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Abstract. The European Centre for Medium-Range Weather Forecasts’ (ECMWF’s) next-generation reanalysis ERA5 pro-

vides many improvements, but it also confronts the community with a ‘big data’ challenge. Data storage requirements for

ERA5 increase by a factor of ∼80 compared with the ERA-Interim reanalysis, introduced a decade ago. Considering the

significant increase in resources required for working with the new ERA5 data set, it is important to assess its impact on La-

grangian transport simulations. To quantify the differences between transport simulations using ERA5 and ERA-Interim data,5

we analyzed comprehensive global sets of 10-day forward trajectories for the free troposphere and the stratosphere for the year

2017. The new ERA5 data have considerable impact on the simulations. Spatial transport deviations between ERA5 and ERA-

Interim trajectories are up to an order of magnitude larger than those caused by diffusion and subgrid-scale wind fluctuations

after 1 day and still up to a factor of 2 – 3 larger after 10 days. Depending on the height range, the spatial differences between

the trajectories map into deviations as large as 3 K in temperature, 30% in specific humidity, 1.8% in potential temperature, and10

50% in potential vorticity after 1 day. Part of the differences between ERA5 and ERA-Interim is attributed to better spatial and

temporal resolution of the ERA5 reanalysis, allowing for a better representation of convective updrafts, gravity waves, tropical

cyclones, and other meso- to synoptic scale features of the atmosphere. Another important finding is that ERA5 trajectories

exhibit significantly improved conservation of potential temperature in the stratosphere, pointing to an improved consistency

of ECMWF’s forecast model and observations that leads to smaller data assimilation increments. We conducted a number of15

downsampling experiments with the ERA5 data, in which we reduced the numbers of meteorological time steps, vertical levels,

and horizontal grid points. Significant differences remain present in the transport simulations, if we downsample the ERA5

data to a resolution similar to ERA-Interim. This points to substantial changes of the forecast model, observations, and assim-

ilation system of ERA5 in addition to improved resolution. A comparison of two Lagrangian trajectory models allowed us to

assess the readiness of the codes and workflows to handle the comprehensive ERA5 data and to demonstrate the consistency of20

the simulation results. Our results will help to guide future Lagrangian transport studies attempting to navigate the increased

computational complexity and leverage the considerable benefits and improvements of ECMWF’s new ERA5 data set.
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1 Introduction

Lagrangian transport models are indispensable tools for studying atmospheric transport processes (e. g., Thomson, 1987; Wernli

and Davies, 1997; Draxler and Hess, 1998; McKenna et al., 2002a, b; Legras et al., 2003; Lin et al., 2003; Stohl et al., 2005;

Jones et al., 2007; Lin et al., 2012; Bowman et al., 2013). Lagrangian transport models simulate the dispersion (i. e., advection

and diffusion) of trace gases or aerosols by means of trajectory calculations for a number of infinitesimally small air parcels5

or ‘particles’. The particles are distributed on an irregular grid following the fluid flow. A major advantage of this approach

is that Lagrangian transport is not affected by numerical diffusion and is capable of representing small-scale features such as

filaments of tracers associated with long-range transport. Because of their distinct advantages, Lagrangian transport models

have found a variety of operational and research applications. For example, the authors of this study have recently applied

Lagrangian transport models to study transport pathways associated with the Asian summer monsoon (Konopka et al., 2010;10

Wright et al., 2011; Ploeger et al., 2013; Vogel et al., 2016; Li et al., 2017) and the dispersion of ash and sulfur dioxide plumes

from volcanic eruptions (Heng et al., 2016; Hoffmann et al., 2016; Wu et al., 2017, 2018).

Lagrangian transport simulations are typically driven by external data from meteorological reanalyses or operational fore-

casts. A comprehensive overview of state-of-the-art American, European, and Japanese reanalyses was recently presented

by Fujiwara et al. (2017). Meteorological data sets provided by the European Centre for Medium-Range Weather Forecasts15

(ECMWF) are among those data frequently used for Lagrangian transport simulations. In 2006, the ECMWF implemented

the ERA-Interim reanalysis (Dee et al., 2011), which has since been successfully applied in thousands of research applica-

tions. About a decade later, ECMWF implemented the successor of ERA-Interim, its 5th-generation reanalysis, referred to as

ERA5 (Hersbach and Dee, 2016). This new reanalysis comes with many improvements compared with ERA-Interim, most

notably better spatial and temporal resolution (see Table 1), but also other aspects, such as better representation of geophysical20

processes in the forecast model and more extensive observational inputs to the data assimilation system.

However, the new ERA5 products pose significant technical challenges for Lagrangian transport model simulations. The

application of ERA5 at its full spatiotemporal resolution comes along with a substantial increase in computing resources and

storage requirements. For example, the computational time and main memory requirements increase by a factor of ∼10 and

the total disk space required increases by a factor of ∼80 for a typical simulation conducted for this study, as we progress25

from ERA-Interim to ERA5 (Table 1). While this might be acceptable for trajectory studies covering short time periods, the

capabilities to conduct comprehensive global simulations (e. g., Vogel et al., 2016), long-term simulations for climate studies

(e. g., Pommrich et al., 2014; Tao et al., 2015; Konopka et al., 2016), or ensemble runs for inverse modeling studies (e. g., Heng

et al., 2016) are hampered by these demands. In this paper, we describe some of the changes of the models and workflows that

are necessary to cope with the increase in computational requirements, in particular the increase in storage requirements. The30

particular benefits that come along with using the next-generation ECMWF reanalysis have been carefully evaluated.

The main aim of this study is to quantify the impact of the new ERA5 data on Lagrangian transport simulations. Considering

the computing resources required to conduct simulations with ERA5 data, our study is limited to comparisons for a single

year. More specifically, we quantified the differences between ERA5 and ERA-Interim driven simulations for different height
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ranges in the free troposphere and stratosphere for a set of 24 simulations for the year 2017, each covering up to 10 days of

simulation time. The statistical analysis covers spatial differences between the trajectories as well as differences in meteorolog-

ical variables and dynamical tracers such as temperature, specific humidity, potential temperature, and potential vorticity along

the trajectories. We provide a number of examples illustrating the differences between ERA5 and ERA-Interim simulations in

practice. Downsampling experiments were conducted, as downsampling can potentially help to mitigate some of the problems5

associated with increased computational overhead of the ERA5 simulations and to distinguish between the impact of improved

resolution and other changes in the reanalysis system. We evaluated the readiness of two Lagrangian trajectory models, the

Chemical Lagrangian Model of the Stratosphere (CLaMS) (McKenna et al., 2002a, b) and Massive-Parallel Trajectory Calcu-

lations (MPTRAC) (Hoffmann et al., 2016), to operate with ERA5 data and compared the simulation results. Obviously, this

study can cover only some of the potential applications of Lagrangian transport models, but its outcome may help to guide fu-10

ture studies regarding the increased computational resources and possible benefits and improvements related to the new ERA5

data.

In Sect. 2 we provide descriptions of the ERA5 and ERA-Interim reanalyses, the meteorological conditions during the year

2017, the CLaMS and MPTRAC models, the simulation setups for the numerical experiments, and the statistical measures used

to evaluate the transport simulations. Section 3 presents the results of the study, covering analyses of the impacts of diffusion15

and subgrid-scale wind fluctuations, transport deviations between ERA5 and ERA-Interim, dynamical tracer conservation,

downsampling experiments, and a comparison of CLaMS and MPTRAC model simulations. A brief discussion and conclusions

are given in Sect. 4.

2 Data and methods

2.1 Meteorological data20

2.1.1 The ERA-Interim and ERA5 reanalyses

The ERA-Interim reanalysis (Dee et al., 2011) is a global atmospheric reanalysis covering the time period from 1979 to present,

with continuous updates in near real time up to the present day. The reanalysis is produced using ECMWF’s Integrated Forecast

System (IFS) Cycle 31r2, which was released in 2006. The horizontal resolution of the data set is∼79 km (TL255 spectral grid)

on 60 model levels from the surface up to 0.1 hPa (about 65 km of altitude). For this study, we retrieved the ERA-Interim data25

at 0.75◦× 0.75◦ horizontal sampling and on all model levels from ECMWF. The system applies 4-dimensional variational

analysis (4D-Var) with a 12-hour analysis window. The ERA-Interim analyses are provided for 0, 6, 12, and 18 UTC. Global

atmospheric budgets of mass, moisture, energy, and angular momentum were studied in detail by Berrisford et al. (2011),

reporting significant improvements compared to the earlier ERA-40 reanalysis (Uppala et al., 2005).

The next-generation ERA5 reanalysis will eventually cover the time period from January 1950 to present. At the time of30

this writing, a first segment of data from 2000 to near present has been made available to the public. The ERA5 reanalysis

is produced using the IFS Cycle 41r2 with 4D-Var data assimilation, as released in 2016. Part of ERA5 is a high resolution
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realization atmospheric data set with a horizontal resolution of ∼31 km (TL639 spectral grid). The data are provided on 137

hybrid sigma/pressure levels in the vertical, with the top level located at 0.01 hPa (about 80 km of altitude). We retrieved the

data at 0.3◦× 0.3◦ horizontal sampling and on all model levels from ECMWF. The system provides hourly estimates of a

comprehensive number of atmospheric, terrestrial, and oceanic climate variables.

ERA5 will eventually replace the ERA-Interim reanalysis, with the production period of ERA-Interim potentially ending as5

early as 2018 (Hersbach and Dee, 2016). According to the ECMWF, ERA5 improves upon ERA-Interim in various aspects.

One of the major improvements of ERA5 is the much higher spatial and temporal resolution. Figure 1 illustrates the improved

vertical coverage and sampling of ERA5 compared with ERA-Interim. Furthermore, the representation of tropospheric pro-

cesses appears to be significantly improved in ERA5, including better representation of tropical cyclones, better global balance

of precipitation and evaporation, better precipitation over land in the deep tropics, better soil moisture, and more consistent10

sea surface temperatures and sea ice (Hennermann and Berrisford, 2018). In contrast to ERA-Interim, ERA5 includes a lower-

resolution 10-member ensemble of data assimilations that provides additional information on uncertainties in the reanalysis

and their changes over space and time. More detailed descriptions of the ECMWF reanalyses and their differences can be found

in Dee et al. (2011), Hersbach and Dee (2016), and the upcoming final report of the Stratosphere-Troposphere Processes and

their Role in Climate (SPARC) Reanalysis Intercomparison Project (S-RIP) (Fujiwara et al., 2017).15

2.1.2 Meteorological conditions during the year 2017

In this section we briefly describe some of the meteorological events and conditions that occurred in the free troposphere and

stratosphere during the year 2017 based on reports by Blunden and Arndt (2018), Krummel et al. (2018), and WMO (2018) as

well as public information provided by the National Aeronautics and Space Administration (https://ozonewatch.gsfc.nasa.gov,

last access: 14 November 2018). Illustrative examples of ERA5 and ERA-Interim data for the year 2017 are shown in Figs.20

2 and 3. Figure 2 shows ERA5 and ERA-Interim maps of horizontal wind speed, vertical velocity, and potential vorticity at

500 hPa (about 5 km of altitude) over North America and over the North Atlantic on 8 September 2017, a day with exceptional

hurricane activity over the North Atlantic. Figure 3 shows zonal mean temperatures and zonal winds for ERA5 and their

differences with respect to ERA-Interim for Northern Hemisphere summer in July 2017.

The year 2017 was one of the three warmest years in the troposphere on record, slightly below the levels of 2015 and 2016,25

and it was the warmest year that was not influenced by an El Niño event. A neutral phase of the El Niño Southern Oscillation

prevailed for most of 2017, evolving into a weak La Niña by November. Over the Arctic, sea-ice extent was well below average

throughout 2017, with record-low levels during the first four months of the year. In 2017, 84 tropical cyclones were observed

globally, very close to the long-term average. However, the hurricane season in the North Atlantic was exceptional. In 2017,

the North Atlantic had 17 named storms, and the value of accumulated cyclone energy ranked seventh on record, including30

a record-high monthly value for September. Three exceptionally destructive hurricanes occurred in rapid succession over the

North Atlantic in late August and September, namely Harvey (category 4, 17 August – 2 September), Irma (category 5, 6 – 12

September), and Maria (category 5, 16 September – 2 October). Figure 2 illustrates that the representation of tropical storms

is significantly improved in ERA5 relative to ERA-Interim. In particular, ERA5 shows stronger and more realistic horizontal
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wind speeds, vertical velocities, and potential vorticities. This is promising, because tropical storm intensities are typically

underrepresented in earlier reanalyses (Hodges et al., 2017). Furthermore, Fig. 2 also suggests that ERA5 better resolves

individual convective updrafts over land and near the Intertropical Convergence Zone (ITCZ) as well as other small-scale

features, such as gravity waves.

Considering the stratosphere, the phase of the quasi-biennial oscillation (QBO) was mainly westerly at both 30 and 50 hPa5

until June 2017, at which point the wind anomalies at 30 hPa reversed. At Northern Hemisphere high latitudes, there was a

brief major mid-winter warming in early February and another warming in early March. At these times, the polar vortex in

the Northern Hemisphere was distorted and displaced from the pole. In November, the polar vortex was of average size and

strength, but became distorted and more disturbed than the climatological mean state in December. In the Southern Hemisphere,

the polar vortex became unstable and elliptical in the third week of September, with a sudden decrease of polar wind speed,10

with temperatures within the polar cap (60 – 90◦S) attaining the maximum value on record from 1979 to 2017. The 2017

Antarctic ozone hole was slightly smaller than the long-term mean of 1979 to 2017, and the warming in September resulted

in a rapid decrease of its size. The comparison of zonal mean zonal winds and temperatures in Fig. 3 suggests that large-scale

features are represented equally well in ERA5 and ERA-Interim. Notable differences appear only in the upper stratosphere,

where ERA-Interim has substantially lower vertical resolution than ERA5. A different representation of gravity waves and the15

QBO in ERA5 (Orr et al., 2010) may explain the differences seen in the tropical zonal winds. The temperature biases between

ERA5 and ERA-Interim in the upper stratosphere are possibly related to different treatment of satellite observations in the data

assimilation schemes.

2.2 Lagrangian transport simulations

2.2.1 Model descriptions20

We conducted the Lagrangian transport simulations for this study with two models. MPTRAC (Hoffmann et al., 2016) has been

developed recently to support analyses of atmospheric transport processes in the free troposphere and stratosphere. MPTRAC

features a modular structure for different geophysical processes. Most importantly, the advection module of MPTRAC solves

the trajectory equation for atmospheric air parcels based on given wind fields from ERA5, ERA-Interim, or other meteorolog-

ical data sets. Kinematic trajectories are calculated using pressure as the vertical coordinate. Another module is available to25

simulate diffusion and subgrid-scale wind fluctuations by adding stochastic perturbations to the trajectories, following the ap-

proach of Stohl et al. (2005). Additional modules can simulate sedimentation (i. e., gravitational settling) or the decay of mass

assigned to the air parcels. MPTRAC is particularly suited for large-scale simulations on supercomputers due to its Message

Passing Interface (MPI)/Open Multi-Processing (OpenMP) hybrid parallelization. Among the first applications, MPTRAC was

used to perform Lagrangian transport simulations of the dispersion of volcanic plumes and to estimate sulfur dioxide emission30

rates for these events (Heng et al., 2016; Hoffmann et al., 2016; Wu et al., 2017, 2018). Hoffmann et al. (2017) presented an

intercomparison of meteorological analyses and an evaluation of MPTRAC trajectory calculations with superpressure balloon

observations for the Antarctic lower stratosphere. Rößler et al. (2018) evaluated trajectory errors of different numerical inte-
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gration schemes diagnosed with the MPTRAC advection module driven by high-resolution ECMWF operational analyses and

forecasts.

In this study, we also applied the Chemical Lagrangian Model of the Stratosphere (CLaMS) trajectory module (Sutton et al.,

1994; McKenna et al., 2002b) to calculate kinematic forward trajectories. CLaMS performs the fully Lagrangian, non diffusive,

3-dimensional advection of an ensemble of air parcels (Konopka et al., 2004; Pommrich et al., 2014). Combined with additional5

modules to represent mixing of air masses, CLaMS is well suited for reproducing atmospheric transport barriers, such as the

edge of the polar vortex (Konopka et al., 2004, 2005; Hoppe et al., 2014) and the Asian summer monsoon anticyclone (Konopka

et al., 2010; Ploeger et al., 2013, 2015; Vogel et al., 2015, 2016). The trajectories of air parcels are calculated using the classical

4th-order Runge-Kutta method with a 600 s time step for simulations based on ERA-Interim and 240 s for simulations based

on ERA5. The same time steps were used for MPTRAC, applying the midpoint method to solve the trajectory equation. Like10

MPTRAC, the CLaMS trajectory module employs pressure (interpolated from the ECMWF hybrid vertical coordinate) as

the vertical coordinate along with vertical velocity, ω = d p/dt, as provided by ECMWF to calculate kinematic trajectories.

Alternatively, the CLaMS trajectory module can be used to calculate diabatic trajectories. Although diabatic trajectories have

known advantages for the upper troposphere and stratosphere (e. g., Ploeger et al., 2010, 2011; Tissier and Legras, 2016), they

are rarely used for the lower and middle troposphere. A comparison of diabatic and kinematic trajectory calculations is beyond15

the scope of our present work, which focuses exclusively on kinematic forward trajectories.

2.2.2 Simulation workflows

We had to change the typical workflows for the Lagrangian transport simulations in this study, mainly because of the large

volume of the ERA5 data and the computational resources required to handle it. Primarily, the ERA5 and ERA-Interim data

are stored in ECMWF’s main repository of meteorological data, the Meteorological Archival and Retrieval System (MARS),20

which is accessible by means of a web interface and more recently, via the Copernicus Climate Change Service (C3S) Climate

Data Store (CDS). The C3S CDS is the favored pathway for the distribution of ERA5 data and expected to become the only

source of ERA5 data in the future. However, the retrieval of ECMWF data on both pathways, C3S CDS and MARS, is not

designed to be instant. Requests for a large amount of data can take days to weeks to complete. For Lagrangian transport

simulations and various other applications, the data must be transferred and archived locally at a computing site, before they25

can be used effectively.

At the Jülich Supercomputing Centre different user groups traditionally maintained their own archives of meteorological

data. However, considering the volume of the ERA5 data, the approach of having multiple copies of the same data is no longer

considered justifiable. Therefore, a joint meteorological data archive was established, referred to as the ‘meteocloud’, to store

large reanalysis and satellite data sets. The meteocloud archive is made accessible to local users of the facility for scientific30

collaboration. A survey was conducted to identify the specific variables of the ERA5 data needed by different user groups for

their research applications. Data for those variables are retrieved from the ECMWF main repository in gridded binary (grib)

format and stored on a dedicated shared disk space with fast access. At present, the meteocloud archive has a capacity of nearly

600 TByte of disk space, which will be sufficient to store more than two decades of ERA5 data.
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The implementation of the meteocloud archive required changes in the workflows for the Lagrangian transport model simu-

lations. For example, the preprocessing of meteorological input data for use with the MPTRAC model was integrated directly

into the workflow. We implemented a simple mechanism that can be used for ‘staging’ of meteorological input data during

the course of a simulation. While the model is running, the staging mechanism steadily checks, whether the required meteo-

rological input files for MPTRAC are available for the given time step. In case of missing input data, it triggers an external5

script to convert the ERA5 grib files retrieved from ECMWF to the specific binary format needed by MPTRAC. The MPTRAC

input files are saved on a scratch storage volume, where they remain as long as free disk space is available. Running multiple

simulations with the same input data may thus benefit from a caching effect. The implementation of this staging mechanism

was rather simple, because we had to apply only minimal changes to the file input routines of the MPTRAC model. For the

CLaMS model another optimization of the file input routines was implemented, so that only spatial subsets of the full global10

meteorological data fields were read in as needed. We found both methods to be effective adaptations of the codes and workflow

that enable CLaMS and MPTRAC models to cope with the large amount of ERA5 data.

2.3 Evaluation of transport simulations

2.3.1 Simulation setup and overview of numerical experiments

In order to evaluate the impact of different meteorological data sets or different model configurations on the Lagrangian15

transport simulations, we conducted various experiments based on a set of 24 simulations, starting on the 1st and 15th of

each month of the year 2017. In each simulation we calculated 10-day forward trajectories for 106 particles. The trajectory

seeds were distributed globally, with a density based on cosine-weighting of latitude to achieve quasi-equidistant horizontal

sampling. The initial vertical distribution of the seeds was uniform within the log-pressure altitude range of 2 – 48 km. We

did not perform any simulations for particles launched below 2 km, because both CLaMS and MPTRAC lack sophisticated20

parameterizations of diffusion within the planetary boundary layer. We restricted the initial upper altitude to 48 km, because

tests showed large discrepancies between ERA5 and ERA-Interim above the stratopause, likely due to the low number of levels

and strong model constraints of ERA-Interim in the lower mesosphere. We sampled temperature, specific humidity, potential

temperature, and potential vorticity along the trajectories. The simulation output was saved every 6 hours.

Following the approach of Rößler et al. (2018), we evaluated the simulation results separately in different height ranges25

and latitude bands. Considering that the trajectory errors depend on the height level within the atmosphere, we split the full

log-pressure altitude range of 2 – 48 km into four layers. Roughly, these layers cover the free troposphere (2 – 8 km), the upper

troposphere and lower stratosphere (UT/LS, 8 – 16 km), the lower and middle stratosphere (16 – 32 km), and the middle and

upper stratosphere (32 – 48 km). Rößler et al. (2018) found that trajectory errors within different height layers also vary with

latitude and season. We therefore evaluated the simulation results not only globally, but also in three latitude bands, covering30

the Northern Hemisphere extratropics (20◦N – 90◦N), the tropics (20◦S – 20◦N), and the Southern Hemisphere extratropics

(20◦S – 90◦S). We did not separate between mid and high latitudes, because trajectories frequently meander between these

latitude bands due to the jet streams, making it difficult to attribute the trajectory errors to different latitude bands.
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2.3.2 Statistical analysis of transport deviations

Various statistical quantities have been proposed to measure the differences between sets of test and reference trajectories.

Spatial differences of trajectories are commonly measured in terms of absolute horizontal and vertical transport deviations

(AHTD and AVTD, Kuo et al., 1985; Stohl et al., 1995). Considering two sets of N trajectories each, with particle positions

[xi(tn),yi(tn),zi(tn)] and [Xi(tn),Yi(tn),Zi(tn)], the AHTD and AVTD at a time step tn are5

AHTD(tn) =
1
N

N

∑
i=1

√
[xi(tn)−Xi(tn)]2 +[yi(tn)−Yi(tn)]2, (1)

AVTD(tn) =
1
N

N

∑
i=1
|zi(tn)−Zi(tn)| . (2)

Here, the horizontal distances are calculated by converting the geographic longitudes and latitudes of the particles to Cartesian

coordinates, followed by calculation of the Euclidean distance of the Cartesian coordinates. Vertical distances are calculated

based on conversion of particle pressure to log-pressure altitude using the barometric formula. Note that all altitudes reported10

in this paper are log-pressure altitudes, calculated from the barometric formula with a constant surface pressure of 1013.25 hPa

and a scale height of 7 km. The Lagrangian models themselves operate on pressure levels.

Considering the mean horizontal and vertical path lengths of individual trajectories (Lh,i and Lv,i) of the test and reference

data set integrated over the time steps t1, . . . , tn,

Lh,i(tn) =
1
2

n

∑
j=2

{√
[xi(t j)− xi(t j−1)]2 +[yi(t j)− yi(t j−1)]2 (3)15

+
√

[Xi(t j)−Xi(t j−1)]2 +[Xi(t j)−Xi(t j−1)]2
}

,

Lv,i(tn) =
1
2

n

∑
j=2

{∣∣zi(t j)− zi(t j−1)
∣∣+
∣∣Zi(t j)−Zi(t j−1)

∣∣} , (4)

the corresponding relative horizontal and vertical transport deviations (RHTD and RVTD) are

RHTD(tn) =
1
N

N

∑
i=1

√
[xi(tn)−Xi(tn)]2 +[yi(tn)−Yi(tn)]2

Lh,i(tn)
. (5)

RVTD(tn) =
1
N

N

∑
i=1

|zi(tn)−Zi(tn)|
Lv,i(tn)

. (6)20

Stohl (1998) pointed out that there are some ambiguities in how RHTDs and RVTDs are defined in the literature. Careful

attention should be paid to the definitions of the RHTD and RVTD, when the results of different studies are compared to

each other. We point out that the temporal sampling between the time steps t j also matters, as it determines how much of the

horizontal meandering and vertical oscillations of the trajectories are captured. Here, the sampling interval of the trajectory

output was set to 6 h.25

In addition to the transport deviations, we evaluated the deviations of meteorological variables and dynamical tracers along

the trajectories, including temperature, specific humidity, potential temperature, and potential vorticity. To quantify the differ-

ences of the variables qi and Qi along the test and reference trajectories, respectively, we calculated either the mean absolute
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deviation (MAD) or the mean relative deviation (MRD),

MAD(tn) =
1
N

N

∑
i=1
|qi(tn)−Qi(tn)| , (7)

MRD(tn) =
2
N

N

∑
i=1

|qi(tn)−Qi(tn)|
|qi(tn)|+ |Qi(tn)|

. (8)

Note that in this definition the MRD is calculated by dividing through the mean of the magnitudes of qi and Qi rather than the

magnitude of the mean. This specific definition helps to solve problems with outliers when calculating the MRD for potential5

vorticity in the tropics, where absolute values are small and potential vorticity changes sign.

Considering that some of the meteorological variables in this study are dynamical tracers that should be conserved along the

trajectories, we also evaluated the relative tracer conservation errors (RTCE) of individual trajectory sets,

RTCE(tn) =
2
N

N

∑
i=1

|qi(tn)−qi(t1)|
|qi(tn)|+ |qi(t1)|

. (9)

Here, we followed the approach of Stohl and Seibert (1998), but we restricted the calculation of the RTCE to the change of the10

tracer quantities between the time steps t1 and tn of the trajectories rather than integrating over all possible combinations of ti

and t j along the trajectories, because of the large number of particles that was considered in this study.

3 Results

3.1 Impact of diffusion on ERA5 trajectories

In this section, we analyze the impact of the diffusion and subgrid-scale wind fluctuation parameterizations in MPTRAC on15

the Lagrangian transport simulations. Quantifying the impact of diffusion and subgrid-scale wind fluctuations is particularly

helpful, because it provides us with a reference for assessing the impact of other effects on the Lagrangian transport simulations.

For example, comparing the deviations between ERA5 and ERA-Interim simulations to the deviations due to diffusion and

subgrid-scale wind fluctuations allows us to assess, whether the differences found between the meteorological data sets can be

considered significant or not. This approach is similar to the concept of significance rating by means of the ‘meteorological20

complexity factor’ of Kahl (1996). Unfortunately, a difficulty arises from the fact that the strength of dispersion modeled with

the approach of Stohl et al. (2005) depends on the particular meteorological data set (Hoffmann et al., 2017). Tests showed that

the spread of particles in terms of AHTDs and AVTDs with respect to trajectories calculated without diffusion and subgrid-

scale wind fluctuations modeled with ERA5 is about a factor of 2 lower compared with ERA-Interim. However, ERA5 provides

higher spatiotemporal resolution and potentially bears lower uncertainty on the subgrid scales. Hence, we selected diffusion25

and subgrid-scale wind fluctuation simulations based on ERA5 as a reference for further comparisons. ERA5 data provide a

stricter measure of significance in our assessment, as trajectories based on ERA5 have a lower spread than those based on

ERA-Interim.

Figure 4 provides an illustrative example of the the impacts of diffusion and subgrid-scale wind fluctuations on the La-

grangian transport simulations. The figure shows ERA5 10-day forward trajectories with and without diffusion and subgrid-30

9

Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-1199
Manuscript under review for journal Atmos. Chem. Phys.
Discussion started: 5 December 2018
c© Author(s) 2018. CC BY 4.0 License.



scale wind fluctuations for a single seed in the mid-latitude lower stratosphere in Northern Hemisphere winter. For comparison,

the ERA-Interim trajectory without diffusion and subgrid-scale wind fluctuations is also shown. In this example, we found

rather good agreement between the positions of the ERA5 and ERA-Interim trajectories without diffusion and subgrid-scale

wind fluctuations at all times (AHTD ≤ 250 km and AVTD ≤ 600 m, Figs. 4a and 4b). The ERA5 trajectory set with diffu-

sion and subgrid-scale wind fluctuations shows a large spread that typically exceeds the differences between the ERA5 and5

ERA-Interim trajectories without diffusion and subgrid-scale wind fluctuations. The spatial differences between the reference

trajectories without diffusion and subgrid-scale wind fluctuations can therefore be attributed to the meteorological complexity

of the situation rather than to significant differences between the ERA5 and ERA-Interim data set in this case.

Figure 4 also shows differences of meteorological variables sampled along the trajectories. Starting from an initial temper-

ature bias of 0.9 K between ERA-Interim and ERA5, temperature deviations mostly remain below 2.5 K along the trajectories10

(Fig. 4c). The ERA5 trajectory reveals larger temperature variability than the ERA-Interim trajectory, owing to the better spa-

tiotemporal resolution of the ERA5 data possibly providing an improved representation of small-scale features. Significant

differences are observed for water vapor volume mixing ratios, which remain nearly constant at 4.6 ppmv for ERA5, but vary

between 4.3 – 4.55 ppmv for ERA-Interim (Fig. 4d). The differences between ERA5 and ERA-Interim water vapor volume mix-

ing ratios exceed the spread of the ERA5 trajectory set. Considering that this is a stratospheric trajectory, the nearly constant15

water volume mixing ratio for ERA5 looks more realistic. Increased water vapor volume mixing ratios in ERA5 are promising,

as ERA-Interim was previously found to have a cold and dry bias in the UT/LS region (Schoeberl et al., 2012). Similar to the

characteristics of water vapor, potential temperature along the trajectory remains nearly constant at 485 K for ERA5 compared

with variations between 460 – 500 K for ERA-Interim (Fig. 4e). Again, the simulation result for ERA5 looks more realistic,

considering that potential temperature typically is an excellent dynamical tracer in the stratosphere. Potential vorticity shows20

larger variations than potential temperature in this particular example, remaining mostly in a range of 20 – 30 PVU for both

ERA5 and ERA-Interim (Fig. 4f). As potential temperature is nearly constant in this case, the variability in potential vorticity

must be due to variability in relative vorticity as calculated from the horizontal winds.

The transport deviations of individual trajectories depend strongly on the meteorological situation. In order to obtain statis-

tically meaningful results, we averaged over large numbers of trajectories; i. e., 106 particles distributed globally in the free25

troposphere and stratosphere. As an example, Fig. 5 shows the transport deviations due to diffusion and subgrid-scale wind fluc-

tuations in different height ranges for 10-day forward trajectories started on 1 July 2017. The AHTDs grow steadily over time,

indicating that this behavior is statistically robust, with maximum values of 1400 km for the troposphere and UT/LS region

(2 – 16 km), 1100 km for the middle and upper stratosphere (32 – 48 km), and 500 km for the lower and middle stratosphere

(16 – 32 km) after 10 days (Fig. 5a). Except for an initial phase of about 0.5 – 1 day, where individual horizontal trajectory30

lengths are rather short, the RHTDs also grow steadily over time. After about 3 to 4 days, the RHTDs consistently decrease

with increasing altitude, showing the reduced impacts of diffusion and subgrid-scale wind fluctuations with height. RHTD

maxima after 10 days decrease from 14% in the troposphere to 4% in the upper stratosphere (Fig. 5b). AVTDs also grow

steadily over time, but exhibit a distinct scaling behavior in which AVTD ∝
√

t in the stratosphere (Fig. 5c). We attribute this to

our decision to follow the approach of Stohl et al. (2005) to simulate diffusion in MPTRAC, as this approach applies a constant35
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vertical diffusivity of Dz = 0.1m2 s−1 in the stratosphere (following Legras et al., 2003) in contrast to a constant horizontal

diffusivity of Dx = 50m2 s−1 in the troposphere. As vertical trajectory lengths are rather short initially, RVTDs tend to be

largest in the beginning (up to 74% after 6 h in the lower and middle stratosphere), but converge towards much smaller values

of 6 – 10% after 10 days at all heights (Fig. 5d).

Figure 6 illustrates seasonal and latitudinal variations of the transport deviations due to diffusion and subgrid-scale wind5

fluctuations. It shows AHTDs and RHTDs after 10 days for each of the 24 simulations during the year 2017 for the Northern

Hemisphere and Southern Hemisphere extratropics. In the AHTDs we found a strong annual cycle with wintertime maxima in

the middle and upper stratosphere and peak-to-peak variations in the range of 200 – 2200 km (Figs. 6a and 6c). This seasonal

cycle is plausible, considering that the wintertime stratosphere is generally more disturbed and affected by planetary wave

activity in the vicinity of the polar vortex relative to the summertime stratosphere. Weaker annual cycles are present in the10

lower and middle stratosphere (wintertime maxima, AHTDs of 300 – 800 km in both hemispheres) and the UT/LS region

(summertime maxima, AHTDs of 800 – 1300 km at 90◦S – 20◦S and 1100 – 1600 km at 20◦N – 90◦N). In the extratropical

troposphere the AHTDs due to diffusion and subgrid-scale wind fluctuations are generally large (1500 – 1900 km in both

hemispheres), but no annual cycle was evident. Annual cycles are also present in the RHTDs (Figs. 6b and 6d), but the peak-to-

peak variations are different compared with the AHTDs. We found that the annual cycles in the RHTDs are more pronounced15

in the troposphere (RHTDs of 10 – 16%) and UT/LS region (5 – 12%) and less pronounced in the lower and middle stratosphere

(4 – 7%) and the middle and upper stratosphere (2 – 9%). A direct influence of specific meteorological conditions can be seen in

the strong variations of the AHTDs in the Southern Hemisphere extratropical stratosphere from August to October 2017 (Fig.

6c), which coincides with a strong sudden stratospheric warming and associated weakening of the zonal winds in September

2017.20

3.2 Spatial differences of ERA5 and ERA-Interim trajectories

Figure 7 provides a statistical summary of the transport deviations between the ERA-5 and ERA-Interim trajectories for the

year 2017, showing the existence of significant differences between these two data sets. Figure 7 shows the median as well as

the peak-to-peak range (minimum to maximum) of individual transport deviations during the course of the year. As mentioned

earlier, transport deviations are shown separately for four height ranges, as well as globally, for the Northern Hemisphere25

extratropics, the Southern Hemisphere extratropics, and the tropics. Large peak-to-peak ranges are associated with the presence

of seasonal cycles in the data (see Sect. 3.1 and Fig. 6). Transport deviations due to diffusion and subgrid-scale wind fluctuations

are shown for reference in Fig. 7. We decided to analyze the transport deviations after both 1 and 10 days. The transport

deviations after 1 day are most indicative of the specific differences between ERA5 and ERA-Interim in this case. Transport

deviations after 10 days can be thought of as ‘global errors’, which accumulate individual local errors over time. The 10-day30

transport deviations are typically strongly affected by the individual atmospheric conditions, e. g., as particles are dispersed

into and separated by different air flows.

The most important result of this analysis is that the transport deviations between ERA5 and ERA-Interim are substantially

larger than the transport deviations due to diffusion and subgrid-scale wind fluctuations. After 1 day the transport deviations
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between ERA5 and ERA-Interim are up to an order of magnitude larger than the transport deviations due to diffusion and

subgrid-scale wind fluctuations. After 10 days the differences are still larger by a factor of 2 – 3. This indicates that there

are considerable differences between Lagrangian transport simulations based on ERA5 and those based on ERA-Interim at all

latitudes and in all height ranges considered here. Globally, the medians of the horizontal transport deviations at different height

levels are in the range of 100 – 250 km (Fig. 7a) or 14 – 25% (Fig. 7c) after 1 day and 1400 – 3500 km (Fig. 7b) or 16 – 35%5

(Fig. 7d) after 10 days. The medians of the vertical transport deviations are in the range of 0.17 – 0.37 km (Fig. 7e) or 38 – 50%

(Fig. 7g) after 1 day and 0.5 – 1.4 km (Fig. 7f) or 14 – 19% (Fig. 7h) after 10 days. The spatial differences between ERA5 and

ERA-Interim trajectories are typically largest in the troposphere and in the middle to upper stratosphere, whereas ERA5 and

ERA-Interim tend to agree best in the UT/LS region and the lower to middle stratosphere. A notable exception is the maximum

in AVTD found in the UT/LS region in the tropics (Figs. 7e and 7f). In general, transport deviations in the middle and high10

latitudes of both hemispheres compare well to each other, but are distinctly different from those in the tropics. In particular,

RHTDs in the tropics are larger than those in the extratropics (Figs. 7c and 7d). The largest peak-to-peak variations are mostly

found in the middle and upper stratosphere (e. g., Figs. 7a and 7b), which indicates that annual cycles in the wind fields at these

altitudes are represented differently in ERA5 and ERA-Interim.

One reason explaining the large differences between ERA5 and ERA-Interim in the troposphere and the tropical UT/LS15

region may be an improved representation of convective updrafts and other small-scale features due to better spatial resolution

of the ERA5 data (cf. Fig. 2). To further assess the effect of convective updrafts and other types of vertical motion, we analyzed

the total vertical displacements of particles seeded in the height range of 2 – 8 km along the 10-day trajectories. Figure 8 shows

a 2-D histogram of the positive vertical displacements for June to August 2017 for the ERA5 trajectories, as well as the relative

differences of this histogram with respect to ERA-Interim. Overall, the distribution of vertical displacements for the ERA520

trajectories looks realistic (Fig. 8a), as we would expect to find stronger updrafts associated with convection near the ITCZ and

downdrafts or weaker updrafts in the subtropics due to the Hadley cells. A closer inspection of the relative differences (Fig. 8b)

indicates that strong updrafts are found more frequently (up to 50%) in ERA5 compared with ERA-Interim in the extratropics.

Stronger updrafts in ERA5 are associated with significantly larger vertical velocities (Fig. 8c). However, for the tropics the

analysis shows that the number of strong updrafts is reduced (down to −20%) in ERA5. This discrepancy may be due to the25

fact that the area in which strong tropical updrafts occur are more confined in ERA5 compared with ERA-Interim (compare

Figs. 2c and 2d), such that fewer particles are affected by these updrafts.

3.3 Tracer differences between ERA-Interim and ERA5 trajectories

In this section, we discuss the differences in meteorological variables and dynamical tracers sampled along the ERA5 and

ERA-Interim trajectories. For temperature, we analyzed the mean absolute deviation (MAD). Specific humidity, potential30

temperature, and potential vorticity exhibit strong variations with height and are therefore compared by means of the mean

relative deviation (MRD). The height ranges and latitude bands for the analysis are the same as before and the analysis covers

the same global simulations for the year 2017. The results of the statistical analysis are presented in Fig. 9. Overall, this

analysis confirms the key finding of Sect. 3.2 that there are substantial differences between Lagrangian transport simulations
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using ERA5 and those using ERA-Interim data. The deviations of the meteorological variables and dynamical tracers between

ERA5 and ERA-Interim are significantly larger than those caused by diffusion and subgrid-scale wind fluctuations in all cases.

The medians of the global MADs of temperature are in the range of 0.7 – 3.0 K after 1 day and 2 – 13 K after 10 days (Figs.

9a and 9b), with smallest values found in the lower and middle stratosphere and the largest values found in the troposphere.

Temperature MADs in the extratropics are quite similar to global values. In contrast, temperature MADs in the tropics are5

largest in the UT/LS region, which correlates with particularly large AVTDs in this region (see Figs. 7e and 7f). For specific

humidity we found median global MRDs of 29% in the troposphere, 26% in the UT/LS region, and ≤4% in the stratosphere

after 1 day (Fig. 9c). After 10 days, the MRDs increase to 85% in the troposphere and 45% in the UT/LS region, but still

remain below 5% in the stratosphere (Fig. 9d). The large differences between the ERA5 and ERA-Interim specific humidities

in the troposphere and UT/LS region are associated with large variability of specific humidity itself in these regions. The10

stratosphere is very dry and exhibits much lower variations in specific humidity compared with the troposphere. However,

the small stratospheric differences reported here are significant in comparison to those arising from diffusion and subgrid-

scale wind fluctuations (see also Fig. 4d). As for temperature, the largest relative differences between ERA5 and ERA-Interim

specific humidity are found in the troposphere in the extratropics and in the UT/LS region in the tropics, and can be traced back

to the respective AVTDs.15

Turning to the dynamical tracers, global median MRDs of potential temperature are in the range of 0.4 – 1.6% after 1 day

and 1.4 – 5.2% after 10 days (Figs. 9e and 9f). MRDs of potential temperature mostly increase with height, in particular in

the stratosphere. This is partially related to the exponential increase of potential temperature with height, which is not entirely

suppressed by analyzing relative rather than absolute deviations. For the second dynamical tracer, potential vorticity, we found

much larger deviations between ERA5 and ERA-Interim (Figs. 9g and 9h). Global median MRDs in potential vorticity after20

1 day are about 50% in the troposphere and UT/LS region and around 16 – 24% in the stratosphere. MRDs in all four altitude

ranges further increase to 20 – 80% after 10 days. The largest MRDs are found in the tropics, which might be due to the fact

that values of potential vorticity in this region are small when compared with those in the extratropics. Overall, the rather

large deviations of potential vorticity between ERA5 and ERA-Interim were surprising. Additional tests showed that these

differences are comparable when we use the CLaMS model instead of the MPTRAC model for this analysis, and that they25

are much larger than differences between the two models (see Sect. 3.6). A possible reason for the large relative deviations is

that ERA5 exhibits more fine structure in the potential vorticity fields than ERA-Interim, because of its better resolution (cf.

Figs. 2e and 2f). Differences in vertical dispersion may also play a role, given the relatively large vertical gradient of potential

vorticity around the tropopause.

3.4 Tracer conservation along ERA5 and ERA-Interim trajectories30

Direct validation of trajectory calculations can be performed by means of comparison to balloon observations (e. g., Knudsen

and Carver, 1994; Baumann and Stohl, 1997; Hertzog et al., 2004; Riddle et al., 2006; Friedrich et al., 2017; Hoffmann et al.,

2017). However, this type of validation is limited by the sparse spatial and temporal coverage of the balloon data. In this

study, we followed the approach of Stohl and Seibert (1998) by conducting a systematic global assessment of our trajectory
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calculations with respect to the conservation of dynamical tracers along trajectories, including specific humidity, potential

temperature, and potential vorticity. We performed this analysis for both ERA5 and ERA-Interim to assess whether tracer

conservation has improved in ERA5. The results are summarized in Fig. 10.

Conservation of specific humidity applies unless the parcel is affected by condensation, evaporation, chemical reactions,

or mixing (Gray et al., 1994; Salathé Jr and Hartmann, 1997; Röckmann et al., 2004; Galewsky et al., 2005). In the free5

troposphere, specific humidity can be considered to be a dynamical tracer on short timescales, such as a few hours to a day.

In the stratosphere, even longer timescales apply. In our simulations, we found global RTCEs of specific humidity of about

30% in the troposphere and 20% in the UT/LS region after 1 day (Fig. 10a). These results compare well to those reported

by Stohl and Seibert (1998), who found a specific humidity RTCE of about 35% after 24 h for 3-dimensional tropospheric

trajectories calculated using ECMWF meteorological data. Stratospheric values of the RTCE are very low (≤2%), because of10

better conservation and the weak spatiotemporal variability of specific humidity itself in this region. RTCEs of specific humidity

exhibit some variations with latitude, in particular in the troposphere and in the UT/LS region. The largest conservation errors

are in the troposphere in the extratropics whereas they maximize in the UT/LS in the tropics. RTCEs in tropospheric specific

humidity are quite similar between ERA5 and ERA-Interim. After 10 days RTCEs in the troposphere exceed 100% (Fig. 10b),

at which point we may confidently say that conservation of specific humidity no longer applies. Tracer conservation errors in15

the UT/LS region rise to 30% in the extratropics and 100% in the tropics after 10 days, although stratospheric RTCE values

remain well below 5%.

Analysis of tracer conservation for potential temperature revealed major improvements when the new ERA5 products are

used in place of ERA-Interim throughout the stratosphere and UT/LS. Global median RTCEs of potential temperature after 1

day are in the range of 0.4 – 1.6% for ERA-Interim, but as low as 0.2 – 0.6% for ERA5 (Fig. 10c). After 10 days, RTCE values20

increase to 1.9 – 6.2% for ERA-Interim and 1.8 – 4.5% for ERA5 (Fig. 10d). RTCEs for potential temperature are quite similar

among the different latitude bands. Following Schoeberl (2004), Fig. 11 further illustrates the improvements in consistency

and tracer conservation of potential temperatures for ERA5. The figure shows the dispersion of 10-day trajectories from seeds

at potential temperature levels ranging from 400 to 1200 K for simulations initialized on 1 July 2017. The results for both data

sets reveal downwelling of air in the Southern Hemisphere polar vortex and upwelling over the ITCZ. However, much larger25

dispersion or ‘scattering’ of the final positions of the trajectories is found in the simulations based on ERA-Interim relative to

those based on ERA5, especially above the 800 K isentropic surface. Possible reasons for improved conservation of potential

temperatures in simulations based on ERA5 compared to those based on ERA-Interim may be improved internal consistency

of the ECMWF forecast model or between the model and observations as well as shorter analysis intervals, leading in turn to

smaller assimilation increments in the vertical velocities.30

We found much larger tracer conservation errors for potential vorticity than for potential temperature. Global median RTCEs

are in the range of 48 – 54% in the troposphere, 44 – 48% in the UT/LS region, and 8 – 18% in the stratosphere after 1 day (Fig.

10e). The stratospheric values compare well to estimates of relative potential vorticity changes calculated for balloon trajec-

tories by Knudsen and Carver (1994), whereas the tropospheric values are about 10 – 20 percentage points larger than those

reported by Stohl and Seibert (1998). After 10 days the RTCEs increased to 90 – 100%, 60 – 70%, and 20 – 50%, respectively, in35
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the same three height ranges (Fig. 10f). We found that tracer conservation is similar or slightly improved when using ERA5 data

in the stratosphere, but it is weaker in the troposphere and UT/LS region. Following Stohl and Seibert (1998), we conducted

several tests to check whether RTCEs can be improved by excluding trajectories for which potential vorticity conservation is

not likely to be applicable. We excluded trajectories entering levels below 1 km altitude above the surface, to avoid turbulent

and unstable conditions in the planetary boundary layer. We also excluded trajectories with relative humidities larger than 90%,5

as condensation or evaporation may cause diabatic temperature changes in such cases. However, these tests did not yield any

substantial changes in our RTCE results. The increase in tropospheric RTCEs of potential vorticity between ERA-Interim and

ERA5 might be due to higher spatiotemporal resolution in ERA5, which allows for finer structures in the potential vorticity

fields relative to ERA-Interim (see Sect. 3.3). The small improvements in stratospheric RTCEs are likely related to improved

conservation of potential temperature along trajectories.10

3.5 Downsampling experiments with ERA5

As spatial and temporal resolution is a key factor in the trade-off between accuracy and computational time of Lagrangian

transport simulations (Stohl et al., 1995; Stohl and Seibert, 1998; Pisso et al., 2010; Bowman et al., 2013), our study covers a

number of downsampling experiments using ERA5 data. The process of downsampling or decimation to reduce the sampling

rate of a signal typically consists of two steps (e. g., Lyons, 2010). The first step is to apply a low pass filter to the original data15

to avoid aliasing of high-frequency features. Here, we applied smoothing with triangular weights in space and time to achieve

this effect. The second step is to subsample the smoothed data on the reduced grid. For example, to downsample ERA5 data

from hourly to 2-hourly time intervals, we averaged data of {t − 1h, t, t + 1h} for a given time t with weighting factors of

{0.25,0.5,0.25} and kept the smoothed data only at a 2-hourly interval.

We conducted four downsampling experiments with the ERA5 data, in which we reduced (I) the number of synoptic time20

steps nt by a factor of 2, (II) the number of vertical levels nlev by a factor of 2, (III) the numbers of longitudes nlon and

latitudes nlat by a factor of 2, and (IV) nt by a factor of 6, nlev by a factor of 2, and nlon and nlat by a factor of 3. Experiment

IV was set up to achieve a spatiotemporal sampling similar to ERA-Interim. We quantified the differences of the Lagrangian

transport simulations using the downsampled and the full resolution ERA5 data by calculating transport deviations after 1 day,

as these are most sensitive to the specific uncertainties and less dependent on the individual meteorological conditions and flow25

conditions (Rößler et al., 2018). Figures 12 and 13 show the results of these four experiments.

Considering the downscaling experiments I – III (Fig. 12), it was found that the impacts of downsampling of the ERA5 data

are comparable to the impacts of diffusion and subgrid-scale wind fluctuations in most cases. The impacts of downsampling

generally tend to be strongest in the troposphere, where transport deviations due to downsampling exceed those by diffusion

and subgrid-scale wind fluctuations by up to a factor of 3. In the UT/LS region the horizontal transport deviations exceed30

those by diffusion and subgrid-scale wind fluctuations by up to a factor of 2 (Figs. 12a and 12b), whereas the vertical transport

deviations are smaller by up to a factor of 2 (Figs. 12c and 12d). For the stratosphere the experiments suggest that we can

downsample from hourly to 2-hourly data or that we can reduce the horizontal sampling by a factor of 2× 2 without any

significant impact compared to diffusion and subgrid-scale wind fluctuations. This may reflect the reduced sensitivity of the
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stratosphere to downsampling in the horizontal direction and in time, as the stratosphere is dynamically less disturbed than the

troposphere. The number of vertical levels nlev should not be reduced in the stratosphere, because the vertical sampling even

of the high-resolution ERA5 data is relatively coarse at stratospheric levels (see Fig. 1).

Downsampling experiment IV (Fig. 13) is intended to separate the impact of improved spatiotemporal resolution from the

impacts of other improvements from ERA-Interim to ERA5, such as modified physical parameterizations in the forecast model5

or improved data assimilation procedures and observations. For this reason, transport deviations between the downsampled

and full-resolution ERA5 data are compared to transport deviations between ERA5 and ERA-Interim and not with diffusion

and subgrid-scale wind fluctuations in Fig. 13. For this experiment we found that transport deviations between simulations

based on downsampled ERA5 data and full-resolution ERA5 data are roughly a factor of 2 smaller than deviations between

ERA-Interim and ERA5. This indicates that the transport deviations between ERA-Interim and ERA5 as discussed in Sect. 3.210

are due to both improved resolution in ERA5 and other improvements in the forecast model and data assimilation scheme, and

cannot be attributed to a single cause. Thus, using downsampled ERA5 data should not be considered to be equivalent to using

ERA-Interim data for Lagrangian transport simulations.

3.6 Comparison of the CLaMS and MPTRAC models

Finally, we conducted a comparison of Lagrangian transport simulations using two different models, CLaMS and MPTRAC.15

This allows us to assess the readiness of both models for operating with the comprehensive ERA5 data set and to further

check the consistency of the model results. The necessary adjustments in the codes and workflows for both models to make

use of ERA5 data have been described in Sect. 2.2.2. Here, we focus on global transport deviations as well as differences in

meteorological variables and dynamical tracers between CLaMS and MPTRAC after 1 day of integration at different height

ranges. All simulations for the year 2017 are included. The results are shown in Fig. 14.20

Overall, the model comparison revealed excellent agreement between CLaMS and MPTRAC kinematic trajectory calcu-

lations using ERA5 data. Transport deviations between the models are significantly smaller than those due to diffusion and

subgrid-scale wind fluctuations in most cases (Figs. 14a to 14d). The only notable exception is horizontal transport devia-

tions in the middle and upper stratosphere (Fig. 14a), which are similar to or slightly exceed the deviations due to diffusion

and subgrid-scale wind fluctuations. We have tested whether these differences are due to the different vertical interpolation25

schemes applied in the models, with CLaMS using logarithmic interpolation and MPTRAC using linear interpolation with

respect to pressure, but found that this has only marginal impact. Furthermore, the results are robust against changes in the time

step applied in the MPTRAC model. Nevertheless, the global AHTDs (RHTDs) between CLaMS and MPTRAC are less than

9 km (1.5%) from the troposphere to the middle stratosphere and less than 30 km (2.3%) in the middle and upper stratosphere

at all latitudes. The global AVTDs (RVTDs) are less than 40 m (6%) at all heights.30

In most cases, transport deviations between CLaMS and MPTRAC do not lead to large deviations in meteorological variables

or dynamical tracers sampled along the trajectories (Figs. 14e to 14h). Temperature MADs are less than 0.25 K, specific

humidity MRDs below 2.2%, and potential temperature MRDs are less than 2.0%. Larger differences (up to 12 – 13%) were

found for potential vorticity in the troposphere and UT/LS region. This may reflect the fact that numerical calculations of
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potential vorticity are particularly sensitive to fine-scale structure and variability in the horizontal wind field in this part of the

atmosphere (see Sect. 3.3). In the stratosphere, differences in potential vorticity between CLaMS and MPTRAC simulations

are comparable to or smaller than transport deviations due to diffusion and subgrid-scale wind fluctuations.

4 Discussion and conclusions

In this study, we have assessed the impact of ECMWF’s next-generation ERA5 reanalysis on Lagrangian transport simulations5

and quantified some of the differences with respect to the well-established and widely used ERA-Interim reanalysis. To quantify

the impact of the new ERA5 data, we conducted global simulations for the free troposphere and stratosphere for the year 2017,

each covering 24 sets of 10-day forward trajectories. Based on a comprehensive statistical analysis of transport deviations,

we concluded that the new ERA5 data have considerable impact on Lagrangian transport simulations. Transport deviations

(AHTDs and AVTDs) indicating differences between ERA5 and ERA-Interim are up to an order of magnitude larger than10

those caused by diffusion and subgrid-scale wind fluctuations after 1 day and still up to a factor of 2 – 3 larger after 10 days.

Depending on the height range, spatial differences between trajectories using ERA5 and those using ERA-Interim map into

global differences of up to 3 K in temperature, 30% in specific humidity, 1.8% in potential temperature, and 50% in potential

vorticity after only 1 day of integration. These differences are much larger than those due to numerical errors in the trajectory

calculations (e. g., Rößler et al., 2018) and those between the different Lagrangian models CLaMS and MPTRAC.15

Monthly mean zonal mean temperatures and zonal winds were found to be in good agreement between ERA5 and ERA-

Interim, except for some differences in the upper stratosphere, where ERA5 has substantially finer vertical resolution than

ERA-Interim. However, direct comparison of horizontal wind, vertical velocity, and potential vorticity maps for the troposphere

and an example of trajectory calculations for the stratosphere revealed more detailed fine structures in ERA5 in comparison

to ERA-Interim. These fine structures are associated with the better spatial and temporal resolution of ERA5 data (i. e., a20

factor of 6 in the number of synoptic time steps, a factor of 2.2 in the number of vertical levels, and a factor of 2.5× 2.5 in

the number of horizontal grid points). In the troposphere, we found stronger updrafts in the extratropics and a more realistic

representation of tropical cyclones in ERA5 relative to ERA-Interim, which are partly related to the improved spatiotemporal

resolution offered by ERA5. However, fewer strong updrafts are found in the tropics in ERA5, which may have important

implications for the distribution of water vapor in the UT/LS region and the lower stratosphere. For the stratosphere, we found25

that the conservation of potential temperature along the trajectories is significantly improved when the new ERA5 data are used

in place of ERA-Interim products. This may be due to better consistency between ECMWF’s forecast model and observations

and shorter analysis cycles yielding smaller data assimilation increments.

Compared with ERA-Interim, the new ERA5 reanalysis incorporates a decade of research on forecast modeling, observa-

tional systems, and data assimilation. Although there are many changes and improvements from ERA-Interim to ERA5, the30

impact of the new reanalysis on Lagrangian transport simulations and other applications still needs to be further assessed.

In this study, we have focused on quantifying the differences between the trajectories based on ERA5 and those based on

ERA-Interim in terms of dynamical tracer conservation. Future work may focus on direct validation of the new ERA5 products
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via comparison with independent observations. Another interesting aspect is that ERA5 provides information on uncertainty

through a 10-member ensemble of data assimilations, which could be taken into account in future studies (e. g., by means of

ensemble simulations). The total amount of data associated with the ECMWF reanalyses has increased by a factor of∼80 from

ERA-Interim in 2006 to ERA5 in 2016, whereas the capacity of hard disks, measured in terms of areal density, grew only by

a factor of ∼10 per decade during that time (Freitas et al., 2011). Downsampling to reduce the amount of data can be an op-5

tion for applications that require only coarser resolution. However, many Lagrangian transport models and chemistry-transport

models will need careful code optimization and tuning to cope with the ‘big data’ challenge presented by ERA5, and to fully

realize the benefits of ERA5 data at its full resolution.

Code and data availability. We retrieved ERA5 and ERA-Interim reanalysis data (Dee et al., 2011; Hersbach and Dee, 2016) from the Eu-

ropean Centre for Medium-Range Weather Forecasts (ECMWF) Meteorological Archival and Retrieval System (MARS). ECMWF data10

have been processed for usage with MPTRAC by means of the Climate Data Operators (Schulzweida, 2014). The MPTRAC model (Hoff-

mann et al., 2016) is freely available under the terms and conditions of the GNU General Public License, version 3, from the repository

at https://github.com/slcs-jsc/mptrac (last access: 14 November 2018). The box model version (trajectory module including chemistry) of

CLaMS (McKenna et al., 2002a, b) is also available and can be obtained by contacting Rolf Müller, Jülich.
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Table 1. Characteristics of the ERA5 and ERA-Interim reanalyses as well as resource requirements to calculate 10-day forward trajectories

for 106 particles with the MPTRAC model on a single compute node (including 24 cores) of the supercomputer JURECA in Jülich.

ERA5 ERA-Interim

Characteristics

Implementation date 8 March 2016 12 December 2006

Horizontal resolution TL636 (∼31 km) TL255 (∼79 km)

Vertical resolution 137 levels up to 0.01 hPa 60 levels up to 0.1 hPa

Temporal resolution hourly 6-hourly

IFS Cyclea 41r2 31r2

Period covered 1950 – now 1979 – now

Reference (Hersbach and Dee, 2016) (Dee et al., 2011)

Resource requirements

CPU-time [s] 3130 350

Main memory [MB] 5800 530

Disk storage [GB] 450 5.8

a) For a detailed description of ECMWF’s Integrated Forecast System (IFS) cycle characteristics see

https://www.ecmwf.int/en/forecasts/documentation-and-support/changes-ecmwf-model (last access: 14 November 2018).
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Figure 1. Vertical coverage and sampling of the ERA-Interim (light gray) and ERA5 (dark gray) reanalyses. Shown are layer widths and

mid-layer altitudes calculated by means of the barometric formula using a constant scale height of 7 km and a surface pressure of 1013.25 hPa.
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(a) (b)

(c) (d)

(e) (f)

Figure 2. Comparison of ERA-Interim (left) and ERA5 (right) horizontal wind speeds (top), vertical velocities (middle), and potential

vorticities (bottom) on 8 September 2017, 00:00 UTC over North America and the North Atlantic. Maps refer to the 500 hPa level (about

5 km of altitude). Arrows are used to point out the hurricanes Katia, Irma, and Jose (white, from west to east) as well as examples of gravity

waves (gray) and explicitly resolved convective updrafts (black).

26

Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-1199
Manuscript under review for journal Atmos. Chem. Phys.
Discussion started: 5 December 2018
c© Author(s) 2018. CC BY 4.0 License.



(a) (b)

(c) (d)

Figure 3. Zonal mean temperatures (a) and zonal winds (b) based on ERA5 and temperature differences (c) and zonal wind differences (d)

between ERA5 and ERA-Interim in July 2017.
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(a) (b)

(c) (d)

(e) (f)

Figure 4. Particle positions (top), meteorological variables (middle), and dynamical tracers (bottom) sampled along a 10-day forward trajec-

tory calculated with either ERA-Interim (red) or ERA5 (dark gray). Also shown is a 1000-member set of ERA5 trajectories with additional

modeling of diffusion and subgrid-scale wind fluctuations (light gray). All trajectories have been launched on 1 January 2017, 00:00 UTC at

(40◦N, 150◦W) and 58.2 hPa (about 20 km of altitude). The model output was saved every 20 min. Bullet points in (a) indicate 24 h intervals.
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(a) (b)

(c) (d)

Figure 5. Horizontal (top) and vertical (bottom) transport deviations of 10-day forward trajectories due to diffusion and subgrid-scale wind

fluctuations. All trajectories were launched on 1 July 2017, 00:00 UTC and calculated with the MPTRAC model driven by ERA5 data. The

color coding refers to different altitude ranges.
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(a) (b)

(c) (d)

Figure 6. Seasonal variations of absolute (left) and relative (right) horizontal transport deviations due to diffusion and subgrid-scale wind

fluctuations after 10 days simulation time for the Northern Hemisphere (top) and Southern Hemisphere (bottom) extratropics. Trajectories

were calculated with ERA5 data and launched at 00:00 UTC on the 1st and 15th of each month in 2017. The color coding refers to different

altitude ranges.
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ERA5 – ERA-Interim
(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 7. Transport deviations between ERA-Interim and ERA5 forward trajectories (blue and red bars for different height ranges) and

transport deviations due to diffusion and subgrid-scale wind fluctuations (corresponding light gray bars) after 1 day (left) and 10 days (right)

of time. The bars indicate the peak-to-peak range and the median of 24 simulations covering the year 2017.
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(a) (b)

(c)

Figure 8. Comparison of total vertical displacements (a, b) and vertical velocities (c) of particles launched at 2 – 8 km of altitude for 6

sets of ERA5 and ERA-Interim 10-day forward trajectories from June to August 2017. Only trajectories with net updraft (positive vertical

displacement) after 10 days of time are considered. The bin size is 5◦ in latitude and 0.5 km in altitude. Relative differences between ERA5

and ERA-Interim are shown only if at least 20 samples per bin are present. Vertical velocities are sampled every 6 h along the trajectories.
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ERA5 – ERA-Interim
(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 9. Temperature (T), specific humidity (SH), potential temperature (PT), and potential vorticity (PV) deviations between ERA-Interim

and ERA5 (blue and red bars) and due to diffusion and subgrid-scale wind fluctuations (light gray bars) after 1 day (left) and 10 days (right)

of time. Bars indicate the peak-to-peak range and the median of 24 simulations covering the year 2017.
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Tracer conservation errors
(a) (b)

(c) (d)

(e) (f)

Figure 10. Tracer conservation errors of specific humidity (SH), potential temperature (PT), and potential vorticity (PV) in ERA5 (blue and

red bars) and ERA-Interim (dark gray bars) after 1 day (left) and 10 days (right) of time. Bars indicate the peak-to-peak range and the median

of 24 simulations covering the year 2017.
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Figure 11. Dispersion of 10-day forward trajectories launched on 1 July 2017 at isentropic levels of 400, 600, . . . , 1200 K (about 16, 24,

. . . , 48 km altitude; gray dots). The number of trajectory seeds varies between 12,800 at the 400 K isentropic level and 3,400 at the 1200 K

isentropic level. The ERA-Interim simulations (orange dots) exhibit a larger scatter than the ERA5 simulations (red dots) after 10 days,

especially at the uppermost height levels.
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Downsampling experiments I – III
(a) (b)

(c) (d)

Figure 12. Global transport deviations after 1 day at different height levels caused by downsampling of ERA5 (blue and red bars) and due to

diffusion and subgrid-scale wind fluctuations (light gray bars). The labeling of the plots refers to downsampling of the number of synoptic

time steps nt , vertical levels nlev, and horizontal grid points nlon×nlat of the ERA5 data, respectively.
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Downsampling experiment IV
(a) (b) (c) (d)

Figure 13. Global transport deviations of 1-day forward trajectories calculated with ERA5 data downsampled to the spatiotemporal resolution

of ERA-Interim and ERA5 data at full resolution (blue and red bars). Transport deviations between ERA-Interim and ERA5 trajectories (cf.

Fig. 7) are shown for reference (dark gray bars).
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CLaMS – MPTRAC
(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 14. Global transport deviations (top) as well as differences in meteorological variables and dynamical tracers (bottom) of 1-day

forward trajectories calculated with ERA5 data and the CLaMS or MPTRAC model (blue and red bars). Deviations due to diffusion and

subgrid-scale wind fluctuations imposed on ERA5 trajectories are shown for reference (light gray bars).

38

Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-1199
Manuscript under review for journal Atmos. Chem. Phys.
Discussion started: 5 December 2018
c© Author(s) 2018. CC BY 4.0 License.


