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Abstract 10 

In this study, both the Greenhouse Gases Observing Satellite (GOSAT) and the Orbiting Car-11 

bon Observatory 2 (OCO-2) XCO2 retrievals produced by NASA Atmospheric CO2 Observations 12 

from Space (ACOS) project (Version b7.3), are assimilated within the GEOS-Chem 4D-Var assimi-13 

lation framework to constrain the terrestrial ecosystem carbon flux during Oct 1, 2014 to Dec 31, 14 

2015. For the comparison, one inversion using in-situ CO2 observations, and another for benchmark, 15 

using global atmospheric CO2 growth rate, are also conducted. The estimated global and regional 16 

carbon fluxes for 2015 are shown and discussed. CO2 observations from surface flask sites and XCO2 17 

retrievals from TCCON sites are used to evaluate the simulated concentrations with the posterior 18 

carbon fluxes. The results show that globally, the terrestrial ecosystem carbon sink (excluding bio-19 

mass burning emissions) estimated from GOSAT data is stronger than that inferred from OCO-2 data, 20 

and the annual atmospheric CO2 growth rate estimated from GOSAT data is more consistent with the 21 

benchmark inversion. Regionally, in most regions, the land sinks inferred from GOSAT data are also 22 

stronger than those from OCO-2 data. Compared with the prior fluxes, the carbon fluxes in northern 23 

temperate regions change the most, followed by tropical and southern temperate regions, and the 24 

smallest changes occur in boreal regions. In temperate regions, the prior land sinks are significantly 25 
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increased, while in tropical regions the prior land sinks are decreased. The different changes in dif-26 

ferent regions are mainly related to the spatial coverage and the data amount of XCO2, and the devi-27 

ations between the retrieved and pre-modeled XCO2 in these regions. The uncertainties of the two 28 

retrievals may also have impact on their performances during the inversion.  Evaluations using flask 29 

and TCCON observations and the comparisons with in situ and benchmark inversions suggest that 30 

GOSAT data, can effectively improve the carbon flux estimates in the northern hemisphere.  31 

Keywords: Terrestrial ecosystem carbon flux, inversion, GOSAT, OCO-2, GEOS-Chem 32 

 33 

1. Introduction 34 

Atmospheric inverse modeling is an effective method for quantifying surface carbon fluxes at 35 

global and regional scales using the gradient of CO2 measurements. Inversion studies based on in-36 

situ CO2 observations agree well on global carbon budget estimates but differ greatly on regional 37 

carbon flux estimates and the partitioning of land and ocean fluxes as well, mainly due to the sparse-38 

ness of observations in tropics, southern hemisphere oceans and the majority of continental interiors 39 

such as those in South America, Africa, and Boreal Asia (Peylin el al., 2013). Satellite observations 40 

offer an attractive means to constrain atmospheric inversions with their extensive spatial coverage 41 

over remote regions. Studies have shown that, theoretically, satellite observations, though with lower 42 

precision than in-situ measurements, can improve the carbon flux estimates (Rayner and O Brien, 43 

2001; Pak and Prather, 2001; Houweling et al., 2004; Baker et al., 2006; Chevallier et al., 2007; Miller 44 

et al., 2007; Kadygrov et al., 2009; Hungershoefer et al., 2010).  45 

  Satellite sensors designed specifically to retrieve atmospheric CO2 concentrations, have been in 46 

operation in recent years. The Greenhouse Gases Observing Satellite (GOSAT) (Kuze et al., 2009), 47 

being the first satellite mission dedicated to observing CO2 from space, was launched in 2009. The 48 

National Aeronautics and Space Administration (NASA) launched the Orbiting Carbon Observa-49 
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tory 2 (OCO-2) satellite in 2014 (Crisp et al., 2017; Eldering et al., 2017). China's first CO2 moni-50 

toring satellite (TanSat) was launched in 2016 (Wang et al., 2017; Yang et al., 2017). These satel-51 

lites measure near-infrared sunlight reflected from the surface in CO2 spectral bands and the O2 A-52 

band to retrieve column-averaged dry-air mole fractions of CO2 (XCO2), aiming to improving the 53 

estimation of spatial and temporal distributions of carbon sinks and sources. A number of inversions 54 

have utilized GOSAT XCO2 retrievals to infer surface carbon fluxes (Basu et al., 2013; Maksyutov 55 

et al., 2013; Saeki et al., 2013; Chevallier et al., 2014; Deng et al., 2014; Houweling et al., 2015; 56 

Deng et al, 2016). Although large uncertainty reductions were achieved for regions which are un-57 

der-sampled by in-situ observations, these studies didn’t give robust regional carbon flux estimates. 58 

There are large spreads in regional flux estimates in some regions among these inversions. Further-59 

more, regional flux distributions inferred from GOSAT XCO2 data are significantly different from 60 

those inferred from in-situ observations. For instance, several studies using GOSAT retrievals re-61 

ported a larger than expected carbon sink in Europe (Basu et al., 2013; Chevallier et al., 2014; Deng 62 

et al., 2014; Houweling et al., 2015). The validity of this large Europe carbon sink derived from 63 

GOSAT retrievals is in intense debate and efforts to improve the accuracy of Europe carbon sink 64 

estimate are still ongoing (Reuter et al., 2014; Feng et al., 2016; Reuter et al., 2017). 65 

 Compared with GOSAT, OCO-2 has a higher sensitivity to column CO2, much finer footprints 66 

and more extended spatial coverage, and thus has the potential to better constrain the surface carbon 67 

flux inversion (Eldering et al., 2017). Studies have used OCO-2 XCO2 data to estimate carbon flux 68 

anomalies during recent El Nino events (Chatterjee et al., 2017; Patra et al., 2017; Heymann et al., 69 

2017; Liu et al., 2017). Nassar et al. (2017) applied OCO-2 XCO2 data to infer emissions from large 70 

power plants. Miller et al. (2018) evaluated the potential of OCO-2 XCO2 data in constraining re-71 

gional biospheric CO2 fluxes and found that in the current state of development, OCO-2 observa-72 

tions can only provide a reliable constraint on CO2 budget at continental and hemispheric scales. At 73 
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present, it is still not clear whether with the improved monitoring capabilities, current OCO-2 ob-74 

servations have a greater potential than GOSAT observations for estimating CO2 flux at regional or 75 

finer scale. It is therefore important to investigate how current OCO-2 XCO2 data differ from GO-76 

SAT XCO2 data in constraining carbon budget. 77 

 In this study, we evaluate the performance of GOSAT and OCO-2 XCO2 data in constraining 78 

terrestrial ecosystem carbon flux. GOSAT and OCO-2 XCO2 retrievals produced by the NASA At-79 

mospheric CO2 Observations from Space (ACOS) team are applied to infer monthly terrestrial eco-80 

system carbon sinks and sources from Oct, 2014 through December, 2015, using a 4D-Var scheme 81 

based on the GEOS-Chem Adjoint model (Henze et al., 2007). To evaluate the performance of satel-82 

lite XCO2 data based inversions, we conduct two additional inversions using in situ measurements 83 

and the global CO2 trend, respectively.  For simplicity, four inversions are referred as OCO-2 inver-84 

sion, GOSAT inversion, in situ inversion and benchmark inversion, respectively. Inversion results are 85 

also evaluated against surface flask CO2 observations and Total Carbon Column Observing Network 86 

(TCCON) XCO2 retrievals. This paper is organized as follows. Section 2 briefly introduces GOSAT 87 

and OCO-2 XCO2 retrievals and the inversion methodology and settings. Results and discussions are 88 

presented in Section 3, and Conclusions are given in Section 4. 89 

 90 

2. Data and Method 91 

2.1 GOSAT and OCO-2 XCO2 retrievals 92 

Developed jointly by the National Institute for Environmental Studies (NIES), the Japanese 93 

Space Agency (JAXA) and the Ministry of the Environment (MOE) of Japan, GOSAT was de-94 

signed to retrieve total column abundances of CO2 and CH4. The satellite flies at a 666 km altitude 95 

in a sun-synchronous orbit with 98° inclination that crosses the equator at 12:49 local time. It co-96 

vers the whole globe in three days and has a footprint of 10.5 km2 at nadir. OCO-2 is NASA’s first 97 

mission dedicated to retrieving atmospheric CO2 concentration. It flies at 705 km altitude in a sun-98 
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synchronous orbit with an overpass time at approximately 13:30 local time and a repeat cycle of 16 99 

days. Its grating spectrometer measures reflected sunlight in three near-infrared regions (0.765, 1.61 100 

and 2.06 μm) to retrieve XCO2. OCO-2 has a footprint of 1.29×2.25 km2 at nadir and acquires eight 101 

cross-track footprints creating a swath width of 10.3 km. 102 

 Both GOSAT and OCO-2 XCO2 products were created using the same retrieval algorithm, 103 

which is based on a Bayesian optimal estimation approach (Roggers et al., 2000; O Dell et al., 104 

2011). The GOSAT and OCO-2 XCO2 data used in this study are Version 7.3 Level 2 Lite products 105 

at the pixel level. The XCO2 data from lite products are bias-corrected (Wunch et al., 2011). Before 106 

being used in our inversion system, the data are processed in three steps. First, the retrievals for the 107 

glint soundings over oceans have relatively larger uncertainty, thus the data over oceans are not 108 

used in our inversions (Wunch et al., 2017). Second, in order to achieve the most extensive spatial 109 

coverage with the assurance of using best quality data available, the XCO2 data are filtered with two 110 

parameters, namely warn_levels and xco2_quality_flag, which are provided along with the XCO2 111 

data. All data with xco2_quality_flag not equaling 0 are removed, the rest are divided into three 112 

groups according the value of warn_levels, namely group 1, group 2 and group 3. In group 1, the 113 

warn_levels are less than 8, in group 2, the warn_levels are greater than 9 and less than 12, and in 114 

group 3, those are greater than 13. Group 1 has the best data quality, followed by group 2, and 115 

group 3 is the worst. Third, the pixel data are averaged within the grid cell of 2°×2.5°, which is the 116 

resolution of the global atmospheric transport model used in this study. In each grid of 2°×2.5°, 117 

only the groups of best data quality are selected and then averaged. The other variables like column 118 

averaging kernel, retrieval error and so on which are provided along with the XCO2 product are also 119 

dealt with the same method.  Figures 1a and 1b show the coverages and data amount of GOSAT 120 

and OCO-2 XCO2 data during the study period after processing. The filtered GOSAT and OCO-2 121 

retrievals are not evenly distributed spatially. Due to the cloud contamination, there are few retriev-122 

als in a large portion of tropical land. In northern high latitude area, especially in boreal regions, 123 
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due to the low soar zenith angle, available satellite retrievals are very sparse. 124 

 125 

Figure 1. Data amount of each grid cell (2°×2.5°) of ACOS XCO2 used in this study (a, GOSAT; b, 126 

OCO-2) 127 

2.2 Surface observations and TCCON XCO2 retrievals 128 

 Surface CO2 observations are from the obspack_co2_1_CARBONTRACKER_CT2016_2017-129 

02-06 product (ObsPackCT2016) (CarbonTracker Team, 2017), which was the observation data 130 
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used in CarbonTracker 2016 (Peters et al., 2007, with updates documented at http://carbon-131 

tracker.noaa.gov). It is a subset of the Observation Package (ObsPack) Data Product (ObsPack, 132 

2016), and contains a collection of discrete and quasi-continuous measurements at surface, tower 133 

and ship sites contributed by national and universities laboratories around the world. In this study, 134 

In situ measurements from 78 sites provided by this product are used for inversion. Among these 78 135 

sites, there are 56 flask sites, of which 52 sites are selected to evaluate the posterior CO2 concentra-136 

tions (selection criteria given in Section 4.3.1).    137 

TCCON is a network of ground-based Fourier Transform Spectrometers that measure direct 138 

near-infrared solar absorption spectra. Column-averaged abundances of atmospheric constituents 139 

including CO2, CH4, N2O, HF, CO, H2O, and HDO are retrieved through these spectra. We use 140 

XCO2 retrievals from 13 stations from TCCON GGG2014 dataset (Blumenstock et al., 2017; 141 

Deutscher et al., 2017; Griffith et al., 2017a, b; Kivi et al., 2017; Morino et al., 2017; Notholt et al., 142 

2017a, b; Sherlock et al., 2017; Sussmann and Rettinger, 2017; Warneke et al., 2017; Wennberg et 143 

al., 2017a, b). The locations of in situ sites and 13 TCCON stations are shown in Figure 2. 144 

 145 
Figure 2. Distributions of the observation sites used in this study. Gray solid circles are surface 146 

sites used in the in situ inversion, red points and red cross marks are surface flask and TCCON sites 147 

used for evaluations, respectively, the shaded shows the 11 TRANSCOM regions 148 
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2.3 GEOS-Chem 4DVAR assimilation framework 149 

2.3.1 GEOS-Chem model 150 

 GEOS-Chem model (http://geos-chem.org) is a global three-dimensional chemistry transport 151 

model (CTM), which is driven by assimilated meteorological data from the Goddard Earth Observ-152 

ing System (GEOS) of the NASA Global Modeling and Assimilation Office (GMAO) (Rienecker et 153 

al., 2008). The original CO2 simulation in the GEOS-Chem model was developed by Suntharalin-154 

gam et al. (2004) and accounts for CO2 fluxes from fossil fuel combustion and cement production, 155 

biomass burning, terrestrial ecosystem exchange, ocean exchange and biofuel burning. Nassar et al. 156 

(2010) updated the CO2 simulation with improved inventories. In addition to the inventories in ear-157 

lier version, the new CO2 fluxes includes CO2 emissions from international shipping, aviation (3D) 158 

and the chemical production of CO2 from CO oxidation throughout the troposphere.  In most other 159 

models, the oxidation of CO was treated as direct surface CO2 emissions. The details of the CO2 160 

simulation and the CO2 sinks/sources inventories could be found in Nassar et al. (2010). The ver-161 

sion of GEOS-Chem model used in this study is v8-02-01. 162 

2.3.2 GEOS-Chem adjoint model 163 

 An adjoint model is used to calculate the gradient of a response function of one model scalar 164 

(or cost function) with respect to a set of model parameters. The adjoint of the GEOS-Chem model 165 

was first developed for inverse modeling of aerosol (or their precursors) and gas emissions (Henze 166 

et al., 2007). It has been implemented to constrain sources of species such as CO, CH4, and O3 with 167 

satellite observations (Kopacz et al., 2009, 2010; Jiang et al., 2011; Wecht et al., 2012; Parrington et 168 

al., 2012). Several studies have successfully used this adjoint model to constraint carbon sources 169 

and sinks with surface flask measurements of CO2 mixing ratio and space-based XCO2 retrievals 170 

(Deng et al., 2014; Liu et al., 2014; Deng et al., 2016; Liu et al., 2017). 171 

2.3.3 Inversion method 172 

 In the GEOS-Chem inverse modeling framework, the 4D-Var data assimilation technique is 173 



9 

employed for combining observations and simulations to seek a best optimal estimation of the state 174 

of a system. The scaling factors are applied to the carbon flux components to be optimized monthly 175 

in each model grid point. This approach seeks the scaling factors of the carbon flux that minimize 176 

the cost function, J, given by: 177 

𝐽(c) =
1

2
∑(𝑋𝐶𝑂2,𝑖

𝑚 − 𝑋𝐶𝑂2,𝑖
𝑜𝑏𝑠)𝑆𝑜𝑏𝑠,𝑖

−1

𝑁

𝑖=1

(𝑋𝐶𝑂2,𝑖
𝑚 − 𝑋𝐶𝑂2,𝑖

𝑜𝑏𝑠) + (
1

2
(𝑐 − 𝑐𝑎)𝑆𝑐

−1(𝑐 − 𝑐𝑎)) 178 

where N is total number of satellite XCO2 observations; XCO2
m and XCO2

obs are modeled and ob-179 

served total column averaged dry air mole faction of CO2 respectively; ca is the prior scaling factor 180 

of the carbon flux, which is typically set as unity; Sobs is the model-data mismatch error covariance 181 

matrix; Sc is the scaling factor error covariance matrix. The gradients of the cost function with re-182 

spect to scaling factors calculated with the adjoint model are supplied to an optimization routine 183 

(the L-BFGS-B optimization routine; Byrd et al., 1995; Zhu et al., 1994), and the minimum of the 184 

cost function is sought iteratively.  185 

 For the modeled CO2 column to be comparable with the satellite XCO2 retrievals, the modeled 186 

CO2 concentration profile should be first mapped into the satellite retrieval levels and then convo-187 

luted with retrieval averaging kernels. The modeled XCO2 is computed by: 188 

𝑋𝐶𝑂2
𝑚 = 𝑋𝐶𝑂2

𝑎 +∑ℎ𝑗𝑎𝑗(𝐴(𝑥) − 𝑦𝑎,𝑗)

𝑗

 189 

where j denotes retrieval level, x is the modeled CO2 profile; A(x) is a mapping matrix; XCO2
a is prior 190 

XCO2, hj is pressure weighting function, aj is the satellite column averaging kernel and ya is the prior 191 

CO2 profile for retrieval. These last four quantities are provided from ACOS Version 7.3 Level 2 Lite 192 

products. 193 

3. Inversion settings 194 
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 In this study, the GEOS-Chem model was run in a horizontal resolution of 2°×2.5° for 47 verti-195 

cal layers. Four inversions, using GOSAT data, OCO-2 data, in-situ measurements and global at-196 

mospheric CO2 trend are conducted from Oct 1, 2014 to December 31, 2015, respectively. The pos-197 

terior dry air mole fraction of CO2 on Oct 1, 2014 from CT2016 product is taken as the initial con-198 

centration. The first three months are taken as the spin-up period. The prior carbon fluxes used in 199 

this study include fossil fuel CO2 emissions, biomass burning CO2 emissions, terrestrial ecosystem 200 

carbon exchange and CO2 flux exchange over the sea surface. Fossil fuel emissions are obtained 201 

from CT2016, which is an average of Carbon Dioxide Information Analysis Center (CDIAC) prod-202 

uct (Andres et al., 2011) and Open-source Data Inventory of Anthropogenic CO2 (ODIAC) emis-203 

sion product (Oda and Maksyutov, 2011). The biomass burning CO2 emissions are also taken from 204 

CT2016, which are the average of the Global Fire Emissions Database version 4.1 (GFEDv4) (van 205 

der Werf et al., 2010; Giglio et al., 2013) and the Global Fire Emission Database from NASA Car-206 

bon Monitoring System (GFED_CMS). The 3-hourly terrestrial ecosystem carbon exchanges are 207 

from the Carnegie-Ames-Stanford Approach (CASA) model GFED4.1 simulation (Potter el al., 208 

1993; van der Werf et al., 2010).  CO2 exchanges over the ocean surface are from the posterior air-209 

sea CO2 flux of CT2016. It is noted that the fossil fuel emissions and the biomass burning emissions 210 

in our inversions are kept intact. Both terrestrial ecosystem CO2 exchanges and ocean flux are opti-211 

mized in our inversions.  212 

 An efficient computational procedure for constructing non-diagonal scaling factor error covari-213 

ance matrix which accounts for the spatial correlation of errors is implemented (Single et al., 2011). 214 

The construction is based on the assumption of exponential decay of error correlations. Other than 215 

forming covariance matrix explicitly, multiple-dimensional correlations are represented by tensor 216 

products of one-dimensional correlation matrices along longitude and latitudinal directions. For the 217 

two inversions, the scale lengths assigned along longitudinal and latitudinal directions are 500 km 218 
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and 400 km for terrestrial ecosystem exchange and 1000 km and 800 km for ocean exchange, re-219 

spectively. No correlations between different types of fluxes are assumed. The temporal correla-220 

tions are also neglected. Global annual uncertainty of 100% and 40% are assigned for terrestrial 221 

ecosystem and ocean CO2 exchanges, respectively (Deng and Chen, 2011). Accordingly, the uncer-222 

tainty of scaling factor for the prior land and ocean fluxes in each month at the grid cell level are 223 

assigned to 3 and 5, respectively.  224 

3.1 Inversions using satellite XCO2 retrievals 225 

 The observation error covariance matrix is constructed using the retrieval errors, which are pro-226 

vided along with the ACOS XCO2 data. Observation errors are assumed to be uncorrelated at model 227 

grid level. To account for the correlated observation errors, as shown in section 2.1, the pixel level 228 

retrieval errors are filtered and averaged to the model grid level, and then inflated by a factor of 1.9 229 

to ensure the chi-square testing of 𝜒2 value to be close to 1 (Tarantola, 2004; Chevallier et al., 230 

2007).  231 

3.2 Inversion using in situ measurements 232 

As descripted in section 2.2, surface CO2 observations from 78 sites including flask samples 233 

and by quasi-continuous analyzer are adopted in this inversion. These data are selected from data 234 

collection of the ObsPackCT2016. The observation uncertainties of the 78 sites are also obtained 235 

from this product, which account for both the measurement and representative errors (Peters et al., 236 

2007, with updates documented at http://carbontracker.noaa.gov). An examination for the differ-237 

ences between observations and forward model simulation was conducted (data not shown), and the 238 

results shows that observation uncertainties from CT2016 represents well with the model-data mis-239 

match errors of GEOS-Chem model. In addition, we neglect correlations between observations and 240 

assume a diagonal observation error covariance matrix.  241 

3.3 Benchmark inversion 242 

 A baseline inversion, which was introduced by Chevalier et al.(2009) as a Poor Man’s method, 243 
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is implemented to evaluate satellite retrievals and in situ measurements based inversions. Usually, 244 

the posteriori fluxes are evaluated by the improvement on the simulated CO2 mixing ratios. Since 245 

the global CO2 trend can be accurately estimated from marine sites, it is important to assess whether 246 

the inverted flux can capture more information than this trend. In this baseline inversion, the ocean 247 

flux is kept identical to the prior ones. The poor man’s inverted land flux Fpm at location (x, y) and 248 

at time t is defined as: 249 

𝐹𝑝𝑚(𝑥, 𝑦, 𝑡) = 𝐹𝑝𝑖𝑟𝑜𝑟(𝑥, 𝑦, 𝑡) + 𝑘 × 𝜎(𝑥, 𝑦, 𝑡) 250 

where Fprior  is the prior flux, σ is the uncertainty of the prior flux, k is a coefficient. Here k is de-251 

termined by trial and error so that the mean annual global total of the poor man’s fluxes equals the 252 

mean global total given by the annual global CO2 growth rate from the Global Monitoring Division 253 

(GMD) of NOAA/Earth System Research Laboratory (ESRL) (Ed Dlugokencky and Pieter Tans, 254 

NOAA/ESRL, www.esrl.noaa.gov/gmd/ccgg/trends/). The annual global CO2 growth rate is 2.96 255 

ppm in 2015, which is converted to 6.28 PgC yr-1 for the poor man’s global total by multiply by a 256 

factor of 2.123 PgC ppm-1. In practice, this method distributes the land carbon sink according to the 257 

gross carbon fluxes from the vegetation.  258 

4. Results and Discussions 259 

4.1 Global carbon budget 260 

  Table 1 presents the inverted global carbon budgets in 2015 from four inversions. The global 261 

land sinks inferred by GOSAT and OCO-2 XCO2 retrievals are -3.48 and -2.94 PgC yr-1, respec-262 

tively, which are both larger than the prior value, and lower than the estimate from the in-situ inver-263 

sion.  The global net flux from the benchmark inversion is inferred from the global annual CO2 264 

growth rate, which represents relatively accurately the net carbon flux added into atmosphere.  It 265 

could be found that the global net flux from GOSAT inversion is the closest to the benchmark inver-266 

sion estimate, while the one from OCO-2 inversion is higher and the in situ inversion estimate is 267 
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lower than the benchmark estimate. The differences of ocean fluxes among a priori and two inver-268 

sions are small since we don’t assimilate XCO2 data over ocean. Therefore, the differences for the 269 

global net fluxes among the different experiments are similar to those of the global land sinks, indi-270 

cating that GOSAT experiment has the best estimates for the land and ocean carbon uptakes, while 271 

those from in situ inversion are overestimated, and from OCO-2 inversion might be underestimated.  272 

Table 1. Global carbon budgets estimated by the OCO-2 and GOSAT inversions in this study as well 273 

as those from the prior fluxes, In situ and benchmark inversions (PgC yr-1) 274 

 Prior OCO-2  GOSAT  In situ Benchmark 

Fossil fuel and industry 9.84 9.84 9.84 9.84 9.84 

Biomass burning emissions 2.2 2.2 2.2 2.2 2.2 

Land sink  -2.5 -2.94 -3.48 -3.63 -3.35 

Ocean sink -2.41 -2.44 -2.45 -2.41 -2.41 

Global net flux 7.13 6.66 6.11 6.0 6.28 

 275 

4.2 Regional carbon flux 276 

Figure 3 shows the distributions of annual land and ocean carbon fluxes (excluding fossil fuel 277 

and biomass burning carbon emissions, same thereafter) of the prior and the estimates using GOSAT 278 

and OCO-2 data. It could be found that compared with the prior fluxes, the carbon sinks in Central 279 

America, south and northeast China, east and central Europe, south Russia and east Brazil are obvi-280 

ously increased in GOSAT inversion. Except for east Brazil, the land sinks in those areas in OCO-2 281 

inversion are also increased, but much weaker than those in GOSAT inversion, and in east Brazil, it 282 

turns to a significant carbon source. In contrast, in east and central Canada, north Russia, north Eu-283 

rope, west Indo-China Peninsula, north Democratic Republic of the Congo and west Brazil, their 284 

carbon sources are significantly increased in both GOSAT and OCO-2 inversions. In east and central 285 

Canada, north Europe and west Brazil, there are much stronger carbon sources in OCO-2 inversion. 286 
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 287 

Figure 3. Distributions of annual land and ocean carbon fluxes a) prior flux and posterior fluxes 288 

based on (b) OCO-2 and (c) GOSAT data (gC m-2yr-1) 289 

 290 

To better investigate the differences between GOSAT and OCO-2 inversions as well as their 291 

differences with the prior fluxes and two other inversions, we aggregate the prior and inferred land 292 

fluxes into 11 TRANSCOM land regions (Gurney et al., 2002) as shown in Figure 2. Figure 4 shows 293 

aggregated annual land surface fluxes from the prior and four inversions for the 11 land regions. 294 

Clearly, in most regions, the land sinks inverted based on GOSAT data are stronger than those inferred 295 
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from OCO-2 data, especially in the Temperate and Tropical Lands. For example, in South America 296 

Temperate, the estimated land sink based on GOSAT data is about 4 times as large as the OCO-2 297 

inversions; in North America Temperate and Tropical Asia, the carbon sinks of GOSAT experiment 298 

is about twice that of the OCO-2 inversions; and in South America Tropical, the OCO-2 inversion 299 

result is a carbon source of 0.19 PgC yr-1, while GOSAT inversion gives a weak sink of -0.05 Pg C 300 

yr-1.  The total sinks of the Temperate/Tropical Lands optimized using GOSAT and OCO-2 XCO2 301 

retrievals are -2.95/-0.36 and -2.59/-0.20 Pg C yr-1, respectively (Table 2). In Northern Boreal Land, 302 

the total carbon sinks inverted with GOSAT and OCO-2 data are comparable. However, the two XCO2 303 

data have opposite performances in these two areas, namely in Eurasian Boreal, the inverted land sink 304 

with GOSAT is stronger than that with OCO-2; while in North America Boreal, it is the opposite.  305 

For different continents (Table 2), in Asia and Australia, their carbon sinks inverted from GOSAT 306 

and OCO-2 data are comparable. In North America, South America and Europe, the land sinks in 307 

GOSAT inversion are much stronger than those in OCO-2 inversion. Especially in South America, 308 

the GOSAT inversion result is a strong carbon sink (-0.51 Pg C yr-1), while in OCO-2 inversion, it is 309 

a weak carbon source (0.06 Pg C yr-1). Conversely, in Africa, the land sink estimated with GOSAT 310 

data is much weaker than those from OCO-2 data, the former (-0.59 Pg C yr-1) being only about the 311 

half of the latter (-1.13 Pg C yr-1).  312 
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 313 

Figure 4. Aggregated annual land fluxes of the 11 TRANSCOM land regions 314 

 315 

Table 2. The prior and posterior fluxes in six continents and boreal, temperate and tropical lands 316 

Regions Prior OCO-2 GOSAT In situ Benchmark 

North America -0.04 -0.27 -0.45 -0.42 -0.15 

South America -0.25 0.06 -0.51 -0.04 -0.5 

Europe -0.01 -0.40 -0.63 -0.66 -0.07 

Asia -0.76 -0.99 -1.05 -1.16 -0.98 

Africa  -1.28 -1.13 -0.58 -1.22 -1.45 

Australia -0.17 -0.22 -0.26 -0.13 -0.2 

Northern Boreal Land -0.16 -0.16 -0.18 -0.81 -0.25 

Northern Temperate Land -0.35 -1.37 -1.68 -1.22 -0.55 

Tropical Land -1.01 -0.20 -0.36 -0.49 -1.36 

Southern Temperate Land -0.98 -1.21 -1.28 -1.11 -1.2 

 317 

 318 

Compared with the in situ and benchmark inversions, in the Boreal regions, the land sinks esti-319 

mated using in situ observations are much stronger than those of OCO-2 and GOSAT inversions, but 320 
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close to the benchmark results; in the Temperate lands, except for South Africa, the GOSAT results 321 

are much stronger than those of the in situ and benchmark experiments, especially in South America 322 

Temperate, GOSAT inversion shows a strong carbon sink, while in situ experiment shows a weak 323 

source and benchmark experiment shows a weak sink; on the contrary, in the Tropical regions, the 324 

land sinks inferred from both OCO-2 and GOSAT experiments are weaker than the in situ and bench-325 

mark inversions. 326 

Compared with the prior fluxes, the inferred land fluxes in Northern Temperate regions have 327 

the largest changes, followed by those in Tropical regions and Southern Temperate lands, while in 328 

boreal regions, the changes are the smallest. As shown in Table 3, for different TRANSCOM regions 329 

and different XCO2 used, the changes of carbon fluxes have large differences. Since the same setup 330 

used in these two inversions and the same algorithm adopted for retrieving XCO2 from GOSAT and 331 

OCO-2 measurements, the different impacts of XCO2 data on land sinks may be related to the spatial 332 

coverage and the amount of data in these two XCO2 datasets. As shown in Figure 1, in different 333 

latitude zones, the spatial coverage and the data amount of GOSAT and OCO-2 have large differences. 334 

Statistics show that the amount of data is largest in northern temperate land, followed by southern 335 

temperate land and tropical land, and least in northern boreal regions, corresponding to the magnitude 336 

of changes of carbon fluxes in these zones. For one specific zone, the different impacts of these two 337 

XCO2 datasets may be also related to their data amount. For example, in northern temperate land, 338 

GOSAT has more XCO2 data than OCO-2. Accordingly, the change of carbon flux caused by GOSAT 339 

is larger than that caused by OCO-2. Conversely, in Tropical Land, OCO-2 has more data than GO-340 

SAT, and as shown before it has more significant impact on the land sink. This relationship could also 341 

be found in each TRANSCOM region. Figure 5 gives a relationship between the XCO2 data amount 342 

ratios of GOSAT to OCO-2 and the land sinks absolute change ratios caused by GOSAT to OCO-2 343 

for 11 TRANSCOM land regions. Obviously, except for North and South Africa, there is a significant 344 

linear correlation (R=0.95) between these two ratios, suggesting that with more XCO2 data, the more 345 
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carbon flux relative to the prior flux is changed. In North Africa, we find that OCO-2 has better spatial 346 

coverage and more data than GOSAT, as shown in Figure 1. Although the differences mainly occur 347 

in the Sahara where the carbon flux is very weak, but near the equatorial region where the carbon 348 

flux is large, OCO-2 still has more data than GOSAT.  In southern Africa, both XCO2 have good 349 

spatial coverage, the amount of GOSAT data is about 1.5 times that of OCO-2, but the changes in the 350 

carbon flux caused by GOSAT is about 10 times that of OCO-2. The large ratio of carbon change is 351 

mainly due to the relatively small carbon change from OCO-2 inversion.  352 

 353 

Table 3. Differences between the inferred and the prior carbon fluxes, the data amount of XCO2 and 354 

the deviations between the modeled with prior flux and satellite retrieved XCO2 in different regions 355 

Region 
Flux changed (Pg C yr-1)*   XCO2 data amount   Deviations 

(ppm)** 

OCO-2 GOSAT   OCO-2 GOSAT   OCO-2 GOSAT 

North America Boreal -0.05 0  1143 639  0.6 1.41 

North America Temperate -0.18 -0.41  2390 3163  0.52 0.93 

South America Tropical 0.46 0.24  800 421  -0.89 0.43 

South America Temperate -0.15 -0.5  1711 3500  0.02 0.54 

North Africa 0.19 0.39  3208 674  0.12 -0.19 

South Africa -0.03 0.3  2057 3060  0.17 0.33 

Eurasian Boreal 0.05 -0.02  1714 1339  0.47 1.5 

Eurasian Temperate -0.46 -0.3  5323 4782  0.46 0.82 

Tropical Asia 0.17 0.03  726 550  -0.43 0.34 

Australia -0.05 -0.1  2011 3110  0.18 0.67 

Europe -0.39 -0.63   1604 2106   0.28 1.35 

Global land -0.44 -0.98  22687 23344  0.22 0.79 

Northern Boreal Land 0.005 -0.02  2857 1978  0.52 1.47 

Northern Temperate Land -1.03 -1.33  9317 10051  0.45 0.96 

Tropical Land 0.82 0.66  4734 1645  -0.08 0.13 

Southern Temperate Land -0.23 -0.3   5779 9670    0.11  0.6 

* Differences between posterior and prior flux 356 

** Deviations between the modeled with prior flux and satellite retrieved XCO2 357 
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 358 

Figure 5. Scatter plot for the ratio of GOSAT to OCO-2 XCO2 data amount versus the ratio of abso-359 

lute changes of the land sinks caused by GOSAT to OCO-2 in the 11 TRANSCOM land regions  360 

 361 

In addition to the data amount, the deviations between the simulated CO2 concentrations using 362 

prior fluxes and the satellite retrievals should be another reason to explain the performances of 363 

OCO-2 and GOSAT retrievals in different regions.  Usually, a large model-data mismatch will im-364 

pose strong constraint on the prior flux in inversions. Therefore, we compare the mismatches in 365 

OCO-2 and GOSAT inversions. The results are grouped global land and into the 11 TRANSCOM 366 

land regions, as shown in Table 3. The global land mean difference between modeled XCO2 and the 367 

OCO-2 and GOSAT retrievals are 0.22 and 0.79 ppm, respectively, indicating that the GOSAT re-368 

trieval would have stronger constraint on the prior fluxes. In most TRANSCOM regions except 369 

North Africa, the mismatches in GOSAT inversion are positive and larger than those of OCO-2 in-370 

version. In Tropic Asia and South America Tropic, the sizable negative mismatches in OCO-2 in-371 

version could account for a weak inverted carbon sink and an inverted carbon source in these two 372 
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regions, while in North Africa, the negative mismatch in GOSAT inversion may explain why a ra-373 

ther weak sink is inverted for this region.   The difference of mismatch between OCO-2 and GO-374 

SAT inversions exhibits rather large spread, ranging from 0.16 to 1.33 pm, indicating the biases of 375 

two satellite XCO2 retrievals differ greatly. 376 

Table 4. Statistics of the OCO-2 and GOSAT retrievals uncertainties against the TCCON retrievals 377 

  

OCO-2   GOSAT 

Bias/ppm Stdev/ppm 
N. of 

Obs. 
  Bias/ppm Stdev/ppm 

N. of 

Obs. 

Bial 0.91 1.47 21  0.06 1.35 29 

Darw 0.75 0.85 43  -0.41 1.62 44 

Garm -0.1 2.97 14  0.73 2.02 35 

Lamo 0.04 1.09 56  -0.91 1.39 82 

Laud 0.59 1.38 18  -0.79 1.7 30 

Orle 1.49 1.18 24  -0.51 1.38 39 

Park 0.5 1.26 29  -0.58 1.52 38 

Soda 1.91 1.89 7  -0.54 2.58 9 

Tsuk 0.93 1.95 16  -0.47 1.11 38 

Woll 0.34 1.07 27  -0.36 1.56 45 

All 0.6 1.45 255   -0.42 1.59 389 

 378 

Moreover, the uncertainties of OCO-2 and GOSAT retrievals may be another reason for the dif-379 

ferent performances in these two inversion experiments. We use TCCON retrievals to evaluate the 380 

uncertainties of OCO-2 and GOSAT XCO2 retrievals.  For satellite retrievals falling in the model 381 

grid box where TCCON sites are located, the closest TCCON retrievals in time or within two hours 382 

of satellite overpass time are chosen for comparison. We follow the procedures in Appendix A of 383 

Wunch et al. (2011) to do both prior profile and averaging kernel corrections. Table 4 shows the bi-384 

ases and standard deviations grouped globally and at 10 TCCON sites where both OCO-2 and GO-385 

SAT retrievals are available for comparison. The locations of these 10 sites are shown in Figure 2. 386 

Overall, GOSAT retrievals (-0.46 ppm) have lower bias than OCO-2 retrievals (0.6 ppm). At most 387 
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sites except Garm, OCO-2 retrievals have positive biases, while GOSAT retrievals tend to have 388 

negative bias except at Bial and Garm sites. It also could be found that the spread of GOSAT data 389 

biases are small, falling in the range of -0.36 to0.58 ppm at most sites, while the spread of OCO2 390 

data biases is relatively large, with biases greater than 0.7 ppm at more than half of sites, in the 391 

range of 0.34 to0.59 pm at 3 sites.  392 

4.3 Evaluation for the inversion results 393 

4.3.1 Flask observations 394 

As shown in section 2.2, Flask observations from 52 sites are used to evaluate the inversion 395 

results. Actually, there are much more flask observations in the dataset. When there are more than 396 

one flask dataset for one site, we give priority to that from NOAA/ESL or that with more consistent 397 

records.  There are 56 sites with available flask observations for evaluation. In addition, during the 398 

evaluations, we find that GEOS-Chem model is unable to capture the variations of CO2 mixing ratios 399 

at HPB, HUN, SGP and TAP sites, where the standard deviations of the deviations between the ob-400 

served and modeled mixing ratio are larger than 5 ppm. Therefore, we exclude these four sites and 401 

use the rest 52 flask sites (shown in Figure 2) to evaluate the posterior mixing ratios. The GEOS-402 

Chem model is driven with the prior flux and the four posterior fluxes to obtain the prior and posterior 403 

CO2 mixing ratios. The simulated CO2 mixing ratios are sampled at each observation site and within 404 

half an hour of observation time.  405 

Table 5 shows a summary of comparisons of the simulated CO2 mixing ratios against the flask 406 

measurements. The mean difference between the prior CO2 mixing ratio and the flask measurements 407 

is 0.93ppm, with a standard deviation of 2.3 ppm. All four inversions show improvement in posterior 408 

concentrations with reductions of biases. Not surprisingly, in situ inversion, using surface observa-409 

tions, shows the best improvement in posterior CO2 mixing ratio with the largest reduction of bias 410 

and standard deviation. GOSAT inversion achieve almost the same reductions of standard deviation 411 

as in situ inversion.  OCO-2 inversion gives larger bias and standard deviation than in situ and GOSAT 412 
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inversions.  Benchmark inversion effectively reduces the bias but with little improvement in the re-413 

duction of standard deviations.  414 

Figure 7 shows the biases at each observation site in different latitudes. It could be found that 415 

the biases between the simulations and the observations in the northern hemisphere are significantly 416 

larger than those in southern hemisphere since the carbon flux distribution of the northern hemisphere 417 

is more complex than that of the southern hemisphere. When the prior flux is used, almost all sites in 418 

the northern hemisphere have significant positive deviations, with an average of 1.7 ppm, while in 419 

the southern hemisphere, the deviations are very small, with an average bias of only 0.08 ppm; when 420 

using the posteriori flux from OCO-2 inversion, the deviations in most northern hemisphere sites are 421 

slightly reduced, with an average deviation of 0.85 ppm, while in the southern hemisphere, at most 422 

sites, the biases increase by variable amounts, with a mean of -0.13 ppm; when using the posterior 423 

flux from GOSAT inversion, the deviations are significantly reduced to -0.04 ppm in the northern 424 

hemisphere but further increased to -0.55 ppm in the southern hemisphere. In situ inversion shows 425 

similar improvement in Northern Hemisphere as GOSAT inversion does, but also with litter improve-426 

ment in Southern Hemisphere. Though benchmark inversion effectively reduces the global bias, it 427 

shows limited improvement in the reduction of biases at most sites.  These suggest that GOSAT and 428 

in situ inversions can effectively improve the carbon fluxes estimate in the northern hemisphere, but 429 

overestimate the land sinks in the southern hemisphere, especially for GOSAT inversion. 430 
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 431 

Figure 6. Biases of the simulated CO2 mixing ratios against the flask measurements in different lat-432 

itudes (positive/negative biases represent modeled concentration being greater/less than the ob-433 

served, the different color lines are the smooth of the corresponding marks) 434 

4.3.2 TCCON observations 435 

  We also use ground XCO2 observations from 13 TCCON sites (Figure 2) to evaluate our inver-436 

sion results. The simulated CO2 concentrations at 47 vertical levels are mapped into 71 TCCON 437 

levels. Following the approach of Wunch et al. (2011), using prior profiles and the averaging kernel 438 

from the TCCON dataset, we calculated the modeled XCO2 values at 13 TCCON sites. Figure 6 439 

shows the comparison of modeled XCO2 with TCCON observations. The mean difference between 440 

prior XCO2 and TCCON retrievals is 1.16 ppm, with a standard deviation of 1.3 ppm. GOSAT in-441 

version performs the best with the largest reductions of bias and standard deviations. Though OCO-442 

2 inversion shows improvement in the reduction of standard deviation, it gives a relative large bias 443 

for posterior XCO2. In situ inversion has the same reduction of standard deviation as GOSAT inver-444 

sion. Benchmark inversion reduces the bias to 0.49 ppm and gives slight improvement in reducing 445 

standard deviation of posterior XCO2. 446 
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Figure 7 shows the bias at each TCCON site. Obviously, the biases at all TCCON sites are pos-447 

itive when using the prior fluxes, ranging between 0.3 and 2.6 ppm.  The biases at the sites in the 448 

northern temperate and boreal areas are all above 1.5 ppm except for the Lamont site. For two of 449 

the three TCCON sites in the southern hemisphere, the biases are changed to negative values when 450 

using the posteriori fluxes from GOSAT data, further indicating the overestimation of carbon sinks 451 

by GOSAT data in the southern hemisphere. In Northern Hemisphere, GOSAT, in situ and bench-452 

mark inversions significantly reduce the biases at most sites except Izan, Lamo and Park. However, 453 

the biases at those sites remain relatively large. Since GOSAT and in situ inversions show evident 454 

improvement at flask sites in Northern Hemisphere, the remaining large biases at TCCON sites may 455 

not be due to the underestimate of Northern Land sink but the uncertainty of TCCON retrievals.  At 456 

Lamo and Park sites in North America, GOSAT inversion gives negative bias, suggesting it may 457 

overestimate the carbon sink for North America Temperate. At Izan, the biases of posterior concen-458 

trations are up to -0.5 ppm from in situ and benchmark inversions, indicating the overestimate of 459 

the carbon sink in North Africa by two inversions.  For two of the three TCCON sites in the south-460 

ern hemisphere, the biases are changed to negative values when using the posteriori fluxes from 461 

GOSAT data, further indicating the overestimation of carbon sinks by GOSAT data in the southern 462 

hemisphere.  463 

Table 5. Statistics of the model-data mismatch errors at the 52 surface flask sites and the 13 TCCON 464 

sites 465 

  
Flask   TCCON 

Bias Stdev   Bias Stdev 

Prior 0.93 2.3  1.16 1.3 

OCO-2  0.33 2.15  0.8 1.08 

GOSAT  -0.19 2.05  0.22 1.04 

In situ -0.03 2.04  0.38 1.04 

Benchmark 0.14 2.28   0.49 1.25 

 466 
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 467 

Figure 7. The biases between the modeled and observed XCO2 at the 13 TCCON sites 468 

 469 

5. Summary and Conclusions 470 

In this study, we use both GOSAT and OCO-2 XCO2 retrievals to constrain terrestrial ecosys-471 

tem carbon fluxes from Oct 1, 2014 to Dec 31, 2015, using the GEOS-Chem 4D-Var data assimilation 472 

system. In addition, one inversion using in situ measurements and another inversion as a benchmark, 473 

are also conducted. The posterior carbon fluxes estimated from these four inversions at both global 474 

and regional scales during Jan 1 to Dec 31, 2015 are shown and discussed. We evaluate the posterior 475 

carbon fluxes by comparing the posterior CO2 mixing ratios against observations from 52 surface 476 

flask sites and 13 TCCON sites.  477 

Globally, the terrestrial ecosystem carbon sink (excluding biomass burning emissions) esti-478 

mated from GOSAT data is stronger than that inferred from OCO-2 data and weaker than that from 479 

in situ inversion, but closest to the benchmark inversion estimate. Regionally, in most regions, the 480 

land sinks inferred from GOSAT data are also stronger than those from OCO-2 data. Compared with 481 
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the in situ inversion, GOSAT inversions have weaker sinks in Boreal and most Tropical lands, and 482 

much stronger ones in Temperate lands. Compared with the prior fluxes, the inferred land sinks are 483 

largely increased in the temperate regions, and decreased in tropical regions. There are largest changes 484 

of the prior fluxes in Northern Temperate regions, followed by Tropical and Southern Temperate 485 

regions, and the weakest in boreal regions. The different impact of XCO2 on the carbon fluxes in 486 

different regions is mainly related to the spatial coverage and the amount of XCO2 data. Generally, a 487 

larger amount of XCO2 data in a region is corresponding to a larger change in the inverted carbon 488 

flux in the same region.   489 

 Evaluations of the inversions using CO2 concentrations from flask and TCCON measurements 490 

showed that both posterior carbon fluxes estimated from OCO-2 and GOSAT retrievals could signif-491 

icantly improve the modeling of atmospheric CO2 concentrations, and both the simulated surface CO2 492 

mixing ratio and XCO2 concentrations with GOSAT posterior fluxes are much closer to the observa-493 

tions than those with OCO-2. Generally, in the northern hemisphere, the deviations are significantly 494 

reduced, while in the southern hemisphere, the biases are slightly increased. Compared with in situ 495 

and benchmark inversions, the GOSAT results are much closer to them in both comparisons with 496 

flask and TCCON measurements. These suggest that GOSAT data can effectively improve the carbon 497 

fluxes estimate in the northern hemisphere. 498 
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