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Abstract 11 

The chemical transport model PMCAMx was extended to investigate the 12 

effects of partitioning and photochemical aging of biomass burning emissions on 13 

organic aerosol (OA) concentrations. A source-resolved version of the model, 14 

PMCAMx-SR, was developed in which biomass burning organic aerosol (bbOA) and 15 

its oxidation products are represented separately from the other OA components. The 16 

volatility distribution of bbOA and its chemical aging were simulated based on recent 17 

laboratory measurements. PMCAMx-SR was applied to Europe during an early 18 

summer (1-29 May 2008) and a winter period (25 February-22 March 2009).  19 

During the early summer, the contribution of biomass burning (both primary 20 

and secondary species) to total OA levels over continental Europe was estimated to be 21 

approximately 16%. During winter the same contribution was nearly 47% due to both 22 

extensive residential wood combustion, but also wildfires in Portugal and Spain. The 23 

intermediate volatility compounds (IVOCs) with effective saturation concentration 24 

values of 105 and 106 μg m-3 are predicted to contribute around one third of the bbOA 25 

during the summer and 15% during the winter by forming secondary OA. The 26 

uncertain emissions of these compounds and their SOA formation potential require 27 

additional attention. Evaluation of PMCAMx-SR predictions against aerosol mass 28 

spectrometer measurements in several sites around Europe suggests reasonably good 29 

performance for OA (fractional bias less than 35% and fractional error less than 50%). 30 

The performance was weaker during the winter suggesting uncertainties in the 31 

residential heating emissions and the simulation of the resulting bbOA in this season.  32 
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1 Introduction 33 

Atmospheric aerosols, also known as particulate matter (PM), are suspensions of 34 

fine solid or liquid particles in air. These particles range in diameter from a few 35 

nanometers to tens of micrometers. Atmospheric particles contain a variety of non-36 

volatile and semi-volatile compounds including water, sulfates, nitrates, ammonium, 37 

dust, trace metals, and organic matter. Many studies have linked increased mortality 38 

(Dockery et al., 1993), decreased lung function (Gauderman et al., 2000), bronchitis 39 

incidents (Dockery et al., 1996), and respiratory diseases (Pope, 1991; Schwartz et al., 40 

1996; Wang et al., 2008) with elevated PM concentrations. The most readily 41 

perceived impact of high particulate matter concentrations is visibility reduction in 42 

polluted areas (Seinfeld and Pandis, 2006). Aerosols also play an important role in the 43 

energy balance of our planet by scattering and absorbing radiation (Schwartz et al., 44 

1996).  45 

Organic aerosol (OA) is a major component of fine PM in most locations 46 

around the world. More than 50% of the atmospheric fine aerosol mass is comprised 47 

of organic compounds at continental mid-latitudes and as high as 90% in tropical 48 

forested areas (Andreae and Crutzen, 1997; Roberts et al., 2001; Kanakidou et al., 49 

2005). Despite their importance, there are many remaining questions regarding their 50 

identity, chemistry, lifetime, and in general fate of these organic compounds. OA 51 

originates from many different anthropogenic and biogenic sources and processes and 52 

has been traditionally categorized into primary OA (POA) which is directly emitted 53 

into the atmosphere as particles and secondary OA (SOA) that is formed from the 54 

condensation of the oxidation products of volatile (VOCs), intermediate volatility 55 

(IVOCs), and semivolatile organic compounds (SVOCs). Both POA and SOA are 56 

usually characterized as anthropogenic (aPOA, aSOA) and biogenic (bPOA, bSOA) 57 

depending on their sources. In this work we define biomass burning OA (bbOA) as 58 

the sum of bbPOA and bbSOA following the terminology proposed by Murphy et al. 59 

(2014).    60 

Biomass burning is an important global source of air pollutants that affect 61 

atmospheric chemistry, climate, and environmental air quality. In this work, the term 62 

biomass burning includes wildfires, prescribed burning in forests and other areas, 63 

residential wood combustion for heating and other purposes, and agricultural waste 64 

burning. Biomass burning is a major source of particulate matter, nitrogen oxides, 65 

carbon monoxide, volatile organic compounds, as well as other hazardous air 66 
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pollutants. Biomass burning contributes around 75% of global combustion POA 67 

(Bond et al., 2004). In Europe, biomass combustion is one of the major sources of 68 

OA, especially during winter (Puxbaum et al., 2007; Gelencser et al., 2007). 69 

Chemical transport models (CTMs) have traditionally treated POA emissions 70 

as non-reactive and non-volatile. However, dilution sampler measurements have 71 

indicated that POA is clearly semi-volatile (Lipsky and Robinson, 2006; Robinson et 72 

al., 2007; Huffman et al., 2009a, 2009b). The semi-volatile character of POA 73 

emissions can be described by the volatility basis set (VBS) framework (Donahue et 74 

al., 2006; Stanier et al., 2008). The VBS is a scheme of simulating OA accounting for 75 

changes in gas-particle partitioning due to dilution, temperature changes, and 76 

photochemical aging. The third Fire Lab at Missoula Experiment (FLAME-III) 77 

investigated a suite of fuels associated with prescribed burning and wildfires (May et 78 

al., 2013). The bbOA partitioning parameters derived from that study are used in this 79 

work to simulate the dynamic gas-particle partitioning and photochemical aging of 80 

bbOA emissions.  81 

A number of modeling efforts have examined the contribution of the semi-82 

volatile bbOA emissions to ambient particulate levels using the VBS framework. For 83 

example, Fountoukis et al. (2014) used a three dimensional CTM with an updated 84 

wood combustion emission inventory distributing OA emissions using the volatility 85 

distribution proposed by Shrivastava et al. (2008). However, this study assumed the 86 

same volatility distribution for all OA sources. This volatility distribution is not in 87 

general representative of biomass burning emissions since it was derived based on 88 

experiments using fossil fuel sources (Shrivastava et al., 2008).  89 

The main objective of this study is to develop and test a CTM treating biomass 90 

burning organic aerosol (bbOA) emissions separately from all the other anthropogenic 91 

and biogenic emissions. This extended model should allow at least in principle more 92 

accurate simulation of OA and direct predictions of the role of bbOA in regional air 93 

quality. The rest of the manuscript is organized as follows. First, a brief description of 94 

the new version of PMCAMx (PMCAMx-SR) is provided. The source-resolved 95 

version of PMCAMx (PMCAMx-SR) treats bbOA emissions and their chemical 96 

reactions separately from those of other OA sources. The details of the application of 97 

PMCAMx-SR in the European domain for a summer and a winter period are 98 

presented. In the next section, the predictions of PMCAMx-SR are evaluated using 99 
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AMS measurements collected in Europe. Finally, the sensitivity of the model to 100 

different parameters is quantified. 101 

 102 

2 PMCAMx-SR description  103 

PMCAMx-SR is a source-resolved version of PMCAMx (Murphy and Pandis, 104 

2009; Tsimpidi et al., 2010; Karydis et al., 2010), a three-dimensional chemical 105 

transport model that uses the framework of CAMx (Environ, 2003) and simulates the 106 

processes of horizontal and vertical advection, horizontal and vertical dispersion, wet 107 

and dry deposition, gas, aqueous and aerosol-phase chemistry. The chemical 108 

mechanism employed to describe the gas-phase chemistry is based on the SAPRC 109 

mechanism (Carter, 2000; Environ, 2003). The version of SAPRC currently used 110 

includes 211 reactions of 56 gases and 18 radicals. The SAPRC mechanism has been 111 

updated to include gas-phase oxidation of semivolatile organic compounds (SVOCs), 112 

intermediate volatility organic compounds (IVOCs). Three detailed aerosol modules 113 

are used to simulate aerosol processes: inorganic aerosol growth (Gaydos et al., 2003; 114 

Koo et al., 2003), aqueous phase chemistry (Fahey and Pandis, 2001), and secondary 115 

organic aerosol (SOA) formation and growth (Koo et al., 2003). The above modules 116 

use a sectional approach to dynamically track the size evolution of each aerosol 117 

component across 10 size sections spanning the diameter range from 40 nm to 40 μm.  118 

 119 

2.1 Organic aerosol modelling 120 

PMCAMx-SR simulates organic aerosol based on the volatility basis set (VBS) 121 

framework (Donahue et al., 2006; Stanier et al., 2008). VBS is a unified scheme of 122 

treating organic aerosol, simulating the volatility, gas-particle partitioning, and 123 

photochemical aging of organic pollutant emissions. PMCAMx-SR incorporates 124 

separate VBS variables and parameters for the various OA components based on their 125 

source.  126 

 127 

2.1.1 Volatility of primary emissions  128 

PMCAMx-SR assumes that all primary emissions are semi-volatile. 129 

According to the VBS scheme, species with similar volatility are lumped into bins 130 

expressed in terms of effective saturation concentration values, C*, separated by 131 

factors of 10 at 298 K. POA emissions are distributed across a nine-bin VBS with C* 132 

values ranging from 10−2 to 106 μg m−3 at 298 K. SVOCs and IVOCs are distributed 133 
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among the 1, 10, 100 μg m-3 C* bins and 103, 104, 105, 106 μg m-3 C* bins 134 

respectively. Table 1 lists the generic POA volatility distribution proposed by 135 

Shrivastava et al. (2008) assuming that the IVOC emissions are approximately equal 136 

to 1.5 times the primary organic aerosol emissions (Robinson et al., 2007; Tsimpidi et 137 

al., 2010; Shrivastava et al., 2008). This volatility distribution is used in PMCAMx-138 

SR for all sources with the exception of wood burning. In the original PMCAMx this 139 

volatility distribution is also used for wood burning emissions. 140 

The partitioning calculations of primary emissions are performed using the 141 

same module used to calculate the partitioning of all semi-volatile organic species 142 

(Koo et al., 2003). This is based on absorptive partitioning theory and assumes that 143 

the bulk gas and particle phases are in equilibrium and that all condensable organics 144 

form a pseudo-ideal solution (Odum et al., 1996; Strader et al., 1999). Organic gas-145 

particle partitioning is assumed to depend on temperature and aerosol composition. 146 

The Clausius-Clapeyron equation is used to describe the effects of temperature on C* 147 

and partitioning. Table 1 also lists the enthalpies of vaporization currently used in 148 

PMCAMx and PMCAMx-SR. All POA species are assumed to have an average 149 

molecular weight of 250 g mol-1. 150 

 151 

2.1.2 Secondary organic aerosol from VOCs 152 

Following Lane et al. (2008a), the SOA VBS-scheme uses four surrogate SOA 153 

compounds for each VOC precursor with 4 volatility bins (1, 10, 100, 1000 μg m−3) at 154 

298 K. Anthropogenic (aSOA-v) and biogenic (bSOA-v) components are simulated 155 

separately. aSOA components are assumed to have an average molecular weight of 156 

150 g mol-1, while bSOA species 180 g mol-1. Laboratory results from the smog-157 

chamber experiments of Ng et al. (2006) and Hildebrandt et al. (2009) are used for the 158 

anthropogenic aerosol yields. 159 

 160 

2.1.3 Chemical aging mechanism 161 

All OA components are treated as chemically reactive in PMCAMx-SR. 162 

Vapors resulting from the evaporation of POA are assumed to react with OH radicals 163 

with a rate constant of k = 4 × 10−11 cm3 molec−1 s−1 resulting in the formation of 164 

oxidized OA. These reactions are assumed to lead to an effective reduction of 165 

volatility by one order of magnitude. Semi-volatile SOA components are also 166 

assumed to react with OH in the gas phase with a rate constant of k = 1 × 10−11 cm3 167 
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molec−1 s−1 for anthropogenic SOA (Atkinson and Arey, 2003). Biogenic SOA aging 168 

is assumed to lead to zero net change of volatility (Lane et al., 2008b). Each reaction 169 

is assumed to increase the OA mass by 7.5% to account for added oxygen. 170 

 171 

2.2 PMCAMx-SR enhancements    172 

In PMCAMx-SR, the fresh biomass burning organic aerosol (bbOA) and its 173 

secondary oxidation products (bbSOA) are simulated separately from the other POA 174 

components. The May et al. (2013) volatility distribution is used to simulate the gas-175 

particle partitioning of fresh bbOA. This distribution includes surrogate compounds 176 

up to a volatility of 104 μg m-3. This means that the more volatile IVOCs, which could 177 

contribute to SOA formation, are not included. To close this gap, the values of the 178 

volatility distribution of Robinson et al. (2007) are used for the 105 and 106 μg m-3 179 

bins (Table 1). The sensitivity of PMCAMx-SR to the IVOC emissions added to the 180 

May et al. (2013) distribution will be explored in a subsequent section. The effective 181 

saturation concentrations and the enthalpies of vaporization used for bbOA in 182 

PMCAMx-SR are also listed in Table 1. The new bbOA scheme requires the 183 

introduction of 36 new organic species to simulate both phases of fresh primary and 184 

oxidized bbOA components. The rate constant used for the chemical aging reactions 185 

is the same as the one currently used for all POA components and has a value of k = 4 186 

× 10−11 cm3 molec−1 s−1. The volatility distributions of bbOA in PMCAMx and 187 

PMCAMx-SR are shown in Fig. 1a. The volatility distribution implemented in 188 

PMCAMx-SR results in less volatile bbOA for ambient OA levels (a few μg m-3) 189 

(Fig. 1b).  190 

 191 

3 Model application 192 

PMCAMx-SR was applied to a 5400×5832 km2 region covering Europe with 193 

36×36 km grid resolution and 14 vertical layers extending up to 6 km. The model was 194 

set to perform simulations on a rotated polar stereographic map projection. The 195 

necessary inputs to the model include horizontal wind components, temperature, 196 

pressure, water vapor, vertical diffusivity, clouds, and rainfall. All meteorological 197 

inputs were created using the meteorological model WRF (Weather Research and 198 

Forecasting) (Skamarock et al., 2005). The simulations were performed during a 199 
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summer (1-29 May 2008) and a winter period (25 February-22 March 2009). In order 200 

to limit the effect of the initial conditions on the results, the first two days of each 201 

simulation were excluded from the analysis.  202 

Anthropogenic and biogenic emissions in the form of hourly gridded fields 203 

were developed both for gases and primary particulate matter. Anthropogenic gas 204 

emissions include land emissions from the GEMS dataset (Visschedijk et al., 2007) 205 

and also emissions from international shipping activities. Anthropogenic particulate 206 

matter mass emissions of organic and elemental carbon are based on the Pan-207 

European Carbonaceous Aerosol Inventory (Denier van der Gon et al., 2010) that has 208 

been developed as part of the EUCAARI project activities (Kulmala et al., 2009). All 209 

relevant significant emission sources are included in the two inventories. Emissions 210 

from ecosystems were calculated offline by MEGAN (Model of Emissions of Gases 211 

and Aerosols from Nature) (Guenther et al., 2006). The marine aerosol emission 212 

model developed by O’Dowd et al. (2008) has been used to estimate mass fluxes for 213 

both accumulation and coarse mode including the organic aerosol fraction. Wind 214 

speed data from WRF and chlorophyll-a concentrations are the inputs needed for the 215 

marine aerosol emissions module.  216 

Day-specific wildfire emissions were also included (Sofiev et al., 2008a; 2008b). 217 

Anthropogenic sources of wood combustion include residential heating and 218 

agricultural activities. The gridded emission inventories of bbOA species for the two 219 

modeled periods are shown in Fig. 2. During the early summer simulated period 220 

wildfires were responsible for 60% of the bbOA emissions, agricultural waste burning 221 

for 15% and residential wood combustion for 25% (Table 2). Details about the OA 222 

emission rates from agricultural activities are provided in the Supplementary 223 

Information (Fig. S1). During winter residential combustion is the dominant source 224 

(63%). The wintertime wildfire emissions in the inventory, approximately 3,000 tn    225 

d-1, are quite high especially when compared with the corresponding summer value 226 

which is 1,700 tn d-1. The spatial distribution of OA emission rates from wildfires 227 

during 25 February-22 March 2009 is provided in the Supplementary Information 228 

(Fig. S2). Analysis of fire counts in satellite observations used for the development of 229 

the inventory suggests that some agricultural emissions have probably been attributed 230 

to wildfires. All bbOA sources are treated the same way in PMCAMx-SR so this 231 

potential misattribution does not affect our results.   232 

 233 
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4 PMCAMx-SR testing 234 

To test our implementation of the source-resolved VBS in PMCAMx-SR we 235 

compared its results with those of PMCAMx using the same VBS parameters. For this 236 

test we used in PMCAMx-SR the default PMCAMx bbOA partitioning parameters 237 

shown in Table 1 as proposed by Shrivastava et al. (2008). In this way both models 238 

should simulate the bbOA in exactly the same way, but PMCAMx-SR describes it 239 

independently while PMCAMx lumps it with other primary OA. The differences 240 

between the corresponding OA concentrations predicted by the two models were on 241 

average less than 10-3 μg m-3 (0.03%). The maximum difference was approximately 242 

0.03 μg m-3 (0.6%) in western Germany. This suggests that our changes to the code of 243 

PMCAMx to develop PMCAMx-SR did not introduce any inconsistencies with the 244 

original model. The small differences are due to numerical issues in the 245 

advection/dispersion calculations.   246 

 247 

5 Contribution of bbOA to PM over Europe 248 

In this section the predictions of PMCAMx-SR for the base case simulations 249 

during 1 - 29 May 2008 and 25 February - 22 March 2009 are analysed. Figure 3 250 

shows the PMCAMx-SR predicted average ground-level PM2.5 concentrations for the 251 

various OA components for the two simulated periods.  252 

The POA from non-bbOA sources will be called fossil POA (fPOA) in the rest 253 

of the paper. fPOA levels over Europe were on average around 0.1 μg m-3 during both 254 

periods (Figs. 3a and 3b). However, their spatial distributions are quite different. 255 

During May, predicted fPOA concentrations are as high as 2 μg m-3 in polluted areas 256 

in central and northern Europe but are less than 0.5 μg m-3 in the rest of the domain. 257 

These low levels are due to the evaporation of POA in this warm period. For the 258 

winter period peak fPOA levels are higher reaching values of around 3.5 μg m-3 in 259 

Paris and Moscow. fPOA contributes approximately 3.5% and 6% to total OA in 260 

Europe during May 2008 and February-March 2009 respectively. bbPOA 261 

concentrations have peak average values 7 μg m-3 in St. Petersburg in Russia and 10 262 

μg m-3 in Porto in Portugal during summer and winter respectively (Figures 3c and 263 

3d). During the summer bbPOA is predicted to contribute 5% to total OA, and its 264 

contribution during winter increases to 32%. The average predicted bbOA 265 

concentrations over Europe are 0.1 μg m-3 and 0.8 μg m-3 during the summer and the 266 

winter period respectively.  267 
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The SOA resulting from the oxidation of IVOCs (SOA-iv) and evaporated 268 

POA (SOA-sv) has concentrations as high as 1 μg m-3 in central Europe and the 269 

average levels are around 0.3 μg m-3 (13% contribution to total OA) during summer 270 

(Fig. 3e). During winter the peak concentration value was a little less than 0.5 μg m-3 271 

in Moscow in Russia and the average levels were approximately 0.1 μg m-3 (5.5% 272 

contribution to total OA) (Fig 3f). The highest average concentration of bbSOA-sv 273 

and bbSOA-iv (biomass burning SOA from intermediate volatility and semi-volatile 274 

precursors) was approximately 1 μg m-3 in Lecce in Italy during summer and 3.5 μg 275 

m-3 in Porto during winter. During May bbSOA is predicted to contribute 11% to total 276 

OA over Europe and during February-March 2009 its predicted contribution is 15%. 277 

The average bbSOA is 0.3 μg m-3 during summer and approximately 0.4 μg m-3 278 

during winter (Figs. 3g and 3h). During the summer, the remaining 67% of total OA is 279 

biogenic SOA (52%) and anthropogenic SOA (15%), and in winter of the remaining 280 

41% of total OA, 36% is biogenic and 5% is anthropogenic SOA (not shown). 281 

In areas like St. Petersburg in Russia predicted hourly bbOA levels exceeded 282 

300 μg m-3 due to the nearby fires affecting the site on May 3-5 (Fig. 4). For these 283 

extremely high concentrations most of the bbOA (90% for St. Petersburg) was 284 

primary with the bbSOA contributing around 10%. The spatiotemporal evolution of 285 

bbPOA and bbSOA during May 1–6 in Scandinavia and northwest Russia is depicted 286 

in Figure 5. A series of fires started in Russia on May 1, becoming more intense 287 

during the next days until May 6 when they were mostly extinguished. bbSOA, as 288 

expected, follows the opposite evolution with low concentration values in the 289 

beginning of the fire events (May 1) and higher values later on. The bbSOA 290 

production increases the range of influence of the fires.  291 

In Majden (FYROM) fires contributed up to 25 μg m-3 of bbOA on May 25-292 

26. The bbSOA was 15% of the bbOA in this case (Fig. S3). Fires also occurred in 293 

south Italy (Catania) and contributed up to 52 μg m-3 of OA on May 15-17. During 294 

this period the bbSOA was 13% of the bbOA (Fig. S3). Paris (France) and Dusseldorf 295 

(Germany) were further away from major fires but were also affected by fire 296 

emissions during most of the month (Fig. S3). The maximum hourly bbOA levels in 297 

these cities were around 5 μg m-3, but bbSOA in this case represents according to the 298 

model around 35% of the total bbOA in Paris and 55% in Dusseldorf. 299 

During the winter simulation period, there were major fires during March 20-300 

22 in Portugal and northwestern Spain. The maximum predicted hourly bbOA 301 
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concentration in Porto (Portugal) exceeded 700 μg m-3 on March 21. During the same 302 

3 days in March the average levels of bbPOA in Portugal and Spain were 9 μg m-3 303 

and their contribution to total OA was 62%. bbPOA was 80% of the total bbOA 304 

during March 20-22 in the Iberian Peninsula. 305 

 306 

6 Role of the more volatile IVOCs 307 

We performed an additional sensitivity simulation where we assumed that there 308 

are no emissions of more volatile IVOCs (those in the 105 and 106 μg m-3 bins). The 309 

partitioning parameters used in this sensitivity test are shown in Table 1. The 310 

emissions rates for each volatility bin during the two modeled periods are provided in 311 

the Supplementary Information (Table S1). The absolute emissions assigned to the 312 

lower volatility bins are approximately the same for both simulations. More 313 

specifically, during May 2008, the emission rates of LVOCs (10-2, 10-1 μg m-3 C* 314 

bins) and SVOCs (100, 101, 102 μg m-3 C* bins) are 530 and 1050 tn d-1 respectively 315 

for the base-case run and 580 and 1160 tn d-1 respectively for the sensitivity run. 316 

During February-March 2009, the emission rates of LVOCs and SVOCs are 2100 and 317 

4100 tn d-1 respectively for the base-case run and 2300 and 4500 tn d-1 respectively 318 

for the sensitivity run. The base case simulation assumes higher emissions in the 319 

upper volatility bins of the IVOCs (103, 104, 105, 106 μg m-3 C* bins) which can be 320 

converted to bbSOA. During summer, the emission rate of IVOCs is 4460 tn d-1 in the 321 

base-case run and 1160 tn d-1 in the sensitivity test. During winter, the emission rate 322 

of IVOCs is 17400 tn d-1 in the base case and 4500 tn d-1 in the sensitivity test.  323 

The base case and the sensitivity simulations predict practically the same 324 

bbPOA concentrations in both periods (Fig. 6) as expected based on the emission 325 

inventory. During summer, the average absolute change of bbPOA in Europe is 326 

around 10% (corresponding to 0.01 μg m-3) (Fig. 6a). The average difference in 327 

bbSOA is significantly higher and around 60% (0.2 μg m-3 on average) due to the 328 

higher IVOC emissions of the base case simulation. The atmospheric conditions 329 

during this warm summer period (high temperature, UV radiation, relative humidity) 330 

lead to high OH concentrations and rapid production of bbSOA.  331 

During winter, the average absolute change for both bbPOA and bbSOA in 332 

Europe is approximately 0.1 μg m-3 (Fig. 6b and 6f). These correspond to 15% change 333 

for the primary and 25% for the secondary bbOA levels. The maximum difference for 334 

average bbPOA is approximately 5 μg m-3 and for bbSOA around 1.5 μg m-3 both in 335 
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northwestern Portugal. However, during the fire period (March 20-22) in Spain and 336 

Portugal the maximum concentration difference between the two cases was 20 μg m-3 337 

for bbPOA and 7 μg m-3 for bbSOA. 338 

Figure 7 shows the total bbOA (sum of bbPOA and bbSOA) during both 339 

periods. Higher bbOA concentrations are predicted in the base case simulation due to 340 

the higher bbSOA concentrations from higher IVOC emissions. During summer the 341 

contributions of the biomass burning IVOC oxidation products to total bbOA exceed 342 

30% over most of Europe, while during winter these components are important 343 

mostly over Southern Europe and the Mediterranean (Fig. S4). 344 

 345 

7 Comparison with field measurements 346 

In order to assess the PMCAMx-SR performance during the two simulation 347 

periods the model’s predictions were compared with AMS hourly measurements that 348 

took place in several sites around Europe. All observation sites are representative of 349 

regional atmospheric conditions.  350 

The PMF technique (Paatero and Tapper, 1994; Lanz et al., 2007; Ulbrich et 351 

al., 2009; Ng et al., 2010) was used to analyze the AMS organic spectra providing 352 

information about the sources contributing to the OA levels (Hildebrandt et al., 2010; 353 

Morgan et al., 2010). The method classifies OA into different types based on different 354 

temporal emission and formation patterns and separates it into hydrocarbon-like 355 

organic aerosol (HOA, a POA surrogate), oxidized organic aerosol (OOA, a SOA 356 

surrogate) and fresh bbOA. Additionally, factor analysis can further classify OOA 357 

into more and less oxygenated OOA components. Fresh bbOA can be compared 358 

directly to the PMCAMx-SR bbPOA predictions, whereas bbSOA should, in principle 359 

at least, be included in the OOA factors.  The AMS HOA can be compared with 360 

predicted fresh POA. The oxygenated AMS OA component can be compared against 361 

the sum of anthropogenic and biogenic SOA (aSOA, bSOA), SOA-sv and SOA-iv, 362 

bbSOA and OA from long range transport.  363 

PMCAMx-SR performance is quantified by calculating the mean bias (MB), 364 

the mean absolute gross error (MAGE), the fractional bias (FBIAS), and the fractional 365 

error (FERROR) defined as: 366 

 
n

i i

i 1

1
MB P O

n 

 
              

n

i i

i 1

1
MAGE P O

n 

 
 367 
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n
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i 1 i i
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
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P O2
FERROR

n P O


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 368 

where Pi is the predicted value of the pollutant concentration, Oi is the observed value 369 

and n is the number of measurements used for the comparison. AMS measurements 370 

are available in 4 stations (Cabauw, Finokalia, Melpitz and Mace Head) during 1-29 371 

May 2008 and 7 stations (Cabauw, Helsinki, Mace Head, Melpitz, Hyytiala, Barcelona and 372 

Chilbolton) during 25 February-23 March 2009.  373 

During May 2008 a bbPOA factor was identified based on the PMF analysis 374 

of the measurements only in Cabauw and Mace Head. In the other two sites 375 

(Finokalia and Melpitz) PMCAMx-SR predicted very low average bbPOA levels (less 376 

than 0.1 μg m-3), so its predictions for these sites can be viewed as consistent with the 377 

results of the PMF analysis. Figure 8 shows the comparison of the predicted bbPOA 378 

by PMCAMx-SR with the observed values in Cabauw. The average AMS-PMF bbOA 379 

was 0.4 μg m-3 and the predicted average bbPOA by PMCAMx-SR was also 0.4 μg 380 

m-3. The mean bias was only -0.01 μg m-3. The model however tended to overpredict 381 

during the first 10 days and to underpredict during the last week. In Mace Head 382 

PMCAMx-SR predicts high bbOA levels during May 14 – 15, but unfortunately the 383 

available measurements started on May 16. During the last two weeks of the 384 

simulation the model predicts much lower bbOA levels (approximately 0.35 μg m-3 385 

less) than the AMS-PMF analysis. The same problem was observed in Cabauw 386 

suggesting potential problems with the fire emissions during this period.  387 

During winter the model tends to overpredict the observed bbOA values in 388 

Barcelona, Cabauw, Melpitz, Helsinki and Hyytiala. On the other hand, the model 389 

underpredicts the bbOA in Mace Head and Chibolton by approximately 0.3 μg m-3 on 390 

average. The prediction skill metrics of PMCAMx-SR (base case and sensitivity test) 391 

against AMS factor analysis during the modelled periods are also provided in the 392 

Supplementary Information (Tables S2-S5). These problems in reproducing 393 

wintertime OA measurements were also noticed by Denier van der Gon et al. (2015) 394 

and suggest problems in the emissions and/or the simulation of the bbOA during this 395 

cold period with slow photochemistry. 396 

 397 

8 Conclusions 398 

A source-resolved version of PMCAMx, called PMCAMx-SR was developed and 399 

tested. This new version can be used to study independently specific organic aerosol 400 
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sources (eg. diesel emissions) if so desired by the user. We applied PMCAMx-SR to 401 

the European domain during an early summer and a winter period focusing on 402 

biomass burning.  403 

 The concentrations of bbOA (sum of bbPOA and bbSOA) and their 404 

contributions to total OA over Europe are, as expected, quite variable in space and 405 

time. During the early summer, the contribution of bbOA to total OA over Europe 406 

was predicted to be 16%, while during winter it increased to 47%. Secondary biomass 407 

burning OA was predicted to be approximately 70% of the bbOA during summer and 408 

only 30% during the winter on average. The production of bbSOA increases the range 409 

of influence of fires. 410 

 The IVOCs emitted by the fires can be a major source of SOA. In our 411 

simulations, the IVOCs with saturation concentrations C*=105 and 106 μg m-3 412 

contributed approximately one third of the average bbOA over Europe. The emissions 413 

of these compounds and their aerosol forming potential are uncertain, so the 414 

formation of bbSOA clearly is an importance topic for future work. 415 

PMCAMx-SR was evaluated against AMS measurements taken at various 416 

European measurement stations and the results of the corresponding PMF analysis. 417 

During the summer the model reproduced without bias the average measured bbPOA 418 

levels in Cabauw and the practically zero levels in Finokalia and Melpitz. However, it 419 

underpredicted the bbPOA in Mace Head. Its performance for oxygenated organic 420 

aerosol (OOA) which should include bbSOA together with a lot of other sources was 421 

mixed: overprediction in Cabauw (fractional bias +42%), Mace Head (fractional bias 422 

+34%), and Finokalia (fractional bias +23%) and underprediction in Melpitz 423 

(fractional bias -14%). 424 

During the winter the model overpredicted the bbPOA levels in most stations 425 

(Cabauw, Helsinki, Melpitz, Hyytiala, Barcelona), while it underpredicted in Mace 426 

Head and Chibolton. At the same time, it reproduced the measured OOA 427 

concentrations with less than 15% bias in Cabauw, Helsinki, and Hyytiala, 428 

underpredicted OOA in Melpitz, Barcelona, and Chibolton and ovepredicted OOA in 429 

Mace Head. These results both potential problems with the wintertime emissions of 430 

bbPOA and the production of secondary OA during the winter. 431 
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Table 1. Parameters used to simulate POA and bbPOA emissions in PMCAMx-SR. 1 

 2 

C* at 298 K  

(μg m-3) 
10-2   10-1 100 101 102 103 104 105 106 

POA  

Fraction of POA 

emissions1 
0.03 0.06 0.090. 0.09 0.14 0.18 0.30 0.40 0.50 0.80 

Effective 

Vaporization 

Enthalpy  

(kJ mol-1) 

112 106 100 94 88 82 76 70 64 

bbPOA (Base Case) 

Fraction of POA 

emissions 
0.2 0.0 0.      100      0.1 0.1 0.2 0.1 0.3 0.50 0.80 

Effective 

Vaporization 

Enthalpy  

(kJ mol-1) 

93 89 85 81 77 73 69 70 64 

bbPOA (Sensitivity Test) 

Fraction of POA 

emissions 
0.2 0.0 0.      100        0.1 0.1 0.2 0.1 0.3 - - 

Effective 

Vaporization 

Enthalpy        

(kJ mol-1) 

93 89 85 81 77 73 69 - - 

1This is the traditional non-volatile POA included in inventories used for regulatory 

purposes. The sum of all fractions can exceed unity because a large fraction of the IVOCs 

is not included in these traditional particle emission inventories. 
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Table 2. Organic compound emission rates (in tn d-1) over the modeling domain 1 

during the simulated periods. 2 

Emission rate (tn d-1) 

1 – 29 May 2008 

Wildfires 1,700 

Residential 700 

Agriculture - waste burning 300 

25 February – 22 March 2009 

Wildfires 3,000 

Residential 6,000 

Agriculture - waste burning 320 
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 1 

 2 

 3 

Figure 1. (a) Volatility distribution of bbOA in PMCAMx and PMCAMx-SR. (b) 4 

Particle fractions of bbOA emissions as a function of OA concentration at 298 K. 5 

 6 
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 7 

 8 

Figure 2. Spatial distribution of average biomass burning OA emission rates (kg d-1 9 

km-2) for the two simulation periods: (a) 1-29 May 2008 and (b) 25 February-22 10 

March 2009. 11 

(a) (b) 
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 4 

  5 

Figure 3. PMCAMx-SR predicted base case ground – level concentrations of PM2.5 6 

(a-b) fPOA, (c-d) bbPOA, (e-f) SOA and (g-h) bbSOA, during the modeled summer 7 

and winter periods. 8 
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 1 

 2 

 3 

Figure 4. Timeseries of PM2.5 bbOA concentrations in (a) Saint Petersburg in Russia 4 

during 1-29 May 2008 and in (b) Porto in Portugal during 25 February-22 March 5 

2009. 6 

 7 
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           12 

Figure 5. PMCAMx-SR predicted base case ground – level concentrations of PM2.5 13 

bbPOA and bbSOA, during 1 – 6 May 2008 in the Scandinavian Peninsula and 14 

Russia. 15 
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1 
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3 

 4 

Figure 6. Average predicted absolute (μg m-3) difference (Sensitivity Case – Base 5 

Case) of ground-level PM2.5 (a-b) bbPOA and (e-f) bbSOA concentrations from 6 

PMCAMx-SR base case and sensitivity simulations during the modeled periods. Also 7 

shown the corresponding relative (%) change of ground-level PM2.5 (c-d) bbPOA and 8 

(g-h) bbSOA concentrations during the modeled periods. Positive values indicate that 9 

PMCAMx-SR sensitivity run predicts higher concentrations.  10 
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 1 

 2 

 3 

 4 

Figure 7. Predicted ground-level concentrations of PM2.5 total bbOA (μg m-3) during 5 

the modeled summer (a-b) and the modeled winter (c-d) period. The figures to the left 6 

are for the PMCAMx-SR base case simulation while those to the right for the low-7 

IVOC sensitivity test.  8 

Base Case Without IVOCs 
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 1 

Figure 8. Comparison of hourly bbPOA concentrations predicted by PMCAMx-SR 2 

with values estimated by PMF analysis of the AMS data in Cabauw during 1-29 May 3 

2008.  4 
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