. 85 

However, the KCE may have a serious limitation in some cases (Lushnikov, 2004) and, hence, cannot 

accurately describe the coagulation process. The limitation lies essentially in the fact that the 

coagulation equation inevitably creates particles with infinite mass. For example, for a multiplicative 

coagulation kernel (K(i,j)=Cxixj ), an attempt to calculate the second moment of the droplet mass 

spectrum: 90 
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Then, after t=Tgel the second moment may become undefined, and the total mass of the system starts 95 

to decrease.  This result applies to infinite (with negligible fluctuations and correlations) coagulating 

systems in the thermodynamic limit, which is the limit for a large number K of particles where the 

volume V is taken to grow in proportion with the number of particles. Then , , /K V K V N  

.The infinite system interpretation of the sol-gel transition assumes the presence of a gel phase (which 

Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-1210
Manuscript under review for journal Atmos. Chem. Phys.
Discussion started: 18 January 2019
c© Author(s) 2019. CC BY 4.0 License.



 5 

is not predicted by the KCE equation), and introduces an additional assumption as to whether or not 100 

the gel interacts with the infinite size clusters that are not described by the KCE equation. 

The other scenario considers that coagulation takes place in a system with a finite number of monomers 

in a finite volume. This approach is based on the scheme developed by Markus (1968) and Bayewitz 

et al. (1974), and was studied by Lushnikov (1978, 2004), Tanaka and Nakazawa (1993) and 

Matsoukas (2015) by using analytical tools, and more recently by Alfonso (2015) and Alfonso and 105 

Raga (2017) numerically. Within this approach there is no mass loss, and the phase transition is 

manifested in the emergence of a giant particle that contains a finite fraction of the total mass of the 

system. Solutions in the post-gel regime were obtained analytically by Lushnikov (2004), Tanaka and 

Nakazawa (1993, 1994) and Matsoukas (2015), and numerically by Alfonso and Raga (2017).  

The sol-gel transition has been observed experimentally (for example: aerogels in aerosol physics), 110 

and in other theoretical models such as that of percolation where there is a close analogy between 

percolation and droplet coagulation. In bond percolation, each lattice corresponds to a monomer, and 

a proportion p of active bonds is set randomly between sites. Then clusters of size s are defined as an 

ensemble of s occupied sites connected by active bonds. For a definite value of p=pc, a macroscopic 

cluster appears, corresponding to the sol-gel transition.  115 

Recent results in percolation theory show that the largest cluster follows the Gumbel distribution for 

subcritical percolation (Bazant, 2000) and, at the critical point, follows the Kolmogorov-Smirnov   (K-

S) distribution (Botet and Płoszajczak, 2005). The K-S distribution is the distribution of the maximum 

value of the deviation between the experimental realization of a random process and its theoretical 

cumulative distribution and it has the cumulative distribution: 120 
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Botet and Płoszajczak (2005) also found evidence (from numerical solutions of the KCE equation) 

that, for multiplicative coalescence (with a collection kernel proportional to the product of the masses), 125 

the largest cluster follows the distribution in Eq. 5 at the time of the phase transition. At this point, a 

hypothesis is formed in which the results obtained in percolation are extrapolated in order to find the 

probability distribution of the largest (runaway) droplet at t=Tgel.  

2.2 Some theoretical and experimental results for finite systems in coagulation theory and nuclear 

physics. 130 

We will now consider some results obtained for finite systems in coagulation theory (Botet, 2011) and 

in nuclear physics (Gruyer et al., 2013). Unlike those in infinite systems, fluctuations and correlations 

in a finite system are not negligible. We must emphasize that phase transitions cannot take place in a 

finite system. For this type of systems, the notion of pseudo-critical region is introduced.  

Some interesting simulation and experimental results were obtained for these systems in Botet (2011) 135 

for the Smoluchowski model (1) and in Gruyer et al., (2013) for nuclear multi-fragmentation. Botet et 

al. (2011) found, from stochastic simulations of coagulation process with the product kernel (for a 

system of N=512 monomers), that the distribution of the largest cluster in the pseudo-critical region 

can be described as a mixture of the well-known Gaussian and Gumbel distributions: 

1 2 1 2( , , , , , ) ( , , ) (1- ) ( , , )f x Gumbel x Gauss x                                 (6) 140 

where θ is the mixing fraction of each distribution. The Gumbel distribution is one of the asymptotic 

distributions from Extreme Value Theory (EVT) and has the form: 

-( - )-( , , )
xeGumbel x e
 

                                                          (7) 

where μ is the position parameter and β the scale parameter. The distribution in Eq. 6 has its origin in 

the fact that, for finite systems, in the pseudo-critical zone, the system experiences large fluctuations 145 

and the gel distribution is a combination of both distributions, a Gumbel and a Gaussian (Gruyer et al, 

2013). A similar result was obtained by Botet (2011) using synthetic data from stochastic simulations, 

for collision probabilities proportional to the product of the masses. 
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The fundamental hypothesis of our work is that the gel mass (largest drop) in the initial phase of 

precipitation formation, is distributed as a mixture of two asymptotic distributions: one Gumbel and 150 

one Gaussian, following the pseudo-critical clustering scenario described in Gruyer et al. (2013). 

3. Analysis of the largest droplet distribution obtained from synthetic data. 

 

3.1 Results for the product kernel (K(i,j)=Cxixj) 

 155 
The empirical distributions of the largest droplet mass (Mmax) were obtained from Monte Carlo 

simulations, following Botet (2011). The species accounting formulation (Laurenzi and Diamond, 

2002) of the stochastic simulation algorithm (SSA) of Gillespie (1975) is used for the stochastic 

simulation in this work.  

Our methodology of synthetic data analysis consists in generating N-realizations (at each time step) 160 

using the algorithm of Gillespie. For each realization, there is a certain distribution of droplets. The 

largest droplet mass obtained from each distribution at each realization (for a fixed time step) would 

be the distribution to be fitted to the distribution in Eq. 6. Then, the sample size would be equal to the 

number of realizations of the Monte Carlo algorithm.  

Simulations were performed for the product kernel (K(i,j)=Cxixj),  with an initial mono-disperse 165 

distribution of 100 droplets of 14 μm in radius (droplet mass 1.15×10-8g) in a cloud volume of 1 cm3, 

with C= 5.49x1010 cm3 s-1. The empirical distribution of the maxima was obtained for 1000 realizations 

of the stochastic algorithm.  

Figures 1(a)-1(d) present the largest droplet mass empirical distributions obtained at four different 

times. Note that Eq. 6 provides a good fit for the distribution of the mass of the largest droplet ( maxM170 

) both around and far from the sol-gel transition time (Tgel), which was calculated from Eq. 4 and found 

equal to 1378 s. 

Figure 2 presents the time evolution of the coefficient , which represents the mixing fraction in Eq. 

6, for the time interval [500s, 2000s]. Despite the noisy behavior of the coefficient   (due to the 

finiteness of the system), there is a decreasing trend with time, showing larger values of   (~0.65) for 175 
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times close to 500s and values down to 0.2 at the end of the time interval. This figure indicates that, 

although the largest droplet distribution is adequately described by a mixture of Gaussian and Gumbel 

distributions, it has a larger Gumbel component (see Eq.6) during the early stages of the coagulation 

process. As time progresses, the Gaussian contribution becomes more important (smaller values of ) 

in providing a better fit to the largest droplet mass distribution. 180 

These findings are in accordance with Gruyer et al. (2013) and Botet (2011): at an early stage of 

coagulation development, correlations are negligible, and consequently, the largest fragments can be 

considered independent random variables. Therefore, the probability distribution of the largest 

fragment is given by the Limit Theorem for Extremal Variables, which states that the maximum of a 

sample independent and identically distributed random variables can only converge in distribution to 185 

one of three possible distributions: Gumbel, Fréchet or Weibull.  

As the coagulation process continues, fluctuations and correlations between droplets increase and the 

system reaches a critical point (Alfonso and Raga, 2017), where the largest droplets are no longer 

independent random variables, the Limit Theorem for Extremal Variables no longer applies, and the 

largest droplet distribution is no longer described by a Gumbel distribution.  At later times, away from 190 

the pseudo-critical region, the Gaussian contribution is the most important part of the largest droplet 

mass distribution. This can be explained by the additive nature of the process at this stage (Botet, 2011; 

Gruyer et al. 2013; Clusel and Bertoin, 2008), and the central Limit Theorem applies. 

In the intermediate zone (which can be defined as the pseudo-critical zone), the distribution is well 

described by a mixture of Gumbel and Gaussian distributions and the weights associated with each 195 

distribution are comparable. It would be expected to observe 0.5   at the infinite system critical 

point, Tgel , found to be 1378s from Eq. (4). However, due to the finiteness of the system, the critical 

point corresponds approximately to a value 0.35   (see Fig. 2).  

We can find whether or not a system is in the pseudo-critical region by defining the following ratio 

(Botet, 2011; Gruyer et al., 2013): 200 
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s
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Gaus ian Gumbel

Gaus ian Gumbel

w w

w w






                                                              (8) 

where Gumbelw   and s 1Gaus ianw    are the relative weights of the Gumbel and Gaussian 

distributions, respectively (see Eq. 6).  By definition 1, 1     corresponds to pure Gaussian and 

Gumbel distributions. If 1 1    the system is in the pseudo-critical domain. 

Alternatively, Botet (2011) estimates the limits of the pseudo-critical region as the times where the 205 

largest droplet mass standard deviation max( )M  calculated from Eq. 9 is small.  

2

max max max

1

1
( ) ( )

rN
i

ir

M M M
N




                                               (9) 

In Eq. (9), Nr is the number of iterations of the stochastic simulation algorithm of Gillespie (1975), 

maxM the mass of the largest particle and maxM  its ensemble mean over all the realizations. 

Even though the second moment of the distribution 2( )M   diverges (see Eq. 3) for the infinite system, 210 

there is no divergence of the second moment for a finite system (with no critical behavior). For that 

case, the standard deviation for the largest particle mass, max( )M , is expected to reach a maximum in 

the vicinity of  
1

2 0( )


gelT CM t . Moreover, computing the time evolution of the normalized standard 

deviation max max( )M M  instead of max( )M  yielded better results in estimating gelT  in Inaba 

(1999), Alfonso et al. (2008, 2010, and 2013) and Alfonso and Raga (2017). 215 

Figure 3a shows the time evolution of max max( )M M  as an example, for the system defined at the 

beginning of this section. Note that the maximum occurs at T=1315 s, close to Tgel=1378 s calculated 

from Eq. (4), and the time when the maximum of max max( )M M occurs is a reliable estimate of the 

sol-gel transition time for the corresponding infinite system.  

Botet (2011) defines max0.1   as the limits of the pseudo-critical interval, which corresponds to 220 

inf 0.37 gelt T  and sup 1.5 gelt T  (see Figure 3b).  While Eq. (8) could be used to determine if a sample 
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collected inside a cloud is in the pseudo-critical region, Eq. (9) implies that the time evolution of

max( )M  is needed and therefore, a practical application is only viable in the case of synthetic data 

obtained from stochastic simulations, or cloud droplet data collected dynamically at different times or 

cloud levels. 225 

 

3.2. Numerical results for turbulent conditions 

In our simulations, turbulent effects were considered by implementing the turbulence induced collision 

enhancement factor ( , )Turb i jP x x that is calculated in Pinsky et al. (2008) for a cumulonimbus with 

dissipation rate ε=0.1 m2s-3and Reynolds number Reλ=2×104, and for cloud droplets with radii ≤ 21µm. 230 

The turbulent collection kernel has the form:  

( , ) ( , ) ( , )Turb i j Turb i j g i jK x x P x x K x x                                           (10) 

where ( , )g i jK x x is hydrodynamic kernel, which considers collisions between droplets under pure 

gravity conditions and has the form: 

2( , ) ( ) ( ) ( ) ( , )  g i j i j i j i jK x x r r V x V x E r r                                    (11) 235 

The hydrodynamic kernel takes into account the fact that droplets with different masses (xi and xj and 

corresponding radii, ri and rj) have different terminal velocities ( )iV x , which are functions of their 

masses. In Eq. 10, E(ri ,rj) are the collection efficiencies calculated according to Hall (1980).  

Monte Carlo simulations were performed with an initial bi-modal distribution (200 droplets of 10 μm 

in radius, and 50 droplets of 12.6 μm) for a cloud volume of 1 cm3
.  The empirical distribution for the 240 

largest droplet mass was generated by extracting the maximum from the droplet distribution at each 

realization, for a fixed time step. Additionally, the ratio max max( )M M  is evaluated from 1000 

realizations of the Monte Carlo algorithm (see Fig. 4), that reaches its maximum at around 1815 s,  and 

serves as an estimate for the sol-gel transition time for the infinite system. Four empirical probability 

distributions were fitted to the combined distribution (Eq. 6) for times in the vicinity of gelT . The results 245 

Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-1210
Manuscript under review for journal Atmos. Chem. Phys.
Discussion started: 18 January 2019
c© Author(s) 2019. CC BY 4.0 License.



 11 

are displayed in Figures 5(a)-5(d). Note that also for this case, the combined distribution (Eq. 6) 

provides a good fit for the largest droplet mass. Moreover, the coefficient   decreases in time (check 

Fig. 5), in concordance with section 3.1. 

 

4. Analysis of the largest droplet (gel) radius distribution from observations. 250 

 

In this section, the methodology of analysis described before is applied to a dataset of cloud droplet 

size distribution (2-50 µm) collected with a Droplet Measurement Technologies fog monitor (FM-120) 

installed on a hilltop in Are, Sweden.  The FM-120 is a single particle optical spectrometer (Spiegel et 

al., 2012) that derives size from light scattered from individual droplets that pass through a focused 255 

laser beam. The equivalent optical size ranges from 2-50 µm.  The fog monitor sample volume has a 

cross sectional area of 0.25 mm2 and a flow speed of 14 m/s. The raw data consists of each droplet’s 

radius and inter-arrival time (elapsed time since previous particle). More than seven million droplets 

were processed over a period of 4 hours.  

The block maxima (BM) approach in extreme value theory (EVT) was applied, which requires dividing 260 

the observation period into non-overlapping periods of equal size and restricts attention to the 

maximum observation in each period [see Gumbel (1958)].  

Following the BM approach, considering the sectional area and flow speed, the time series was divided 

into consecutive unit blocks of 1cm3 in volume, corresponding to a cloud length of approximately 400 

cm (~0.3 s interval in the time series). The droplet distributions in each unit block, are equivalent to 265 

the distributions obtained for each realization (for a fixed time) of the Monte Carlo algorithm described 

in the previous section, and each block can be interpreted as an independent realization of a stochastic 

process. 

The maximum (radius of the largest droplet) is recorded from each consecutive unit block in order to 

generate the distribution for comparison with the theoretical combined distribution described in Eq 6.  270 

The sample size corresponds to the number of consecutive blocks in which the time series was divided, 

which in this case is 49647 blocks which is equivalent to about 4 hours of data. Figure 6 displays the 
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number of droplets in each block, which fluctuate between 0 and 392, with an average of 146. Since 

each block is considered as a realization of a random process, the largest droplet radius series must be 

fitted to the combined distribution in Eq. 6 for samples with certain conditions of homogeneity. 275 

The average sample size (number of unit blocks) for which the largest droplet maxima can be fitted to 

the combined distribution in Eq. 6 is then estimated. This expected value can be calculated from the 

following procedure:  

The conditional probability ( )P Admixture x , where x is the sample size, is calculated using Monte 

Carlo simulations. This calculation uses a given number of consecutive blocks with a mixture of 280 

distributions. The simulations are carried out by randomly choosing Ntotal samples from the 

measurements (that consist of consecutive blocks) of size x, fitting the data to the distribution in Eq. 

6, and determining if they do or do not follow that distribution. The decision is based on application 

of the Kolmogorov-Smirnov (K-S) goodness of fit test for a confidence level 0.05  . The 

experimental statistics for the K-S test can be obtained by arranging the data in ascending order (x1, 285 

x2,…, xn), and deriving the maximum difference between the rank statistics (i-1)/n and the theoretically 

calculated cumulative density function  ( )iF x : 

 
1

1
max max ( ) ,max ( )n i i

i n

i i
D F x F x

n n 

 
   

 
                                       (12) 

If this value of nD  is smaller than a certain threshold value
nD , we accept that the data obeys the 

probability distribution under consideration and the null hypothesis H0 cannot be rejected at a 290 

significance level α. The significance level α refers to the probability of the assumed distribution 

pattern being rejected. The limiting values of nD can be calculated from the K-S cumulative 

distribution (See Eqs. 5a and 5b). Tables with limiting values can be found, for example in Gnedenko 

(2017). 
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However, given that the parameters of the distribution ( )F x  were estimated from the observed data, 295 

theoretical limiting values provided by the K-S cannot be used. In this case, the limiting values 
nD  

are smaller than the case with known parameters and must be obtained via Monte Carlo simulations 

(See Appendix A for more details). Then, the conditional probability can be calculated as:   

0( ) totalP Admixture x N N                                                   (13) 

where N0 is the number of cases for which the null hypothesis H0) at α=0.05 cannot be rejected. 300 

However, what is really needed is the conditional probability ( )P x Admixture , that is the probability 

that a sample has size x, given that the data (viewed as a time series of maxima for each block) in that 

sample follow a mixture of distributions. This probability can be calculated using Bayes’ theorem from 

the expression:  

( ) ( ) ( )P x Admixture P Admixture x x                                        (14) 305 

By writing this theorem in the form (13), we are assuming that the marginal likelihood is considered 

as a normalization factor.  Therefore, ( )P x Admixture  can be computed using expression (14) and then 

normalized under the requirement that it is a probability mass function (pmf). In (14), the prior 

probability ( )x  is assumed to have a uniform distribution. Then, the expected value x  can be 

calculated from the expression: 310 

( )x P x Admixture x                                                  (15) 

Turning to a concrete example, Ntotal=100 samples with sizes x=100, 200,…, 1000 were randomly 

selected from the data; and the probability ( )P Admixture x calculated following (13). The probability 

mass function ( )P x Admixture  (pmf) was obtained by applying the procedure previously described 

and the expected value was found to be x  544 (about 163 s).  315 

A thorough statistical analysis was conducted by fitting maxM to the combined distribution in Eq. 6 for 

100 samples with sizes at and below the average (100, 200, 300, .., 500)  that were randomly selected 
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from the entire data (49647 blocks). For each random sample three null (H0) hypotheses were verified: 

i) the sample comes from a mixture of distributions (6): ii) the sample comes from a Gumbel 

distribution; iii) the sample comes from a Gaussian distribution. The three hypotheses were examined 320 

by the K-S method with limiting values calculated from Monte Carlo simulations (see Table A1).  

The results for sample sizes 100, 200, 300, 400 and 500 are shown in Table 1. As an example, for case 

1 (sample size 100) the null hypothesis H0 at α=0.05 was rejected for 13, 35 and 92 samples for the 

mixture, Gaussian and Gumbel distributions, respectively. For case 2 (sample size 200), the null 

hypothesis was rejected for 27, 58 and 96 samples. For n=500 for the mixture of distributions (6), the 325 

null hypothesis H0 was rejected for 50 samples. For the Gumbel distribution, the null hypothesis was 

rejected for all the samples (100) and the null hypothesis for the Gaussian distributions was rejected 

for 83 samples. 

The results shown in Table 1, confirm that for all sample sizes, the mixture of distributions provides a 

better fit than the Gumbel and Gaussian distributions, confirming the correctness of the choice of the 330 

mixture of distributions (Eq. 6) for modelling the largest droplet radius. As an example, Figs. 7a-d 

present, for a sample size of n=500, the largest droplet mass empirical distributions obtained for four 

different samples that are distributed following the mixture, and the corresponding fit of Eq. 6.  

 

5. Discussion and conclusions 335 

An infinite system has two possible evolutionary phases: the ordered phase and the disordered or 

statistical phase.  In the disordered phase there is a continuous droplet distribution and a near-equality 

of the largest and second largest mass. After the sol-gel transition, there is an ordered phase 

characterized by the existence of a giant macroscopic droplet (gel) coexisting with an ensemble of 

microscopic particles. 340 

A finite system can be in the ordered, disordered and pseudo-critical phases, according to the scenario 

described in Botet (2011) and Gruyer et al. (2013). The ratio , defined in Eq. 8, takes values between
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1, 1    , which correspond to pure Gaussian and Gumbel distributions, and when 1 1    the 

system is in the pseudo-critical domain. In the disordered phase, fluctuations and correlations are 

negligible, there are only a few collision events, and Mmax is the largest part of randomly distributed 345 

droplets. In that case, the distribution of the mass of the largest droplets follow a Gumbel distribution. 

At later times in the evolution of the finite system, there are many collision events and Mmax is the 

result of the coalescence of other droplets. There is an additive process, the central limit theorem 

applies and the mass (or radius) of the largest droplets follows a Gaussian distribution. 

In the pseudo-critical phase, the fluctuations and correlations are no longer negligible and the 350 

distribution is of neither one nor the other asymptotic forms (Gumbel or Gaussian). In this case, the fit 

of the largest droplet mass (gel), is a mixture of a Gumbel (disordered state) and Gaussian (ordered 

state) distributions. As was demonstrated in the preceding section, this combined distribution (Eq. 6) 

is a good approximation to the largest droplet distribution (gel) in the pseudo-critical region. The fact 

that the mixture of distributions provides a better fit than the Gumbel and Gaussian distributions shows 355 

that the samples selected in our study are mainly in the pseudo-critical phase. To confirm this fact, the 

ratio   was calculated for 1000 samples of size n=500 selected randomly from the data.  Figure 8 

shows that for 90% of the samples the ratio   lies in the interval [-0.9, 0.9], clearly indicating that 

samples are in the pseudo-critical region.  

We could show that the gel radius (largest droplet) is well described as a mixture of the two asymptotic 360 

distributions, because the effect of the collision-coalescence process was in some way isolated for the 

orographic cloud data analyzed in this report.  A similar analysis could be performed for the early stage 

of a convective cloud formation, before some other processes, e.g. entrainment, mixing, turbulence or 

ice formation, could obscure the finite system pseudo-critical scenario, and the gel formation that is 

basically a consequence of the collision-coalescence process could no longer be observed.  365 

In this work, the early stage of formation of a warm cloud is viewed in the context of critical 

phenomena theory, and can be thought of as being in ordered, disordered or pseudo critical phases. 
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The disordered phase corresponds to a cloud with a droplet spectrum formed mainly by the cloud 

condensation nuclei activation process, with an almost random distribution of particles, and the 

distribution of the mass of the largest droplets is Gumbel.  In the pseudo-critical phase a giant droplet 370 

(gel) locally coexists with a continuous ensemble of small droplets. As the system considered is finite, 

there is no sudden change from disordered to ordered phase (sol-gel transition), but rather there is a 

pseudo-critical phase in which fluctuations are important and the gel distributes according to Eq. 6. 

The analysis presented here of the largest droplet distribution provides useful insight into the early 

stages of cloud development in warm clouds. In follow up studies, the analysis of cloud data at different 375 

time or distance from cloud base would be helpful in identifying the pseudo-critical phase and tracking 

the transition from the disordered to the ordered phase dynamically.  
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6. Appendix A 

When parameters of a distribution are estimated from the data, the limiting values provided for the 

Kolmogorov-Smirnov criterion cannot be used. In this case, approximate limiting values and p-values 

can be obtained via Monte Carlo simulations. First, the parameter vector  1 2
ˆ ˆ ˆˆ ˆ ˆ, , , ,       385 

is estimated for a given sample of size n, and the test statistics (Eq. 12) are calculated assuming that 

the sample is distributed according to  F x;̂ , returning a value of n
D . Next, a sample of size n  F x;̂  

variates is generated and the parameter vector 
1̂  is estimated. The test statistics is again calculated 

assuming that the sample is distributed according to  1
F x;̂ . Such a calculation was made for 

different sample sizes (n=100, 200,…, 500) 1000 times, and the distribution pattern of Dn was derived 390 

(See Table A1). Then, 5% percent point (for α=0.05) from the greater side was taken as the estimated 
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0.05

nD limiting values. The estimate of p-value is calculated as the relative number of occasions is 

which the test statistics is at least as large as Dn. The numerically calculated K-S limiting values for 

the three distributions under analysis (mixture, Gumbel and Gaussian) for α=0.05 are shown in Table 

3. As can be checked in Table A1, the values are smaller than the case with known parameters, that 395 

can be estimated (for α=0.05) as1.36 n . 
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Table 1. For each sample size, number of samples with the null hypothesis H0 rejected at α=0.05 for 

all the distributions. 

 490 
Case Total number of  

random samples 

Sample size       Fitted 

Distributions 

At α=0.05 

Reject H0 

(Number of 

Samples) 

    Mixture 13 

1 100 100 Gumbel 92 

   Gaussian 35 

   Mixture 27 

2 100 200 Gumbel 96 

   Gaussian 58 

   Mixture 35 

3 100 300 Gumbel 98 

   Gaussian 70 

   Mixture 40 

4 100 400 Gumbel 100 

   Gaussian 77 

   Mixture 50 

5 100 500 Gumbel 100 

   Gaussian 83 
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Table A1. Estimated limiting values (for α=0.05) for the Kolmogorov-Smirnov goodness of fit test 

for the three distributions. 

 505 

 K-S (estimated) limiting values (Dn) for α=0.05) 

Sample size Mixture Gaussian Gumbel 

100 0.0725 0.0873 0.0853 

200 0.0494 0.0624 0.0630 

300 0.0432 0.0517 0.0487 

400 0.0369 0.0461 0.0419 

500 0.0324 0.0414 0.0396 
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                                      (c)                                                                             (d) 

 525 

(a)                                                                           (b) 

FIG. 1. (a)–(d) (dots) largest droplet mass distributions calculated from Monte Carlo simulations at 

four different times, for a system with an initial mono-disperse distribution of 100 droplets of 14 μm 

in radius; (solid line) fit using Eq. 6.  
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FIG. 2. Time evolution of the coefficient   in Eq. 6, obtained for a simulation with the product kernel. 
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(a)                                                                          (b) 540 

FIG 3. For the finite system, the normalized standard deviation 
max max( ) /M M of the largest droplet 

mass versus time (Fig. 3a). The initial number of droplets was set equal to N=100 droplets of 14 μm 

in radius in a volume of 1 cm3. Simulations were performed with the product kernel ( , ) i jK i j Cx x  

(with C= 5.49x1010 cm3 g-2 s-1), and Nr=1000 realizations of the stochastic algorithm were performed. 

The maximum value of
max max( ) /M M  is found to be 1315 sec.  (dashed vertical line), and is very 545 

close to the sol gel transition time (continuous vertical line) for the infinite system (1378 sec). In Fig. 

3b the small end of the pseudo-critical domain is estimated as the time where max max( ) 0.1M  . 
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FIG. 4. Time evolution of the normalized standard deviation 
max max( ) /M M of the largest droplet 

mass versus time estimated from the Monte Carlo algorithm. The simulations were performed for the 

hydrodynamic kernel with a bidisperse initial condition (200 droplets of 10 μm in radius, and 50 555 

droplets of 12.6 μm) in a volume of 1 cm3.   
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                                       (c)                                                                             (d) 

 560 

                                        (a)                                                                            (b) 

 FIG. 5 (a)–(d) (dots) Simulated Mmax distributions in a system with an initial bidisperse distribution 

(200 droplets of 10 μm in radius, and 50 droplets of 12.6 μm) at four different times; (full line) fit using 

Eq. 6. The simulations were performed for the turbulent hydrodynamic kernel. 
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FIG. 6. Time series of the number of droplets per block, sampled at a hilltop in Are, Sweden. 
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 580 

 

 

 

 

(a)                                                                              (b) 585 

 

 

 (c)                                                                              (d) 

FIG. 7. For four random samples that are distributed following the admixture distribution (with sample 

size 500), observed (histogram) and fitted (solid line) using Eq. 6. Also shown for each distribution is 590 

the p-value of the goodness of fit test, and the parameter θ indicating the weight of the Gumbel 

component. 
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FIG. 8. Histogram of the ratio s s( ) ( )Gaus ian Gumbel Gaus ian Gumbelw w w w    , which measures the distance 

to the critical point.  
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