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México City, April 7, 2019 

 

Reply to Reviewer: 

 

First, we would like to thank the anonymous referee for his/her comments that surely will 

improve the quality of our paper.  Our revised version will include many of his/her 

suggestions. 

 

1) Specific Comments: 

In the revised version of our paper, we will expand the list of previous papers that addressed 

the lucky droplet model for the collision coalescence process (by including some papers 

suggested by the reviewer), and also will explicitly explain the main differences between 

previous studies and present work, both in the introduction and in the conclusions. 

 

On the main differences between previous studies and present work: 

 

Previous efforts on this direction were mainly focused on finding the distribution of times 

for N collisions (Telford, 1955; Kostinski and Shaw, 2005; Wilkinson; 2016), while we were 

concentrated on studying the “lucky droplet” size distribution to determine whether or not 

the runaway growth process due to collision-coalescence has started. 

For example, Kostinski and Shaw (2005) present a distribution of the time to produce drizzle 

by calculating the convolution of the exponentially distributed times between collisions. 

They found the distribution of:  
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with Nc fixed, where the ti are the times between droplet collisions and Nc the number of 

collisions, which have an exponential distribution. 

Wilkinson (2016) found the probability density for the time 
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of its average value (far from the mean value). As the precipitation occurs on a time scale 

that is smaller than the typical scale for one collision, the problem was solved by applying 

large deviation theory. More details on large deviation theory (LDT) can be found in this 

document in the reply to question 20.  

 

References: 

Kostinski, A. B., & Shaw, R. A. (2005). Fluctuations and luck in droplet growth by  

 coalescence. Bulletin of the American Meteorological Society, 86(2), 235-244. 

Telford, J. W. (1955). A new aspect of coalescence theory. Journal of Meteorology, 12(5),  

 436-444. 

Wilkinson M. 2016. Large deviation analysis of rapid onset of rain showers. Phys. Rev.  
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 Lett. 116: 018 501, doi:10.1103/PhysRevLett.116.018501. 

Reviewer: 

2. Many papers have studied the collision-coalescence problem, which should be also 

addressed in the introduction. A good summary is given by Grabowski and Wang (2013) [5]. 

The work (summarized in Grabowski and Wang (2013) [5]) by the group of Wang should be 

addressed. Several stochastic models by Pinsky et al (2004, 2007, 2008) [8]-[10], Mehlig et 

al (2007) [6], and Wilkinson et al (2006) [7] should be cited. Recent numerical work by 

Onishi and Seifert (2016) [11], Li et al (2017) [12], Li et al (2018) [13], and Chen et al. 

(2018) [14]. 

Reply: 

As suggested by the reviewer, a list of papers that addressed the collision-coalescence 

problem will be added. 

 

Reviewer: 

I would suggest the authors compare the Monte-Carlo method used in Shima et al. 2009 [15], 

Li et al (2017) [12] and Li et al (2018) [13]. 

Reply: 

The Monte Carlo algorithm (Difference between the algorithm of Gillespie (1976) and 

the algorithm of Shima (2009)): 

 

In our study we use the stochastic simulation algorithm (SSA) developed by Gillespie (1976) 

for chemical reactions which rigorously account for fluctuations and correlations in a 

coalescing system. This algorithm was reformulated to simulate the kinetic behavior of 

aggregating systems by Laurenzi and Diamond (2002), by defining species as a type of 

aggregate with a specific size and composition. In our case, species represent droplets of 

different sizes. 

The main difference between the Gillespie’s SSA and the Monte Carlo method used in Shima 

et al. (2009), is that the SSA involved the collision of only two physical particles (droplets in 

our case) per MC cycle, while in the Super Droplet (SD) method developed by Shima et al. 

(2009) and other algorithms based on the simulation particles (SIP) approach (Li et al, 2017), 

in each MC cycle collide super-droplets, that represents a multiple number of droplets with 

the same attributes (radius r or mass in the simplest case) and position. 

For Gillespie’s SSA the number of collisions (CT) during a time interval Δt can be estimated 

from the expression:  
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In (1) K(i,j) is the collection kernel, V is the coalescence cell volume and Ni are the number 

of particles in species with index i (particles of the same radius).  
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As the number of collisions CT (see Eq. 1) will increase quadratically with the initial number 

of particles (Gillespie, 1975), we can conclude that the application of the SSA in systems 

involving a large number of particles, and with only two physical particles colliding per MC 

cycle is highly impractical. For example, in a three dimensional cloud model the typical 

coalescence cell has a volume of 109 cm3 and considering a droplet concentration at cloud 

base typical of maritime clouds (102 cm-3), then the number of droplets will be about 1011. 

Then, in this case the Gillespie’s SSA is not a suitable option due to the huge number of 

collisions in large volumes, and the high cost in computation. 

The super-droplet method of Shima et al. (2009) was design to overcome this problem. The 

total collision rate in a time interval for this method can be calculated from the expression: 
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where (2) ξi  is the super-droplet’s multiplicity (number of physical droplets of the same 

radius) and NSD the number of super-droplets. From comparison of (S1) and (S2) it can be 

concluded that the number of super-droplet’s collisions in a time interval it’s much smaller. 

In the original paper Shima et al. (2009) compared the results obtained with Monte Carlo 

simulations with the SD method with numerical solutions of the kinetic collection equation 

and confirmed that the SD method reproduces the solution of the KCE if the number of super 

droplets NSD is sufficiently large ( about 217). However, Unterstrasser et al. (2017) show that 

convergence is possible with a number of super droplets in the order of 102. Another 

simplification of the SD method is that instead of considering N(N-1)/2  collision pairs only 

[N/2] non overlapping randomly selected pairs are considered.  

As was stated before, the SSA of Gillespie (1975, 1976) rigorously account for fluctuations 

and correlations in a coalescing system, and the temporal evolution of mean values at each 

droplet size can be obtained by averaging over many runs. However, in order to obtain 

accurate solutions at the large end of the distribution, a large number of realizations is 

required. The alternative is the master equation (Bayewitz et al, 1974; Alfonso, 2015; 

Alfonso and Raga, 2017), which also accounts for fluctuations and correlations, and can serve 

as a reliable benchmark for different Monte Carlo methods.  

Dziekan and Pawlowska (2017) performed “one to one” simulations (in that case the 

multiplicity is ξi=1, and SD is equivalent to a physical droplet) with the SD method of Shima 

(2009), compared the solutions with the master equation (Alfonso and Raga, 2017)   and 

found that both approaches are generally in agreement, only with some differences at the 

large end of the distribution. Simulations results by Unterstrasser (2018) also show a good 

correspondence with the master equation even at the large end of the droplet size distribution. 

Gillespie's (1975, 1975) SSA works perfect for our purposes because it rigorously account 

for fluctuations and correlations that are inherent to a finite system. Due to the finiteness of 

the systems, our simulations are performed for small volumes with small number of droplets 

(in the range 50-300 cm-3). 
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References: 

Alfonso, L.: An algorithm for the numerical solution of the multivariate master equation for 

stochastic coalescence. Atmospheric Chemistry and Physics, vol. 15, no 21, p. 12315-

12326, 2015. 

Alfonso, L. and Raga, G.B.: The impact of fluctuations and correlations in droplet growth by 

collision-coalescence revisited. Part I: Numerical calculation of post-gel droplet size 

distribution, Atmos Chem. Phys., 17, 6895–6905, 2017. 

Bayewitz, M.H., Yerushalmi, J., Katz, S., and Shinnar, R.: The extent of correlations in a 

stochastic coalescence process, J. Atmos. Sci., 31, 1604-1614, 1974. 

Dziekan, P., & Pawlowska, H. (2017). Stochastic coalescence in Lagrangian cloud 

microphysics. Atmospheric Chemistry and Physics, 17(22), 13509-13520.Gillespie, 

D.T.: An Exact Method for Numerically Simulating the Stochastic Coalescence 

Process in a Cloud, J. Atmos. Sci. 32, 1977-1989, 1975. 

Gillespie, D.T.: An Exact Method for Numerically Simulating the Stochastic Coalescence 

Process in a Cloud, J. Atmos. Sci. 32, 1977-1989, 1975. 

Gillespie, D. T. (1976). A general method for numerically simulating the stochastic time 

evolution of coupled chemical reactions. Journal of computational physics, 22(4), 

403-434. 

Laurenzi, I. J., Bartels, J. D., and Diamond, S. L.: A general algorithm for exact simulation 

of multicomponent aggregation processes. Journal of Computational Physics, 177(2), 

418-449, 2002. 

Li XY, Brandenburg A, Haugen NEL, Svensson G. 2017. Eulerian and l agrangian 

approaches to multidimensional condensation and collection. J. Adv. Modeling Earth 

Systems 9(2): 1116–1137. 

Shima, S. I., Kusano, K., Kawano, A., Sugiyama, T., & Kawahara, S. (2009). The super‐

droplet method for the numerical simulation of clouds and precipitation: A particle‐

based and probabilistic microphysics model coupled with a non‐hydrostatic 

model. Quarterly Journal of the Royal Meteorological Society, 135(642), 1307-1320. 

Unterstrasser, S., Hoffmann, F., & Lerch, M. (2017). Collection/aggregation algorithms in 

Lagrangian cloud microphysical models: rigorous evaluation in box model 

simulations. Geoscientific Model Development, 10(4), 1521. 

 

Reviewer: 

3. For the fitted distribution in Fig.1, 5, and 7, could the authors have more samples to get 

better statistics? 

Reply: 

The number of realizations in our Monte Carlo algorithm, will be the sample size in the 

application of the Block Maxima approach (Figs 1 and 5 of the paper). That’s why do not 

increase the number of realizations when generating synthetic data, taking into account that 

the number of realizations in the simulations (1000) must be close to the average number of 

blocks for which the largest droplet maxima can be fitted to the combined distribution (Eq. 

6 of the paper).  

On the other hand (analyzing the problem in terms of the accuracy needed for calculating the 

average values), the simulations were performed for 1000 realizations that is sufficiently to 

obtain the desired accuracy for the expected values:  
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The errors of the stochastic procedure can be calculated following Gillespie (1975) from the 

expression: 
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Where N the ensemble average and Ni is the droplet concentration for each realization. The 

ensemble average will be estimated with the desired accuracy if the condition  

 

( ( )) ( ) 1N t N t                                                     (S6) 

fulfilled. The errors of the procedure can be checked in Fig. 5 of Alfonso et al. (2013), 

demonstrating that the Monte Carlo averages are calculated with the desired accuracy. For 

Fig. 7, the sample size (500) was set equal to the average number of blocks for which the 

largest droplet maxima can be fitted to the mixture of distributions. 

 

References: 

Alfonso, L., Raga, G. B., and Baumgardner, D.: The validity of the kinetic collection equation 

revisited–Part 3: Sol–gel transition under turbulent conditions. Atmospheric 

Chemistry and Physics, vol. 13, no 2, p. 521-529, 2013. 

Gillespie, D.T.: An Exact Method for Numerically Simulating the Stochastic Coalescence 

Process in a Cloud, J. Atmos. Sci. 32, 1977-1989, 1975. 

 

 

 

Reviewer: 

4. A question related to question 3.: on Line 239, the authors used 200 droplets of 10um, and 

50 droplets of 12.6 um for the Monte Carlo simulation. Is it statistically convergent? Can the 

authors provide a statistically convergent study (similar to the one in Li et al (2017) [12])? 

Reply: 

The idea was to perform simulations for small systems (with a small number of particles) for 

which fluctuations and correlations are relevant. That’s why the number of droplets per cm3 

use in the simulations are small, and of the same order of the droplet concentrations obtained 

from observations (which fluctuate between 0 and 392, with an average of 146). This point 

will be clarified in the revised version of the paper. 

 

Reviewer: 

5. L65: please provide reference for the use of “gel formation” in “percolation theory” and 

“nuclear physics” respectively. 

Reply: 

The corresponding references will be added in the revised version: 
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Botet, R., Płoszajczak, M., Chbihi, A., Borderie, B., Durand, D.,and Frankland, J.: Universal 

fluctuations in heavy-ion collisions in the Fermi energy domain. Physical Review 

Letters, 86(16), 3514, 2001 

Botet, R. and Płoszajczak, M.: Exact order-parameter distribution for critical mean-field 

percolation and critical aggregation. Physical Review Letters, 95(18), 185702, 2005. 

Gruyer, D., Frankland, J. D., Botet, R., Płoszajczak, M., Bonnet, E., Chbihi, A., ... and  

Guinet, D.: Nuclear multifragmentation time scale and fluctuations of the largest 

fragment size. Physical review letters, 110(17), 172701, 2013. 

 

Reviewer: 

6. L80: ”average number of droplets”. Do you mean “droplet (particle) number density” ? 

I would suggest the author use the commonly accepted terminology in both cloud physics 

and statistical mechanics for readability. 

Reply: 

As was stated by Gillespie (1972), the definition of ( , )N i t in the kinetic collection equation 

(Eq. 1 of the paper), vary from author to author, but usually is taken to be the average 

concentration of cloud droplets of mass i at time t. In the revised version we will clarify 

this point in order to avoid confusions, as suggested. 

 

References: 

Gillespie, D. T. (1972). The stochastic coalescence model for cloud droplet growth. Journal 

             of the Atmospheric Sciences, 29(8), 1496-1510. 

 

Reviewer: 

7. L81: I don’t quite understand “the time rate of change of...”. Could you please rephrase 

the sentence for readability? 

Reply: 

We will rewrite the sentence in the revised version as suggested. 

 

Reviewer: 

8. Eq.3, where is “\tau” defined? 

Reply: 

There is a mistake in Eq.3, we should have written t instead of τ.  

 

Reviewer: 

9. I don’t understand how Eq.4 is obtained. What is T_gel? What is the physics of this time 

scale? 

Reply: 
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In (7), K(x,y) is the collection kernel N(x,t) is the average droplet concentration. If we 

consider the product kernel ( , ) ( )K x y C xy in equation (7), then, the equation for the second 

moment is: 
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After gelT , the total, a runaway droplet forms, and the kinetic collection equation is no longer 

valid, since the assumption of a continuous distribution breaks down.  There is in essence a 

phase transition in the system from a continuous distribution to a continuous distribution plus 

a runaway droplet. 

 

References: 

Drake, R.L.: The scalar transport equation of coalescence theory: Moments and kernels, J. 

Atmos. Sci., 29, 537-547, 1972. 

 

 

Reviewer: 

11. L110: please provide reference after “experimentally”. 

Reply: 

The corresponding reference was added:  

 

Lushnikov, A. A., Negin, A. E., & Pakhomov, A. V. (1990). Experimental observation of  

 the aerosol-aerogel transition. Chemical physics letters, 175(1-2), 138-142. 

 

Reviewer: 

12. L111: please provide reference after “percolation”. 

Reply: 

The corresponding reference will be added added: 

 

Kolb, M., & Axelos, M. A. (1990). Gelation Transition versus Percolation Theory.  

              In Correlations and Connectivity (pp. 255-261). Springer, Dordrecht. 
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Reviewer: 

13. Eq. 5a and 5b, please compare them with Kostinski and Shaw (2005) [2] and 

Wilkinson (2016) [3].  

Reply: 

Our approach is different from that of the mentioned authors. The Kolmogorov distribution 

(5a, 5b) and the mixture of a Gaussian and a Gumbel (6) are the distributions of the largest 

cluster (droplet) mass at critical point (Eqs, 5a, 5b) and in the pseudocritical region (Eq. 6) 

respectively. Kostinski and Shaw (2005) and Wilkinson (2016) were interested in the 

distribution of times for N collisions.  

 

Reviewer: 

14. L133: “We must emphasize that phase transitions cannot take place in a finite system. 

For this type of systems, the notion of pseudo-critical region is introduced”.Please provide 

more physical explanation and references for the statement and “pseudo-critical region”. 

Reply: 

In theory of critical phenomena, a phase transition is defined as a singularity in the free-

energy or any thermodynamic property of a system, which is proportional to the logarithm 

of the sum of exponentials. For finite-sized systems, the free energy is proportional to the 

logarithm of a finite number of exponentials, which are always positive. Then, such 

singularities are only possible within infinite systems by taking the thermodynamic limit 

N   (Bhattacharjee, 2001). For example, for the the Smoluchowski model (which is 

obtained in the thermodynamic limit), there is a disordered phase (before the sol gel 

transition), and ordered phase (after the sol gel transition), and  
1

2 0( )


gelT CM t is the 

critical point for the infinite system. Then, a phase transition cannot take place in a finite 

system. 

For an infinite system, fluctuations and correlations are neglected, and become important as 

the system approaches the critical point, where the correlation length diverges and there is 

power-law divergence of some quantities (for example, for the Smoluchowski model 

2 0
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  ). 

With decreasing size of the system, fluctuations and correlations become more important 

(Gruyer et al, 2013). There is no divergence of the second moment 
2( )M t (because such 

singularities are only possible within infinite systems), but it is expected to reach a maximum 

for a time close  
1

2 0( )


gelT CM t . For this kind of systems there is an entire region with large 

fluctuations (in the vicinity of  
1

2 0( )


gelT CM t ): the “pseudo critical region”. 

 

References: 

Bhattacharjee, S. M. (2001). Critical Phenomena: An Introduction from a modern 

perspective. In Field Theories in Condensed Matter Physics (pp. 69-117). Hindustan Book 

Agency, Gurgaon. 

 

Reviewer: 

15. L154: What is “product kernel”? If it is widely used, please provide several references. 

https://en.wikipedia.org/wiki/Power-law
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What are the assumptions for the kernel, linear drag, gravity only? Could you please 

explain why you choose this kernel? 

Reply: 

The product kernel is a kernel proportional to the product of the masses of the colliding 

particles ( , ) i jK i j Cx x . It is widely used because analytical solutions of the kinetic collection 

(KCE) or Smoluchowski equation (Eq. 1) have been obtained tor this kernel Golovin (1963), 

Scott (1968), Drake (1972) and Drake and Wright (1972). Additionally, analytical solutions 

have also been obtained for the constant and sum (with probability of collision proportional 

to the sum of the masses of the colliding particles) kernels. 

Lushnikov (1978, 2004) and Tanaka and Nakazawa (1993) also obtained analytical solutions 

of the master equation for the product kernel. Also, it is widely known that the product kernel 

is a gelling kernel (Lushnikov, 1978; 2004), and Lushnikov (1978, 2004) analytically 

obtained post gel particle size distributions for this case. 

The aforementioned factors explain why we chose this kernel: It is a gelling kernel, and (due 

to the existence of analytical solutions), there is analytical expression for the sol gel transition 

time (  
1

2 0( )


gelT CM t  ) for this case. Then, it served as a benchmark for our Monte Carlo 

experiments, and to evaluate our method for the calculation of the pseudo-critical region. 

The value of the constant C (C=5.49×1010) in the product kernel ( , ) i jK i j Cx x is a result of 

the polynomial approximation (Long, 1974): 

( , ) ( )K x y A B x y Cxy                                                    (S9) 

of the hydrodynamic collection  kernel: 

      
2

, ( ) ( ) , ( ) ( )K x y R x r y E x y V x V y                                    (S10) 

Long (1974) calculated the coefficients for the polynomials (9) approximating the 

hydrodynamic kernel (10) when the largest of the colliding drops is smaller than 50 μm. The 

results obtained by Long (1974) are displayed in the table S1 (Alfonso et al, 2008). 

 
 Table S1. Polynomials approximating the actual collection kernel K(x,y) 

(Long, 1974). 

Approximating Polynomial P(x,y) Coefficients 50R  μm (cm3 sec-1) 

( , )K x y A  A=1.20×10-4 

( , ) ( )K x y A B x y    A=0 

B=8.83×102 

( , )K x y Cxy  C=5.49×1010 

( , ) ( )K x y A B x y Cxy     

A=B2/C 

A=4.41×10-7 

B=1.36×102 
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C=4.18×1010 

( , ) ( )K x y A B x y Cxy     A=0 

B=4.16×102 

C=2.24×1010 
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Long, A. B. (1974). Solutions to the droplet collection equation for polynomial 

kernels. Journal of the Atmospheric Sciences, 31(4), 1040-1052. 

Lushnikov, A. A.: Coagulation in finite systems. Journal of Colloid and Interface Science,  
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Lushnikov, A. A.: From sol to gel exactly. Physical review letters, vol. 93, no 19, p. 198302, 

2004. 

Scott, W.T.: Analytic studies of cloud droplet coalescence, J.Atmos. Sci., 25, 54-65, 1968. 

Tanaka, H., Nakazawa, K.: Stochastic coagulation equation and the validity of the statistical 
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Reviewer: 

16. L164: Could you please explain what kinds of “Monte Carlo algorithm” you used? 

Is it comparable to Shima et al. 2009 [15], Li et al (2017) [12] and Li et al (2018) [13]? 

I understand you focus on the collision-coalescence process of cloud droplets. Could 

you please also provide the equations you solved numerically? Also, can you explain 

the difference of your “Monte Carlo algorithm” with those of Shima et al. 2009 [15], Li et al 

(2017) [12] and Li et al (2018) [13]. 

Reply: 

In this study we use the stochastic algorithm developed by Gillespie (1976) for chemical 

reactions. This algorithm was reformulated to simulate the kinetic behaviour of aggregating 

systems by Laurenzi and Diamond (1999), by defining species as a type of aggregate with a 

specific size and composition. In our case, species represent droplets of different sizes. 

As was remarked in the reply to question (2), the main difference between the Gillespie’s 

stochastic simulation algorithm (SSA) and other Monte Carlo methods based on the 

simulation particles (SIP) approach (like the Super Droplet method developed by Shima et 

al. (2009)), is that the Gillespie’s SSA involved the collision of only two physical particles 

(droplets in our case) per MC cycle, while in the approach based on SIP in each MC cycle 

collide SIP (super-droplets, for example) that represents a multiple number of droplets with 

the same attributes (radius r or mass in the simplest case) and position. 
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Could you please also provide the equations you solved numerically? 

 

The Gillespie (1976) algorithm generates a statistically correct trajectory (possible solution) 

of the master equation.  The steps below summarize the algorithm: 

 

 

1) Initialization: Initialize the number of droplets in each species (the species are 

defined as droplets of different sizes). There is a unique index μ for each pair of 

droplets i, j that may collide. For a system with N species  1 2,, ... , Nn n n  

 1

2

N N



 . The set     defines the total collision space, and is equal to the total 

number of possible interactions. 

 

 

2) Monte Carlo step: Generate random numbers to determine the next collision to occur, 

as well as the time to the next collision. The next collision μ is calculated according to 

the distribution  2

a
P




 , where a are calculated from the probabilities:  

1( , ) ( , ) i ja i j V K i j n n dt ≡Pr{ Probability that two unlike particles  i and j 

with populations (number of  particles) ni  and nj will collide within the 

imminent time interval 

 1 1
( , ) ( , )

2

i in n
a i i V K i i dt 

  ≡Pr{ Probability that two particles of the same 

species i  with population (number of particles) ni   collide within the imminent 

time interval}   

and

 1

2

1

N N

a








  . The time to the next collision is exponentially distributed with mean 

1/  

3) Update: Increase the time by the randomly generated time in Step 2. Update the 

droplet count based on the collision that occurred. 

4) Iterate: Go back to Step 2 unless the number of droplets is zero or the 

simulation time has been exceeded. 

In the revised version, the details of the Monte Carlo method will be discussed in one 

appendix. 

 

Reviewer: 

17. L167: Can you give a physical explanation about why you choose “C=5,49*10ˆ(10) 

cmˆ3sˆ{-1}”? 
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Reply: 

(This was discussed in the answer to question 15): 

 

The value of the constant C (C=5.49×1010) in the product kernel ( , ) i jK i j Cx x is a result of 

the polynomial approximation (Long, 1974): 

( , ) ( )K x y A B x y Cxy                                                    (S9) 

of the hydrodynamic collection  kernel: 

      
2

, ( ) ( ) , ( ) ( )K x y R x r y E x y V x V y                                    (S10) 

Long (1974) calculated the coefficients for the polynomials (9) approximating the 

hydrodynamic kernel (10) when the largest of the colliding drops is smaller than 50 μm. The 

results obtained by Long (1974) for the product kernel are displayed in Table S1(see the 

answer to question 15).  

 

Reviewer: 

18. L173: Could you please explain more about the “mixing fraction”, like mixing fraction 

of which quantity and the corresponding physical picture or intuition? 

Reply: 

Looking for more clarity, we will change the terminology. In the equation (6) of the paper: 

 

1 2 1 2( , , , , , ) ( , , ) (1- ) ( , , )f x Gumbel x Gauss x             

the coefficients θ and (1- θ) are the probabilities associated with each component and are 

called the mixture weights. The individual distributions 1( , , )Gumbel x    and 

2( , , )Gauss x   that are combined to form the mixture, are the mixture components. We will 

eliminate the term “mixing fraction” in the revised version looking for more clarity. 

 

Reviewer: 

20. L260: Please provide reference for “The block maxima (BM) approach in extreme value 

theory (EVT) was applied” and compare with the large deviation theory/method described 

in Wilkinson 16 [3]. 

Reply: 

The main (classical) reference for extreme value theory (EVT) and the block maxima 

approach in is the book of Gumbel (1958).  

The large deviation theory (LDP) is concerned with the behavior of the tails of the 

distribution for the sum of independent and identical distributed (i.i.d) random variables. The 

Central Limit theorem is limited to values of the random variable not too far from the mean 

value. In the revised version, the difference between the Wilkinson’s (2016) approach and 

ours will be discussed in both the introduction and conclusions. The discussion below will 

add more clarity to the discussion of the differences between the two approaches. 
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Large deviation theory (LDT): Suppose 1 2, ,..., nX X X  is a sequence of independent, 

identically distributed random variables, with mean µ and variance σ2, and
1

1 n

n i

i

X X
n 

  , 

then: 

Pr ( )lim nX
z z

n
n





 
   

 


                                           (S10) 

Then, for large n, the random variable nX

n






have a Gaussian distribution with mean µ=0 

ans standard deviation 1. This is the Central Limit theorem (CLT). Then, the CLT says that  
  

 Pr ( )lim nX z n z

n

    


                                     (S11) 

And  

 Pr 1 ( )lim nX z n z

n

    


                                    (S12) 

However, we must take into account that the range of validity of the CLT is:  

 

1
x O

n


 
   

 
                                                  (S12) 

And as a consequence, is not very accurate in the tails of the distribution. For example, if we 

approximate the tail probability  Pr nX    for a fixed value of n by using (S12), the 

result will be not very accurate if nX is far from the mean, unless n is sufficiently large. Then, 

we need an expression more accurate than the Gaussian distribution for finite but large values 

of n, and that will recover the Gaussian distribution when  n . The large deviation theory 

provides a solution for this problem. Summarizing, the large deviation theory (LDP) is 

concerned with the behavior of the tails of the distribution. The Central Limit theorem 

is limited to values of the random variable not too far from the mean value. Then, 

according to the large deviation theory for sums of independent random variables:  

 
( )( ) ( )e nI xf x C n                                                      (S13) 

Where ( )C n is a normalizing constant, and ( )I x  is the large deviation function. The 

distribution (S13). This expression is accurate for all values of x, while the Gaussian is 

accurate only for values that fulfilled the condition
1

x O
n


 

   
 

. 

Wilkinson (2016) application of large deviation theory (LDT): Due to the fact that the 

precipitation occurs on a time scale that is smaller than the typical scale for one collision, the 

problem can be solve by applying large deviation theory (Wilkinson, 2016). Then, it is 
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necessary to determine the probability density for the time 
1

c

c

N

N i

i

T t


 being a small fraction 

of its average value (far from the mean value). In the former expression the ti are the times 

between droplet collisions and Nc the number of collisions, which have an exponential 

distribution (Wilkinson, 2016). Then, we need to find the probability at the tails of the 

distribution. According to LDT, the probability can be written in the form: 

( )1
( ) e Jf

T

                                                      (S14) 

where ( )J   is the rate function (see Eq. S13)  that was explicitly calculated in Wilkinson’s 

(2016) paper. 

 

This paper’s approach: The approach we follow in this report is different, since we are 

interested on finding the size distribution of runaway droplets that trigger precipitation 

formation.  

 

References: 

Gumbel, E.J.: Statistics of Extremes. Columbia University Press, 1958 - 375 pp. 

Wilkinson M. 2016. Large deviation analysis of rapid onset of rain showers. Phys. Rev.  

 Lett. 116: 018 501, doi:10.1103/PhysRevLett.116.018501. 

 

 

Reviewer: 

21. L271-272: Please rephrase the sentence “The sample size...of data” to improve the 

readability. The “which clause” is not encouraged in scientific writing.  

Reply: 

In the revised version the sentence will be rewritten as suggested. 

 

 

Reviewer: 

22. L318: Did you mean “entire dataset”? 

Reply: 

Yes, the “entire dataset”. The corresponding change will be made. 

 

 


