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Abstract. Approximately 3 billion people worldwide cook with solid fuels, such as wood, charcoal, and agricultural 25 

residues. These fuels, also used for residential heating, are often combusted in inefficient devices, producing 

carbonaceous emissions. Between 2.6 and 3.8 million premature deaths occur as a result of exposure to fine 

particulate matter from the resulting household air pollution (Health Effects Institute, 2018a; World Health 

Organization, 2018). Household air pollution also contributes to ambient air pollution; the magnitude of this 

contribution is uncertain. Here, we simulate the distribution of the two major health-damaging outdoor air pollutants 30 

(PM2.5 and O3) using state-of-the-science emissions databases and atmospheric chemical transport models to 

estimate the impact of household combustion on ambient air quality in India. The present study focuses on New 

Delhi and the SOMAARTH Demographic, Development, and Environmental Surveillance Site (DDESS) in the 

Palwal District of Haryana, located about 80 km south of New Delhi. The DDESS covers an approximate population 

of 200,000 within 52 villages. The emissions inventory used in the present study was prepared based on a national 35 

inventory in India (Sharma et al., 2015, 2016), an updated residential sector inventory prepared at the University of 

Illinois, updated cookstove emissions factors from Fleming et al. (2018b), and PM2.5 speciation from cooking fires 

from Jayarathne et al. (2018). Simulation of regional air quality was carried out using the U.S. Environmental 

Protection Agency Community Multiscale Air Quality modeling system (CMAQ), in conjunction with the Weather 

Research and Forecasting modeling system (WRF) to simulate the meteorological inputs for CMAQ, and the global 40 

chemical transport model GEOS-Chem to generate concentrations on the boundary of the computational domain. 

Comparisons between observed and simulated O3 and PM2.5 levels are carried out to assess overall airborne levels 
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and to estimate the contribution of household cooking emissions. Observed and predicted ozone levels over New 

Delhi during September 2015, December 2015, and September 2016 routinely exceeded the 8-hour Indian standard 

of 100 µg m-3, and, on occasion, exceeded 180 µg m-3. PM2.5 levels are predicted over the SOMAARTH 

headquarters (September 2015 and September 2016), Bajada Pahari (a village in the surveillance site, September 

2015, December 2015, and September 2016), and New Delhi (September 2015, December 2015, and September 5 

2016). The predicted fractional impact of residential emissions on anthropogenic PM2.5 levels varies from about 0.27 

in SOMAARTH HQ and Bajada Pahari to about 0.10 in New Delhi. The predicted secondary organic portion of 

PM2.5 produced by household emissions ranges from 16% to 80%. Predicted levels of secondary organic PM2.5 

during the periods studied at the four locations averaged about 30 µg m-3, representing approximately 30% and 20% 

of total PM2.5 levels in the rural and urban stations, respectively. 10 

1 Introduction 

Although outdoor air pollution is widely recognized as a health risk, quantitative understanding remains uncertain on 

the degree to which household combustion contributes to unhealthy air.  Recent studies in China, for example, show 

that 50-70% of black carbon emissions and 60-90% of organic carbon (OC) emissions can be attributed to residential 

coal and biomass burning (Cao et al., 2006; Klimont et al., 2009; Lai et al., 2011). Moreover, existing global emissions 15 

inventories show a significant contribution of household sources to primary PM2.5 (particulate matter of diameter less 

than or equal to 2.5 micrometers) emissions. The Indo-Gangetic Plain of Northern India (23-31o N, 68-90o E) has 

among the world’s highest values of PM2.5. In this region, the major sources of emissions of primary PM2.5 and of 

precursors to secondary PM2.5 are coal-fired power plants, industries, agricultural biomass burning, transportation, and 

combustion of biomass fuels for heating and cooking (Reddy and Venkataraman, 2002; Rehman et al., 2011). The 20 

southwest monsoon in summer months in India leads to lower pollution levels than in winter months, which are 

characterized by low wind speeds, shallow boundary layer depths, and high relative humidity (Sen et al., 2017).  With 

the difficulty in determining representative emissions estimates (Jena et al., 2015; Zhong et al., 2016), simulating the 

extremely high PM2.5 observations in the Indo-Gangetic Plain has remained a challenge (Schnell et al., 2018).   

 25 

Approximately 3 billion people worldwide cook with solid fuels, such as wood, charcoal, and agricultural 

residues (Bonjour et al., 2013; Chafe et al., 2014; Smith et al., 2014; Edwards et al., 2017). Used also for residential 

heating, such solid fuels are often combusted in inefficient devices, producing black carbon (BC) and organic carbon 

emissions. Between 2.6 and 3.8 million premature deaths occur as a result to exposure to fine particulate matter from 

household air pollution (Health Effects Institute, 2018a; World Health Organization, 2018). In India, more than 50% 30 

of households report use of wood or crop residues, and 8% report use of dung as cooking fuel (Klimont et al., 2009; 

Census of India, 2011; Pant and Harrison, 2012). Residential biomass burning is one of the largest individual 

contributors to the burden of disease in India, estimated to be responsible for 780,000 premature deaths in 2016 (Indian 

Council of Medical Research et al., 2017). The recent GBD MAPS Working Group (Health Effects Institute, 2018b) 

estimated that household emissions in India produce about 24% of ambient air pollution exposure. Coal combustion, 35 

roughly evenly divided between industrial sources and thermal power plants, was estimated by this study to be 
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responsible for 15.3% of exposure in 2015. Open burning of agricultural crop stubble was estimated annually to be 

responsible for 6.1% nationally, although more important in some areas.  

 

Traditional biomass cookstoves, with characteristic low combustion efficiencies, produce significant gas- 

and particle-phase emissions. An early study of household air pollution in India found outdoor total suspended 5 

particulate matter (TSP) levels in four Gujarati villages well over 2 mg m-3 during cooking periods (Smith et al., 1983). 

Secondary organic aerosol (SOA), produced by gas-phase conversion of volatile organic compounds to the particulate 

phase, is also important in ambient PM levels, yet there is a dearth of model predictions to which data can be compared. 

Overall, household cooking in India has been estimated by various groups to produce 22-50% of ambient PM2.5  

exposure (Butt et al., 2016; Chafe et al., 2014; Conibear et al., 2018; Health Effects Institute, 2018b; Lelieveld et al., 10 

2015; Silva et al., 2016), and Fleming et al. (2018a,b) report characterization of a wide range of particle-phase 

compounds emitted by cookstoves. In a multi-model evaluation, Pan et al. (2015) concluded that an underestimation 

of biomass combustion emissions, especially in winter, was the dominant source of model underestimation. Here, we 

address both primary and secondary organic particulate matter from household burning of biomass for cooking. 

 15 

Air quality in urban areas in India is determined largely, but not entirely, by anthropogenic fuel combustion. 

In rural areas, residential combustion of biomass for household uses, such as cooking, also contributes to non-methane 

volatile organic carbon (NMVOC) and particulate emissions (Sharma et al., 2015, 2018). Average daily PM2.5 levels 

frequently exceed the 24-hour Indian standard of 60 µg m-3 and can exceed 150 µg m-3, even in rural areas. The local 

region on which the present study focuses is the SOMAARTH Demographic, Development, and Environmental 20 

Surveillance Site (DDESS) run by the International Clinical Epidemiological Network (INCLEN) in the Palwal 

District of Haryana (Figure 1). Located about 80 km south of New Delhi, SOMAARTH covers an approximate 

population of 200,000 in 52 villages. Particular focus in the present study is given to the SOMAARTH Headquarters 

(HQ) and the village of Bajada Pahari within DDESS, coinciding with the work of Fleming et al. (2018b), who studied 

cookstove non-methane hydrocarbon (NMHC) emissions and ambient air quality. Demographically, with a coverage 25 

of almost 308 sq km, the DDESS has a mix of populations from different religions and socioeconomic and 

development statuses.  

 

The climate of the region of interest in the present study is primarily influenced by monsoons, with a dry 

winter and very wet summer. The rainy season, July through September, is characterized by average temperatures 30 

around 30 °C and primarily easterly and southeasterly winds. In a study related to the present one, Schnell et al. (2018) 

used emission datasets developed for the Coupled Model Intercomparison Project Phases 5 (CMIP5) and 6 (CMIP6) 

to evaluate the impact on predicted PM2.5 over Northern India, October-March 2015-2016, with special attention to 

the effect of meteorology of the region, including relative humidity, boundary layer depth, strength of the temperature 

inversion, and low level wind speed.  In that work, nitrate and organic matter (OM) were predicted to be the dominant 35 

components of total PM2.5 over most of Northern India.  
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The goal of the present work is to simulate the distribution of primary and secondary PM2.5 and O3 using 

recently updated emissions databases and atmospheric chemical transport models to obtain estimates of the total 

impact on ambient air quality attributable to household combustion. With respect to ozone, the present work follows 

that of Sharma et al. (2016) who simulated regional and urban ozone concentrations in India using a chemical transport 

model and included a sensitivity analysis to highlight the effect of changing precursor species on O3 levels. The present 5 

work is based on simulating the levels of both O3 and PM2.5 at the regional level based on recent emissions inventories 

using state-of-the-science atmospheric chemical transport models.  

2 Emissions Inventory 

2.1 Non-Residential Sectors Emissions 

The present study uses an emissions inventory conglomerated from two primary sources: (1) an India-scale inventory 10 

for all non-residential sectors prepared by TERI (Sharma et al., 2015, 2016) and (2) a high-resolution residential sector 

inventory detailed here. Emissions data from each source were distributed to a 4 km grid for the present study. The 

TERI national inventory was prepared at a resolution of 36 × 36 km2 using the Greenhouse Gas and Air Pollution 

Interactions and Synergies (GAINS ASIA) emission model (Amann et al., 2011).  GAINS ASIA estimated emissions 

based on energy and non-energy sources using an emission factor approach after taking into account various fuel-15 

sector combinations. Following the approach of Kilmont et al. (2002), the emissions were estimated using the basic 

equation: 

𝐸𝑘 = ∑ ∑ ∑ 𝐴𝑘,𝑙,𝑚𝑒𝑓𝑘,𝑙,𝑚(1 − 𝜂𝑙,𝑚,𝑛) ∙ 𝑋𝑘,𝑙,𝑚,𝑛𝑛𝑚𝑙             (1) 

where E denotes the pollutant emissions (in kt); k, l, m, and n are region, sector, fuel or activity type, and control 

technology, respectively; A the activity rate; ef the unabated emission factor (kt per unit of activity); η the removal 20 

efficiency (%/100); and X the application rate of control technology n (%/100) where ∑ 𝑋 = 1. Energy sources 

considered include coal, natural gas, petroleum products, biomass fuels, and others and categorized into five sectors 

– transport, industries, residential, power, and others. The model uses the state-wise energy data and generates 

emissions of species such as PM, NOx, SO2, NMVOCs, NH3, and CO.  

 25 

 For activity data of source-sectors, TERI employed published statistics (mainly population, vehicle 

registration, energy use, and industrial production) where possible. Energy use data for industry and power sectors 

were compiled based on a bottom-up approach, collected from the Ministry of Petroleum and Natural Gas (MoPNG, 

2010), the Central Statistics Office (CSO, 2011), and the Central Electricity Authority (CEA, 2011). Transportation 

activity data were compiled from information on vehicle registrations (Ministry of Road Transport and Highways, 30 

2011), emission standards (MoPNG, 2001), travel demand (CPCB, 2000), and mileage (TERI, 2002). Emission factors 

for energy-based sources from the GAINS ASIA database were used. Speciation factors are adopted from sector-

specific profiles from Wei et al. (2014), primarily developed for China as there is a lack of information for India. In 

the transportation sector, the Chinese species profiles are dependent on fuel type but not technology.  

 35 
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 The TERI inventory was compiled on a yearly basis, with monthly variations for brick kilns and agricultural 

burning, at a native resolution of 36 × 36 km2 then equally distributed to grid resolution of 4 × 4 km2 for this study. 

Emissions for non-residential sectors have no specified diurnal or daily variations; thus, the inventory for non-

residential sectors is the same for each simulated day. Transportation sector emissions were estimated using population 

and vehicle fleet data at the district level and distributed to the grid using the administrative boundaries. Industry, 5 

power, and oil and gas sector emissions were assigned to the grid by their respective locations. Emissions from 

agriculture were allocated by crop-types produced by state in India. The inventory was vertically distributed to three 

layers with the lowest layer extending to 30 – 43 m, the middle layer to 75 – 100 m and the top layer to 170 – 225 m 

layers. VOC emissions were assumed to occur only in the bottom layer.  Industry and power emissions were distributed 

based on stack heights and allocated to the second and third layers. 10 

 

We incorporated biogenic emissions by using daily-averaged emission rates of isoprene (0.8121 moles s-1) 

and terpenes (0.8067 moles s-1) per 4 km grid cell, predicted by GEOS-Chem for the region of study. The TERI 

inventory additionally includes isoprene emissions from the residential sector, so isoprene from natural sources was 

calculated as the difference of the total rate predicted by GEOS-Chem and the rate of emissions solely from the 15 

residential sector. Terpene emissions are assumed to occur only in non-residential source-sectors. Isoprene and terpene 

emission rates were applied to all computational cells as an hourly average (with no diurnal profile) in the non-

residential inventory. 

2.2 Residential Sector Emissions 

To examine local and regional impacts of residential sector emissions in greater detail, an update to the TERI inventory 20 

was performed using various sources to consider more granular input data specific to the residential sector (Table 1). 

Bottom-up estimates of delivered energy for cooking, space heating, water heating, and lighting were informed by 

those used in Pandey et al. (2014) and converted to fuel consumption at the village level using population size and 

percentage of reported primary cooking and lighting fuels from the 2011 Census of India (Census of India, 2011). 

Urban areas of the domain were assumed to have the average cooking and lighting fuel use profiles of the average 25 

urban areas of their district. Fuel consumption was converted to emission rates using fuel-specific emission factors 

informed by a review of field and laboratory studies, which was used to update the Speciated Pollutant Emissions 

Wizard (SPEW) inventory (Bond et al., 2004) and to generate summary estimates by fuel type. Hourly emissions were 

generated using source-specific diurnal emissions profiles (Figure 2). The same diurnal emissions profile is applied to 

all species from a source category and were informed by real-time emissions measurements taken in homes during 30 

cooking reported by Fleming et al. (2018a,b). Profiles for fuel-based lighting were informed by real-time 

measurements of kerosene lamp usage data reported in Lam et al. (2018). The residential sector inventory represents 

surface emissions with a native spatial resolution of 30-arc seconds (~1 km). 

 

 In deriving summary estimates of emission factors, priority was given to emission factor measurements from 35 

field-based studies. Several studies have shown that laboratory-based measurements of stove and lighting emissions 
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tend to be lower than those of devices measured in actual homes (Roden et al., 2009), perhaps due to higher variation 

in fuel quality and operator behavior. Field-based emission factors utilized in this study include those for non-methane 

hydrocarbons, measured from fuels and stoves within the study domain (Fleming et al. 2018a,b). PM2.5 speciation 

from cooking fires was informed by Jayarathne et al. (2018) (Tables 2 and 3 ). Residential emission rates for PM2.5, 

black carbon (BC), organic carbon (OC), CO, NOx, CH4, CO2, and total non-methane hydrocarbons (NMHC) were 5 

generated from SPEW, which estimates emissions from combustion by fuel type. As such, solvent emissions are not 

included for lack of specific input data. Additionally, while SPEW incorporates temperature-dependent heating 

combustion activity, the inventory assumes temperatures too high for this activity to take effect. Thus, our inventory 

has no emissions from heating.  

 10 

 We employed various methods to account for pollutant species not explicitly reported by SPEW (Tables 1 

and 2). Gas-phase SO2 and NH3 emissions were informed by existing residential emissions in the TERI inventory 

(Sharma et al. 2015); NO and NO2 were estimated from NOx emissions assuming a NO:NO2 emission ratio of 10:1. 

Total NMHC and PM2.5 emission factors from SPEW are distributed by fuel type (wood, dung, agriculture residue, or 

LPG) (Table 2). Given the low PM2.5 emission rate of LPG, (Shen et al., 2018), emissions from LPG are assumed to 15 

be negligible. To further speciate NMHCs, we employed HC species-specific emission factors (Fleming et al. 2018b), 

differentiated by fuel and stove type (i.e. traditional stove, or chulha, with wood or dung, and simmering stove, or 

angithi, with dung). We assume that all NMHC emissions in each computational grid cell are produced by either wood 

or dung, whichever contributes the greater fraction of total PM2.5 emissions in that cell (Figure 3). The NMHC 

emission profile of dung was assumed to be the average of measurements from chulha and angithi stoves. The emission 20 

profile for agricultural residue is similar to that of wood; therefore, wood speciation profiles are applied in cells where 

agricultural residue dominates. 

 

 Particle-phase speciation of total PM2.5 was based on PM mass emissions from wood- and dung-fueled 

cooking fires as reported by Jayarathne et al. (2018), and primary cooking fuel type distribution data from the 2011 25 

census (Tables 2 and 3). A single PM2.5 speciation profile, defined as the average of that of wood and that of the wood-

dung mixture, was applied in all cells for lack of information on pure dung emissions (Table 3). Non-carbon organic 

particulate matter (PNCOM) and particulate water (PH2O) were assumed to be negligible owing to lack of information 

on these species. Emissions of remaining particle-phase species (i.e. Al, Ca, Fe, Mg, Mn, Si, and Ti) are also assumed 

to be negligible for lack of information. Unspeciated fine particulate matter (PMothr) is defined in CMAQ as the portion 30 

of total PM2.5 unassigned to any other species:  

PMothr = PM2.5 − (PEC + POC + PNa + PNH4
+ PK + PCl + PNO3

+ PSO4
)                                     (2) 

Tables 4 and 5 summarize emission rates for the study domain. 

3 Atmospheric Modeling 

To study the impact of household emissions on ambient air pollution, we simulated two emission scenarios each for 35 

three time periods which coincide with available INCLEN observation data (Tables 6 and 7). A “total” emission 
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scenario represents the overall atmospheric environment by including emissions from all source-sectors in the 

inventory. A “non-residential” emission scenario represents zeroing-out or “turning-off” all household emissions. By 

considering these scenarios independently, we can isolate the effect of the residential sector on the ambient 

atmosphere. Each scenario was simulated over a region in northern India (Figure 1) for those periods when 

measurements were carried out in the region of interest. Figure 1 shows the 600 km by 600 km domain with 4 km grid 5 

resolution. The domain is centered over the Palwal District and the SOMAARTH DDESS and includes New Delhi 

and portions of surrounding states.  

 

Simulation of regional air quality was carried out using the U.S. Environmental Protection Agency 

Community Multiscale Air Quality modeling system (CMAQ), version 5.2 (Appel et al., 2017; US EPA, 2017). 10 

CMAQ is a three-dimensional chemical transport model (CTM) that predicts the dynamic concentrations of airborne 

species. CMAQ includes modules of radiative processes, aerosol microphysics, cloud processes, wet and dry 

deposition, and atmospheric transport. Required input to the model includes emissions inventories, initial and 

boundary conditions, and meteorological fields. The domain-specific, gridded emissions inventory provides hourly-

resolved total emission rates for each species (not differentiated by source) by cell, timestep, and vertical layer. Initial 15 

conditions (ICs) and boundary conditions (BCs) are necessary to define the atmospheric chemical concentrations in 

the domain at the first time step and at the domain edges, respectively. Simulations operating with nested domains 

require two groups of initial conditions and boundary conditions. The present study uses the global chemical transport 

model GEOS-Chem v11-02c (acmg.seas.harvard.edu/geos/index.html) to generate concentrations on the boundary of 

the computational domain and CMAQ to produce initial and boundary conditions for the inner parent domain and 20 

nested domain, respectively. Meteorological conditions (including temperature, relative humidity, wind speed and 

direction and land use and terrain data) drive the atmospheric processes represented in CMAQ. The Weather Research 

and Forecasting modeling system (WRF) – Advanced Research WRF (WRF-ARW, version 3.6.1), was used to 

simulate the meteorological input for CMAQ (Skamarock et al., 2008).  

3.1 GEOS-Chem 25 

We used GEOS-Chem v11-02c, a global chemical transport model driven by assimilated meteorological observations 

from the NASA Goddard Earth Observing System -- Fast Processing (GEOS-FP) of the Global Modeling and 

Assimilation Office (GMAO), to simulate the boundary conditions for the CMAQ modeling. Simulations are 

performed at 2˚x2.5˚ horizontal resolution with 72 vertical layers, including both the full tropospheric chemistry with 

complex SOA formation (Marais et al., 2016) and UCX stratospheric chemistry (Eastham et al., 2014). Emissions 30 

used the standard HEMCO configuration (Keller et al., 2014), including EDGAR v4.2 anthropogenic emissions 

(http://edgar.jrc.ec.europa.eu/overview.php?v=42), biogenic emissions from the MEGAN v2.1 inventory (Guenther 

et al., 2012), and GFED biomass burning emissions (http://www.globalfiredata.org). Simulations were run for 1 year, 

after which hourly time series diagnostics were compiled for the CMAQ modeling period. Using the PseudoNetCDF 

processor, we remapped a subset of the 616 GEOS-Chem-produced species to CMAQ species 35 

(https://github.com/barronh/pseudonetcdf). The resulting ICs and BCs include 119 gas- and particle-phase species, 80 



 8 

adapted from GEOS-Chem and the remaining 39 (including OH, HO2, ROOH, oligomerized secondary aerosols, 

coarse aerosol, and aerosol number concentration distributions) from the CMAQ default initial and boundary 

conditions data (which were developed to represent typical clean-air pollutant concentrations in the United States).  

3.2 Weather Research and Forecasting (WRF) Model 

Three monthly WRF version 3.6.1 simulations were conducted in the absence of nudging or data assimilation. The 5 

large-scale forcing to generate initial and boundary meteorological fields is adopted from the latest version of the 

European Centre for Medium-Range Weather Forecasts (ECMWF) ERA5 released in January 2019. These reanalysis 

data are on a 31 km grid and resolve the atmosphere using 137 levels from the surface to a height of 80 km. WRF 

simulations were performed with 4 km horizontal resolution and 24 vertical layers (the lowest layer of about 50 m 

depth), consistent with the setup of the CMAQ model. No cumulus parameterization was used in the simulations. 10 

Meteorological outputs from WRF were prepared as inputs to CMAQ by the Meteorology-Chemistry Interface 

Processor (MCIP) version 4.4 (Otte et al., 2010).  

3.3 Community Multiscale Air Quality (CMAQ) Modeling System 

Within the chemical transport portion of CMAQ, there are two primary components: a gas-phase chemistry module 

and an aerosol chemistry, gas-to-particle conversion module. The present study employs a CMAQ-adapted gas-phase 15 

chemical mechanism, CB6R3 (derived from the Carbon Bond Mechanism 06) (Yarwood et al., 2010), and the aerosol-

phase mechanism, AERO6, which define the gas-phase and aerosol-phase chemical resolution. The present study 

considers 70 non-methane hydrocarbon (NMHC) compounds lumped into 12 groups of volatile organic compounds 

(VOCs). The emissions inventory provides emission rates for 28 chemical species, including 18 gas-phase species and 

10 particle-phase species. The CB6R3 adaptation describes atmospheric oxidant chemistry with 127 gas-phase species 20 

and 220 gas-phase reactions, including chlorine and heterogenous reactions. The CMAQ aerosol module (AERO6) 

describes aerosol chemistry and gas-to-particle conversion with 12 traditional SOA precursor classes, and 10 semi-

volatile primary organic aerosol (POA) precursor reactions. The majority of the gas-phase organic species are 

apportioned to lumped groups by their carbon bond characteristics, such as single bonds, double bonds, ring structure, 

and number of carbons. Some organic compounds are apportioned based on reactivity, and others, like isoprene, 25 

ethene, and formaldehyde, are treated explicitly. 

 

The secondary organic aerosol module, AERO6, developed specifically for CMAQ, interfaces with the gas-

phase mechanism, predicts microphysical processes of emission, condensation, evaporation, coagulation, new particle 

formation, and chemistry, and produces a particle size distribution comprising the sum of the Aitken, Accumulation, 30 

and Coarse log-normal modes (Figure 4). AERO6 predicts the formation of SOA from anthropogenic and biogenic 

volatile organic compound (VOC) precursors (properties of which are shown in Table 8), as well as semi-volatile 

POA and cloud processes. CB6R3 accounts for the oxidation of the first-generation products of the anthropogenic 

lumped VOCs: high-yield aromatics, low-yield aromatics, benzene, PAHs, and long-chain alkanes (Pye and Pouliot, 

2012).  35 
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 In addition to SOA formation from traditional precursors, CMAQv5.2 accounts for the semi-volatile 

partitioning and gas-phase aging of POA using the volatility basis set (VBS) framework independently from the rest 

of AERO6 (Murphy et. al., 2017). The module distributes directly emitted POA (as the sum of primary organic carbon, 

POC, and noncarbon organic matter, NCOM) from the emissions inventory input into five new emitted species 5 

grouped by volatility: LVPO1, SVPO1, SVPO2, and SVPO3, and IVPO1 (where LV is low volatility, SV is semi-

volatile, IV is intermediate volatility, and PO is primary organic). POA is apportioned to these lumped vapor species 

using an emission fraction and are oxidized in CB6R3 by OH to LVOO1, LVOO2, SVOO1, SVOO2, and SVOO3 

(where OO denotes oxidized organics) with stoichiometric coefficients derived from the 2D-VBS model.  AERO6 

then partitions the semi-volatile primary organics and their oxidation products to the aerosol phase (Figure 4). Thus, 10 

the treatment of POA as semi-volatile products leads to an additional twenty species, a particle- and vapor-phase 

component for each primary organic and oxidation product (Murphy et al., 2017).  

 

Emissions inventory modifications were required to match the most recent aerosol module, AERO6, in the 

CMAQ model. Initially, the lumped emissions of PAR (a lumped VOC group characterized by alkanes) and XYL (a 15 

lumped VOC group characterized by xylene) derived from grouping specific NMHCs, calculated using the University 

of Illinois estimation and the Fleming et al. (2018a) emission factors, accounted for characteristics of naphthalene 

(NAPH) and SOA-producing alkanes (SOAALK), which are not individually described by any of the sources used to 

construct the inventory. Moreover, only a subset of VOCs in the plume could be measured. However, CMAQv5.2 

simulations incorporate a surrogate species, potential secondary organic aerosol from combustion emissions (pcSOA), 20 

to address sources of missing SOA, including unspeciated emissions of semivolatile and intermediate volatility 

organic compounds. AERO6 predicts the formation of SOA from NAPH and SOAALK independently as well as from 

XYL and PAR; these secondary aerosol precursor emission rates are calculated with: 

 

XYLMN = 0.998 ∗ XYL              (3) 25 

 NAPH = 0.002 ∗ XYL               (4) 

        PARCMAQ =  PARcalculated − 0.00001 ∗ NAPH              (5) 

                         SOAALK = 0.108 ∗ PARCMAQ              (6) 

 

where XYLMN, NAPH, PARCMAQ, and SOAALK are the new inventory species (Pye and Pouliot, 2012).  SOA-30 

producing alkanes are treated separately in AERO6.  

4 Surface Observational Data 

Gas-phase air quality data analyzed in the present study come from the Central Pollution Control Board (CPCB) of 

the Ministry of Environment, Forest & Climate Change, Government of India at two sites in New Delhi (one in the 

west, and one in the south).  Particle-phase data analyzed come from the SOMAARTH Demographic, Development, 35 
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and Environmental Surveillance Site (Mukhopadhyay et al., 2012; Pillarisetti et al., 2014; Balakrishnan et al., 2015) 

managed by the International Clinical Epidemiological Network (INCLEN). Palwal District has a population of ~ 1 

million over an area of 1400 km2.  In this district, ~39% of households utilize wood burning as their primary cooking 

fuel, with dung (~25%) and crop residues (~7%) (Census of India, 2011). Specific sites studied are the SOMAARTH 

headquarters (HQ) in Aurangabad (15 km south of Palwal) and the village of Bajada Pahari (8 km northwest of 5 

SOMAARTH HQ). Ambient measurement sites are shown in Fig. 1, and Table 6 details available data for each 

location. We used meteorological data (hourly surface temperature and near-surface wind speed and direction) from 

INCLEN and CPCB at the two rural and two urban sites, respectively, to evaluate the WRF simulations performance.  

5 Simulation Results 

5.1 WRF Evaluation 10 

We evaluated WRF simulated meteorology against the available surface observations at different sites during the same 

periods. Figure 5 shows that there is generally good agreement of surface temperature between WRF and observations 

for all three months. The surface wind direction is found consistent between model and observations for each site and 

each month (Table 9). The simulated near-surface wind speeds are overestimated in WRF, with an averaged mean-

bias (MB) of about +1.5 m/s. Such a bias is partly a result of the difference in the definition of “near-surface” between 15 

the model and observations. 

5.2 Particulate Matter 

Figures 6–9 show measured and predicted total PM2.5 and the average diurnal profile at each site for the periods with 

available measurements. The diurnal profile in these figures includes that of both emission scenarios: the total scenario 

with all emissions and the non-residential scenario with zeroed-out residential sector. The simulations capture the 20 

general trend well and produce significant diurnal profiles (Table 10). Rural sites show typical PM2.5 levels are 

predicted between 50 µg m-3 and 125 µg m-3
 in December and 25 µg m-3 and 75 µg m-3

 in September months (Figures 

6 and 7). On the other hand, typical values at urban sites range from 100 µg m-3 to 300 µg m-3 in December and 50 µg 

m-3 to 125 µg m-3 in September months (Figures 8 and 9). Observations and predictions show higher PM2.5 levels in 

December than September, owing to frequent temperature inversions in winter and shallower planetary boundary 25 

layers. Two daily peaks and lows of PM2.5 compare with ambient observations at Bajada Pahari December 2015 and 

September 2016, SOMAARTH HQ September 2015 and 2016, West New Delhi December 2015, and South New 

Delhi December and September 2015. Average daily PM2.5 levels regularly exceed the 24-hour Indian standard of 60 

µg m-3 in each month in both rural and urban locations, surpassing even double the standard in the village of Bajada 

Pahari during mealtimes in December. Afternoon minima tend to be underestimated in September 2015 and December 30 

2015. Diurnal trends of PM2.5 were weaker in September 2016 than the other months, with lower predictions but 

overestimated minima.  Urban sites show greater overestimation than rural sites. This is likely due in part to the 

granularity of the primary emissions inventory datasets. The non-residential sector was prepared from data with a 

native resolution of 36 km, while the residential sector used data with ~1 km resolution. Underpredictions of peak 
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PM2.5 concentrations in September could also result because the emission inventory does not account for day-to-day 

variations, especially in the agricultural burning sector in which emissions can change significantly on a daily basis. 

Observed and predicted PM2.5 levels in New Delhi can exceed 300 µg m-3, especially in winter. In this highly populated 

urban environment, particulate matter levels are more than double those reported in the nearby rural areas. The 

employed emissions inventory specifies particulate matter surface emissions, which surpass those of Bajada Pahari 5 

and SOMAARTH HQ more than 30-fold (Table 5). Biogenic emissions are predicted to be of little importance, 

accounting for less than 10% on average of total PM2.5 concentrations for most stations and months (Table 10).  

 

Figure 10 shows CMAQ predictions of secondary organic PM2.5 (SOA). Like PM2.5, SOA is typically 

predicted to be higher in New Delhi than in the rural sites, due to higher PM2.5 and precursor VOC emissions and 10 

ambient concentrations in urban environments (Tables 5 and 6). Higher levels are similarly attained in December than 

in September due to longer residence times and more aging during winter. SOA has high day-to-day variability. Values 

range from below 20 µg m-3 to over 200 µg m-3 in December, with average peaks up to 55 µg m-3 at the rural sites. 

September months predict lower SOA, ranging from 10 µg m-3 to 130 µg m-3. Diurnal average SOA maxima in 

December for the rural stations is nearly double that of September 2016, which can be attributed to temperature 15 

inversions and a shallower planetary boundary layer in winter.  

 

The significance of household emissions on outdoor PM2.5 concentrations is demonstrated by the diurnal 

profiles in Figure 11. The top row of plots shows the predicted contribution of the residential sector to anthropogenic 

PM2.5, while the middle row of plots describes the predicted contribution of the residential sector to secondary organic 20 

PM2.5, as in Equations 7 and 8 respectively:  

                                                                    
Residential Anthropogenic PM2.5

Total Anthropogenic PM2.5
                                                                      (7) 

                                                                               
Residential SOA

Total SOA
                                                                                  (8) 

The bottom row of plots shows the predicted SOA portion of residential PM2.5, as 

                                                                              
Residential SOA

Residential PM2.5
                                                                                 (9) 25 

where residential PM is calculated as the difference in predictions from the non-residential and total emission scenario 

and averaged over simulation durations (Table 7). Importance of household emissions to ambient PM is strongly 

correlated with mealtimes. Predicted maximum contributions to anthropogenic PM2.5 in Bajada Pahari and 

SOMAARTH HQ are about double that of South and West New Delhi for each month. Household energy-use is 

estimated to account for up to 27% of anthropogenic PM2.5 (at SOMAARTH HQ during September 2016), remaining 30 

consistently above 10% for each rural site during all months. Similar behavior is predicted for SOA (middle plots of 

Fig. 11). An estimated 15% to 34% of secondary organic matter is attributable to residential emissions in September 

and 2016. Again, the impact is smaller in West and South New Delhi (up to 19% and 21%, respectively in September 

2016), where there are greater emissions of SOA precursors from other sectors. The diurnal profile of the contribution 

to SOA is subdued for all sites in December, suggesting that SOA generation is less efficient in winter when radiation 35 
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and temperatures are lower. Aging of VOCs is captured by the phase shift of the impact on SOA daily trend, where 

peaks consistently occur an hour after the residential sector shows greatest importance to anthropogenic PM2.5.  

At each measurement site during all months, SOA is predicted to make up more than 40% of PM2.5 produced 

by the residential sector on average (bottom row of plots of Fig. 11). SOA is least significant to residential PM2.5 in 

the first half of mealtimes (~20% during breakfast and ~40% during dinner) at rural sites, when primary particulate 5 

matter is largest. Aging of precursor VOCs from cooking emissions, paired with maximum incoming radiation, lead 

to maximum 
Residential SOA

Residential PM2.5
 values in early afternoon, when SOA accounts for more than 75% of residential PM2.5 at 

both rural and urban sites during each simulated month.  

The fractional contribution of total SOA to total PM2.5 is shown in Fig. 12. While concentrations of SOA 

depend significantly on the site and time period, their contribution to total PM2.5 shows little variation. At all stations, 10 

SOA is predicted to make up to 55% of PM2.5 in September months and to be most significant around midday. 

However, diurnal variation of the significance of SOA is greater in New Delhi than in Bajada Pahari or SOMAARTH 

HQ, owing to greater diversity of energy-use activities and emissions characteristics in the urban environment. 

5.3 Ozone  

The 8-hour India Central Pollution Control Board (CPCB) standard for ozone is 100 g m-3 for an 8-hour average. In 15 

the alternative unit of ozone mixing ratio, a mass concentration of ozone of 100 g m-3 at a temperature of 298 K at 

the Earth’s surface equates to a mixing ratio of 51 parts-per-billion (ppb). A number of atmospheric modeling studies 

of ozone over India exist (Kumar et al., 2010; Chatani et al., 2014; Sharma et al., 2016). 

 

Sharma et al. (2016) carried out baseline CMAQ simulations for 2010 and compared ozone predictions with 20 

measurements at six monitoring locations in India (Thumba, Gadanki, Pune, Anantpur, Mt. Abu, and Nainital). Also 

carried out were sensitivity simulations in which each emissions sector (transport, domestic, industrial, power, etc.) 

was systematically set to zero. The domestic sector was predicted to contribute ~60% of the non-methane volatile 

organic carbon emissions, followed by 12% from transportation and 20% from solvent use and the oil and gas sector. 

The overall NOx-to-VOC mass ratio in the region simulated by Sharma et al. (2016) was 0.55. This exceptionally low 25 

NOx-to-VOC ratio was attributed, in part, to the widespread use of biomass fuel for cooking (leading to high VOC 

emissions), coupled with relatively low NOx emissions. (Although vehicle emissions are high in urban areas, overall 

vehicle ownership is relatively low at the national level. In addition, Euro equivalent norms have led to reduction of 

NOx emissions.) Predicted O3 levels at the six observation sites tended to exceed measured values, with the ratio of 

predicted to observed annual average O3 being in the range of 1.04–1.37 at the six locations. Moreover, the overall 30 

low NOx-to-VOC ratios in India lead to NOx-sensitive O3 formation conditions. Based on emissions inventories, the 

overall anthropogenic NMVOC/NOx mass emissions ratio in India in 2010 as computed by Sharma et al. (2016) was 

1.82. Considering only ground-level sources, the ratio increases to 3.68. 
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 Ozone surface measurements and predicted mass concentrations based on the CMAQ 4 km resolution 

simulations at two sites in New Delhi over the periods 9/7/2015 – 9/29/2015, 12/7/2015 – 12/30/2015, and 9/7/2016 

– 9/29/2016 in the present study are shown in the three panels in Fig. 13. The predicted O3 concentrations are 

reproduced well at the West New Delhi and South New Delhi stations, especially in September (Table 10). However, 

when NO concentrations are higher due to meteorological inversion conditions, ozone concentrations are 5 

underestimated, as local NO+O3 titration reactions near the monitoring site are not resolved. The performance of the 

model improves in prediction of higher values of ozone (as in the case of September), which are of greater importance 

for assessing exposures. High ozone concentrations in September are quite well reproduced by the model. This shows 

that, on the larger scale, the model captures photochemistry quite well; however, micro-scale titration is not well 

represented due to the limitations of inventory resolution. This would require further enhancement of emission 10 

inventories at even higher resolution. The results of ozone simulations in the present study are generally consistent 

with those of previous simulations over India. For example, also using WRF-CMAQ, Kota et al. (2018) showed that 

the relative bias in ozone simulation ranges from −30% to +50% in major cities of India. In South New Delhi, the bias 

in O3 predictions in the present study lies between -2.67 and +7.01 µg m-3, as compared to the observations of 29.28 

to 62.76 µg m-3. 15 

6 Conclusions 

Air quality in India is determined by a mixture of industrial and motor vehicle emissions, and anthropogenic fuel 

combustion, that includes residential burning of biomass for household uses, such as cooking. Average daily PM2.5 

levels frequently exceed the 24-hour standard of 60 µg m-3 and can exceed 200 µg m-3, even in rural areas. PM2.5 is a 

mixture of directly-emitted particulate matter and that formed by the atmospheric conversion of volatile organic 20 

compounds to secondary organic aerosol. Here, we assess the extent to which observed O3 and PM2.5 levels in India 

can be predicted using state-of-the-science emissions inventories and atmospheric chemical transport models. We 

have focused on the 308 sq km of the SOMAARTH Demographic, Development, and Environmental Surveillance 

Site (DDESS) in the Palwal District of Haryana, India.  

 25 

 Atmospheric simulation of particulate matter levels over a complex region like India tends to be demanding, 

owing to the combination of a wide range of primary particulate emissions and the presence of secondary organic 

matter from atmospheric gas-phase reactions generating low-volatility gas-phase products that condense into the 

particulate phase, forming secondary organic aerosol (SOA).  Consequently, the main focus of the present work has 

been the evaluation of the extent to which ambient particulate matter levels over the current region of India can be 30 

predicted. Simulations capture the general trend of observed daily peaks and lows of particulate matter, with PM2.5 

reaching values as high as 250 µg m-3. Secondary organic matter accounts for 10% to 55% of total PM2.5 mass on 

average. In India, over 50% of households report use of wood, crop residues, or dung as cooking fuel; such fuels 

produce significant gas- and particle-phase emissions. We evaluated the fractional impact of the residential sector 

emissions on the formation of secondary organic aerosol, as a function of time of day, for New Delhi, SOMAARTH 35 

HQ, and Bajada Pahari. The predicted fractional contribution of residential sector emissions to secondary organic 
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PM2.5 in Bajada Pahari and SOMAARTH HQ reaches values as high as 34% and, moreover, displays a distinct diurnal 

profile, with maxima corresponding to the morning and evening mealtimes. In both rural and urban areas, SOA is 

predicted to account for more than 40% of residential PM2.5, reaching up to 80% in early afternoon in September 

months.  

 5 

 

Simulations of ozone levels in New Delhi reported here are largely in agreement with ambient monitoring 

data, although the simulations fail to capture several one- to two-day ozone episodes that exceed predictions by a 

factor of two or more. The overall agreement between observed and predicted O3 levels, also demonstrated in the 

study of Sharma et al. (2016), suggests that gas-phase atmospheric chemistry over India is reasonably well understood. 10 

While ozone and particulate matter were simulated for September and December months, we employed a single 

emissions inventory, regardless of season. Thus, the inventory does not capture December-specific characteristics, 

including heating combustion. Furthermore, information regarding household solvent use, emissions profiles by fuel 

type, and speciation of certain emissions (such as semi volatile organic compounds and intermediate volatility organic 

compounds) is lacking. Variation in the resolution of specific input data additionally contributes to uncertainty.  15 

 

 Air quality studies such as the present one provide a quantification of the elements of atmospheric 

composition in India, especially that owing to household sources. The importance of replacing traditional household 

combustion devices with modern technology is evident in studies such as the present one. 

 20 
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Table 1. Residential Emissions Inventory Sources by Species 

 
CMAQ 

Required 

Species1 

Source 

Solely 

Emitted by 

Residential 

Sector 

Gas 

NO T. Bond (University of Illinois) NOx using                                                                                        

Sharma et al. (2015) NO:NO2 = 10:1 

No 

NO2 No 

SO2 Sharma et al. (2015) No 

NH3 Sharma et al. (2015), assumed to be negligible  

CO T. Bond (University of Illinois) No 

NMHC 

ALD2 

Speciation from T. Bond (University of Illinois) NMHC                                                                           

using Fleming et al. (2018a,b) emission factors  

No 

ALDX Yes 

ETH No 

ETHA No 

ETOH No 

FORM No 

MEOH No 

OLE No 

PARcalculated
3 No 

TOL No 

XYL3 No 

CMAQ 

AERO6 

Species 

ISOP2 
All-sector total ISOP emission from GEOS-Chem daily average and 

subtracted non-residential ISOP emission from Sharma et al. (2015)  
No 

TERP2 Assumed to be negligible  

XYLMN XYLMN = 0.998 * XYL 

Pye and Pouliot 

(2012)  

No 

NAPH NAPH = 0.002 * XYL No 

PARCMAQ PARCMAQ = PARcalculated - 0.00001 * NAPH No 

SOAALK SOAALK = 0.108*PARCMAQ No 

PM 

PEC 
T. Bond (University of Illinois) 

No 

POC No 

PNA 

Speciation of PM2.5 from T. Bond (University of Illinois) using 

Jayarathne et al. (2018) mass percentage 

Yes 

PCL Yes 

PK Yes 

PNH4 Yes 

PNO3 No 

PSO4 No 

PMOTHR PMOTHR = PM2.5 - (PEC+ POC+PNA+PNH4+PK+PCL+PNO3+PSO4) No 

PMC Sharma et al. (2015) No 

PNCOM 
Unknown, assumed to be 0 

 

PH2O  

PAL 

Assumed to be negligible 

 

PCA  

PFE  

PMG  

PMN  

PSI 
 

PTI 
 

1Bolded species contribute to SOA production via the AERO6 module. 2Total isoprene and terpene emissions from 

all sectors are taken from GEOS-Chem and were included only in the O3 simulations. 3PARcalculated and XYL are 

excluded from CMAQ and replaced with PARCMAQ, XYLMN, NAPH, and SOAALK.  
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Table 2. Residential PM2.5 and NMHC Emissions Speciation 

Emitted Species Fuel-Specific Data Use 

PM2.5 

(Bond et al., 2004) 

wood, dung, agricultural 

residue, LPG 

Total PM2.5 emission rate distributed by wood, dung, 

and agricultural residue. 

LPG emissions assumed negligible. 

Speciated PM2.5 

(Jayarathne et al., 2018) 
wood, wood/dung mix 

Average profile of wood and wood/dung mix applied to 

all fuel type emissions.  

NMHC 

(Bond et al., 2004) 

wood, dung, agricultural 

residue, LPG 

Total PM2.5 emission rate distributed by wood, dung, 

and agricultural residue. 

LPG emissions assumed negligible. 

Speciated HCs 

(Fleming et al., 2018a,b) 
wood, dung 

One profile applied to each cell according to which fuel 

type dominates emissions in that cell.  

Where agricultural residue dominates, wood profile is 

assumed.  
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Table 3. PM2.5 Speciation by Fuel Type 

Emitted Species1 
% Mass of Total Emitted PM2.5 

Wood2 Wood/Dung2 Average Employed3 

PEC 14 5.10 9.55 

POC 52 61 56.50 

PNA 0.05 0.39 0.22 

PCL 3.20 8.58 5.89 

PK 1.78 0.52 1.15 

PNH4 1.12 4.46 2.79 

PNO3 0.42 0.21 0.32 

PSO4 0.33 0.46 0.40 

PMOTHR 27.10 19.29 23.19 
1Total PM2.5 mass emission rates from residential combustion were estimated and distributed by fuel type (wood, 

dung, or agricultural residue) by University of Illinois. 2Emitted PM2.5 weight percent reported by Jayarathne et al. 

(2018). 3An average profile applied to all cells, indiscriminate of fuel type. 

 5 
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Table 4. Particulate Matter Surface Emissions over Study Domain 

Species Emission Rate 
% Emitted by  

Residential Sector 

Particulate  

Matter  

(kg/day) 

POC 1.48 × 106 30.78 

PEC 7.18 × 105 15.89 

PCL 1.69 × 103 100 

PK 4.61 × 103 100 

PNA 2.46 × 104 10.07 

PNH4 2.11 × 105 1.47 

PNO3 6.51 × 105 27.90 

PSO4 1.18 × 106 61.45 

PMC 9.00 × 103 100 

PMOTHR 2.18 × 104 100 

SOA  

Precursor VOCs 

(mol/day) 

NAPH 6.82 × 103 2.72 

SOAALK 3.75 × 106 34.54 

TOL 1.54 × 106 27.21 

XYLMN 3.40 × 106 2.72 
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Table 5. Mealtime1 Particulate Matter Surface Emissions over Corresponding 16 km2 Grid Cell 

  Bajada Pahari SOMAARTH HQ New Delhi 

 Species Total % Residential Total % Residential Total % Residential 

Particulate 

Matter  

(kg/day) 

POC 35.17 67.13 36.04 100 609.73 5.70 

PEC 10.22 33.23 6.02 100 346.84 2.21 

PCL 2.19 100 3.40 100 3.40 100 

PK 0.43 100 0.66 100 0.66 100 

PNA 0.08 100 0.12 100 0.12 100 

PNH4 1.037 100 1.61 100 1.61 100 

PNO3 0.37 32.01 0.18 100 12.59 1.45 

PSO4 2.49 5.90 0.23 100 116.80 0.20 

PMC 63.99 91.94 72.56 100 275.99 7.12 

PMOTHR 13.92 61.94 13.37 100 276.91 4.83 

SOA  

Precursor 

VOCs  

(mol/day) 

NAPH 0.11 6.50 0.03 59.56 3.78 0.65 

SOAALK 112.31 50.62 113.20 77.95 1696.26 11.14 

TOL 43.88 42.28 39.38 71.05 750.00 1.04 

XYLMN 56.47 6.50 13.03 59.56 1886.15 0.65 
1Mealtimes are assumed to be 4 am – 10 am and 4 pm – 8pm (local).  
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Table 6. Ambient Observation Data Availability 

Location (Grid Cell) PM2.5 O3 

Bajada Pahari1 

(74,74) 

12/20/15 – 12/31/15 

9/19/16 – 9/30/16 
n/a 

SOMAARTH HQ1 

(75,74) 

9/22/15 – 9/27/15 

9/23/16 – 9/30/16 
n/a 

West New Delhi2 

(71,91) 

9/7/15 – 9/30/15 

12/7/15 – 12/31/15 

9/7/16 – 9/30/16 

9/7/15 – 9/30/15 

12/7/15 – 12/31/15 

South New Delhi2 

(71,89) 

9/7/15 – 9/30/15 

12/7/15 – 12/31/15 

9/7/16 – 9/30/16 

9/7/15 – 9/30/15 

12/7/15 – 12/31/15 

9/7/16 – 9/30/16 

1Data from the International Epidemiological Clinical Network. Observations at 

Bajada Pahari are the average of two monitoring locations that coincide within the 

same grid cell. 2Data from the Central Pollution Control Board of India at New Delhi 

Punjabi Bagh monitoring station. 5 
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Table 7. Simulation Durations 

CMAQ1 09/07/15 - 09/30/15 12/07/15 - 12/31/15 09/07/16 - 09/30/16 

WRF2 

(Meteorology) 
09/02/15 - 09/30/15 12/02/15 - 12/31/15 09/02/16 - 09/30/16 

GEOS-Chem3 

(Boundary Conditions) 
09/07/15 - 09/30/15 12/07/15 - 12/31/15 09/07/16 - 09/30/16 

1Five days prior to date shown were run and omitted from analysis as spinup. 2One day prior to date shown was run and omitted from analysis as spinup. 3GEOS-

Chem was run for one year before extracting atmospheric diagnostics. 
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Table 8. Properties of anthropogenic traditional semi-volatile SOA precursors in CMAQv5.2 

SOA 

species 
Precursor Oxidants Semi-volatile 

α  

(mass-based)  

C* 

(µg/m3)  

ΔHvap 

(kJ/mol)  

# of 

C  

Molecular weight 

(g/mol)  
OM/OC  

AALK1 long-chain alkanes OH SV_ALK1 0.0334  0.15  53.0  12  168  1.17  

AALK2 long-chain alkanes OH SV_ALK2 0.2164  51.9  53.0  12  168  1.17  

AXYL1 XYLMN OH,NO SV_XYL1 0.0310  1.3  32.0  8  192  2.0  

AXYL2 XYLMN OH,NO SV_XYL2 0.0900  34.5  32.0  8  192  2.0  

AXYL3 XYLMN OH,HO2 nonvolatile 0.36  NA  NA  NA  192  2.0  

ATOL1 TOL OH,NO SV_TOL1 0.0310  2.3  18.0  7  168  2.0  

ATOL2 TOL OH,NO SV_TOL2 0.0900  21.3  18.0  7  168  2.0  

ATOL3 TOL OH,HO2 nonvolatile 0.30  NA  NA  NA  168  2.0  

ABNZ1 benzene OH,NO SV_BNZ1 0.0720  0.30  18  6  144  2.0  

ABNZ2 benzene OH,NO SV_BNZ2 0.8880  111  18  6  144  2.0  

ABNZ3 benzene OH,HO2 nonvolatile 0.37  NA  NA  NA  144  2.0  

APAH1 naphthalene OH,NO SV_PAH1 0.2100  1.66  18  10  243  2.03  

APAH2 naphthalene OH,NO SV_PAH2 1.0700  265  18  10  243  2.03  

APAH3 naphthalene OH,HO2 nonvolatile 0.73  NA  NA  NA  243  2.03  

The semi-volatile reaction products of “long alkanes” (SV_ALK1 and SV_ALK2) are parameterized by Presto et al. (2010). Values for “low-yield aromatics” 

products (SV_XYL1 and SV_XYL2) are based on xylene, with the enthalpy of vaporization (ΔHvap) from studies of m-xylene and 1,3,5-trimethylbenzene. ΔHvap 

for products of “high-yield aromatics” (SV_TOL1 and SV_TOL2) are based on the higher end of the range for toluene. The products of benzene (SV_BNZ1 and 

SV_BNZ2) assume the same value for ΔHvap. All semi-volatile aromatic products are assigned stoichiometric yield (α) and effective saturation concentration 5 
(C*) values from laboratory measurements by Ng et al. (2007). Remaining parameters for PAH reaction products (SV_PAH1 and SV_PAH2) are taken from 

Chan et al. (2009). Properties of semi-volatile primary organic aerosol precursors are given in Murphy et al. (2017). 
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Table 9. Quantification of WRF model biases in meteorological fields.  

 Bajada Pahari SOMAARTH HQ West New Delhi South New Delhi 

Sep ‘15 Dec ‘15 Sep ‘16 Sep ‘15 Dec ‘15 Sep ‘16 Sep ‘15 Dec ‘15 Sep ‘16 Sep ‘15 Dec ‘15 Sep ‘16 

Temperature 

(°C) 

PRE - 
15.28 

(4.59) 

30.10 

(3.19) 

29.27 

(3.48) 
- 

30.22 

(3.06) 
30.45 

(3.79) 

16.59 

(4.91) 
30.07 

(3.05) 

30.32 

(3.74) 
17.59 

(4.82) 

29.96 

(30.3) 

OBS - 
15.62 

(4.91) 

30.86 

(5.67) 

32.15 

(4.12) 
- 

33.26 

(5.31) 

32.80 

(3.60) 

19.04 

(3.66) 

31.46 

(2.33) 

28.48 

(4.30) 

12.58 

(5.52) 

29.22 

(4.22) 

MB - -0.34 -0.76 -2.89 - -3.04 -2.35 -2.45 -1.38 1.84 5.02 0.74 

ME - 1.60 3.08 2.92 - 3.07 3.03 2.58 1.54 2.11 5.02 2.37 

RMSE - 2.20 3.71 3.39 - 3.99 3.58 2.99 1.88 2.50 5.33 2.75 

Wind Speed 

(m·s-1) 

PRE - 
2.91 

(1.17) 

2.31 

(1.07) 
- - 

2.01 

(0.66) 
- - 

2.57 

(1.28) 

2.80 

(1.27) 

2.72 

(1.08) 

2.74 

(1.39) 

OBS - 
1.18 

(0.75) 

0.73 

(0.40) 
- - 

0.55 

(0.30) 
- - 

1.03 

(0.51) 

1.26 

(0.83) 

0.94 

(0.71) 

1.18 

(0.79) 

MB - 1.72 1.58 - - 1.46 - - 1.54 1.54 1.77 1.56 

ME - 1.75 1.62 - - 1.50 - - 1.58 1.61 1.82 1.62 

RMSE - 1.96 1.85 - - 1.66 - - 1.88 1.85 2.01 1.84 

Wind Direction  

(°) 

PRE - 
247 

(111) 

116 

(45) 

272 

(70) 
- 

111 

(51) 
- - 

179 

(98) 

206 

(118) 

254 

(97) 

191 

(96) 

OBS - 
259 

(57) 
102 

(41) 

255 

(58) 
- 

110 

(48) 
- - 

181 

(97) 

198 

(45) 

224 

(44) 

228 

(50) 

MB - 0.14 14 16 - -0.14 - - -6 9 35 -34 

ME - 51 38 44 - 32.71 - - 49 94 74 75 

RMSE - 66 51 64 - 47.50 - - 64 106 87 90 

PRE is mean predictions; OBS is mean observations; MB is mean bias; ME is mean error; and RMSE is root mean square error. Standard deviation of predictions 

and observations are noted in parentheses.  

 

 5 
 

 

 



 29 

Table 10. CMAQ Model Performance and Summary Statistics. 

  

Bajada Pahari SOMAARTH HQ West New Delhi South New Delhi 

Dec ‘15 Sep ‘15 Sep ‘16 Dec ‘15 Sep ‘15 Sep ‘16 Dec ‘15 Sep ‘15 Sep ‘16 Dec ‘15 Sep ‘15 Sep ‘16 

PM2.5 

PRE 133.49 54.83 59.22 131.80 32.16 63.66 212.29 101.71 106.44 191.35 92.68 92.85 

 (40.66) (21.24) (9.89) (42.81) (15.99) (11.24) (75.55) (41.49) (28.58) (61.03) (39.46) (24.37) 

OBS 136.01 - 35.55 - 75.83 58.03 120.49 81.53 - 254.15 70.24 70.97 

 (28.35) - (13.76) - (37.16) (35.19) (29.92) (12.72) - (70.89) (13.04) (18.72) 

MB -2.52 - 23.67 - -43.67 5.64 91.80 20.19 - -62.81 22.44 21.88 

ME 35.20 - 24.66 - 43.67 25.04 91.93 41.02 - 67.67 26.42 25.71 

RMSE 40.23 - 26.35 - 56.23 27.71 115.76 48.60 - 81.02 37.50 35.37 

O3 

PRE 72.76 80.72 47.24 71.83 80.75 47.22 32.59 57.14 31.66 40.90 62.76 36.29 

 (39.47 (3.87) (17.56) (39.99) (34.06) (17.60) (41.34) (53.36) (30.16) (44.87) (53.52) (29.89) 

OBS 
- - - - - - 

21.74 71.09 
- 

43.57 59.47 29.28 

 (8.05) (42.41) (37.07) (36.30) (20.27) 

MB - - - - - - 10.93 -13.95 - -2.67 3.29 7.01 

ME - - - - - - 16.83 18.74 - 12.62 24.72 19.29 

RMSE - - - - - - 22.96 22.10 - 14.08 27.64 23.31 

SOA 
PRE 44.60 17.89 23.30 44.81 18.06 22.95 44.22 23.76 33.28 43.95 22.44 31.78 

 (7.76) (2.40) (3.96) (7.59) (2.34) (3.77) (3.76) (4.74) (8.80) (3.82) (4.11) (7.84) 

Fbio 
PRE 0.09 0.18 0.08 0.09 0.18 0.08 0.04 0.06 0.04 0.04 0.03 0.05 

 (0.03) (0.10) (0.02) (0.03) (0.11) (0.02) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) 

FSOA,res  
PRE 0.15 0.24 0.26 0.15 0.24 0.26 0.13 0.15 0.16 0.13 0.16 0.16 

 (0.02) (0.05) (0.04) (0.02) (0.05) (0.04) (0.03) (0.02) (0.03) (0.03) (0.02) (0.03) 

Fan,res  
PRE 0.12 0.16 0.20 0.12 0.17 0.20 0.07 0.08 0.09 0.07 0.08 0.10 

  (0.03) (0.04) (0.03) (0.03) (0.04) (0.04) (0.02) (0.03) (0.02) (0.02) (0.03) (0.02) 

Fres,SOA 
PRE 0.48 0.51 0.52 0.47 0.50 0.52 0.43 0.51 0.55 0.45 0.53 0.54 

 (0.16) (0.20) (0.18) (0.16) (0.21) (0.18) (0.18) (0.21) (0.17) (0.18) (0.22) (0.17) 

Statistics are calculated for average diurnal profiles of predicted parameters. PM2.5, O3, and SOA are the mass concentrations in µg m-3 of total fine particulate 

matter, ozone, and secondary organic matter, respectively. Fbio is the fraction of total PM2.5 that is produced by biogenic emissions; FSOA,res is the fraction of total 

secondary organic matter attributable to the residential sector; Fan,res is the fraction of total anthropogenic PM2.5 attributable to the residential sector; and Fres,SOA is 

the fraction of residential PM2.5 attributable to SOA. PRE is mean predictions; OBS is mean observations; MB is mean bias; ME is mean error; and RMSE is root 5 
mean square error. Standard deviation of predictions and observations are noted in parentheses.
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Figures 

Fig. 1. Geographic area of simulation. The left panel shows the entirety of India, and the right panel shows a closeup 

of the model domain. The domain spans a 600 km by 600 km area with a grid resolution of 4 km (150 cells along 

each axis) and includes both New Delhi and SOMAARTH DDESS.  

 5 
Fig. 2. Fraction of daily household emissions by quantifiable fuel-use activity. Red, green, blue, and purple indicates 

cooking, space heating, water heating, and lighting, respectively. This represents the fraction of activity-specific 

daily emissions at each hour. Each species obeys the same profile. While profiles for heating are shown, the 

inventory assumes temperatures too high for this activity to take effect. 

 10 
Fig. 3. Fuel type assumed for speciation of household NMHC emissions. Study domain: 600 by 600 km at 4 km 

resolution. Red indicates cells where dung use dominated emissions and thus was assumed to be the sole fuel type 

used. Orange indicates cells where wood and agricultural residue use dominated emissions and was thus assumed to 

be the sole fuel type used. 

 15 
Fig. 4. Treatment of anthropogenic SOA in CMAQv5.2. Predicted aerosol species are included in the black box. 

Species in white boxes are semi-volatile and species in gray boxes are nonvolatile. Blue indicates species and 

processes predicted by CB6R3. All other coloring indicates the AERO6 mechanism where green arrows are 2-

product volatility distribution, orange arrows are particle- and vapor-phase partitioning, and purple arrows are 

oligomerization. In AERO6, anthropogenic and biogenic VOC emissions (lumped by category), are oxidized by OH, 20 
NO, and HO2 and OH, O3, NO, and NO3 respectively, to semi-volatile products that undergo partitioning to the 

particle phase (Pye et al., 2015).  Semi-volatile primary organic pathways in CMAQv5.2 are described by Murphy et 

al. (2017).  

 

Fig. 5. Evaluation of WRF simulated meteorological fields versus ground observations.  25 
 

Fig. 6. Measured and predicted PM2.5 (left) and average diurnal cycle (right) in Bajada Pahari for 12/20/15 – 

12/31/15 (top) and 09/20/16 – 09/30/16 (bottom). Here the yellow lines correspond to CMAQ predictions of the 

“total” (solid) and “non-residential” (dotted) simulations. The solid black line represents ambient observations. 

Standard deviations of the diurnal profiles for observations and predictions are indicated, respectively, by colored 30 
shading. Diurnal profiles were averaged over simulation durations (Table 7). Computations were carried out at 4 km 

resolution. 

 

Fig. 7. Measured and predicted PM2.5 (left) and average diurnal cycle (right) at SOMAARTH HQ for 12/20/15 – 

12/31/15 (top) and 09/20/16 – 09/30/16 (bottom). Here the green lines correspond to CMAQ predictions of the 35 
“total” (solid) and “non-residential” (dotted) simulations. The solid black line represents ambient observations. 

Standard deviations of the diurnal profiles for observations and predictions are indicated, respectively, by colored 

shading. Diurnal profiles were averaged over simulation durations (Table 7). Computations were carried out at 4 km 

resolution. 

 40 
Fig. 8. Measured and predicted PM2.5 (left) and average diurnal cycle (right) in West New Delhi for 12/20/15 – 

12/31/15 (top) and 09/20/16 – 09/30/16 (bottom). Here the pink lines correspond to CMAQ predictions of the “total” 

(solid) and “non-residential” (dotted) simulations. The solid black line represents ambient observations. Standard 

deviations of the diurnal profiles for observations and predictions are indicated, respectively, by colored shading. 

Diurnal profiles were averaged over simulation durations (Table 7). Computations were carried out at 4 km 45 
resolution. 

 

Fig. 9. Measured and predicted PM2.5 (left) and average diurnal cycle (right) in South New Delhi for 12/20/15 – 

12/31/15 (top) and 09/20/16 – 09/30/16 (bottom). Here the blue lines correspond to CMAQ predictions of the “total” 

(solid) and “non-residential” (dotted) simulations. The solid black line represents ambient observations. Standard 50 
deviations of the diurnal profiles for observations and predictions are indicated, respectively, by colored shading. 

Diurnal profiles were averaged over simulation durations (Table 7). Computations were carried out at 4 km 

resolution. 
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Fig. 10. Predicted secondary organic PM2.5 (left) and average diurnal cycle (right) for 12/20/15 – 12/31/15 (top), 

09/07/09/30/15 (middle), and 09/20/16 – 09/30/16 (bottom). Bajada Pahari is shown in yellow, SOMAARTH HQ in 

green, West New Delhi in pink, and South New Delhi in blue. Diurnal profiles were averaged over simulation 

durations (Table 7). Computations were carried out at 4 km resolution.  Statistics are shown in Table 10. 

 5 
Fig. 11. Average diurnal  

Residential Anthropogenic PM2.5

Total Anthropogenic PM2.5
  (top), 

Residential SOA

Total SOA
  (middle), and  

Residential SOA

Residential PM2.5
 (bottom). 

Bajada Pahari is shown in yellow, SOMAARTH HQ in green, West New Delhi in pink, and South New Delhi in 

blue. Shading indicates mealtimes. Residential PM is calculated as the difference in predictions from the non-

residential and total emission scenario and averaged over simulation durations (Table 7). Computations were carried 

out at 4 km resolution. Statistics are shown in Table 10. 10 
 

Fig. 12. Predicted 
Total SOA

Total PM2.5
  (left) and average diurnal cycle (right) for 12/20/15 – 12/31/15 (top), 09/07/09/30/15 

(middle), and 09/20/16 – 09/30/16 (bottom). Bajada Pahari is shown in yellow, SOMAARTH HQ in green, West 

New Delhi in pink, and South New Delhi in blue. Diurnal profiles were averaged over simulation durations (Table 

7). Computations were carried out at 4 km resolution. 15 
 

Fig. 13. Predicted O3 (left) and average diurnal cycle (right) for 12/20/15 – 12/31/15 (top), 09/07/09/30/15 (middle), 

and 09/20/16 – 09/30/16 (bottom) in West New Delhi (pink), and South New Delhi (blue). Standard deviations of 

the diurnal profiles for observations and predictions are indicated, respectively, by colored shading. Diurnal profiles 

were averaged over simulation durations (Table 7). Computations were carried out at 4 km resolution. 20 
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