
Dear Editor,  

According to the reviewers’ comments and suggestions, we have made major revision to 

our manuscript. The main changes in the manuscript are as follows:  

1) As suggested by one reviewer, we reorganized the section 4, we present the evaluation results 

first and then followed by the flux analysis and discussions.  

2) For better clarity, we rewritten the abstract, we removed the statement on the differences 

between posterior fluxes from satellites and prior fluxes and focus more on the comparisons 

between satellites and in situ inversion. 

3) We removed the comparisons between satellites inversions and poor-man inversion on 

regional carbon flux, but added more analysis about the comparisons between the satellites and 

in situ inversions. 

4) We changed the statemen of “benchmark inversion” to “poor-man inversion”, and made clear 

the purpose and the calculations of doing poor-man inversion. 

5) We made the conclusion clear that GOSAT data can effectively improve the carbon flux 

estimates in Northern Hemisphere and its performance is close to in situ data, while OCO-2 data, 

with the specific version used in this study, shows only slight improvement. 

6) We also checked errors and typos carefully and made the necessary corrections. 

The point-by-point response to the reviews and the detailed changes are listed in the 

attachments. Many thanks to you and the referees for the time and effort you expend on this 

paper.  

 

Best Regards,  

 

Sincerely yours,  

Fei Jiang  



Referee #1: 

We thank the anonymous referee for his/her valuable comments and constructive 

suggestions. We have made changes according to the referee’s suggestions and replied 

to all comments point by point. All the page and line number for corrections are referred 

to the revised manuscript, while the page and line number from original reviews are 

kept intact. 

Referee: General comments.  

The aim of the study is to provide a comparison of simulated CO2 concentrations 

estimated with inverse model using OCO-2 and GOSAT retrievals for the year 2015. 

The questions of interest to broader audience are differences in the amplitudes of 

respective flux corrections and their spatial distributions, as well as how well the 

optimized simulations agree with the observed concentrations by surface flask and 

TCCON networks. Authors discuss the spatial variability of the satellite data biases 

with respect to TCCON data and the biases in inverse model estimated concentrations 

with respect to surface flask and TCCON data. Based on comparison of the estimated 

fluxes to benchmark inversion and posterior fits to ground-based observational data not 

used in inversion, authors conclude that use of GOSAT data in inversion results in better 

fit to observations than OCO-2 data. The manuscript is been resubmitted and was 

substantially revised with respect to earlier version. Presentation of the material is clear 

and has improved over initial submission, so manuscript can be accepted after minor 

revisions. The text should also be checked for orthographical errors. 

Response: We appreciate the referee’s insightful comments. We checked for 

orthographical errors carefully and made the necessary corrections.  

 

Detailed comments 

L74 Authors consider if “current OCO-2 observations have a greater potential than 

GOSAT …”. It would be useful to note what would be the reasons affecting usefulness 

of OCO-2 or GOSAT? Did they mean spatially and temporally varying biases? 

Response: Yes, spatially and temporally varying biases affect usefulness of satellite 



retrievals greatly. As pointed out by Chevalier et al. (2007), biases of a few tenth of one 

ppm in XCO2 could bias subcontinental flux estimates by several tenths of gigaton of 

carbon. Spatial coverage also affects the usefulness of satellite data, especially in 

regions with frequent clouds, where OCO-2 is anticipated to perform better. In the 

revised manuscript, we have changed that sentence to “it is still not clear whether with 

the improved monitoring capabilities and better spatial coverage, current OCO-2 

observations have a greater potential than GOSAT observations for estimating CO2 flux 

at regional or finer scale, since except spatial coverage, the biases also affect the 

usefulness of satellite retrievals greatly.”. See lines 77-80, pages 3-4. 

 

L454 Although results of the analysis support the conclusions, it should be noted that 

the study period of 2015 is characterized by strong El-Nino and the spatial distribution 

of fluxes typical for more common non El-Nino years, appears disturbed in the El-Nino 

year. 

Response: Thanks for the referee for calling our attentions to the influence of El-Nino 

event. We understand the importance of evaluating performance of two satellite data in 

both El-Nino and non El-Nino years. However, the availability of overlap of OCO-2 

and GOSAT data from ACOS for only 20 month prevents us from doing multi-year 

inversions.  

 

L456 The uncertainty/bias in TCCON retrievals is cited, but evidence for the bias is not 

shown/discussed. Suggest to add some reference(s) on TCCON biases. 

Response: TCCON retrievals are subject to air-mass dependent and air-mass 

independent biases. The correction factors are applied to the column-averaged mole 

fractions. The air-mass dependent correction factor is determined from the symmetric 

component of the diurnal variation. The air-mass-independent correction factor is 

determined by comparisons with in situ profiles measured over TCCON sites from 

aircraft or balloon payloads. The TCCON biases are usually evaluated by aircraft or 

balloon profile observations. However, the comprehensive evaluation of TCCON 

biases are still hindered from the lack of enough profile data. We have added two 



references of Wunch et al. (2010) and Messerschmidt et al. (2011) in the revised 

manuscript in line 336, page 15.  

 

L490 Analysis of the posterior fit to surface flask observations in Southern and North 

hemispheres indicates there are biases in GOSAT and OCO-2, and those are changing 

in different directions. Comparison to TCCON show the retrieval bias difference 

between GOSAT and OCO-2 are in order of 1 ppm. It is worth noting that, while 

observed mean difference with TCCON calls for correction of the GOSAT and OCO-2 

data, based on mean deviation from TCCON, it was not done in this study, as opposed 

to some other inverse modeling studies. 

Response: The bias difference up to 1 ppm between GOSAT and OCO-2 retrievals 

against TCCON retrievals does seem rather large. However, due to limited number of 

collocated satellite retrievals, the sample size for computing bias is relatively small. 

Therefore, the large bias difference should be treated as a relative value. As shown in 

Table 4, when comparing to the same prior CO2 mixing ratios, the difference of overall 

mismatches between GOSAT and OCO-2 data is 0.57 ppm, suggesting the bias 

difference might not be as large as shown by comparison with TCCON data. As 

described in Section 2, GOSAT and OCO-2 retrievals used in our inversions are already 

bias-corrected. The remaining biases of satellite retrievals suggest that the bias-

correction scheme implemented need to be improved. However, due to the short time 

period of our inversions, the sparseness of TCCON sites and the lack of profile data, it 

is really difficult to figure out an appropriate way to further reduce satellite retrievals 

bias. The following sentences have been added in the revised manuscript to point out 

the deficiency of statistics, see lines 487-493, page 25. 

“…It should be noted that due to the limited number of collocated satellite retrievals, 

the real bias difference might not be up to 1 ppm. As shown in Table 4, the difference 

of overall mismatches between GOSAT and OCO-2 data is 0.57 ppm. These indicate 

that although both OCO-2 and GO-SAT products were bias-corrected using TCCON 

retrievals, the uncertainties of OCO-2 and GO-SAT retrievals are still very large, 

especially for OCO-2 retrieval, resulting the worse performance of OCO-2 retrieval, 



which also suggest that the bias-correction scheme implemented may need to be 

improved.” 

 

Suggested technical corrections 

L68 Suggest to change “constrain the surface carbon flux inversion” to “constrain the 

surface carbon fluxes” 

Response: We have changed “constrain the surface carbon flux inversion” to “constrain 

the surface carbon fluxes”. See lines 70-71, page 3. 

 

L250 Fprior mistyped  

Response: We have corrected “Fpiror” to “Fprior” in the revised manuscript. Seen line 

259, page 12. 

 

L256 suggest changing “by multiply by” to “by multiplying by”  

Response: We have changed “by multiply by” to “multiplying by” in the revised 

manuscript. See lines 268-269, page 12. 

 

L276 ‘In situ’ to ‘in situ’  

Response: We have change “In situ” to “in situ”. See line 363, page 17 

 

L377 abbreviated TCCON station names (such as ‘Bial’) should be explained 

somewhere in the text.  

Response: We have added the full name of TCCON stations in section 2.2 in the revised 

manuscript. See lines 149-151, page 7. 

 

L392 in “0.34 to0.59” space is missing  

Response: We have added space. See line 485, page 25. 

 

L408 in “0.93ppm” space is missing 

Response: We have added space. See line 286, page 13. 



L415 Instead of Figure 7, Figure 6 should be referred here, as comparisons to TCCON 

is on Line 447.  

Response: We have corrected “Figure 7” to “Figure 4” since according to another 

referee’s comments, the section 4 has been reorganized in the revised manuscript, and 

Figure 6 is renamed to Figure 4. See lines 345-346, page 16. 



Referee #2: 

We thank the anonymous referee for his/her valuable comments and constructive 

suggestions. We have made changes according to the referee’s suggestions and replied 

to all comments point by point. All the page and line number for corrections are referred 

to the revised manuscript, while the page and line number from original reviews are 

kept intact. 

Referee: I was pleased to receive the response of the authors to my comments, and I 

appreciate the extra effort that was done to address my concerns. I think the manuscript 

has improved substantially in this revision, but not yet enough for publication in ACP. 

The manuscript needs quite a few small modifications of errors, typos, and mistakes in 

at least one figure. It can also profit from rewriting and reordering parts of the text. And 

before publication can proceed, the authors need to consider the terms of use of the 

ObsPack data that they downloaded, as currently they did not comply with them. Please 

find below my additional comments on the new manuscript presented. 

Response: We are very grateful to the referee’s insightful comments and really 

appreciate his/her patience while we were working on the manuscript. In the revised 

manuscript, we have reorganized the section 4. We present the evaluation results first 

and then followed by the flux analysis. For better clarity, we rewrite the abstract, part 

of section 4 and conclusions as well. We corrected the mistake in the Figure 4. We also 

checked errors and typos carefully and made the necessary corrections. We will explain 

how we follow the terms of use of the ObsPack data in detail. 

 

Main comments:  

The use of the ObsPack instead of the flasks is in principle a good idea. I do not 

understand why the authors decided to download a carbontracker obspack though, as 

the website that explains this product 

(https://www.esrl.noaa.gov/gmd/ccgg/obspack/release_notes.html#obspack_co2_1_C

ARBONTRACKER) explicitly suggests not to use these files as primary source of data 

for inversions, but instead to get the latest real obspack from the website. It also reminds 



the user explicitly to comply with the terms of use of these data in a study, which means 

that (1) all data providers need to be contacted before publication to explain the use of 

their data and to agree on the way to acknowledge them, (2) a citation to the dataset 

through its DOI must be included in the text. I repeated this Fair Use Statement in my 

comments below. Without complying with these rules, the current manuscript should 

not be published. 

Response: Many Thanks for this comment and suggestion. The reason for using 

CarbonTracker Obspack other than the full ObsPack data is just for convenience. 

Before we decided to use CarbonTracker ObsPack data, we did read the release note 

carefully and understand the suggestions for not using those data as primary source for 

inversions. The latest real ObsPack data contain much more measurements than those 

used by CarbonTacker. We don’t have much experience with assimilating in situ 

measurements. It is a lot of works to filter out the measurements not suitable for 

assimilation. It is also not an easy task for us to figure out the appropriate observation 

uncertainties. Therefore, in order to finish the in situ inversion and complete the 

revision of the manuscript on time, we chose to use CarbonTracker Obspack data to do 

the inversion.  

We did follow the terms of use of OpsPack data closely. After we downloaded the 

ObsPack data, we read the terms of use carefully and emailed to all ObsPack PIs to 

acknowledge the use of data and inquire the proper citation of ObsPack data. We got 

replies from Dr. Andres Schmidt and Dr. Andy Jacobson and they agreed to let us use 

the data. All the other PIs didn’t reply to us and so we assumed no objections from them 

for using the data. A copy of email we sent and the replies from Dr. Andres Schmidt 

and Dr. Andy Jacobson are listed as follows. 

 

(1) Email we sent to all data providers on Apr 7, 2019: 



 

(2) The reply from Dr. Andy Jacobson on Apr 7, 2019 



 



 

(3) The reply from Dr. Andres Schmidt on Apr 8, 2019 

 

 

Although I like the introduction of the poor-man’s inversion, the description in the 

methods section seems incorrect to me, and I find the way it is integrated into the study 

not very strong. This comes from the choice to use it as an extra inverse solution from 

the beginning, and to discuss its flux results alongside that of the other inversions. But 



the poor-man’s inversion can only be used to look at the global total flux (which it 

matches by design), and to look at the distribution of CO₂ mixing ratios and XCO2 

values across the globe. This it should follow reasonably well, thus setting a benchmark 

to beat for real inverse solutions. Currently, the label “benchmark” is used throughout 

the text including that of “benchmark inversion” which is confusing: the flux result of 

this poor-man’s method is the one thing one should *not* put much emphasis on, 

especially not below the global total scale. It is therefore also no use to show its regional 

flux solution in Table 2 and in Fig 4, nor be discussed in Section 4.2 in my opinion. 

Response: Thank you for this comment and suggestion. The poor-man inversion 

conducted in this study was exactly according to the Chevallier’s approach. The 

description of the method was combined from the descriptions of Chevallier et al. (2009) 

and Chevallier et al. (2010). The difference between Chevallier’s approach and ours is 

that to be consistent with our three other inversions, we set prior flux uncertainty 

proportional to prior flux in poor-man inversion, while in Chevallier et al. (2010), it 

was set proportional to the heterotrophic respiration flux of ORCHIDEE, and in 

Chevallier et al. (2009), it was set prior flux uncertainty proportional to the gross carbon 

fluxes. 

However, we agree with the referee that the way of integrating poor-man inversion into 

this study is not strong. In the revised manuscript, we have changed all “benchmark 

inversion” to “poor-man inversion”, removed poor-man inversion results from Table 2 

and Fig 4, and removed the comparisons and discussions of regional carbon fluxes of 

poor-man inversion result in Section 4.2 in the revised manuscript. It should be noted 

that since section 4 was reorganized, now, Table 2 and Fig 4 are renamed to Table 3 and 

Fig 6, and Section 4.2 is renamed as Section 4.3 in the revised manuscript.  

 

It is a bit awkward that the reader is first learning a lot about GoSAT to OCO-2 flux 

differences and how their regional budgets differ in great detail in Section 4.2, but only 

later in Section 4.3 learns that the OCO-2 inversion is not very trustworthy and is not 

able to reproduce the atmospheric XCO2 and surface CO₂ better than the poor-man’s 

inversion (which can be called a benchmark in this context). So in fact, all I read earlier 



becomes then in a sense irrelevant. Please consider bringing the assessment of the 

quality of the inversions forward in the manuscript, so that the flux analysis that comes 

afterwards can focus more on the relevant part of the study (GoSAT and in-situ inverse 

results). OCO-2 can then be still discussed, but only to indicate whether GoSAT satellite 

results are corroborated or not by OCO-2. 

Response: Thanks for the referee’s suggestion. In the revised manuscript, we have 

reorganized Section 4 and present the assessment of the quality of the inversions first 

in Section 4.1, and the flux analysis on Global budget and regional fluxes afterward in 

Section 4.2 and Section 4.3. We also add more analysis about the comparisons between 

the satellites and in situ inversions as follows, which is shown in lines 409-420, pages 

20-21 in the revised manuscript.  

“Compared with the in situ inversion, in the boreal regions, the land sinks 

estimated from GOSAT and OCO-2 inversions are much weaker than those from in situ 

inversion, especially in the Eurasian Boreal, the land sink estimated by in situ inversion 

is more than two times larger than the estimates of GOSAT and OCO-2 inversions. In 

the tropical land, the total land sinks inferred from both GOSAT and OCO-2 inversions 

are weaker than those from the in situ inversion, but in different regions, the situations 

are different. In the Temperate lands, except for Europe and south Africa, the land sinks 

from GOSAT and OCO-2 inversions are much stronger than those from the in situ 

inversion. For example, in South America Temperate, GOSAT inversion shows a strong 

carbon sink, while in situ inversion shows a weak source. For different continents, in 

North America, Asia, Europe, the carbon sinks inferred from GOSAT inversion are 

comparable to those from in situ inversion, while in South America and Africa, the 

carbon sinks inferred from OCO-2 inversion are much closer to the in situ inversions.” 

 

Abstract: I think that the text does not summarize so well the main findings anymore, 

and should be rewritten. The main message should focus on the posterior fluxes 

compared to the in-situ inversion, and not comparing the two satellites to the prior. Then, 

one can highlight that the main difference on the largest scale is the latitudinal 



distribution of land sinks, with the satellites suggesting a smaller Boreal and Tropical 

sink, combined with larger temperate sinks in both the NH and SH. However, OCO-2 

and GoSAT generally do not agree on which continent contains the smaller or larger 

sinks. Also, the comparison of the simulated surface mixing ratios and XCO2 columns 

shows that only GoSAT and the in-situ inversion perform better than a poor-man’s 

solution that closes the annual global mass balance of CO₂. This puts the usefulness of 

the OCO-2 retrieval product used here into question. 

Response: Many thanks for this suggestion. We have rewritten the abstract. In the 

revised manuscript, we removed the statement on the differences between posterior 

fluxes from satellites and prior fluxes and focus more on the comparisons between 

satellites and in situ inversion. We highlight the following conclusions:  

(1) the terrestrial ecosystem carbon sink (excluding biomass burning emissions) 

estimated from GOSAT data is stronger than that inferred from OCO-2 data and 

weaker than the in situ inversion, and matches the poor-man inversion to be the best. 

(2) Regionally, in most regions, the land sinks inferred from GOSAT data are also 

stronger than those from OCO-2 data, and in North America, Asia, Europe, the 

carbon sinks inferred from GOSAT inversion are comparable to those from in situ 

inversion. For the latitudinal distribution of land sinks, the satellites-based 

inversions suggest a smaller bo-real and tropical sink, but larger temperate sinks in 

both Northern and Southern Hemispheres than the in situ inversion. However, 

OCO-2 and GOSAT generally do not agree on which continent contains the smaller 

or larger sinks. 

(3) Evaluations using flask and TCCON observations and the comparisons with in situ 

and poor-man inversions suggest that only GOSAT and the in situ inversions 

perform better than a poor-man’s solution. GOSAT data can effectively improve the 

carbon flux estimates in Northern Hemisphere, while OCO-2 data, with the specific 

version used in this study, shows only slight improvement. 

For details, please refer to lines 15-17, lines 20-22, lines 24-32, pages 1-2. 

 

List of remarks: 



page 1, line 15 “benchmark inversion”: I would refer to the latter as a poor-man’s 

inversion in which only the global CO₂ growth rate is projected onto the land biosphere, 

to be used as a benchmark for the simulated atmospheric CO₂ distributions of the real 

inversions. 

Response: We have changed “benchmark inversion” to “poor-man inversion” and 

rephrase the sentence as “One inversion for the comparison, using in situ CO2 

observations, and another inversion as a benchmark for the simulated atmospheric CO₂ 

distributions of the real inversions, using global atmospheric CO2 trend and referred as 

poor-man inversion, are also conducted.”  

For details, please refer to lines 15-17, page 1. 

 

page 1, line 22: “more consistent with …” simply say that the GoSAT-based inversion 

seems to best capture the observed global CO₂ growth rate.  

Response: We have rephrased that sentence as “…estimated from GOSAT data is 

stronger than that inferred from OCO-2 data, weaker than the in situ inversion, and 

matches the poor man inversion to be the best.” See lines 21-22, page 1. 

 

Page 2, line 29: it is worth to say explicitly that the OCO-2 retrieval you used here 

seems unfit for inverse modeling, but that later versions seem to perform better 

(Chevallier et al., 2019, ACPD). I also urge the authors to focus their future efforts on 

the later retrieval products from OCO-2. 

Response: We have added one sentence “OCO-2 data, with the specific version used 

in this study, show only slight improvement” (see lines 31-32, page 2) to point out the 

poor performance of OCO-2 product used in this study. We also mention in the end of 

conclusion section that the improved performance of newer version of OCO-2 product.  

“... It also should be noted that though the OCO-2 XCO2 retrievals of version b7.3 used 

in this study perform worse than GOSAT data and in situ measurements in our 

inversions, one recent study has shown that the newer version of OCO-2 data has a 

much better performance in constraining carbon flux (Cheval-lier et al., 2019). With 

constantly improved retrieval algorithm and bias-correction scheme, more robust 



estimate of carbon flux from satellite XCO2 retrievals could be achieved.” 

For details, see lines 31-32, page 2, and lines 528-533, page 26. 

 

Page 4, line 84: please do not use “benchmark inversion” to label this flux product, but 

explain the purpose of this approach better. 

Response: We have changed all “benchmark inversion” to “poor-man inversion” and 

given more explanation on the purpose of using poor-man inversion.  

“For comparisons, one inversion based on in situ measurements is conducted, and 

another simple one, which uses the global CO2 trend as a benchmark for the simulated 

atmospheric CO₂ distributions of the real inversion, is also implemented.” 

See lines 86-88, page 4. 

 

Page 6, line 128: This is where my main comment comes into play. The Fair Use 

Statement given in the readme file of the Obspack you downloaded was: 

 

# ObsPack Fair Use Statement 

# 

# This cooperative data product is made freely available to the scientific community 

and is intended to stimulate and support carbon cycle modeling studies. We rely on the 

ethics and integrity of the user to assure that each contributing national and university 

laboratory receives fair credit for their work. Fair credit will depend on the nature of 

the work and the requirements of the institutions involved. 

# Your use of this data product implies an agreement to contact each contributing 

laboratory for data sets used to discuss the nature of the work and the appropriate level 

of acknowledgement. If this product is essential to the work, or if an important result 

or conclusion depends on this product, co-authorship may be appropriate. This should 

be discussed with the appropriate data providers at an early stage in the work. 

Contacting the data providers is not optional; if you use this data product, you must 

contact the applicable data providers. To help you meet your obligation, the data 

product includes an e-mail distribution list of all data providers. 



# This data product must be obtained directly from the ObsPack Data Portal at 

www.esrl.noaa.gov/gmd/ccgg/obspack/ and may not be re-distributed. In addition to the 

conditions of fair use as stated above, users must also include the ObsPack product 

citation in any publication or presentation using the product. The required citation is 

included in every data product and in the automated e-mail sent to the user during 

product download. 

Response: As answered in the major comments part, we paid close attention to the fair 

use of data and followed the terms of use of data as required. 

 

Page 7, line 147: insert “area” between shaded and shows 

Response: We have inserted “area”. See line 156, page 8. 

 

Page 9, line 196: This is yet another reference “CO₂ trend” to the poor-man’s inversion. 

Pleas try to introduce it better, and use it consistently please. 

Response: We have rephrased the sentence as follow: “Three inversions, using GOSAT 

data, OCO-2 data, and in-situ measurements, are conducted from Oct 1, 2014 to 

December 31, 2015, respectively. Poor-man inversion, based on global atmospheric 

CO2 trend and using poor-man’s method (Chevallier et al, 2009, 2010), is also 

conducted.” in the revised manuscript. See lines 204-207, page 10. 

 

Page 11, line 232: descripted = described 

Response: We have corrected “descripted” to “described”. See Line 242, page 11. 

 

Page 12, line 249: I do not understand this formula and I wonder if a mistake was made. 

piror = prior (typo). But why do you add something proportional to the prior flux 

uncertainty, instead of proportional to GPP? And why do you need trial-and-error to 

determine the scaling factor k? This is not the same approach as taken by Chevallier, 

whom you cite for this approach. 

Response: Thank you for this comment.  

(1) Yes, “piror” is a typo, we have corrected “piror” to “prior”. See line 259, page 12 



in the revised manuscript.  

(2) The poor-man inversion conducted in this study was exactly according to the 

Chevallier’s approach. In the introduction of this method, we combined the descriptions 

from Chevallier et al. (2009) and Chevallier et al. (2010).  

In the page 4 of Chevallier et al. (2009), the method is described as follows: 

“…The ocean fluxes are kept identical, to the prior ones. Over land, the inverted fluxes 

xpm are defined as 

xpm = xb − kσ 

where k is a unique scaling factor and σ is the vector made of the prior error standard 

deviations, i.e., the square root of the diagonal of B. Here k was chosen by trial and 

error so that the mean global total of the xpm fluxes equals the mean global total of 

fluxes inverted from the surface measurements over the 3-year period. A value of 1/55 

was found. This simple approach aims at matching the mean global growth rate of CO2, 

which is too large with our prior fluxes over land (see the end of section 2.1.2), without 

any spatial or temporal information from the observations. In practice, it distributes the 

land carbon sink according to the gross carbon fluxes from the vegetation.”.  

In the page 8 of Chevallier et al. (2010), it was described as follow: 

“…In this baseline (which is slightly simplified here), the ocean fluxes are kept 

identical to the prior ones. Over land the poor man’s flux Fpm at location (x, y) and at 

time t is defined as 

𝐹𝑝𝑚( 𝑥, 𝑦, 𝑡)  =  𝐹𝑝𝑟𝑖𝑜𝑟  (𝑥, 𝑦, 𝑡)  +  𝑘 (𝑦𝑒𝑎𝑟)  × 𝜎(𝑥, 𝑦, 𝑡) 

Fprior (x, y, t) is the prior flux at the same time and location. 𝜎(x,y,t) is its uncertainty, 

that is, the standard deviation of the prior error described in section 2.1. k(year) is a 

coefficient that varies as a function of the year only. k is chosen here so that the mean 

annual global totals of the poor man’s fluxes equal the mean global totals given by the 

annual global CO2 growth rate from the GLOBALVIEW‐CO2 [2009] product multiplied 

by a conversion factor (2.12 GtC a-1 per ppm [Denman et al., 2007, Table 7.1]), In 

practice, this simple approach distributes the land carbon sink according to the 



heterotrophic respiration fluxes from the vegetation without any spatial information 

from the atmospheric observations or any temporal information within any given year.”.  

 

In these two papers, 𝜎 was explicitly defined as prior flux uncertainty. The difference 

between their approach and ours is that to be consistent with our three other inversions, 

we set prior flux uncertainty proportional to prior flux in poor-man inversion, while in 

Chevallier et al. (2010), it was set proportional to the heterotrophic respiration flux of 

ORCHIDEE, and in Chevallier et al. (2009), it was set prior flux uncertainty 

proportional to the gross carbon fluxes.  

For the calculation of the coefficient of k, we agree the referee that we don’t need to 

do trial-and-error to determine it, k can be solved directly from the formula as  

𝑘 = (∑ 𝐹𝑝𝑚 − ∑ 𝐹𝑝𝑟𝑖𝑜𝑟)/ ∑ 𝜎                        (1) 

Where ∑ 𝐹𝑝𝑚 equals the global totals given by the observed annual global CO2 growth 

rate. During the calculation, since on different time scale, the 𝜎 is different and the 

global annual uncertainty is not simply the summation of each grid per hour, we 

calculated several times and got different coefficient of k for different time scale. That 

is why we said that we did trial-and-error to determine k. However, anyway, we found 

that whatever did we calculate on monthly or annual time scale, the final Fpm distributed 

on each grid and each three hours are the same. Therefore, the statement of “k is 

determined by trial-and-error” is indeed improper. We have changed this statement in 

the revised manuscript. For details, please refer to lines 260-265, page 12. 

 

Chevallier, F., Engelen, R. J., Carouge, C., Conway, T. J., Peylin, P., Pickett‐Heaps, 

C., Ramonet, M., Rayner, P. J., and Xueref-Remy, I.: AIRS‐based versus flask‐

based estimation of carbon surface fluxes, J. Geophys. Res., 114, D20303, 

doi:10.1029/2009JD012311, 2009. 

Chevallier, F., Ciais P., Conway T.J., Aalto T., Anderson B.E., Bousquet P., Brunke 

E.G., Ciattaglia L., Esaki Y., Fröhlich M., Gomez A., Gomez-Pelaez A.J., Haszpra 

L., Krummel P.B., Langenfelds R.L., Leuenberger M., Machida T., Maignan F., 

Matsueda H., Morguí J.A., Mukai H., Nakazawa T., Peylin P., Ramonet M., Rivier 
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Abstract 10 

In this study, both the Greenhouse Gases Observing Satellite (GOSAT) and the Orbiting Car-11 

bon Observatory 2 (OCO-2) XCO2 retrievals produced by NASA Atmospheric CO2 Observations 12 

from Space (ACOS) project (Version b7.3), are assimilated within the GEOS-Chem 4D-Var assimi-13 

lation framework to constrain the terrestrial ecosystem carbon flux during Oct 1, 2014 to Dec 31, 14 

2015. One inversion for the comparison, using in situ CO2 observations, and another inversion as a 15 

benchmark for the simulated atmospheric CO₂ distributions of the real inversions, using global at-16 

mospheric CO2 trend and referred as poor-man inversion, are also conducted. The estimated global 17 

and regional carbon fluxes for 2015 are shown and discussed. CO2 observations from surface flask 18 

sites and XCO2 retrievals from TCCON sites are used to evaluate the simulated concentrations with 19 

the posterior carbon fluxes. Globally, the terrestrial ecosystem carbon sink (excluding biomass 20 

burning emissions) estimated from GOSAT data is stronger than that inferred from OCO-2 data, 21 

weaker than the in situ inversion, and matches the poor-man inversion to be the best. Regionally, in 22 

most regions, the land sinks inferred from GOSAT data are also stronger than those from OCO-2 23 

data, and in North America, Asia, Europe, the carbon sinks inferred from GOSAT inversion are 24 

comparable to those from in situ inversion. For the latitudinal distribution of land sinks, the satel-25 

lites-based inversions suggest a smaller boreal and tropical sink, but larger temperate sinks in both 26 

Northern and Southern Hemispheres than the in situ inversion. However, OCO-2 and GOSAT gen-27 
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erally do not agree on which continent contains the smaller or larger sinks. Evaluations using flask 28 

and TCCON observations and the comparisons with in situ and poor-man inversions suggest that 29 

only GOSAT and the in situ inversions perform better than a poor-man’s solution. GOSAT data can 30 

effectively improve the carbon flux estimates in Northern Hemisphere, while OCO-2 data, with the 31 

specific version used in this study, shows only slight improvement. The differences of inferred land 32 

fluxes between GOSAT and OCO-2 inversions in different regions are mainly related to the spatial 33 

coverage, the data amount, and the biases of these two satellites XCO2 retrievals.  34 

Keywords: Terrestrial ecosystem carbon flux, inversion, GOSAT, OCO-2, GEOS-Chem 35 

 36 

1. Introduction 37 

Atmospheric inverse modeling is an effective method for quantifying surface carbon fluxes at 38 

global and regional scales using the gradient of CO2 measurements. Inversion studies based on in 39 

situ CO2 observations agree well on global carbon budget estimates but differ greatly on regional 40 

carbon flux estimates and the partitioning of land and ocean fluxes as well, mainly due to the 41 

sparseness of observations in tropics, southern hemisphere oceans and the majority of continental 42 

interiors such as those in South America, Africa, and Boreal Asia (Peylin el al., 2013). Satellite ob-43 

servations offer an attractive means to constrain atmospheric inversions with their extensive spatial 44 

coverage over remote regions. Studies have shown that, theoretically, satellite observations, though 45 

with lower precision than in situ measurements, can improve the carbon flux estimates (Rayner and 46 

O Brien, 2001; Pak and Prather, 2001; Houweling et al., 2004; Baker et al., 2006; Chevallier et al., 47 

2007; Miller et al., 2007; Kadygrov et al., 2009; Hungershoefer et al., 2010).  48 

  Satellite sensors designed specifically to retrieve atmospheric CO2 concentrations, have been in 49 

operation in recent years. The Greenhouse Gases Observing Satellite (GOSAT) (Kuze et al., 2009), 50 

being the first satellite mission dedicated to observing CO2 from space, was launched in 2009. The 51 

National Aeronautics and Space Administration (NASA) launched the Orbiting Carbon Observato-52 
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ry 2 (OCO-2) satellite in 2014 (Crisp et al., 2017; Eldering et al., 2017). China's first CO2 monitor-53 

ing satellite (TanSat) was launched in 2016 (Wang et al., 2017; Yang et al., 2017). These satellites 54 

measure near-infrared sunlight reflected from the surface in CO2 spectral bands and the O2 A-band 55 

to retrieve column-averaged dry-air mole fractions of CO2 (XCO2), aiming to improving the estima-56 

tion of spatial and temporal distributions of carbon sinks and sources. A number of inversions have 57 

utilized GOSAT XCO2 retrievals to infer surface carbon fluxes (Basu et al., 2013; Maksyutov et al., 58 

2013; Saeki et al., 2013; Chevallier et al., 2014; Deng et al., 2014; Houweling et al., 2015; Deng et 59 

al, 2016). Although large uncertainty reductions were achieved for regions which are under-60 

sampled by in situ observations, these studies didn’t give robust regional carbon flux estimates. 61 

There are large spreads in regional flux estimates in some regions among these inversions. Fur-62 

thermore, regional flux distributions inferred from GOSAT XCO2 data are significantly different 63 

from those inferred from in situ observations. For instance, several studies using GOSAT retrievals 64 

reported a larger than expected carbon sink in Europe (Basu et al., 2013; Chevallier et al., 2014; 65 

Deng et al., 2014; Houweling et al., 2015). The validity of this large Europe carbon sink derived 66 

from GOSAT retrievals is in intense debate and efforts to improve the accuracy of Europe carbon 67 

sink estimate are still ongoing (Reuter et al., 2014; Feng et al., 2016; Reuter et al., 2017). 68 

 Compared with GOSAT, OCO-2 has a higher sensitivity to column CO2, much finer footprints 69 

and more extended spatial coverage, and thus has the potential to better constrain the surface carbon 70 

fluxes (Eldering et al., 2017). Studies have used OCO-2 XCO2 data to estimate carbon flux anoma-71 

lies during recent El Nino events (Chatterjee et al., 2017; Patra et al., 2017; Heymann et al., 2017; 72 

Liu et al., 2017). Nassar et al. (2017) applied OCO-2 XCO2 data to infer emissions from large pow-73 

er plants. Miller et al. (2018) evaluated the potential of OCO-2 XCO2 data in constraining regional 74 

biospheric CO2 fluxes and found that in the current state of development, OCO-2 observations can 75 

only provide a reliable constraint on CO2 budget at continental and hemispheric scales. At present, 76 

it is still not clear whether with the improved monitoring capabilities and better spatial coverage, 77 
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current OCO-2 observations have a greater potential than GOSAT observations for estimating CO2 78 

flux at regional or finer scale, since except spatial coverage, the biases also affect the usefulness of 79 

satellite retrievals greatly. It is therefore important to investigate how current OCO-2 XCO2 data 80 

differ from GOSAT XCO2 data in constraining carbon budget. 81 

 In this study, we evaluate the performance of GOSAT and OCO-2 XCO2 data in constraining 82 

terrestrial ecosystem carbon flux. GOSAT and OCO-2 XCO2 retrievals produced by the NASA At-83 

mospheric CO2 Observations from Space (ACOS) team are applied to infer monthly terrestrial eco-84 

system carbon sinks and sources from Oct, 2014 through December, 2015, using a 4D-Var scheme 85 

based on the GEOS-Chem Adjoint model (Henze et al., 2007). For comparisons, one inversion 86 

based on in situ measurements is conducted, and another simple one, which uses the global CO2 87 

trend as a benchmark for the simulated atmospheric CO₂ distributions of the real inversion, is also 88 

implemented.  For simplicity, four inversions are referred as OCO-2 inversion, GOSAT inversion, 89 

in situ inversion and poor-man inversion, respectively. Inversion results are evaluated against sur-90 

face flask CO2 observations and Total Carbon Column Observing Network (TCCON) XCO2 re-91 

trievals. This paper is organized as follows. Section 2 briefly introduces GOSAT and OCO-2 XCO2 92 

retrievals, surface observations and the inversion methodology. Inversion settings are described in 93 

Section 3. Results and discussions are presented in Section 4, and Conclusions are given in Section 94 

5. 95 

2. Data and Method 96 

2.1 GOSAT and OCO-2 XCO2 retrievals 97 

Developed jointly by the National Institute for Environmental Studies (NIES), the Japanese 98 

Space Agency (JAXA) and the Ministry of the Environment (MOE) of Japan, GOSAT was de-99 

signed to retrieve total column abundances of CO2 and CH4. The satellite flies at a 666 km altitude 100 

in a sun-synchronous orbit with 98° inclination that crosses the equator at 12:49 local time. It co-101 

vers the whole globe in three days and has a footprint of 10.5 km2 at nadir. OCO-2 is NASA’s first 102 
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mission dedicated to retrieving atmospheric CO2 concentration. It flies at 705 km altitude in a sun-103 

synchronous orbit with an overpass time at approximately 13:30 local time and a repeat cycle of 16 104 

days. Its grating spectrometer measures reflected sunlight in three near-infrared regions (0.765, 1.61 105 

and 2.06 μm) to retrieve XCO2. OCO-2 has a footprint of 1.29×2.25 km2 at nadir and acquires eight 106 

cross-track footprints creating a swath width of 10.3 km. 107 

 Both GOSAT and OCO-2 XCO2 products were created using the same retrieval algorithm, 108 

which is based on a Bayesian optimal estimation approach (Roggers et al., 2000; O Dell et al., 109 

2011). The GOSAT and OCO-2 XCO2 data used in this study are Version 7.3 Level 2 Lite products 110 

at the pixel level. The XCO2 data from lite products are bias-corrected (Wunch et al., 2011). Before 111 

being used in our inversion system, the data are processed in three steps. First, the retrievals for the 112 

glint soundings over oceans have relatively larger uncertainty, thus the data over oceans are not 113 

used in our inversions (Wunch et al., 2017). Second, in order to achieve the most extensive spatial 114 

coverage with the assurance of using best quality data available, the XCO2 data are filtered with two 115 

parameters, namely warn_levels and xco2_quality_flag, which are provided along with the XCO2 116 

data. All data with xco2_quality_flag not equaling 0 are removed, the rest are divided into three 117 

groups according the value of warn_levels, namely group 1, group 2 and group 3. In group 1, the 118 

warn_levels are less than 8, in group 2, the warn_levels are greater than 9 and less than 12, and in 119 

group 3, those are greater than 13. Group 1 has the best data quality, followed by group 2, and 120 

group 3 is the worst. Third, the pixel data are averaged within the grid cell of 2°×2.5°, which is the 121 

resolution of the global atmospheric transport model used in this study. In each grid of 2°×2.5°, on-122 

ly the groups of best data quality are selected and then averaged. The other variables like column 123 

averaging kernel, retrieval error and so on which are provided along with the XCO2 product are also 124 

dealt with the same method.  Figures 1a and 1b show the coverages and data amount of GOSAT 125 

and OCO-2 XCO2 data during the study period after processing. The filtered GOSAT and OCO-2 126 

retrievals are not evenly distributed spatially. Due to the cloud contamination, there are few retriev-127 
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als in a large portion of tropical land. In northern high latitude area, especially in boreal regions, 128 

due to the low soar zenith angle, available satellite retrievals are very sparse. 129 

 130 

Figure 1. Data amount of each grid cell (2°×2.5°) of ACOS XCO2 used in this study (a, GOSAT; b, 131 

OCO-2) 132 

2.2 Surface observations and TCCON XCO2 retrievals 133 

 Surface CO2 observations are from the obspack_co2_1_CARBONTRACKER_CT2016_2017-134 

02-06 product (ObsPackCT2016) (CarbonTracker Team, 2017), which was the observation data 135 

used in CarbonTracker 2016 (Peters et al., 2007, with updates documented at 136 
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http://carbontracker.noaa.gov). It is a subset of the Observation Package (ObsPack) Data Product 137 

(ObsPack, 2016), and contains a collection of discrete and quasi-continuous measurements at sur-138 

face, tower and ship sites contributed by national and universities laboratories around the world. In 139 

this study, in situ measurements from 78 sites provided by this product are used for inversion. 140 

Among these 78 sites, there are 56 flask sites, of which 52 sites are selected to evaluate the posteri-141 

or CO2 concentrations (selection criteria given in Section 4.1.1).    142 

TCCON is a network of ground-based Fourier Transform Spectrometers that measure direct 143 

near-infrared solar absorption spectra. Column-averaged abundances of atmospheric constituents 144 

including CO2, CH4, N2O, HF, CO, H2O, and HDO are retrieved through these spectra. We use 145 

XCO2 retrievals from 13 stations from TCCON GGG2014 dataset (Blumenstock et al., 2017; 146 

Deutscher et al., 2017; Griffith et al., 2017a, b; Kivi et al., 2017; Morino et al., 2017; Notholt et al., 147 

2017a, b; Sherlock et al., 2017; Sussmann and Rettinger, 2017; Warneke et al., 2017; Wennberg et 148 

al., 2017a, b). The names of the 13 stations are Bialystok (Bial), Bremen (Brem), Orleans (Orle), 149 

Garmisch (Garm), Darwin (Darw), Izana (Izan), Ny Alesund (Ny_A), Lamont (Lamo), Lauder 150 

(Laud), Park Falls (Park), Sodankyla (Soda), Tsukuba (Tsuk), and Wollongong (Woll). The loca-151 

tions of in situ sites and 13 TCCON stations are shown in Figure 2. 152 

 153 
Figure 2. Distributions of the observation sites used in this study. Gray solid circles are surface 154 

sites used in the in situ inversion, red points and red cross marks are surface flask and TCCON sites 155 
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used for evaluations, respectively, the shaded area shows the 11 TRANSCOM regions 156 

2.3 GEOS-Chem 4DVAR assimilation framework 157 

2.3.1 GEOS-Chem model 158 

 GEOS-Chem model (http://geos-chem.org) is a global three-dimensional chemistry transport 159 

model (CTM), which is driven by assimilated meteorological data from the Goddard Earth Observ-160 

ing System (GEOS) of the NASA Global Modeling and Assimilation Office (GMAO) (Rienecker et 161 

al., 2008). The original CO2 simulation in the GEOS-Chem model was developed by Suntharalin-162 

gam et al. (2004) and accounts for CO2 fluxes from fossil fuel combustion and cement production, 163 

biomass burning, terrestrial ecosystem exchange, ocean exchange and biofuel burning. Nassar et al. 164 

(2010) updated the CO2 simulation with improved inventories. In addition to the inventories in ear-165 

lier version, the new CO2 fluxes includes CO2 emissions from international shipping, aviation (3D) 166 

and the chemical production of CO2 from CO oxidation throughout the troposphere.  In most other 167 

models, the oxidation of CO was treated as direct surface CO2 emissions. The details of the CO2 168 

simulation and the CO2 sinks/sources inventories could be found in Nassar et al. (2010). The ver-169 

sion of GEOS-Chem model used in this study is v8-02-01. 170 

2.3.2 GEOS-Chem adjoint model 171 

 An adjoint model is used to calculate the gradient of a response function of one model scalar 172 

(or cost function) with respect to a set of model parameters. The adjoint of the GEOS-Chem model 173 

was first developed for inverse modeling of aerosol (or their precursors) and gas emissions (Henze 174 

et al., 2007). It has been implemented to constrain sources of species such as CO, CH4, and O3 with 175 

satellite observations (Kopacz et al., 2009, 2010; Jiang et al., 2011; Wecht et al., 2012; Parrington et 176 

al., 2012). Several studies have successfully used this adjoint model to constraint carbon sources 177 

and sinks with surface flask measurements of CO2 mixing ratio and space-based XCO2 retrievals 178 

(Deng et al., 2014; Liu et al., 2014; Deng et al., 2016; Liu et al., 2017). 179 

2.3.3 Inversion method 180 
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 In the GEOS-Chem inverse modeling framework, the 4D-Var data assimilation technique is 181 

employed for combining observations and simulations to seek a best optimal estimation of the state 182 

of a system. The scaling factors are applied to the carbon flux components to be optimized monthly 183 

in each model grid point. This approach seeks the scaling factors of the carbon flux that minimize 184 

the cost function, J, given by: 185 

𝐽(c) =
1

2
∑ (𝑋𝐶𝑂2,𝑖

𝑚 − 𝑋𝐶𝑂2,𝑖
𝑜𝑏𝑠)𝑆𝑜𝑏𝑠,𝑖

−1𝑁
𝑖=1 (𝑋𝐶𝑂2,𝑖

𝑚 − 𝑋𝐶𝑂2,𝑖
𝑜𝑏𝑠) + (

1

2
(𝑐 − 𝑐𝑎)𝑆𝑐

−1(𝑐 − 𝑐𝑎))        (1) 186 

where N is total number of satellite XCO2 observations; XCO2
m and XCO2

obs are modeled and ob-187 

served total column averaged dry air mole faction of CO2 respectively; ca is the prior scaling factor 188 

of the carbon flux, which is typically set as unity; Sobs is the model-data mismatch error covariance 189 

matrix; Sc is the scaling factor error covariance matrix. The gradients of the cost function with re-190 

spect to scaling factors calculated with the adjoint model are supplied to an optimization routine 191 

(the L-BFGS-B optimization routine; Byrd et al., 1995; Zhu et al., 1994), and the minimum of the 192 

cost function is sought iteratively.  193 

 For the modeled CO2 column to be comparable with the satellite XCO2 retrievals, the modeled 194 

CO2 concentration profile should be first mapped into the satellite retrieval levels and then convo-195 

luted with retrieval averaging kernels. The modeled XCO2 is computed by: 196 

𝑋𝐶𝑂2
𝑚 = 𝑋𝐶𝑂2

𝑎 + ∑ ℎ𝑗𝑎𝑗(𝐴(𝑥) − 𝑦𝑎,𝑗)𝑗                                               (2) 197 

where j denotes retrieval level, x is the modeled CO2 profile; A(x) is a mapping matrix; XCO2
a is 198 

prior XCO2, hj is pressure weighting function, aj is the satellite column averaging kernel and ya is 199 

the prior CO2 profile for retrieval. These last four quantities are provided from ACOS Version 7.3 200 

Level 2 Lite products. 201 

3. Inversion settings 202 

 In this study, the GEOS-Chem model was run in a horizontal resolution of 2°×2.5° for 47 verti-203 
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cal layers. Three inversions, using GOSAT data, OCO-2 data, and in situ measurements, are con-204 

ducted from Oct 1, 2014 to December 31, 2015, respectively. Poor-man inversion, based on global 205 

atmospheric CO2 trend and using poor-man’s method (Chevallier et al, 2009, 2010), is also con-206 

ducted. The posterior dry air mole fraction of CO2 on Oct 1, 2014 from CT2016 product is taken as 207 

the initial concentration. The first three months are taken as the spin-up period. The prior carbon 208 

fluxes used in this study include fossil fuel CO2 emissions, biomass burning CO2 emissions, terres-209 

trial ecosystem carbon exchange and CO2 flux exchange over the sea surface. Fossil fuel emissions 210 

are obtained from CT2016, which is an average of Carbon Dioxide Information Analysis Center 211 

(CDIAC) product (Andres et al., 2011) and Open-source Data Inventory of Anthropogenic CO2 212 

(ODIAC) emission product (Oda and Maksyutov, 2011). The biomass burning CO2 emissions are 213 

also taken from CT2016, which are the average of the Global Fire Emissions Database version 4.1 214 

(GFEDv4) (van der Werf et al., 2010; Giglio et al., 2013) and the Global Fire Emission Database 215 

from NASA Carbon Monitoring System (GFED_CMS). The 3-hourly terrestrial ecosystem carbon 216 

exchanges are from the Carnegie-Ames-Stanford Approach (CASA) model GFED4.1 simulation 217 

(Potter el al., 1993; van der Werf et al., 2010).  CO2 exchanges over the ocean surface are from the 218 

posterior air-sea CO2 flux of CT2016. It is noted that the fossil fuel emissions and the biomass burn-219 

ing emissions in our inversions are kept intact. Both terrestrial ecosystem CO2 exchanges and ocean 220 

flux are optimized in our inversions.  221 

 An efficient computational procedure for constructing non-diagonal scaling factor error covari-222 

ance matrix which accounts for the spatial correlation of errors is implemented (Single et al., 2011). 223 

The construction is based on the assumption of exponential decay of error correlations. Other than 224 

forming covariance matrix explicitly, multiple-dimensional correlations are represented by tensor 225 

products of one-dimensional correlation matrices along longitude and latitudinal directions. For the 226 

two inversions, the scale lengths assigned along longitudinal and latitudinal directions are 500 km 227 

and 400 km for terrestrial ecosystem exchange and 1000 km and 800 km for ocean exchange, re-228 
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spectively. No correlations between different types of fluxes are assumed. The temporal correla-229 

tions are also neglected. Global annual uncertainty of 100% and 40% are assigned for terrestrial 230 

ecosystem and ocean CO2 exchanges, respectively (Deng and Chen, 2011). Accordingly, the uncer-231 

tainty of scaling factor for the prior land and ocean fluxes in each month at the grid cell level are 232 

assigned to 3 and 5, respectively.  233 

3.1 Inversions using satellite XCO2 retrievals 234 

 The observation error covariance matrix is constructed using the retrieval errors, which are 235 

provided along with the ACOS XCO2 data. Observation errors are assumed to be uncorrelated at 236 

model grid level. To account for the correlated observation errors, as shown in section 2.1, the pixel 237 

level retrieval errors are filtered and averaged to the model grid level, and then inflated by a factor 238 

of 1.9 to ensure the chi-square testing of 𝜒2 value to be close to 1 (Tarantola, 2004; Chevallier et 239 

al., 2007).  240 

3.2 Inversion using in situ measurements 241 

As described in section 2.2, surface CO2 observations from 78 sites including flask samples and 242 

by quasi-continuous analyzer are adopted in this inversion. These data are selected from data collec-243 

tion of the ObsPackCT2016. The observation uncertainties of the 78 sites are also obtained from 244 

this product, which account for both the measurement and representative errors (Peters et al., 2007, 245 

with updates documented at http://carbontracker.noaa.gov). An examination for the differences be-246 

tween observations and forward model simulation was conducted (data not shown), and the results 247 

shows that observation uncertainties from CT2016 represents well with the model-data mismatch 248 

errors of GEOS-Chem model. In addition, we neglect correlations between observations and as-249 

sume a diagonal observation error covariance matrix.  250 

3.3 Poor-man inversion 251 

 A baseline inversion, which was introduced by Chevallier et al. (2009, 2010) as a poor-man’s 252 

method, is implemented to evaluate satellite retrievals and in situ measurements based inversions. 253 
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Usually, the posteriori fluxes are evaluated by the improvement on the simulated CO2 mixing ratios. 254 

Since the global CO2 trend can be accurately estimated from marine sites, it is important to assess 255 

whether the inverted flux can capture more information than this trend. In this baseline inversion, 256 

the ocean flux is kept identical to the prior ones. The poor-man’s inverted land flux Fpm at location 257 

(x, y) and at time t is defined as: 258 

𝐹𝑝𝑚(𝑥, 𝑦, 𝑡) = 𝐹𝑝𝑟𝑖𝑜𝑟(𝑥, 𝑦, 𝑡) + 𝑘 × 𝜎(𝑥, 𝑦, 𝑡)                                     (3) 259 

where Fprior  is the prior flux, σ is the uncertainty of the prior flux, k is a coefficient, it can be solved 260 

directly from the formula (3) as  261 

𝑘 = (∑ 𝐹𝑝𝑚(𝑥, 𝑦, 𝑡) − ∑ 𝐹𝑝𝑟𝑖𝑜𝑟(𝑥, 𝑦, 𝑡))/ ∑ 𝜎 (𝑥, 𝑦, 𝑡)                                 (4) 262 

where ∑ 𝐹𝑝𝑚(𝑥, 𝑦, 𝑡)  equals the global total land flux, which can be calculated from the observed 263 

annual global CO2 growth rate, global annual fossil fuel and biomass burning emissions, and ocean 264 

flux. In this study, the observed annual global CO2 growth rate is from the Global Monitoring Divi-265 

sion (GMD) of NOAA/Earth System Research Laboratory (ESRL) (Ed Dlugokencky and Pieter 266 

Tans, NOAA/ESRL, www.esrl.noaa.gov/gmd/ccgg/trends/). The annual global CO2 growth rate is 267 

2.96 ppm in 2015, which is converted to 6.28 PgC yr-1 for the poor-man’s global total by multiply-268 

ing by a factor of 2.123 PgC ppm-1.  269 

4. Results and Discussions 270 

4.1 Evaluation for the inversion results 271 

4.1.1 Flask observations 272 

As shown in section 2.2, Flask observations from 52 sites are used to evaluate the inversion re-273 

sults. Actually, there are much more flask observations in the dataset. When there are more than one 274 

flask dataset for one site, we give priority to that from NOAA/ESL or that with more consistent 275 

records. There are 56 sites with available flask observations for evaluation. In addition, during the 276 

evaluations, we find that GEOS-Chem model is unable to capture the variations of CO2 mixing rati-277 
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os at HPB, HUN, SGP and TAP sites, where the standard deviations of the deviations between the 278 

observed and modeled mixing ratio are larger than 5 ppm. Therefore, we exclude these four sites 279 

and use the rest 52 flask sites (shown in Figure 2) to evaluate the posterior mixing ratios. The GE-280 

OS-Chem model is driven with the prior flux and the four posterior fluxes to obtain the prior and 281 

posterior CO2 mixing ratios. The simulated CO2 mixing ratios are sampled at each observation site 282 

and within half an hour of observation time.  283 

Table 1 shows a summary of comparisons of the simulated CO2 mixing ratios against the flask 284 

measurements. The mean difference between the prior CO2 mixing ratio and the flask measure-285 

ments is 0.93 ppm, with a standard deviation of 2.3 ppm. All four inversions show improvement in 286 

posterior concentrations with reductions of biases. Not surprisingly, in situ inversion, using surface 287 

observations which include all the flask measurements used for evaluation, shows the best im-288 

provement in posterior CO2 mixing ratio with the largest reduction of bias and standard deviation. 289 

GOSAT inversion achieves almost the same reductions of standard deviation as in situ inversion.  290 

OCO-2 inversion gives larger bias and standard deviation than in situ and GOSAT inversions.  291 

Poor-man inversion effectively reduces the bias but with little improvement in the reduction of 292 

standard deviations.  293 

Figure 3 shows the biases at each observation site in different latitudes. It could be found that 294 

the biases between the simulations and the observations in the northern hemisphere are significantly 295 

larger than those in southern hemisphere since the carbon flux distribution of the northern hemi-296 

sphere is more complex than that of the southern hemisphere. When the prior flux is used, almost 297 

all sites in the northern hemisphere have significant positive deviations, with an average of 1.7 ppm, 298 

while in the southern hemisphere, the deviations are very small, with an average bias of only -0.08 299 

ppm; when using the posteriori flux from OCO-2 inversion, the deviations in most northern hemi-300 

sphere sites are slightly reduced, with an average deviation of 0.85 ppm, while in the southern hem-301 

isphere, at most sites, the biases increase by variable amounts, with a mean of -0.13 ppm; when us-302 
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ing the posterior flux from GOSAT inversion, the deviations are significantly reduced to 0.04 ppm 303 

in the northern hemisphere but further increased to -0.55 ppm in the southern hemisphere. In situ 304 

inversion shows similar improvement in Northern Hemisphere as GOSAT inversion does, but also 305 

with little improvement in Southern Hemisphere. Though poor-man inversion effectively reduces 306 

the global bias, it shows largest negative biases in Southern Hemisphere and moderate positive bi-307 

ases (close to OCO-2 inversions) in Northern Hemisphere, indicating that the improvements of 308 

poor-man inversion for posterior concentrations are very limited. These suggest that GOSAT and in 309 

situ inversions can effectively improve the carbon fluxes estimate in the northern hemisphere, but 310 

overestimate the land sinks in the southern hemisphere. 311 

 312 

Figure 3. Biases of the simulated CO2 mixing ratios against the flask measurements in different 313 

latitudes (positive/negative biases represent modeled concentration being greater/less than the ob-314 

served, the different color lines are the smooth of the corresponding marks) 315 

4.1.2 TCCON observations 316 

  We also use data from 13 TCCON sites (Figure 2) to evaluate our inversion results. The simu-317 

lated CO2 concentrations at 47 vertical levels are mapped onto 71 TCCON levels. Following the 318 
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approach of Wunch et al. (2011), using prior profiles and the averaging kernel from the TCCON 319 

dataset, we calculated the modeled XCO2 values at 13 TCCON sites. It should be noted that the 320 

comparisons of posterior XCO2 from GOSAT and OCO-2 inversions with TCCON data are not ful-321 

ly independent since the TCCON data were used in the bias-correction scheme of both GOSAT and 322 

OCO-2 products (Wunch et al., 2011). Table 1 also shows the comparison of modeled XCO2 with 323 

TCCON observations. The mean difference between prior XCO2 and TCCON retrievals is 1.16 324 

ppm, with a standard deviation of 1.3 ppm. GOSAT inversion performs the best with the largest re-325 

ductions of bias and standard deviation. Though OCO-2 inversion shows improvement in the reduc-326 

tion of standard deviation, it gives a relatively large bias for posterior XCO2. In situ inversion has 327 

the same reduction of standard deviation as GOSAT inversion. Poor-man inversion reduces the bias 328 

to 0.49 ppm and gives slight improvement in reducing standard deviation of posterior XCO2.  329 

Figure 4 shows the bias at each TCCON site. Obviously, the biases at all TCCON sites are pos-330 

itive when using the prior fluxes, ranging between 0.3 and 2.6 ppm.  The biases at the sites in the 331 

northern temperate and boreal areas are all above 1.5 ppm except for the Lamo site. GOSAT and in 332 

situ inversions significantly reduce the biases at most sites. However, in Northern Hemisphere, the 333 

biases at those sites remain relatively large. Since GOSAT and in situ inversions show evident im-334 

provement at flask sites in Northern Hemisphere, the remaining large biases at TCCON sites may 335 

be also related to the biases of TCCON retrievals (Wunch et al, 2010; Messerschmidt et al, 2011).  336 

OCO-2 and poor-man inversions show slight improvement in the reduction of biases at most sites 337 

and rather large biases still remain. 338 

Overall, it also could be found from Table 1 that only in situ inversion beats the poor-man in-339 

version on all 4 statistics, followed by GOSAT inversion, which beats the poor-man on 3 statistics, 340 

indicating that in situ measurements have the best performance among all inversions, and GOSAT 341 

retrieval have similar performance as in situ data. 342 

 343 
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Table 1. Statistics of the model-data mismatch errors at the 52 surface flask sites and the 13 344 

TCCON sites (ppm) 345 

  
Flask   TCCON 

Bias Stdev   Bias Stdev 

Prior 0.93 2.30  1.16 1.30 

OCO-2  0.33 2.15  0.80 1.08 

GOSAT  -0.19 2.05  0.22 1.04 

In situ -0.03 2.04  0.38 1.04 

Poor-man 0.14 2.28   0.49 1.25 

 346 

 347 

Figure 4. The biases between the modeled and observed XCO2 at the 13 TCCON sites 348 

 349 

4.2 Global carbon budget 350 

  Table 2 presents the global carbon budgets in 2015 from four inversions. The global land sinks 351 

inferred by GOSAT and OCO-2 XCO2 retrievals are -3.48 and -2.94 PgC yr-1, respectively, which 352 

are both larger than the prior value, and lower than the estimate from the in situ inversion.  The dif-353 

ferences of ocean fluxes among a priori and two inversions are small since we don’t assimilate 354 
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XCO2 data over ocean. The global net flux from the poor-man inversion is inferred from the global 355 

annual CO2 growth rate, which represents relatively accurately the net carbon flux added into at-356 

mosphere.  It could be found that the global net flux from GOSAT inversion is the closest to the 357 

poor-man inversion estimate, while that from OCO-2 inversion is higher and the in situ inversion 358 

estimate is lower than the poor-man estimate, indicating that GOSAT inversion has the best esti-359 

mates for the land and ocean carbon uptakes, while those from in situ inversion are overestimated, 360 

and those from OCO-2 inversion might be underestimated.  361 

Table 2. Global carbon budgets estimated by the OCO-2 and GOSAT inversions in this study as 362 

well as those from the prior fluxes, in situ and poor-man inversions (PgC yr-1) 363 

 Prior OCO-2  GOSAT  In situ Poor-man 

Fossil fuel and industry 9.84 9.84 9.84 9.84 9.84 

Biomass burning emissions 2.20 2.20 2.20 2.20 2.20 

Land sink  -2.50 -2.94 -3.48 -3.63 -3.35 

Ocean sink -2.41 -2.44 -2.45 -2.41 -2.41 

Global net flux 7.13 6.66 6.11 6.00 6.28 

 364 

4.3 Regional carbon flux 365 

Figure 5 shows the distributions of annual land and ocean carbon fluxes (excluding fossil fuel 366 

and biomass burning carbon emissions, same thereafter) of the prior and the estimates using GO-367 

SAT and OCO-2 data. It could be found that compared with the prior fluxes, the carbon sinks in 368 

Central America, south and northeast China, east and central Europe, south Russia and east Brazil 369 

are obviously increased in GOSAT inversion. Except for east Brazil, the land sinks in those areas in 370 

OCO-2 inversion are also increased, but much weaker than those in GOSAT inversion, and in east 371 

Brazil, it turns to a significant carbon source. In contrast, in east and central Canada, north Russia, 372 

north Europe, west Indo-China Peninsula, north Democratic Republic of the Congo and west Brazil, 373 

their carbon sources are significantly increased in both GOSAT and OCO-2 inversions. In east and 374 

central Canada, north Europe and west Brazil, there are much stronger carbon sources in OCO-2 375 
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inversion. 376 

 377 

Figure 5. Distributions of annual land and ocean carbon fluxes a) prior flux and posterior fluxes 378 

based on (b) OCO-2 and (c) GOSAT data (gC m-2yr-1) 379 

 380 

To better investigate the differences between GOSAT and OCO-2 inversions as well as their 381 

differences with two other inversions, we aggregate the prior and inferred land fluxes into 11 382 

TRANSCOM land regions (Gurney et al., 2002) as shown in Figure 2. Figure 6 shows aggregated 383 

annual land surface fluxes from the prior and inversions for the 11 land regions. Clearly, in most 384 
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regions, the land sinks inverted based on GOSAT data are stronger than those inferred from OCO-2 385 

data, especially in the Temperate and Tropical Lands. For example, in South America Temperate, 386 

the estimated land sink based on GOSAT data is about 4 times as large as the OCO-2 inversions; in 387 

North America Temperate and Tropical Asia, the carbon sinks of GOSAT experiment is about twice 388 

that of the OCO-2 inversions; and in South America Tropical, the OCO-2 inversion result is a car-389 

bon source of 0.19 PgC yr-1, while GOSAT inversion gives a weak sink of -0.05 Pg C yr-1.  The total 390 

sinks of the Temperate/Tropical Lands optimized using GOSAT and OCO-2 XCO2 retrievals are -391 

2.95/-0.36 and -2.59/-0.20 Pg C yr-1, respectively (Table 3). In Northern Boreal Land, the total car-392 

bon sinks inverted with GOSAT and OCO-2 data are comparable. However, the two XCO2 data 393 

have opposite performances in two northern boreal regions, namely in Eurasian Boreal, the inverted 394 

land sink with GOSAT is stronger than that with OCO-2; while in North America Boreal, it is the 395 

opposite.  396 

For different continents (Table 3), in Asia and Australia, their carbon sinks inverted from GO-397 

SAT and OCO-2 data are comparable. In North America, South America and Europe, the land sinks 398 

in GOSAT inversion are much stronger than those in OCO-2 inversion. Especially in South Ameri-399 

ca, the GOSAT inversion result is a strong carbon sink (-0.51 Pg C yr-1), while in OCO-2 inversion, 400 

it is a weak carbon source (0.06 Pg C yr-1). Conversely, in Africa, the land sink estimated with GO-401 

SAT data is much weaker than those from OCO-2 data, the former (-0.59 Pg C yr-1) being only 402 

about the half of the latter (-1.13 Pg C yr-1).  403 
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 404 

Figure 6. Aggregated annual land fluxes of the 11 TRANSCOM land regions 405 

Table 3. The prior and posterior fluxes in six continents and boreal, temperate and tropical lands 406 

(PgC yr-1) 407 

Regions Prior OCO-2 GOSAT In situ 

North America -0.04 -0.27 -0.45 -0.42 

South America -0.25 0.06 -0.51 -0.04 

Europe -0.01 -0.40 -0.63 -0.66 

Asia -0.76 -0.99 -1.05 -1.16 

Africa  -1.28 -1.13 -0.58 -1.22 

Australia -0.17 -0.22 -0.26 -0.13 

Northern Boreal Land -0.16 -0.16 -0.18 -0.81 

Northern Temperate Land -0.35 -1.37 -1.68 -1.22 

Tropical Land -1.01 -0.20 -0.36 -0.49 

Southern Temperate Land -0.98 -1.21 -1.28 -1.11 

 408 

Compared with the in situ inversion, in the boreal regions, the land sinks estimated from GO-409 

SAT and OCO-2 inversions are much weaker than those from in situ inversion, especially in the 410 

Eurasian Boreal, the land sink estimated by in situ inversion is more than two times larger than the 411 
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estimates of GOSAT and OCO-2 inversions. In the tropical land, the total land sinks inferred from 412 

both GOSAT and OCO-2 inversions are weaker than those from the in situ inversion, but in differ-413 

ent regions, the situations are different. In the Temperate lands, except for Europe and south Africa, 414 

the land sinks from GOSAT and OCO-2 inversions are much stronger than those from the in situ 415 

inversion. For example, in South America Temperate, GOSAT inversion shows a strong carbon 416 

sink, while in situ inversion shows a weak source. For different continents, in North America, Asia, 417 

Europe, the carbon sinks inferred from GOSAT inversion are comparable to those from in situ in-418 

version, while in South America and Africa, the carbon sinks inferred from OCO-2 inversion are 419 

much closer to the in situ inversion. 420 

Compared with the prior fluxes, the inferred land fluxes in Northern Temperate regions have 421 

the largest changes, followed by those in Tropical regions and Southern Temperate lands, while in 422 

boreal regions, the changes are the smallest. As shown in Table 4, for different TRANSCOM re-423 

gions and different XCO2 used, the changes of carbon fluxes have large differences. Since the same 424 

setup used in these two inversions and the same algorithm adopted for retrieving XCO2 from GO-425 

SAT and OCO-2 measurements, the different impacts of XCO2 data on land sinks may be related to 426 

the spatial coverage and the amount of data in these two XCO2 datasets. As shown in Figure 1, in 427 

different latitude zones, the spatial coverage and the data amount of GOSAT and OCO-2 have large 428 

differences. Statistics show that the amount of data is largest in northern temperate land, followed 429 

by southern temperate land and tropical land, and least in northern boreal regions, corresponding to 430 

the magnitude of changes of carbon fluxes in these zones. For one specific zone, the different im-431 

pacts of these two XCO2 datasets may be also related to their data amount. For example, in northern 432 

temperate land, GOSAT has more XCO2 data than OCO-2. Accordingly, the change of carbon flux 433 

caused by GOSAT is larger than that caused by OCO-2. Conversely, in Tropical Land, OCO-2 has 434 

more data than GOSAT, and as shown before it has more significant impact on the land sink. This 435 

relationship could also be found in each TRANSCOM region. Figure 5 gives a relationship between 436 
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the XCO2 data amount ratios of GOSAT to OCO-2 and the land sinks absolute change ratios caused 437 

by GOSAT to OCO-2 for 11 TRANSCOM land regions. Obviously, except for North and South Af-438 

rica, there is a significant linear correlation (R=0.95) between these two ratios, suggesting that with 439 

more XCO2 data, the more carbon flux relative to the prior flux is changed. In North Africa, we find 440 

that OCO-2 has better spatial coverage and more data than GOSAT, as shown in Figure 1. Although 441 

the differences mainly occur in the Sahara where the carbon flux is very weak, but near the equato-442 

rial region where the carbon flux is large, OCO-2 still has more data than GOSAT.  In southern Af-443 

rica, both XCO2 have good spatial coverage, the amount of GOSAT data is about 1.5 times that of 444 

OCO-2, but the changes in the carbon flux caused by GOSAT is about 10 times that of OCO-2. The 445 

large ratio of carbon change is mainly due to the relatively small carbon change from OCO-2 inver-446 

sion.  447 

Table 4. Differences between the inferred and the prior carbon fluxes, the data amount of XCO2 and 448 

the deviations between the modeled with prior flux and satellite retrieved XCO2 in different regions 449 

Region 
Flux changed (Pg C yr-1)*   XCO2 data amount   Deviations (ppm)** 

OCO-2 GOSAT   OCO-2 GOSAT   OCO-2 GOSAT 

North America Boreal -0.05 0  1143 639  0.6 1.41 

North America Temperate -0.18 -0.41  2390 3163  0.52 0.93 

South America Tropical 0.46 0.24  800 421  -0.89 0.43 

South America Temperate -0.15 -0.5  1711 3500  0.02 0.54 

North Africa 0.19 0.39  3208 674  0.12 -0.19 

South Africa -0.03 0.3  2057 3060  0.17 0.33 

Eurasian Boreal 0.05 -0.02  1714 1339  0.47 1.5 

Eurasian Temperate -0.46 -0.3  5323 4782  0.46 0.82 

Tropical Asia 0.17 0.03  726 550  -0.43 0.34 

Australia -0.05 -0.1  2011 3110  0.18 0.67 

Europe -0.39 -0.63   1604 2106   0.28 1.35 

Global land -0.44 -0.98  22687 23344  0.22 0.79 

Northern Boreal Land 0.005 -0.02  2857 1978  0.52 1.47 

Northern Temperate Land -1.03 -1.33  9317 10051  0.45 0.96 

Tropical Land 0.82 0.66  4734 1645  -0.08 0.13 

Southern Temperate Land -0.23 -0.3   5779 9670    0.11  0.6 

* Differences between posterior and prior flux 450 

** Deviations between the modeled XCO2 with prior flux and satellite retrieved XCO2 451 
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 452 

Figure 7. Scatter plot for the ratio of GOSAT to OCO-2 XCO2 data amount versus the ratio of abso-453 

lute changes of the land sinks caused by GOSAT to OCO-2 in the 11 TRANSCOM land regions  454 

 455 

In addition to the data amount, the mismatches between the simulated CO2 concentrations using 456 

prior fluxes and the satellite retrievals could be used to examine the performances of OCO-2 and 457 

GOSAT retrievals in different regions.  Usually, a large model-data mismatch will impose strong 458 

constraint on the prior flux in inversions. Therefore, we compare the mismatches in OCO-2 and 459 

GOSAT inversions. The results are grouped global land and into the 11 TRANSCOM land regions, 460 

as shown in Table 4. The global land mean difference between modeled XCO2 and the OCO-2 and 461 

GOSAT retrievals are 0.22 and 0.79 ppm, respectively, indicating that the GOSAT retrieval would 462 

have stronger constraint on the prior fluxes. In most TRANSCOM regions except North Africa, the 463 

mismatches in GOSAT inversion are positive and larger than those of OCO-2 inversion. In Tropic 464 

Asia and South America Tropic, the sizable negative mismatches in OCO-2 inversion could account 465 

for a weak inverted carbon sink and an inverted carbon source in these two regions, while in North 466 
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Africa, the negative mismatch in GOSAT inversion may explain why a rather weak sink is inverted 467 

for this region.   The difference of mismatch between OCO-2 and GOSAT inversions exhibits rather 468 

large spread, ranging from 0.16 to 1.33 pm, indicating the biases of two satellite XCO2 retrievals 469 

differ greatly. 470 

Table 5. Statistics of the OCO-2 and GOSAT retrievals uncertainties against the TCCON retrievals 471 

  
OCO-2   GOSAT 

Bias 

(ppm) 

Stdev 

(ppm) 

N. of 

Obs. 
  

Bias 

(ppm) 

Stdev 

(ppm) 

N. of 

Obs. 

Bial 0.91 1.47 21  0.06 1.35 29 

Darw 0.75 0.85 43  -0.41 1.62 44 

Garm -0.10 2.97 14  0.73 2.02 35 

Lamo 0.04 1.09 56  -0.91 1.39 82 

Laud 0.59 1.38 18  -0.79 1.70 30 

Orle 1.49 1.18 24  -0.51 1.38 39 

Park 0.50 1.26 29  -0.58 1.52 38 

Soda 1.91 1.89 7  -0.54 2.58 9 

Tsuk 0.93 1.95 16  -0.47 1.11 38 

Woll 0.34 1.07 27  -0.36 1.56 45 

All 0.60 1.45 255   -0.42 1.59 389 

 472 

Moreover, the uncertainties of OCO-2 and GOSAT retrievals may be another reason for the dif-473 

ferent performances in these two inversion experiments. We use TCCON retrieval to evaluate the 474 

uncertainties of OCO-2 and GOSAT XCO2 retrievals.  For satellite retrievals falling in the model 475 

grid box where TCCON sites are located, the closest TCCON retrievals in time or within two hours 476 

of satellite overpass time are chosen for comparison. We follow the procedures in Appendix A of 477 

Wunch et al. (2011) to do both prior profile and averaging kernel corrections. Table 5 shows the bi-478 

ases and standard deviations grouped globally and at 10 TCCON sites where both OCO-2 and GO-479 

SAT retrievals are available for comparison. The locations of these 10 sites are shown in Figure 2. 480 

At most sites except Garm, OCO-2 retrievals have positive biases, while GOSAT retrievals tend to 481 

have negative bias except at Bial and Garm sites. It also could be found that the spread of GOSAT 482 

data biases are small, falling in the range of -0.36 to -0.58 ppm at most sites, while the spread of 483 
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OCO-2 data biases is relatively large, with biases greater than 0.7 ppm at more than half of sites, 484 

and in the range of 0.34 to 0.59 ppm only at 3 sites. Overall, GOSAT retrievals (-0.46 ppm) have 485 

lower bias than OCO-2 retrievals (0.6 ppm) and the difference between two retrievals is relatively 486 

large. It should be noted that due to the limited number of collocated satellite retrievals, the real bias 487 

difference might not be up to 1 ppm. As shown in Table 4, the difference of overall mismatches be-488 

tween GOSAT and OCO-2 data is 0.57 ppm. These indicate that although both OCO-2 and GOSAT 489 

products were bias-corrected using TCCON retrievals, the uncertainties of OCO-2 and GOSAT re-490 

trievals are still very large, especially for OCO-2 retrieval, resulting the worse performance of 491 

OCO-2 retrieval, which also suggest that the bias-correction scheme implemented may need to be 492 

improved. 493 

5. Summary and Conclusions 494 

In this study, we use both GOSAT and OCO-2 XCO2 retrievals to constrain terrestrial ecosys-495 

tem carbon fluxes from Oct 1, 2014 to Dec 31, 2015, using the GEOS-Chem 4D-Var data assimila-496 

tion system. In addition, one inversion using in situ measurements and another inversion as a base-497 

line, are also conducted. The posterior carbon fluxes estimated from these four inversions at both 498 

global and regional scales during Jan 1 to Dec 31, 2015 are shown and discussed. We evaluate the 499 

posterior carbon fluxes by comparing the posterior CO2 mixing ratios against observations from 52 500 

surface flask sites and 13 TCCON sites.  501 

Globally, the terrestrial ecosystem carbon sink (excluding biomass burning emissions) esti-502 

mated from GOSAT data is stronger than that inferred from OCO-2 data and weaker than that from 503 

in situ inversion, but closest to the poor-man inversion estimate. Regionally, in most regions, the 504 

land sinks inferred from GOSAT data are also stronger than those from OCO-2 data. Compared 505 

with the in situ inversion, GOSAT inversions have weaker sinks in Boreal and most Tropical lands, 506 

and much stronger ones in Temperate lands. Compared with the prior fluxes, the inferred land sinks 507 

are largely increased in the temperate regions, and decreased in tropical regions. There are largest 508 
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changes of the prior fluxes in Northern Temperate regions, followed by Tropical and Southern Tem-509 

perate regions, and the weakest in boreal regions. The different impact of XCO2 on the carbon flux-510 

es in different regions is mainly related to the spatial coverage and the amount of XCO2 data. Gen-511 

erally, a larger amount of XCO2 data in a region is corresponding to a larger change in the inverted 512 

carbon flux in the same region.  The different biases of the two XCO2 retrievals may also give rise 513 

to their different inversion performances. 514 

   Evaluations of the inversions using CO2 concentrations from flask measurements and TCCON 515 

retrievals show that the simulated CO2 concentrations with GOSAT posterior fluxes are much closer 516 

to the observations than those with OCO-2 estimates. Compared with poor-man inversion, both 517 

GOSAT and in situ inversions show evident improvement with the similar reductions of both biases 518 

and standard deviations of posterior concentrations, while OCO-2 inversion only displays slight im-519 

provement over poor-man inversion. Generally, the posterior biases from GOSAT inversion are sig-520 

nificantly reduced in the northern hemisphere and are slightly increased in the southern hemisphere. 521 

These suggest that GOSAT data can effectively improve the carbon fluxes estimate in the northern 522 

hemisphere.  523 

The GOSAT and OCO-2 XCO2 retrievals used in this study are bias-corrected products. Never-524 

theless, there still exists apparent biases and the differences between these two satellites data are 525 

obvious. The more reliable constraints on carbon flux call for the further reduction of satellite re-526 

trieval errors. These indicate that we should interpret carbon flux inferred from the current satellites 527 

XCO2 retrievals with great cautions in understanding global carbon cycle. It also should be noted 528 

that though the OCO-2 XCO2 retrievals of version b7.3 used in this study perform worse than GO-529 

SAT data and in situ measurements in our inversions, one recent study has shown that the newer 530 

version of OCO-2 data has a much better performance in constraining carbon flux (Chevallier et al., 531 

2019). With constantly improved retrieval algorithm and bias-correction scheme, more robust esti-532 

mate of carbon flux from satellite XCO2 retrievals could be achieved. 533 
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