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Abstract 10 

In this study, both the Greenhouse Gases Observing Satellite (GOSAT) and the Orbiting Car-11 

bon Observatory 2 (OCO-2) XCO2 retrievals produced by NASA Atmospheric CO2 Observations 12 

from Space (ACOS) project (Version b7.3), are assimilated within the GEOS-Chem 4D-Var assimi-13 

lation framework to constrain the terrestrial ecosystem carbon flux during Oct 1, 2014 to Dec 31, 14 

2015. One inversion for the comparison, using in situ CO2 observations, and another inversion as a 15 

benchmark for the simulated atmospheric CO2 distributions of the real inversions, using global at-16 

mospheric CO2 trend and referred as poor-man inversion, are also conducted. The estimated global 17 

and regional carbon fluxes for 2015 are shown and discussed. CO2 observations from surface flask 18 

sites and XCO2 retrievals from TCCON sites are used to evaluate the simulated concentrations with 19 

the posterior carbon fluxes. Globally, the terrestrial ecosystem carbon sink (excluding biomass burn-20 

ing emissions) estimated from GOSAT data is stronger than that inferred from OCO-2 data, weaker 21 

than the in situ inversion, and matches the poor-man inversion to be the best. Regionally, in most 22 

regions, the land sinks inferred from GOSAT data are also stronger than those from OCO-2 data, and 23 

in North America, Asia, Europe, the carbon sinks inferred from GOSAT inversion are comparable to 24 

those from in situ inversion. For the latitudinal distribution of land sinks, the satellites-based inver-25 

sions suggest a smaller boreal and tropical sink, but larger temperate sinks in both Northern and 26 
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Southern Hemispheres than the in situ inversion. However, OCO-2 and GOSAT generally do not 27 

agree on which continent contains the smaller or larger sinks. Evaluations using flask and TCCON 28 

observations and the comparisons with in situ and poor-man inversions suggest that only GOSAT and 29 

the in situ inversions perform better than a poor-man’s solution. GOSAT data can effectively improve 30 

the carbon flux estimates in Northern Hemisphere, while OCO-2 data, with the specific version used 31 

in this study, shows only slight improvement. The differences of inferred land fluxes between GOSAT 32 

and OCO-2 inversions in different regions are mainly related to the spatial coverage, the data amount, 33 

and the biases of these two satellites XCO2 retrievals.  34 

Keywords: Terrestrial ecosystem carbon flux, inversion, GOSAT, OCO-2, GEOS-Chem 35 

 36 

1. Introduction 37 

Atmospheric inverse modeling is an effective method for quantifying surface carbon fluxes at 38 

global and regional scales using the gradient of CO2 measurements. Inversion studies based on in situ 39 

CO2 observations agree well on global carbon budget estimates but differ greatly on regional carbon 40 

flux estimates and the partitioning of land and ocean fluxes as well, mainly due to the sparseness of 41 

observations in tropics, southern hemisphere oceans and the majority of continental interiors such as 42 

those in South America, Africa, and Boreal Asia (Peylin el al., 2013). Satellite observations offer an 43 

attractive means to constrain atmospheric inversions with their extensive spatial coverage over remote 44 

regions. Studies have shown that, theoretically, satellite observations, though with lower precision 45 

than in situ measurements, can improve the carbon flux estimates (Rayner and O Brien, 2001; Pak 46 

and Prather, 2001; Houweling et al., 2004; Baker et al., 2006; Chevallier et al., 2007; Miller et al., 47 

2007; Kadygrov et al., 2009; Hungershoefer et al., 2010).  48 

  Satellite sensors designed specifically to retrieve atmospheric CO2 concentrations, have been in 49 

operation in recent years. The Greenhouse Gases Observing Satellite (GOSAT) (Kuze et al., 2009), 50 

being the first satellite mission dedicated to observing CO2 from space, was launched in 2009. The 51 
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National Aeronautics and Space Administration (NASA) launched the Orbiting Carbon Observa-52 

tory 2 (OCO-2) satellite in 2014 (Crisp et al., 2017; Eldering et al., 2017). China's first CO2 moni-53 

toring satellite (TanSat) was launched in 2016 (Wang et al., 2017; Yang et al., 2017). These satel-54 

lites measure near-infrared sunlight reflected from the surface in CO2 spectral bands and the O2 A-55 

band to retrieve column-averaged dry-air mole fractions of CO2 (XCO2), aiming to improving the 56 

estimation of spatial and temporal distributions of carbon sinks and sources. A number of inversions 57 

have utilized GOSAT XCO2 retrievals to infer surface carbon fluxes (Basu et al., 2013; Maksyutov 58 

et al., 2013; Saeki et al., 2013; Chevallier et al., 2014; Deng et al., 2014; Houweling et al., 2015; 59 

Deng et al, 2016). Although large uncertainty reductions were achieved for regions which are un-60 

der-sampled by in situ observations, these studies didn’t give robust regional carbon flux estimates. 61 

There are large spreads in regional flux estimates in some regions among these inversions. Further-62 

more, regional flux distributions inferred from GOSAT XCO2 data are significantly different from 63 

those inferred from in situ observations. For instance, several studies using GOSAT retrievals re-64 

ported a larger than expected carbon sink in Europe (Basu et al., 2013; Chevallier et al., 2014; Deng 65 

et al., 2014; Houweling et al., 2015). The validity of this large Europe carbon sink derived from 66 

GOSAT retrievals is in intense debate and efforts to improve the accuracy of Europe carbon sink 67 

estimate are still ongoing (Reuter et al., 2014; Feng et al., 2016; Reuter et al., 2017). 68 

 Compared with GOSAT, OCO-2 has a higher sensitivity to column CO2, much finer footprints 69 

and more extended spatial coverage, and thus has the potential to better constrain the surface carbon 70 

fluxes (Eldering et al., 2017). Studies have used OCO-2 XCO2 data to estimate carbon flux anoma-71 

lies during recent El Nino events (Chatterjee et al., 2017; Patra et al., 2017; Heymann et al., 2017; 72 

Liu et al., 2017). Nassar et al. (2017) applied OCO-2 XCO2 data to infer emissions from large 73 

power plants. Miller et al. (2018) evaluated the potential of OCO-2 XCO2 data in constraining re-74 

gional biospheric CO2 fluxes and found that in the current state of development, OCO-2 observa-75 

tions can only provide a reliable constraint on CO2 budget at continental and hemispheric scales. At 76 
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present, it is still not clear whether with the improved monitoring capabilities and better spatial cov-77 

erage, current OCO-2 observations have a greater potential than GOSAT observations for estimat-78 

ing CO2 flux at regional or finer scale, since the biases also affect the usefulness of satellite retriev-79 

als greatly. It is therefore important to investigate how current OCO-2 XCO2 data differ from GO-80 

SAT XCO2 data in constraining carbon budget. 81 

 In this study, we evaluate the performance of GOSAT and OCO-2 XCO2 data in constraining 82 

terrestrial ecosystem carbon flux. GOSAT and OCO-2 XCO2 retrievals produced by the NASA At-83 

mospheric CO2 Observations from Space (ACOS) team are applied to infer monthly terrestrial eco-84 

system carbon sinks and sources from Oct, 2014 through December, 2015, using a 4D-Var scheme 85 

based on the GEOS-Chem Adjoint model (Henze et al., 2007). For comparisons, one inversion based 86 

on in situ measurements is conducted, and another simple one, which uses the global CO2 trend as a 87 

benchmark for the simulated atmospheric CO₂ distributions of the real inversion, is also implemented.  88 

For simplicity, four inversions are referred as OCO-2 inversion, GOSAT inversion, in situ inversion 89 

and poor-man inversion, respectively. Inversion results are evaluated against surface flask CO2 ob-90 

servations and Total Carbon Column Observing Network (TCCON) XCO2 retrievals. This paper is 91 

organized as follows. Section 2 briefly introduces GOSAT and OCO-2 XCO2 retrievals, surface ob-92 

servations and the inversion methodology. Inversion settings are described in Section 3. Results and 93 

discussions are presented in Section 4, and Conclusions are given in Section 5. 94 

2. Data and Method 95 

2.1 GOSAT and OCO-2 XCO2 retrievals 96 

Developed jointly by the National Institute for Environmental Studies (NIES), the Japanese 97 

Space Agency (JAXA) and the Ministry of the Environment (MOE) of Japan, GOSAT was de-98 

signed to retrieve total column abundances of CO2 and CH4. The satellite flies at a 666 km altitude 99 

in a sun-synchronous orbit with 98° inclination that crosses the equator at 12:49 local time. It co-100 

vers the whole globe in three days and has a footprint of 10.5 km2 at nadir. OCO-2 is NASA’s first 101 
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mission dedicated to retrieving atmospheric CO2 concentration. It flies at 705 km altitude in a sun-102 

synchronous orbit with an overpass time at approximately 13:30 local time and a repeat cycle of 16 103 

days. Its grating spectrometer measures reflected sunlight in three near-infrared regions (0.765, 1.61 104 

and 2.06 μm) to retrieve XCO2. OCO-2 has a footprint of 1.29×2.25 km2 at nadir and acquires eight 105 

cross-track footprints creating a swath width of 10.3 km. 106 

 Both GOSAT and OCO-2 XCO2 products were created using the same retrieval algorithm, 107 

which is based on a Bayesian optimal estimation approach (Rogers et al., 2000; O Dell et al., 2011). 108 

The GOSAT and OCO-2 XCO2 data used in this study are Version 7.3 Level 2 Lite products at the 109 

pixel level. The XCO2 data from lite products are bias-corrected (Wunch et al., 2011). Before being 110 

used in our inversion system, the data are processed in three steps. First, the retrievals for the glint 111 

soundings over oceans have relatively larger uncertainty, thus the data over oceans are not used in 112 

our inversions (Wunch et al., 2017). Second, in order to achieve the most extensive spatial coverage 113 

with the assurance of using best quality data available, the XCO2 data are filtered with two parame-114 

ters, namely warn_levels and xco2_quality_flag, which are provided along with the XCO2 data. All 115 

data with xco2_quality_flag not equaling 0 are removed, the rest are divided into three groups ac-116 

cording the value of warn_levels, namely group 1, group 2 and group 3. In group 1, the warn_levels 117 

are less than 8, in group 2, the warn_levels are greater than 9 and less than 12, and in group 3, those 118 

are greater than 13. Group 1 has the best data quality, followed by group 2, and group 3 is the 119 

worst. Third, the pixel data are averaged within the grid cell of 2°×2.5°, which is the resolution of 120 

the global atmospheric transport model used in this study. In each grid of 2°×2.5°, only the groups 121 

of best data quality are selected and then averaged. The other variables like column averaging ker-122 

nel, retrieval error and so on which are provided along with the XCO2 product are also dealt with 123 

the same method.  Figures 1a and 1b show the coverages and data amount of GOSAT and OCO-2 124 

XCO2 data during the study period after processing. The filtered GOSAT and OCO-2 retrievals are 125 

not evenly distributed spatially. Due to the cloud contamination, there are few retrievals in a large 126 
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portion of tropical land. In northern high latitude area, especially in boreal regions, due to the low 127 

soar zenith angle, available satellite retrievals are very sparse. 128 

 129 

Figure 1. Data amount of each grid cell (2°×2.5°) of ACOS XCO2 used in this study (a, GOSAT; b, 130 

OCO-2) 131 

2.2 Surface observations and TCCON XCO2 retrievals 132 

 Surface CO2 observations are from the obspack_co2_1_CARBONTRACKER_CT2016_2017-133 

02-06 product (ObsPackCT2016) (CarbonTracker Team, 2017), which was the observation data 134 

used in CarbonTracker 2016 (Peters et al., 2007, with updates documented at http://carbon-135 

tracker.noaa.gov). It is a subset of the Observation Package (ObsPack) Data Product (ObsPack, 136 

2016), and contains a collection of discrete and quasi-continuous measurements at surface, tower 137 
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and ship sites contributed by national and universities laboratories around the world. In this study, 138 

in situ measurements from 78 sites provided by this product are used for inversion. Among these 78 139 

sites, there are 56 flask sites, of which 52 sites are selected to evaluate the posterior CO2 concentra-140 

tions (selection criteria given in Section 4.1.1).    141 

TCCON is a network of ground-based Fourier Transform Spectrometers that measure direct 142 

near-infrared solar absorption spectra. Column-averaged abundances of atmospheric constituents 143 

including CO2, CH4, N2O, HF, CO, H2O, and HDO are retrieved through these spectra. We use 144 

XCO2 retrievals from 13 stations from TCCON GGG2014 dataset (Blumenstock et al., 2017; 145 

Deutscher et al., 2017; Griffith et al., 2017a, b; Kivi et al., 2017; Morino et al., 2017; Notholt et al., 146 

2017a, b; Sherlock et al., 2017; Sussmann and Rettinger, 2017; Warneke et al., 2017; Wennberg et 147 

al., 2017a, b). The names of the 13 stations are Bialystok (Bial), Bremen (Brem), Orleans (Orle), 148 

Garmisch (Garm), Darwin (Darw), Izana (Izan), Ny Alesund (Ny_A), Lamont (Lamo), Lauder 149 

(Laud), Park Falls (Park), Sodankyla (Soda), Tsukuba (Tsuk), and Wollongong (Woll). The loca-150 

tions of in situ sites and 13 TCCON stations are shown in Figure 2. 151 

 152 
Figure 2. Distributions of the observation sites used in this study. Gray solid circles are surface 153 

sites used in the in situ inversion, red points and red cross marks are surface flask and TCCON sites 154 

used for evaluations, respectively, the shaded area shows the 11 TRANSCOM regions 155 
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2.3 GEOS-Chem 4DVAR assimilation framework 156 

2.3.1 GEOS-Chem model 157 

 GEOS-Chem model (http://geos-chem.org) is a global three-dimensional chemistry transport 158 

model (CTM), which is driven by assimilated meteorological data from the Goddard Earth Observ-159 

ing System (GEOS) of the NASA Global Modeling and Assimilation Office (GMAO) (Rienecker et 160 

al., 2008). The original CO2 simulation in the GEOS-Chem model was developed by Suntharalin-161 

gam et al. (2004) and accounts for CO2 fluxes from fossil fuel combustion and cement production, 162 

biomass burning, terrestrial ecosystem exchange, ocean exchange and biofuel burning. Nassar et al. 163 

(2010) updated the CO2 simulation with improved inventories. In addition to the inventories in ear-164 

lier version, the new CO2 fluxes includes CO2 emissions from international shipping, aviation (3D) 165 

and the chemical production of CO2 from CO oxidation throughout the troposphere.  In most other 166 

models, the oxidation of CO was treated as direct surface CO2 emissions. The details of the CO2 167 

simulation and the CO2 sinks/sources inventories could be found in Nassar et al. (2010). The ver-168 

sion of GEOS-Chem model used in this study is v8-02-01. 169 

2.3.2 GEOS-Chem adjoint model 170 

 An adjoint model is used to calculate the gradient of a response function of one model scalar 171 

(or cost function) with respect to a set of model parameters. The adjoint of the GEOS-Chem model 172 

was first developed for inverse modeling of aerosol (or their precursors) and gas emissions (Henze 173 

et al., 2007). It has been implemented to constrain sources of species such as CO, CH4, and O3 with 174 

satellite observations (Kopacz et al., 2009, 2010; Jiang et al., 2011; Wecht et al., 2012; Parrington et 175 

al., 2012). Several studies have successfully used this adjoint model to constraint carbon sources 176 

and sinks with surface flask measurements of CO2 mixing ratio and space-based XCO2 retrievals 177 

(Deng et al., 2014; Liu et al., 2014; Deng et al., 2016; Liu et al., 2017). 178 

2.3.3 Inversion method 179 

 In the GEOS-Chem inverse modeling framework, the 4D-Var data assimilation technique is 180 
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employed for combining observations and simulations to seek a best optimal estimation of the state 181 

of a system. The scaling factors are applied to the carbon flux components to be optimized monthly 182 

in each model grid point. This approach seeks the scaling factors of the carbon flux that minimize 183 

the cost function, J, given by: 184 

𝐽(c) =
1

2
∑ (𝑋𝐶𝑂2,𝑖

𝑚 − 𝑋𝐶𝑂2,𝑖
𝑜𝑏𝑠)𝑆𝑜𝑏𝑠,𝑖

−1𝑁
𝑖=1 (𝑋𝐶𝑂2,𝑖

𝑚 − 𝑋𝐶𝑂2,𝑖
𝑜𝑏𝑠) + (

1

2
(𝑐 − 𝑐𝑎)𝑆𝑐

−1(𝑐 − 𝑐𝑎))        (1) 185 

where N is total number of satellite XCO2 observations; XCO2
m and XCO2

obs are modeled and ob-186 

served total column averaged dry air mole faction of CO2 respectively; ca is the prior scaling factor 187 

of the carbon flux, which is typically set as unity; Sobs is the model-data mismatch error covariance 188 

matrix; Sc is the scaling factor error covariance matrix. The gradients of the cost function with re-189 

spect to scaling factors calculated with the adjoint model are supplied to an optimization routine 190 

(the L-BFGS-B optimization routine; Byrd et al., 1995; Zhu et al., 1994), and the minimum of the 191 

cost function is sought iteratively.  192 

 For the modeled CO2 column to be comparable with the satellite XCO2 retrievals, the modeled 193 

CO2 concentration profile should be first mapped into the satellite retrieval levels and then convo-194 

luted with retrieval averaging kernels. The modeled XCO2 is computed by: 195 

𝑋𝐶𝑂2
𝑚 = 𝑋𝐶𝑂2

𝑎 + ∑ ℎ𝑗𝑎𝑗(𝐴(𝑥) − 𝑦𝑎,𝑗)𝑗                                               (2) 196 

where j denotes retrieval level, x is the modeled CO2 profile; A(x) is a mapping matrix; XCO2
a is prior 197 

XCO2, hj is pressure weighting function, aj is the satellite column averaging kernel and ya is the prior 198 

CO2 profile for retrieval. These last four quantities are provided from ACOS Version 7.3 Level 2 Lite 199 

products. 200 

3. Inversion settings 201 

 In this study, the GEOS-Chem model was run in a horizontal resolution of 2°×2.5° for 47 verti-202 
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cal layers. Three inversions, using GOSAT data, OCO-2 data, and in situ measurements, are con-203 

ducted from Oct 1, 2014 to December 31, 2015, respectively. Poor-man inversion, based on global 204 

atmospheric CO2 trend and using poor-man’s method (Chevallier et al, 2009, 2010), is also con-205 

ducted. The posterior dry air mole fraction of CO2 on Oct 1, 2014 from CT2016 product is taken as 206 

the initial concentration. The first three months are taken as the spin-up period. The prior carbon 207 

fluxes used in this study include fossil fuel CO2 emissions, biomass burning CO2 emissions, terres-208 

trial ecosystem carbon exchange and CO2 flux exchange over the sea surface. Fossil fuel emissions 209 

are obtained from CT2016, which is an average of Carbon Dioxide Information Analysis Center 210 

(CDIAC) product (Andres et al., 2011) and Open-source Data Inventory of Anthropogenic CO2 211 

(ODIAC) emission product (Oda and Maksyutov, 2011). The biomass burning CO2 emissions are 212 

also taken from CT2016, which are the average of the Global Fire Emissions Database version 4.1 213 

(GFEDv4) (van der Werf et al., 2010; Giglio et al., 2013) and the Global Fire Emission Database 214 

from NASA Carbon Monitoring System (GFED_CMS). The 3-hourly terrestrial ecosystem carbon 215 

exchanges are from the Carnegie-Ames-Stanford Approach (CASA) model GFED4.1 simulation 216 

(Potter el al., 1993; van der Werf et al., 2010).  CO2 exchanges over the ocean surface are from the 217 

posterior air-sea CO2 flux of CT2016. It is noted that the fossil fuel emissions and the biomass burn-218 

ing emissions in our inversions are kept intact. Both terrestrial ecosystem CO2 exchanges and ocean 219 

flux are optimized in our inversions.  220 

 An efficient computational procedure for constructing non-diagonal scaling factor error covari-221 

ance matrix which accounts for the spatial correlation of errors is implemented (Single et al., 2011). 222 

The construction is based on the assumption of exponential decay of error correlations. Other than 223 

forming covariance matrix explicitly, multiple-dimensional correlations are represented by tensor 224 

products of one-dimensional correlation matrices along longitude and latitudinal directions. For the 225 

two inversions, the scale lengths assigned along longitudinal and latitudinal directions are 500 km 226 
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and 400 km for terrestrial ecosystem exchange and 1000 km and 800 km for ocean exchange, re-227 

spectively. No correlations between different types of fluxes are assumed. The temporal correla-228 

tions are also neglected. Global annual uncertainty of 100% and 40% are assigned for terrestrial 229 

ecosystem and ocean CO2 exchanges, respectively (Deng and Chen, 2011). Accordingly, the uncer-230 

tainty of scaling factor for the prior land and ocean fluxes in each month at the grid cell level are 231 

assigned to 3 and 5, respectively.  232 

3.1 Inversions using satellite XCO2 retrievals 233 

 The observation error covariance matrix is constructed using the retrieval errors, which are pro-234 

vided along with the ACOS XCO2 data. Observation errors are assumed to be uncorrelated at model 235 

grid level. To account for the correlated observation errors, as shown in section 2.1, the pixel level 236 

retrieval errors are filtered and averaged to the model grid level, and then inflated by a factor of 1.9 237 

to ensure the chi-square testing of 𝜒2 value to be close to 1 (Tarantola, 2004; Chevallier et al., 238 

2007).  239 

3.2 Inversion using in situ measurements 240 

As described in section 2.2, surface CO2 observations from 78 sites including flask samples and 241 

by quasi-continuous analyzer are adopted in this inversion. These data are selected from data collec-242 

tion of the ObsPackCT2016. The observation uncertainties of the 78 sites are also obtained from 243 

this product, which account for both the measurement and representative errors (Peters et al., 2007, 244 

with updates documented at http://carbontracker.noaa.gov). An examination for the differences be-245 

tween observations and forward model simulation was conducted (data not shown), and the results 246 

shows that observation uncertainties from CT2016 represents well with the model-data mismatch 247 

errors of GEOS-Chem model. In addition, we neglect correlations between observations and as-248 

sume a diagonal observation error covariance matrix.  249 

3.3 Poor-man inversion 250 

 A baseline inversion, which was introduced by Chevallier et al. (2009, 2010) as a poor-man’s 251 
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method, is implemented to evaluate satellite retrievals and in situ measurements based inversions. 252 

Usually, the posteriori fluxes are evaluated by the improvement on the simulated CO2 mixing ratios. 253 

Since the global CO2 trend can be accurately estimated from marine sites, it is important to assess 254 

whether the inverted flux can capture more information than this trend. In this baseline inversion, 255 

the ocean flux is kept identical to the prior ones. The poor-man’s inverted land flux Fpm at location 256 

(x, y) and at time t is defined as: 257 

𝐹𝑝𝑚(𝑥, 𝑦, 𝑡) = 𝐹𝑝𝑟𝑖𝑜𝑟(𝑥, 𝑦, 𝑡) + 𝑘 × 𝜎(𝑥, 𝑦, 𝑡)                                     (3) 258 

where Fprior  is the prior flux, σ is the uncertainty of the prior flux, k is a coefficient, it can be solved 259 

directly from the formula (3) as  260 

𝑘 = (∑ 𝐹𝑝𝑚(𝑥, 𝑦, 𝑡) − ∑ 𝐹𝑝𝑟𝑖𝑜𝑟(𝑥, 𝑦, 𝑡))/ ∑ 𝜎 (𝑥, 𝑦, 𝑡)                                 (4) 261 

where ∑ 𝐹𝑝𝑚(𝑥, 𝑦, 𝑡)  equals the global total land flux, which can be calculated from the observed 262 

annual global CO2 growth rate, global annual fossil fuel and biomass burning emissions, and ocean 263 

flux. In this study, the observed annual global CO2 growth rate is from the Global Monitoring Divi-264 

sion (GMD) of NOAA/Earth System Research Laboratory (ESRL) (Ed Dlugokencky and Pieter 265 

Tans, NOAA/ESRL, www.esrl.noaa.gov/gmd/ccgg/trends/). The annual global CO2 growth rate is 266 

2.96 ppm in 2015, which is converted to 6.28 PgC yr-1 for the poor-man’s global total by multiply-267 

ing by a factor of 2.123 PgC ppm-1.  268 

4. Results and Discussions 269 

4.1 Evaluation for the inversion results 270 

4.1.1 Flask observations 271 

As shown in section 2.2, Flask observations from 52 sites are used to evaluate the inversion 272 

results. Actually, there are much more flask observations in the dataset. When there are more than 273 

one flask dataset for one site, we give priority to that from NOAA/ESL or that with more consistent 274 

records. There are 56 sites with available flask observations for evaluation. In addition, during the 275 
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evaluations, we find that GEOS-Chem model is unable to capture the variations of CO2 mixing ratios 276 

at HPB, HUN, SGP and TAP sites, where the standard deviations of the deviations between the ob-277 

served and modeled mixing ratio are larger than 5 ppm. Therefore, we exclude these four sites and 278 

use the rest 52 flask sites (shown in Figure 2) to evaluate the posterior mixing ratios. The GEOS-279 

Chem model is driven with the prior flux and the four posterior fluxes to obtain the prior and posterior 280 

CO2 mixing ratios. The simulated CO2 mixing ratios are sampled at each observation site and within 281 

half an hour of observation time.  282 

Table 1 shows a summary of comparisons of the simulated CO2 mixing ratios against the flask 283 

measurements. The mean difference between the prior CO2 mixing ratio and the flask measurements 284 

is 0.93 ppm, with a standard deviation of 2.3 ppm. All four inversions show improvement in posterior 285 

concentrations with reductions of biases. Not surprisingly, in situ inversion, using surface observa-286 

tions which include all the flask measurements used for evaluation, shows the best improvement in 287 

posterior CO2 mixing ratio with the largest reduction of bias and standard deviation. GOSAT inver-288 

sion achieves almost the same reductions of standard deviation as in situ inversion.  OCO-2 inversion 289 

gives larger bias and standard deviation than in situ and GOSAT inversions.  Poor-man inversion 290 

effectively reduces the bias but with little improvement in the reduction of standard deviations.  291 

Figure 3 shows the biases at each observation site in different latitudes. It could be found that 292 

the biases between the simulations and the observations in the northern hemisphere are significantly 293 

larger than those in southern hemisphere since the carbon flux distribution of the northern hemisphere 294 

is more complex than that of the southern hemisphere. When the prior flux is used, almost all sites in 295 

the northern hemisphere have significant positive deviations, with an average of 1.7 ppm, while in 296 

the southern hemisphere, the deviations are very small, with an average bias of only -0.08 ppm; when 297 

using the posteriori flux from OCO-2 inversion, the deviations in most northern hemisphere sites are 298 

slightly reduced, with an average deviation of 0.85 ppm, while in the southern hemisphere, at most 299 

sites, the biases increase by variable amounts, with a mean of -0.13 ppm; when using the posterior 300 
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flux from GOSAT inversion, the deviations are significantly reduced to 0.04 ppm in the northern 301 

hemisphere but further increased to -0.55 ppm in the southern hemisphere. In situ inversion shows 302 

similar improvement in Northern Hemisphere as GOSAT inversion does, but also with little improve-303 

ment in Southern Hemisphere. Though poor-man inversion effectively reduces the global bias, it 304 

shows largest negative biases in Southern Hemisphere and moderate positive biases (close to OCO-305 

2 inversions) in Northern Hemisphere, indicating that the improvements of poor-man inversion for 306 

posterior concentrations are very limited. These suggest that GOSAT and in situ inversions can effec-307 

tively improve the carbon fluxes estimate in the northern hemisphere, but overestimate the land sinks 308 

in the southern hemisphere. 309 

 310 

Figure 3. Biases of the simulated CO2 mixing ratios against the flask measurements in different lat-311 

itudes (positive/negative biases represent modeled concentration being greater/less than the ob-312 

served, the different color lines are the smooth of the corresponding marks) 313 

4.1.2 TCCON observations 314 

  We also use data from 13 TCCON sites (Figure 2) to evaluate our inversion results. The simu-315 
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lated CO2 concentrations at 47 vertical levels are mapped onto 71 TCCON levels. Following the ap-316 

proach of Wunch et al. (2011), using prior profiles and the averaging kernel from the TCCON da-317 

taset, we calculated the modeled XCO2 values at 13 TCCON sites. It should be noted that the com-318 

parisons of posterior XCO2 from GOSAT and OCO-2 inversions with TCCON data are not fully 319 

independent since the TCCON data were used in the bias-correction scheme of both GOSAT and 320 

OCO-2 products (Wunch et al., 2011). Table 1 also shows the comparison of modeled XCO2 with 321 

TCCON observations. The mean difference between prior XCO2 and TCCON retrievals is 1.16 322 

ppm, with a standard deviation of 1.3 ppm. GOSAT inversion performs the best with the largest re-323 

ductions of bias and standard deviation. Though OCO-2 inversion shows improvement in the reduc-324 

tion of standard deviation, it gives a relatively large bias for posterior XCO2. In situ inversion has 325 

the same reduction of standard deviation as GOSAT inversion. Poor-man inversion reduces the bias 326 

to 0.49 ppm and gives slight improvement in reducing standard deviation of posterior XCO2.  327 

Figure 4 shows the bias at each TCCON site. Obviously, the biases at all TCCON sites are pos-328 

itive when using the prior fluxes, ranging between 0.3 and 2.6 ppm.  The biases at the sites in the 329 

northern temperate and boreal areas are all above 1.5 ppm except for the Lamo site. GOSAT and in 330 

situ inversions significantly reduce the biases at most sites. However, in Northern Hemisphere, the 331 

biases at those sites remain relatively large. Since GOSAT and in situ inversions show evident im-332 

provement at flask sites in Northern Hemisphere, the remaining large biases at TCCON sites may 333 

be also related to the biases of TCCON retrievals (Wunch et al, 2010; Messerschmidt et al, 2011).  334 

OCO-2 and poor-man inversions show slight improvement in the reduction of biases at most sites 335 

and rather large biases still remain. 336 

Overall, it also could be found from Table 1 that only in situ inversion beats the poor-man in-337 

version on all 4 statistics, followed by GOSAT inversion, which beats the poor-man on 3 statistics, 338 

indicating that in situ measurements have the best performance among all inversions, and GOSAT 339 

retrieval have similar performance as in situ data. 340 
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 341 

Table 1. Statistics of the model-data mismatch errors at the 52 surface flask sites and the 13 TCCON 342 

sites (ppm) 343 

  
Flask   TCCON 

Bias Stdev   Bias Stdev 

Prior 0.93 2.30  1.16 1.30 

OCO-2  0.33 2.15  0.80 1.08 

GOSAT  -0.19 2.05  0.22 1.04 

In situ -0.03 2.04  0.38 1.04 

Poor-man 0.14 2.28   0.49 1.25 

 344 

 345 

Figure 4. The biases between the modeled and observed XCO2 at the 13 TCCON sites 346 

 347 

4.2 Global carbon budget 348 

  Table 2 presents the global carbon budgets in 2015 from four inversions. The global land sinks 349 

inferred by GOSAT and OCO-2 XCO2 retrievals are -3.48 and -2.94 PgC yr-1, respectively, which 350 
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are both larger than the prior value, and lower than the estimate from the in situ inversion.  The dif-351 

ferences of ocean fluxes among a priori and two inversions are small since we don’t assimilate 352 

XCO2 data over ocean. The global net flux from the poor-man inversion is inferred from the global 353 

annual CO2 growth rate, which represents relatively accurately the net carbon flux added into at-354 

mosphere.  It could be found that the global net flux from GOSAT inversion is the closest to the 355 

poor-man inversion estimate, while that from OCO-2 inversion is higher and the in situ inversion 356 

estimate is lower than the poor-man estimate, indicating that GOSAT inversion has the best esti-357 

mates for the land and ocean carbon uptakes, while those from in situ inversion are overestimated, 358 

and those from OCO-2 inversion might be underestimated.  359 

Table 2. Global carbon budgets estimated by the OCO-2 and GOSAT inversions in this study as well 360 

as those from the prior fluxes, in situ and poor-man inversions (PgC yr-1) 361 

 Prior OCO-2  GOSAT  In situ Poor-man 

Fossil fuel and industry 9.84 9.84 9.84 9.84 9.84 

Biomass burning emissions 2.20 2.20 2.20 2.20 2.20 

Land sink  -2.50 -2.94 -3.48 -3.63 -3.35 

Ocean sink -2.41 -2.44 -2.45 -2.41 -2.41 

Global net flux 7.13 6.66 6.11 6.00 6.28 

 362 

4.3 Regional carbon flux 363 

Figure 5 shows the distributions of annual land and ocean carbon fluxes (excluding fossil fuel 364 

and biomass burning carbon emissions, same thereafter) of the prior and the estimates using GOSAT 365 

and OCO-2 data. It could be found that compared with the prior fluxes, the carbon sinks in Central 366 

America, south and northeast China, east and central Europe, south Russia and east Brazil are obvi-367 

ously increased in GOSAT inversion. Except for east Brazil, the land sinks in those areas in OCO-2 368 

inversion are also increased, but much weaker than those in GOSAT inversion, and in east Brazil, it 369 

turns to a significant carbon source. In contrast, in east and central Canada, north Russia, north Eu-370 

rope, west Indo-China Peninsula, north Democratic Republic of the Congo and west Brazil, their 371 
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carbon sources are significantly increased in both GOSAT and OCO-2 inversions. In east and central 372 

Canada, north Europe and west Brazil, there are much stronger carbon sources in OCO-2 inversion. 373 

 374 

Figure 5. Distributions of annual land and ocean carbon fluxes a) prior flux and posterior fluxes 375 

based on (b) OCO-2 and (c) GOSAT data (gC m-2yr-1) 376 

 377 

To better investigate the differences between GOSAT and OCO-2 inversions as well as their 378 

differences with two other inversions, we aggregate the prior and inferred land fluxes into 11 TRANS-379 

COM land regions (Gurney et al., 2002) as shown in Figure 2. Figure 6 shows aggregated annual land 380 
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surface fluxes from the prior and inversions for the 11 land regions. Clearly, in most regions, the land 381 

sinks inverted based on GOSAT data are stronger than those inferred from OCO-2 data, especially in 382 

the Temperate and Tropical Lands. For example, in South America Temperate, the estimated land sink 383 

based on GOSAT data is about 4 times as large as the OCO-2 inversions; in North America Temperate 384 

and Tropical Asia, the carbon sinks of GOSAT experiment is about twice that of the OCO-2 inver-385 

sions; and in South America Tropical, the OCO-2 inversion result is a carbon source of 0.19 PgC yr-386 

1, while GOSAT inversion gives a weak sink of -0.05 Pg C yr-1.  The total sinks of the Temperate/Trop-387 

ical Lands optimized using GOSAT and OCO-2 XCO2 retrievals are -2.95/-0.36 and -2.59/-0.20 Pg 388 

C yr-1, respectively (Table 3). In Northern Boreal Land, the total carbon sinks inverted with GOSAT 389 

and OCO-2 data are comparable. However, the two XCO2 data have opposite performances in two 390 

northern boreal regions, namely in Eurasian Boreal, the inverted land sink with GOSAT is stronger 391 

than that with OCO-2; while in North America Boreal, it is the opposite.  392 

For different continents (Table 3), in Asia and Australia, their carbon sinks inverted from GOSAT 393 

and OCO-2 data are comparable. In North America, South America and Europe, the land sinks in 394 

GOSAT inversion are much stronger than those in OCO-2 inversion. Especially in South America, 395 

the GOSAT inversion result is a strong carbon sink (-0.51 Pg C yr-1), while in OCO-2 inversion, it is 396 

a weak carbon source (0.06 Pg C yr-1). Conversely, in Africa, the land sink estimated with GOSAT 397 

data is much weaker than those from OCO-2 data, the former (-0.59 Pg C yr-1) being only about the 398 

half of the latter (-1.13 Pg C yr-1).  399 
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 400 

Figure 6. Aggregated annual land fluxes of the 11 TRANSCOM land regions 401 

Table 3. The prior and posterior fluxes in six continents and boreal, temperate and tropical lands (PgC 402 

yr-1) 403 

Regions Prior OCO-2 GOSAT In situ 

North America -0.04 -0.27 -0.45 -0.42 

South America -0.25 0.06 -0.51 -0.04 

Europe -0.01 -0.40 -0.63 -0.66 

Asia -0.76 -0.99 -1.05 -1.16 

Africa  -1.28 -1.13 -0.58 -1.22 

Australia -0.17 -0.22 -0.26 -0.13 

Northern Boreal Land -0.16 -0.16 -0.18 -0.81 

Northern Temperate Land -0.35 -1.37 -1.68 -1.22 

Tropical Land -1.01 -0.20 -0.36 -0.49 

Southern Temperate Land -0.98 -1.21 -1.28 -1.11 

 404 

Compared with the in situ inversion, in the boreal regions, the land sinks estimated from GOSAT 405 

and OCO-2 inversions are much weaker than those from in situ inversion, especially in the Eurasian 406 

Boreal, the land sink estimated by in situ inversion is more than two times larger than the estimates 407 
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of GOSAT and OCO-2 inversions. In the tropical land, the total land sinks inferred from both GOSAT 408 

and OCO-2 inversions are weaker than those from the in situ inversion, but in different regions, the 409 

situations are different. In the Temperate lands, except for Europe and south Africa, the land sinks 410 

from GOSAT and OCO-2 inversions are much stronger than those from the in situ inversion. For 411 

example, in South America Temperate, GOSAT inversion shows a strong carbon sink, while in situ 412 

inversion shows a weak source. For different continents, in North America, Asia, Europe, the carbon 413 

sinks inferred from GOSAT inversion are comparable to those from in situ inversion, while in South 414 

America and Africa, the carbon sinks inferred from OCO-2 inversion are much closer to the in situ 415 

inversion. 416 

Compared with the prior fluxes, the inferred land fluxes in Northern Temperate regions have 417 

the largest changes, followed by those in Tropical regions and Southern Temperate lands, while in 418 

boreal regions, the changes are the smallest. As shown in Table 4, for different TRANSCOM regions 419 

and different XCO2 used, the changes of carbon fluxes have large differences. Since the same setup 420 

used in these two inversions and the same algorithm adopted for retrieving XCO2 from GOSAT and 421 

OCO-2 measurements, the different impacts of XCO2 data on land sinks may be related to the spatial 422 

coverage and the amount of data in these two XCO2 datasets. As shown in Figure 1, in different 423 

latitude zones, the spatial coverage and the data amount of GOSAT and OCO-2 have large differences. 424 

Statistics show that the amount of data is largest in northern temperate land, followed by southern 425 

temperate land and tropical land, and least in northern boreal regions, corresponding to the magnitude 426 

of changes of carbon fluxes in these zones. For one specific zone, the different impacts of these two 427 

XCO2 datasets may be also related to their data amount. For example, in northern temperate land, 428 

GOSAT has more XCO2 data than OCO-2. Accordingly, the change of carbon flux caused by GOSAT 429 

is larger than that caused by OCO-2. Conversely, in Tropical Land, OCO-2 has more data than GO-430 

SAT, and as shown before it has more significant impact on the land sink. This relationship could also 431 

be found in each TRANSCOM region. Figure 5 gives a relationship between the XCO2 data amount 432 
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ratios of GOSAT to OCO-2 and the land sinks absolute change ratios caused by GOSAT to OCO-2 433 

for 11 TRANSCOM land regions. Obviously, except for North and South Africa, there is a significant 434 

linear correlation (R=0.95) between these two ratios, suggesting that with more XCO2 data, the more 435 

carbon flux relative to the prior flux is changed. In North Africa, we find that OCO-2 has better spatial 436 

coverage and more data than GOSAT, as shown in Figure 1. Although the differences mainly occur 437 

in the Sahara where the carbon flux is very weak, but near the equatorial region where the carbon 438 

flux is large, OCO-2 still has more data than GOSAT.  In southern Africa, both XCO2 have good 439 

spatial coverage, the amount of GOSAT data is about 1.5 times that of OCO-2, but the changes in the 440 

carbon flux caused by GOSAT is about 10 times that of OCO-2. The large ratio of carbon change is 441 

mainly due to the relatively small carbon change from OCO-2 inversion.  442 

Table 4. Differences between the inferred and the prior carbon fluxes, the data amount of XCO2 and 443 

the deviations between the modeled with prior flux and satellite retrieved XCO2 in different regions 444 

Region 
Flux changed (Pg C yr-1)*   XCO2 data amount   Deviations (ppm)** 

OCO-2 GOSAT   OCO-2 GOSAT   OCO-2 GOSAT 

North America Boreal -0.05 0  1143 639  0.6 1.41 

North America Temperate -0.18 -0.41  2390 3163  0.52 0.93 

South America Tropical 0.46 0.24  800 421  -0.89 0.43 

South America Temperate -0.15 -0.5  1711 3500  0.02 0.54 

North Africa 0.19 0.39  3208 674  0.12 -0.19 

South Africa -0.03 0.3  2057 3060  0.17 0.33 

Eurasian Boreal 0.05 -0.02  1714 1339  0.47 1.5 

Eurasian Temperate -0.46 -0.3  5323 4782  0.46 0.82 

Tropical Asia 0.17 0.03  726 550  -0.43 0.34 

Australia -0.05 -0.1  2011 3110  0.18 0.67 

Europe -0.39 -0.63   1604 2106   0.28 1.35 

Global land -0.44 -0.98  22687 23344  0.22 0.79 

Northern Boreal Land 0.005 -0.02  2857 1978  0.52 1.47 

Northern Temperate Land -1.03 -1.33  9317 10051  0.45 0.96 

Tropical Land 0.82 0.66  4734 1645  -0.08 0.13 

Southern Temperate Land -0.23 -0.3   5779 9670    0.11  0.6 

* Differences between posterior and prior flux 445 

** Deviations between the modeled XCO2 with prior flux and satellite retrieved XCO2 446 
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 447 

Figure 7. Scatter plot for the ratio of GOSAT to OCO-2 XCO2 data amount versus the ratio of abso-448 

lute changes of the land sinks caused by GOSAT to OCO-2 in the 11 TRANSCOM land regions  449 

 450 

In addition to the data amount, the mismatches between the simulated CO2 concentrations using 451 

prior fluxes and the satellite retrievals could be used to examine the performances of OCO-2 and 452 

GOSAT retrievals in different regions.  Usually, a large model-data mismatch will impose strong 453 

constraint on the prior flux in inversions. Therefore, we compare the mismatches in OCO-2 and 454 

GOSAT inversions. The results are grouped global land and into the 11 TRANSCOM land regions, 455 

as shown in Table 4. The global land mean difference between modeled XCO2 and the OCO-2 and 456 

GOSAT retrievals are 0.22 and 0.79 ppm, respectively, indicating that the GOSAT retrieval would 457 

have stronger constraint on the prior fluxes. In most TRANSCOM regions except North Africa, the 458 

mismatches in GOSAT inversion are positive and larger than those of OCO-2 inversion. In Tropic 459 

Asia and South America Tropic, the sizable negative mismatches in OCO-2 inversion could account 460 
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for a weak inverted carbon sink and an inverted carbon source in these two regions, while in North 461 

Africa, the negative mismatch in GOSAT inversion may explain why a rather weak sink is inverted 462 

for this region.   The difference of mismatch between OCO-2 and GOSAT inversions exhibits rather 463 

large spread, ranging from 0.16 to 1.33 pm, indicating the biases of two satellite XCO2 retrievals 464 

differ greatly. 465 

Table 5. Statistics of the OCO-2 and GOSAT retrievals uncertainties against the TCCON retrievals 466 

  
OCO-2   GOSAT 

Bias 

(ppm) 

Stdev 

(ppm) 

N. of 

Obs. 
  

Bias 

(ppm) 

Stdev 

(ppm) 

N. of 

Obs. 

Bial 0.91 1.47 21  0.06 1.35 29 

Darw 0.75 0.85 43  -0.41 1.62 44 

Garm -0.10 2.97 14  0.73 2.02 35 

Lamo 0.04 1.09 56  -0.91 1.39 82 

Laud 0.59 1.38 18  -0.79 1.70 30 

Orle 1.49 1.18 24  -0.51 1.38 39 

Park 0.50 1.26 29  -0.58 1.52 38 

Soda 1.91 1.89 7  -0.54 2.58 9 

Tsuk 0.93 1.95 16  -0.47 1.11 38 

Woll 0.34 1.07 27  -0.36 1.56 45 

All 0.60 1.45 255   -0.42 1.59 389 

 467 

Moreover, the uncertainties of OCO-2 and GOSAT retrievals may be another reason for the dif-468 

ferent performances in these two inversion experiments. We use TCCON retrieval to evaluate the 469 

uncertainties of OCO-2 and GOSAT XCO2 retrievals.  For satellite retrievals falling in the model 470 

grid box where TCCON sites are located, the closest TCCON retrievals in time or within two hours 471 

of satellite overpass time are chosen for comparison. We follow the procedures in Appendix A of 472 

Wunch et al. (2011) to do both prior profile and averaging kernel corrections. Table 5 shows the bi-473 

ases and standard deviations grouped globally and at 10 TCCON sites where both OCO-2 and GO-474 

SAT retrievals are available for comparison. The locations of these 10 sites are shown in Figure 2. 475 

At most sites except Garm, OCO-2 retrievals have positive biases, while GOSAT retrievals tend to 476 

have negative bias except at Bial and Garm sites. It also could be found that the spread of GOSAT 477 
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data biases are small, falling in the range of -0.36 to -0.58 ppm at most sites, while the spread of 478 

OCO-2 data biases is relatively large, with biases greater than 0.7 ppm at more than half of sites, 479 

and in the range of 0.34 to 0.59 ppm only at 3 sites. Overall, GOSAT retrievals (-0.46 ppm) have 480 

lower bias than OCO-2 retrievals (0.6 ppm) and the difference between two retrievals is relatively 481 

large. It should be noted that due to the limited number of collocated satellite retrievals, the real bias 482 

difference might be below 1 ppm. As shown in Table 4, the difference of overall mismatches be-483 

tween GOSAT and OCO-2 data is 0.57 ppm. These indicate that although both OCO-2 and GOSAT 484 

products were bias-corrected using TCCON retrievals, the uncertainties of OCO-2 and GOSAT re-485 

trievals are still very large, especially for OCO-2 retrieval, resulting in the degraded performance of 486 

OCO-2 retrieval, which also suggest that the bias-correction scheme implemented may need to be 487 

improved. 488 

5. Summary and Conclusions 489 

In this study, we use both GOSAT and OCO-2 XCO2 retrievals to constrain terrestrial ecosys-490 

tem carbon fluxes from Oct 1, 2014 to Dec 31, 2015, using the GEOS-Chem 4D-Var data assimilation 491 

system. In addition, one inversion using in situ measurements and another inversion as a baseline, are 492 

also conducted. The posterior carbon fluxes estimated from these four inversions at both global and 493 

regional scales during Jan 1 to Dec 31, 2015 are shown and discussed. We evaluate the posterior 494 

carbon fluxes by comparing the posterior CO2 mixing ratios against observations from 52 surface 495 

flask sites and 13 TCCON sites.  496 

Globally, the terrestrial ecosystem carbon sink (excluding biomass burning emissions) esti-497 

mated from GOSAT data is stronger than that inferred from OCO-2 data and weaker than that from 498 

in situ inversion, but closest to the poor-man inversion estimate. Regionally, in most regions, the land 499 

sinks inferred from GOSAT data are also stronger than those from OCO-2 data. Compared with the 500 

in situ inversion, GOSAT inversions have weaker sinks in Boreal and most Tropical lands, and much 501 

stronger ones in Temperate lands. Compared with the prior fluxes, the inferred land sinks are largely 502 
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increased in the temperate regions, and decreased in tropical regions. There are largest changes of the 503 

prior fluxes in Northern Temperate regions, followed by Tropical and Southern Temperate regions, 504 

and the weakest in boreal regions. The different impact of XCO2 on the carbon fluxes in different 505 

regions is mainly related to the spatial coverage and the amount of XCO2 data. Generally, a larger 506 

amount of XCO2 data in a region is corresponding to a larger change in the inverted carbon flux in 507 

the same region.  The different biases of the two XCO2 retrievals may also give rise to their different 508 

inversion performances. 509 

   Evaluations of the inversions using CO2 concentrations from flask measurements and TCCON 510 

retrievals show that the simulated CO2 concentrations with GOSAT posterior fluxes are much closer 511 

to the observations than those with OCO-2 estimates. Compared with poor-man inversion, both GO-512 

SAT and in situ inversions show evident improvement with the similar reductions of both biases and 513 

standard deviations of posterior concentrations, while OCO-2 inversion only displays slight improve-514 

ment over poor-man inversion. Generally, the posterior biases from GOSAT inversion are signifi-515 

cantly reduced in the northern hemisphere and are slightly increased in the southern hemisphere. 516 

These suggest that GOSAT data can effectively improve the carbon fluxes estimate in the northern 517 

hemisphere.  518 

The GOSAT and OCO-2 XCO2 retrievals used in this study are bias-corrected products. Never-519 

theless, there still exists apparent biases and the differences between these two satellites data are 520 

obvious. The more reliable constraints on carbon flux call for the further reduction of satellite retrieval 521 

errors. These indicate that we should interpret carbon flux inferred from the current satellites XCO2 522 

retrievals with great cautions in understanding global carbon cycle. It also should be noted that though 523 

the OCO-2 XCO2 retrievals of version b7.3 used in this study perform worse than GOSAT data and 524 

in situ measurements in our inversions, one recent study has shown that the newer version of OCO-2 525 

data has a much better performance in constraining carbon flux (Chevallier et al., 2019). With con-526 

stantly improved retrieval algorithm and bias-correction scheme, more robust estimate of carbon flux 527 
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from satellite XCO2 retrievals could be achieved. 528 
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