

1 **Simulation of the chemical evolution of biomass burning organic**
2 **aerosol**

3

4 Georgia N. Theodoritsi^{1,2} and Spyros N. Pandis^{1,2,3}

5 ¹*Department of Chemical Engineering, University of Patras, Patras, Greece*

6 ²*Institute of Chemical Engineering Sciences, Foundation for Research and
7 Technology Hellas (FORTH/ICE-HT), Patras, Greece*

8 ³*Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA
9 15213, USA*

10

11 **Abstract**

12 The chemical transport model PMCAMx was extended to investigate the
13 effects of partitioning and photochemical aging of biomass burning emissions on
14 organic aerosol (OA) concentrations. A source-resolved version of the model,
15 PMCAMx-SR, was developed in which biomass burning emissions and their
16 oxidation products are represented separately from the other OA components. The
17 volatility distribution of biomass burning OA (bbOA) and its chemical aging were
18 simulated based on recent laboratory measurements. PMCAMx-SR was applied to
19 Europe during an early summer (1-29 May 2008) and a winter period (25 February-22
20 March 2009).

21 During the early summer, the contribution of biomass burning (both primary
22 and secondary species) to total OA levels over continental Europe was estimated to be
23 approximately 16%. During winter the contribution was nearly 47% due to both
24 extensive residential wood combustion, but also wildfires in Portugal and Spain. The
25 intermediate volatility compounds (IVOCs) with effective saturation concentration
26 values of 10^5 and $10^6 \mu\text{g m}^{-3}$ are predicted to contribute around one third of the bbOA
27 during the summer and 15% during the winter by forming secondary OA. The
28 uncertain emissions of these compounds and their SOA formation potential require
29 additional attention. Evaluation of PMCAMx-SR predictions against aerosol mass
30 spectrometer measurements in several sites around Europe suggests reasonably good
31 performance for OA (fractional bias less than 35% and fractional error less than 50%).

32 The performance was weaker during the winter suggesting uncertainties in the
33 residential heating emissions and the simulation of the resulting bbOA in this season.

34

35 **1 Introduction**

36 Atmospheric aerosols, also known as particulate matter (PM), are suspensions of
37 fine solid or liquid particles in air. These particles range in diameter from a few
38 nanometers to tens of micrometers. Atmospheric particles contain a variety of non-
39 volatile and semi-volatile compounds including water, sulfates, nitrates, ammonium,
40 dust, trace metals, and organic matter. Many studies have linked increased mortality
41 (Dockery et al., 1993), decreased lung function (Gauderman et al., 2000), bronchitis
42 incidents (Dockery et al., 1996), and respiratory diseases (Pope, 1991; Schwartz et al.,
43 1996; Wang et al., 2008) with elevated PM concentrations. The most readily
44 perceived impact of high particulate matter concentrations is visibility reduction in
45 polluted areas (Seinfeld and Pandis, 2006). Aerosols also play an important role in the
46 energy balance of our planet by scattering and absorbing radiation (Schwartz et al.,
47 1996).

48 Organic aerosol (OA) is a major component of fine PM in most locations
49 around the world. More than 50% of the atmospheric fine aerosol mass is comprised
50 of organic compounds at continental mid-latitudes and as high as 90% in tropical
51 forested areas (Andreae and Crutzen, 1997; Roberts et al., 2001; Kanakidou et al.,
52 2005). There are many remaining questions regarding the identity, chemistry, lifetime,
53 and in general fate of organic compounds, despite their atmospheric importance. OA
54 originates from many different anthropogenic and biogenic sources and processes and
55 has been traditionally categorized into primary OA (POA) which is directly emitted
56 into the atmosphere as particles or secondary OA (SOA) that is formed from the
57 condensation of the oxidation products of volatile (VOCs), intermediate volatility
58 (IVOCs), and semivolatile organic compounds (SVOCs). Both POA and SOA are
59 usually characterized as anthropogenic (aPOA, aSOA) or biogenic (bPOA, bSOA)
60 depending on their sources. Biomass burning OA (bbOA) is treated separately from
61 the other anthropogenic and biogenic OA components in this work.

62 Biomass burning is an important global source of air pollutants that affect
63 atmospheric chemistry, climate, and environmental air quality. In this work, the term
64 biomass burning includes wildfires, prescribed burning in forests and other areas,
65 residential wood combustion for heating and other purposes, and agricultural waste

66 burning. Biomass burning is a major source of particulate matter, nitrogen oxides,
67 carbon monoxide, volatile organic compounds, as well as other hazardous air
68 pollutants. Biomass burning contributes around 75% of global combustion POA
69 (Bond et al., 2004). In Europe, biomass combustion is one of the major sources of
70 OA, especially during winter (Puxbaum et al., 2007; Gelencser et al., 2007).

71 Chemical transport models (CTMs) have traditionally treated POA emissions
72 as non-reactive and non-volatile. However, dilution sampler measurements have
73 indicated that POA is clearly semi-volatile (Lipsky and Robinson, 2006; Robinson et
74 al., 2007; Huffman et al., 2009a, 2009b). The semi-volatile character of POA
75 emissions can be described by the volatility basis set (VBS) framework (Donahue et
76 al., 2006; Stanier et al., 2008). The VBS is a scheme of simulating OA accounting for
77 changes in gas-particle partitioning due to dilution, temperature changes, and
78 photochemical aging. The third Fire Lab at Missoula Experiment (FLAME-III)
79 investigated a suite of fuels associated with prescribed burning and wildfires (May et
80 al., 2013). The bbOA partitioning parameters derived from that study are used in this
81 work to simulate the dynamic gas-particle partitioning and photochemical aging of
82 bbOA emissions. In this work we define bbOA as the sum of bbPOA and bbSOA
83 following the terminology proposed by Murphy et al. (2014).

84 A number of modeling efforts have examined the contribution of the semi-
85 volatile bbOA emissions to ambient particulate levels using the VBS framework. For
86 example, Fountoukis et al. (2014) used a three dimensional CTM with an updated
87 wood combustion emission inventory distributing OA emissions using the volatility
88 distribution proposed by Shrivastava et al. (2008). However, this study assumed the
89 same volatility distribution for all OA sources. This volatility distribution is not in
90 general representative of biomass burning emissions since it was derived based on
91 experiments using fossil fuel sources (Shrivastava et al., 2008). Volatility
92 distributions of wood smoke have been measured by Grieshop et al. (2009a) and May
93 et al. (2013) covering the volatility range up to approximately $10^4 \mu\text{g m}^{-3}$ (at 298 K).
94 Alvarado et al. (2015) in a modelling study stressed the importance of the emissions
95 of the rest of the IVOCs (at 10^5 and $10^6 \mu\text{g m}^{-3}$) and attempted to constrain the
96 corresponding chemistry using observations from a biomass burning plume from a
97 prescribed fire in California

98

99 The main objective of this study is to develop and test a CTM treating biomass
100 burning organic aerosol (bbOA) emissions separately from all the other anthropogenic
101 and biogenic emissions. This extended model should allow at least in principle more
102 accurate simulation of OA and direct predictions of the role of bbOA in regional air
103 quality. The rest of the manuscript is organized as follows. First, a brief description of
104 the new version of PMCAMx (PMCAMx-SR) is provided. The source-resolved
105 version of PMCAMx (PMCAMx-SR) treats bbOA emissions and their chemical
106 reactions separately from those of other OA sources. The details of the application of
107 PMCAMx-SR in the European domain for a summer and a winter period are
108 presented. In the next section, the predictions of PMCAMx-SR are evaluated using
109 aerosol mass spectrometer (AMS) measurements collected in Europe. Finally, the
110 sensitivity of the model to different parameters is quantified.

111

112 2 PMCAMx-SR description

113 PMCAMx-SR is a source-resolved version of PMCAMx (Murphy and Pandis,
114 2009; Tsimpidi et al., 2010; Karydis et al., 2010), a three-dimensional chemical
115 transport model that uses the framework of CAMx (Environ, 2003) and simulates the
116 processes of horizontal and vertical advection, horizontal and vertical dispersion, wet
117 and dry deposition, gas, aqueous and aerosol-phase chemistry. The chemical
118 mechanism employed to describe the gas-phase chemistry is based on the SAPRC
119 mechanism (Carter, 2000; Environ, 2003). The version of SAPRC currently used
120 includes 211 reactions of 56 gases and 18 radicals. The SAPRC mechanism has been
121 updated to include gas-phase oxidation of semivolatile organic compounds (SVOCs),
122 and intermediate volatility organic compounds (IVOCs). In this work the IVOCs and
123 SVOCs are described with 9 volatility bins ($10^{-2} - 10^6 \mu\text{g m}^{-3}$ at 298 K). Different
124 surrogate species are used to represent the corresponding fresh (primary) and the
125 secondary organic compounds. The chemical reactions reactions of these compounds
126 parameterized as one volatility bin reduction during each reaction with OH have been
127 added to the original SAPRC mechanism. Three detailed aerosol modules are used to
128 simulate aerosol processes: inorganic aerosol growth (Gaydos et al., 2003; Koo et al.,
129 2003), aqueous phase chemistry (Fahey and Pandis, 2001), and secondary organic
130 aerosol (SOA) formation and growth (Koo et al., 2003). The above modules use a
131 sectional approach to dynamically track the size evolution of each aerosol component
132 across 10 size sections spanning the diameter range from 40 nm to 40 μm .

133

134 **2.1 Organic aerosol modelling**

135 PMCAMx-SR simulates OA based on the volatility basis set (VBS) framework
136 (Donahue et al., 2006; Stanier et al., 2008). VBS is a unified scheme of treating OA,
137 simulating the volatility, gas-particle partitioning, and photochemical aging of organic
138 pollutant emissions. PMCAMx-SR incorporates separate VBS variables and
139 parameters for the various OA components based on their source.

140

141 **2.1.1 Volatility of primary emissions**

142 PMCAMx-SR assumes that all primary emissions are semi-volatile.
143 According to the VBS scheme, species with similar volatility are lumped into bins
144 expressed in terms of effective saturation concentration values, C^* , separated by
145 factors of 10 at 298 K. POA emissions are distributed across a nine-bin VBS with C^*
146 values ranging from 10^{-2} to $10^6 \mu\text{g m}^{-3}$ at 298 K. SVOCs and IVOCs are distributed
147 among the $1, 10, 100 \mu\text{g m}^{-3} C^*$ bins and $10^3, 10^4, 10^5, 10^6 \mu\text{g m}^{-3} C^*$ bins
148 respectively. Table 1 lists the generic POA volatility distribution proposed by
149 Shrivastava et al. (2008) assuming that the IVOC emissions are approximately equal
150 to 1.5 times the POA emissions (Robinson et al., 2007; Tsipidou et al., 2010;
151 Shrivastava et al., 2008). This volatility distribution is used in PMCAMx-SR for all
152 sources with the exception of biomass burning. In the original PMCAMx this
153 volatility distribution is also used for biomass burning emissions.

154 The partitioning calculations of primary emissions are performed using the
155 same module used to calculate the partitioning of all semi-volatile organic species
156 (Koo et al., 2003). This is based on absorptive partitioning theory and assumes that
157 the bulk gas and particle phases are in equilibrium and that all condensable organics
158 form a pseudo-ideal solution (Odum et al., 1996; Strader et al., 1999). Organic gas-
159 particle partitioning is assumed to depend on temperature and aerosol composition.
160 The partitioning model assumes that the organic compounds form a single pseudo-ideal
161 solution in the particle phase and do not interact with the aqueous phase (Strader et
162 al., 1999). The Clausius-Clapeyron equation is used to describe the effects of
163 temperature on C^* and partitioning. Table 1 also lists the enthalpies of vaporization
164 currently used in PMCAMx and PMCAMx-SR. All POA species are assumed to have
165 an average molecular weight of 250 g mol^{-1} .

166

167 **2.1.2 Secondary organic aerosol from VOCs**

168 Based on the original work of Lane et al. (2008a), SOA from VOCs (SOA-v)
169 is represented using four volatility bins ($1, 10, 10^2, 10^3 \mu\text{g m}^{-3}$ at 298 K). The model
170 uses 4 surrogate compounds for SOA from anthropogenic VOCs (aSOA-v) and
171 another 4 for SOA from biogenic VOCs (bSOA-v). These can exist in either the gas
172 or particulate phase so there are two model variables for each volatility bin.
173 Additional surrogate compounds and thus model variables are used to keep track of
174 the oxidation products of anthropogenic IVOCs (SOA-iv) and SVOCs (SOA-sv).
175 PMCAMx-SR includes additional SOA surrogate compounds to simulate the
176 oxidation productions of the biomass burning emissions. aSOA components are
177 assumed to have an average molecular weight of 150 g mol^{-1} , while bSOA species
178 180 g mol^{-1} . Laboratory results from the smog-chamber experiments of Ng et al.
179 (2006) and Hildebrandt et al. (2009) are used for the anthropogenic aerosol yields.

180

181 **2.1.3 Chemical aging mechanism**

182 All OA components are treated as chemically reactive in PMCAMx-SR.
183 Anthropogenic SOA components resulting from the oxidation of SVOCs and IVOCs
184 (aSOA-sv, aSOA-iv) are assumed to react with OH radicals in the gas phase with a
185 rate constant of $k = 4 \times 10^{-11} \text{ cm}^3 \text{ molec}^{-1} \text{ s}^{-1}$ resulting in the formation of lower
186 volatility aSOA. Semi-volatile anthropogenic aSOA-v components are assumed to
187 react with OH in the gas phase with a rate constant of $k = 1 \times 10^{-11} \text{ cm}^3 \text{ molec}^{-1} \text{ s}^{-1}$
188 (Atkinson and Arey, 2003). All these aging reactions are assumed to reduce the
189 volatility of the reacted vapor by one order of magnitude, which is linked to an
190 increase in OA mass by approximately 7.5% to account for added oxygen. Biogenic
191 SOA (bSOA-v) aging is assumed to lead to zero net change of volatility and OA mass
192 (Lane et al., 2008b).

193

194 **2.2 PMCAMx-SR enhancements**

195 In PMCAMx-SR, the fresh biomass burning organic aerosol (bbOA) and its
196 secondary oxidation products (bbSOA) are simulated separately from the other POA
197 components. The May et al. (2013) volatility distribution is used to simulate the gas-
198 particle partitioning of fresh bbOA. This distribution includes surrogate compounds
199 up to a volatility of $10^4 \mu\text{g m}^{-3}$. This means that the more volatile IVOCs, which could

200 contribute to SOA formation, are not included. To close this gap, the values of the
201 volatility distribution of Robinson et al. (2007) are used for the 10^5 and $10^6 \mu\text{g m}^{-3}$
202 bins (Table 1). The sensitivity of PMCAMx-SR to the IVOC emissions added to the
203 May et al. (2013) distribution will be explored in a subsequent section. The effective
204 saturation concentrations and the enthalpies of vaporization used for bbOA in
205 PMCAMx-SR are also listed in Table 1. The new bbOA scheme requires the
206 introduction of 36 new organic species to simulate both phases of fresh primary and
207 oxidized bbOA components. The rate constant used for the chemical aging reactions
208 is the same as the one currently used for all POA components and has a value of $k = 4$
209 $\times 10^{-11} \text{ cm}^3 \text{ molec}^{-1} \text{ s}^{-1}$. The volatility distributions of bbOA in PMCAMx and
210 PMCAMx-SR are shown in Fig. 1a. The volatility distribution implemented in
211 PMCAMx-SR results in less volatile bbOA for ambient OA levels (a few $\mu\text{g m}^{-3}$)
212 (Fig. 1b). A schematic representation of the organic aerosol module of PMCAMx-SR
213 is shown in Figure 2.

214

215 3 Model application

216 PMCAMx-SR was applied to a $5400 \times 5832 \text{ km}^2$ region covering Europe with
217 $36 \times 36 \text{ km}$ grid resolution and 14 vertical layers extending up to 6 km. The model was
218 set to perform simulations on a rotated polar stereographic map projection. The
219 necessary inputs to the model include horizontal wind components, temperature,
220 pressure, water vapor, vertical diffusivity, clouds, and rainfall. All meteorological
221 inputs were created using the meteorological model WRF (Weather Research and
222 Forecasting) (Skamarock et al., 2005). The simulations were performed during a
223 summer (1-29 May 2008) and a winter period (25 February-22 March 2009). In order
224 to limit the effect of the initial conditions on the results, the first two days of each
225 simulation were excluded from the analysis.

226 Anthropogenic and biogenic emissions in the form of hourly gridded fields
227 were developed both for gases and primary particulate matter. Anthropogenic gas
228 emissions include land emissions from the GEMS dataset (Visschedijk et al., 2007)
229 and also emissions from international shipping activities. Anthropogenic particulate
230 matter mass emissions of organic and elemental carbon are based on the Pan-
231 European Carbonaceous Aerosol Inventory (Denier van der Gon et al., 2010) that has
232 been developed as part of the EUCAARI project activities (Kulmala et al., 2009). All

relevant significant emission sources, including anthropogenic biomass burning emissions from agricultural activities and residential heating, are included in the two inventories. Day-specific wildfire emissions were also included (Sofiev et al., 2008a; 2008b). Emissions from ecosystems were calculated offline by MEGAN (Model of Emissions of Gases and Aerosols from Nature) (Guenther et al., 2006). The marine aerosol emission model developed by O'Dowd et al. (2008) has been used to estimate mass fluxes for both accumulation and coarse mode including the organic aerosol fraction. Wind speed data from WRF and chlorophyll-a concentrations are the inputs needed for the marine aerosol emissions module.

The gridded emission inventories of bbOA species for the two modeled periods are shown in Fig. 3. During the early summer simulated period wildfires were responsible for 60% of the bbOA emissions, agricultural waste burning for 15% and residential wood combustion for 25% (Table 2). Details about the OA emission rates from agricultural activities are provided in the Supplementary Information (Fig. S1). During winter residential combustion is the dominant source (63%). The wintertime wildfire emissions in the inventory, approximately $3,000 \text{ tn d}^{-1}$, are quite high especially when compared with the corresponding summer value which is $1,700 \text{ tn d}^{-1}$. The spatial distribution of OA emission rates from wildfires during 25 February-22 March 2009 is provided in the Supplementary Information (Fig. S2). Analysis of fire counts in satellite observations used for the development of the inventory suggests that some agricultural emissions have probably been attributed to wildfires. All bbOA sources are treated the same way in PMCAMx-SR so this potential misattribution does not affect our results.

256

257 **4 PMCAMx-SR testing**

258 To test our implementation of the source-resolved VBS in PMCAMx-SR we
259 compared its results with those of PMCAMx using the same VBS parameters. For this
260 test we used in PMCAMx-SR the default PMCAMx bbOA partitioning parameters
261 shown in Table 1 as proposed by Shrivastava et al. (2008). In this way both models
262 should simulate the bbOA in exactly the same way, but PMCAMx-SR describes it
263 independently while PMCAMx lumps it with other primary OA. The differences
264 between the corresponding OA concentrations predicted by the two models were on
265 average less than $10^{-3} \mu\text{g m}^{-3}$ (0.03%). The maximum difference was approximately
266 $0.03 \mu\text{g m}^{-3}$ (0.6%) in western Germany. This suggests that our changes to the code of

267 PMCAMx to develop PMCAMx-SR did not introduce any inconsistencies with the
268 original model. The small differences are due to numerical issues in the
269 advection/dispersion calculations.

270

271 **5 Contribution of bbOA to PM over Europe**

272 In this section the predictions of PMCAMx-SR for the base case simulations
273 during 1 - 29 May 2008 and 25 February - 22 March 2009 are analysed. Figure 4
274 shows the PMCAMx-SR predicted average ground-level PM_{2.5} concentrations for the
275 various OA components for the two simulated periods.

276 The POA from non-bbOA sources will be called fossil POA (fPOA) in the rest
277 of the paper. fPOA levels over Europe were on average around 0.1 $\mu\text{g m}^{-3}$ during both
278 periods (Figs. 4a and 4b). However, their spatial distributions are quite different.
279 During May, predicted fPOA concentrations are as high as 2 $\mu\text{g m}^{-3}$ in polluted areas
280 in central and northern Europe but are less than 0.5 $\mu\text{g m}^{-3}$ in the rest of the domain.
281 These low levels are due to the evaporation of POA in this warm period. For the
282 winter period peak fPOA levels are higher reaching values of around 3.5 $\mu\text{g m}^{-3}$ in
283 Paris and Moscow. fPOA contributes approximately 3.5% and 6% to total OA in
284 Europe during May 2008 and February-March 2009 respectively. bbPOA
285 concentrations have peak average values 7 $\mu\text{g m}^{-3}$ in St. Petersburg in Russia and 10
286 $\mu\text{g m}^{-3}$ in Porto in Portugal during summer and winter respectively (Figures 4c and
287 4d). During the summer bbPOA is predicted to contribute 5% to total OA, and its
288 contribution during winter increases to 32%. The average predicted bbOA
289 concentrations over Europe are 0.1 $\mu\text{g m}^{-3}$ and 0.8 $\mu\text{g m}^{-3}$ during the summer and the
290 winter period respectively.

291 The SOA resulting from the oxidation of IVOCs (SOA-iv) and evaporated
292 POA (SOA-sv) has concentrations as high as 1 $\mu\text{g m}^{-3}$ in central Europe and the
293 average levels are around 0.3 $\mu\text{g m}^{-3}$ (13% contribution to total OA) during summer
294 (Fig. 4e). During winter the peak concentration value was a little less than 0.5 $\mu\text{g m}^{-3}$
295 in Moscow in Russia and the average levels were approximately 0.1 $\mu\text{g m}^{-3}$ (5.5%
296 contribution to total OA) (Fig 4f). The highest average concentration of bbSOA-sv
297 and bbSOA-iv (biomass burning SOA from intermediate volatility and semi-volatile
298 precursors) was approximately 1 $\mu\text{g m}^{-3}$ in Lecce in Italy during summer and 3.5 μg
299 $\mu\text{g m}^{-3}$ in Porto during winter. During May bbSOA is predicted to contribute 11% to total
300 OA over Europe and during February-March 2009 its predicted contribution is 15%.

301 The average bbSOA is $0.3 \mu\text{g m}^{-3}$ during summer and approximately $0.4 \mu\text{g m}^{-3}$
302 during winter (Figs. 4g and 4h). During the summer, the remaining 67% of total OA is
303 biogenic SOA (52%) and anthropogenic SOA (15%), and in winter of the remaining
304 41% of total OA, 36% is biogenic and 5% is anthropogenic SOA (not shown).

305 In areas like St. Petersburg in Russia predicted hourly bbOA levels exceeded
306 $300 \mu\text{g m}^{-3}$ due to the nearby fires affecting the site on May 3-5 (Fig. 5a). For these
307 extremely high concentrations most of the bbOA (90% for St. Petersburg) was
308 primary with the bbSOA contributing around 10%. The spatiotemporal evolution of
309 bbPOA and bbSOA during May 1–6 in Scandinavia and northwest Russia is depicted
310 in Figure 6. A series of fires started in Russia on May 1, becoming more intense
311 during the next days until May 6 when they were mostly extinguished. bbSOA, as
312 expected, follows the opposite evolution with low concentration values in the
313 beginning of the fire events (May 1) and higher values later on. The bbSOA
314 production increases the range of influence of the fires.

315 In Majden (FYROM) fires contributed up to $25 \mu\text{g m}^{-3}$ of bbOA on May 25-
316 26. The bbSOA was 15% of the bbOA in this case (Fig. S3). Fires also occurred in
317 south Italy (Catania) and contributed up to $52 \mu\text{g m}^{-3}$ of OA on May 15-17. During
318 this period the bbSOA was 13% of the bbOA (Fig. S3). Paris (France) and Dusseldorf
319 (Germany) were further away from major fires but were also affected by fire
320 emissions during most of the month (Fig. S3). The maximum hourly bbOA levels in
321 these cities were around $5 \mu\text{g m}^{-3}$, but bbSOA in this case represents according to the
322 model around 35% of the total bbOA in Paris and 55% in Dusseldorf.

323 During the winter simulation period, there were major fires during March 20-
324 22 in Portugal and northwestern Spain. The maximum predicted hourly bbOA
325 concentration in Porto (Portugal) exceeded $700 \mu\text{g m}^{-3}$ on March 21 (Fig. 5b). During
326 the same 3 days in March the average levels of bbPOA in Portugal and Spain were $9 \mu\text{g m}^{-3}$
327 and their contribution to total OA was 62%. bbPOA was 80% of the total
328 bbOA during March 20-22 in the Iberian Peninsula.

329

330 **6 Role of the more volatile IVOCS**

331 We performed an additional sensitivity simulation where we assumed that there
332 are no emissions of more volatile IVOCS (those in the 10^5 and $10^6 \mu\text{g m}^{-3}$ bins). The
333 partitioning parameters used in this sensitivity test are shown in Table 1. The
334 emissions rates for each volatility bin during the two modeled periods are provided in

335 the Supplementary Information (Table S1). The absolute emissions assigned to the
336 lower volatility bins are approximately the same for both simulations. More
337 specifically, during May 2008, the emission rates of LVOCs (10^{-2} , 10^{-1} $\mu\text{g m}^{-3} C^*$
338 bins) and SVOCs (10^0 , 10^1 , 10^2 $\mu\text{g m}^{-3} C^*$ bins) are 530 and 1050 tn d^{-1} respectively
339 for the base-case run and 580 and 1160 tn d^{-1} respectively for the sensitivity run.
340 During February-March 2009, the emission rates of LVOCs and SVOCs are 2100 and
341 4100 tn d^{-1} respectively for the base-case run and 2300 and 4500 tn d^{-1} respectively
342 for the sensitivity run. The base case simulation assumes higher emissions in the
343 upper volatility bins of the IVOCs (10^3 , 10^4 , 10^5 , 10^6 $\mu\text{g m}^{-3} C^*$ bins) which can be
344 converted to bbSOA. During summer, the emission rate of IVOCs is 4460 tn d^{-1} in the
345 base-case run and 1160 tn d^{-1} in the sensitivity test. During winter, the emission rate
346 of IVOCs is 17400 tn d^{-1} in the base case and 4500 tn d^{-1} in the sensitivity test.

347 The base case and the sensitivity simulations predict practically the same
348 bbPOA concentrations in both periods (Fig. 7) as expected based on the emission
349 inventory. During summer, the average absolute change of bbPOA in Europe is
350 around 10% (corresponding to $0.01 \mu\text{g m}^{-3}$) (Fig. 7a). The average difference in
351 bbSOA is significantly higher and around 60% ($0.2 \mu\text{g m}^{-3}$ on average) due to the
352 higher IVOC emissions of the base case simulation. The atmospheric conditions
353 during this warm summer period (high temperature, UV radiation, relative humidity)
354 lead to high OH concentrations and rapid production of bbSOA.

355 During winter, the average absolute change for both bbPOA and bbSOA in
356 Europe is approximately $0.1 \mu\text{g m}^{-3}$ (Fig. 7b and 7f). These correspond to 15% change
357 for the primary and 25% for the secondary bbOA levels. The maximum difference for
358 average bbPOA is approximately $5 \mu\text{g m}^{-3}$ and for bbSOA around $1.5 \mu\text{g m}^{-3}$ both in
359 northwestern Portugal. However, during the fire period (March 20-22) in Spain and
360 Portugal the maximum concentration difference between the two cases was $20 \mu\text{g m}^{-3}$
361 for bbPOA and $7 \mu\text{g m}^{-3}$ for bbSOA.

362 Figure 8 shows the total bbOA (sum of bbPOA and bbSOA) during both
363 periods. Higher bbOA concentrations are predicted in the base case simulation due to
364 the higher bbSOA concentrations from higher IVOC emissions. During summer the
365 contributions of the biomass burning IVOC oxidation products to total bbOA exceed
366 30% over most of Europe, while during winter these components are important
367 mostly over Southern Europe and the Mediterranean (Fig. S4).

368

369

370 **7 Comparison with field measurements**

371 In order to assess the PMCAMx-SR performance during the two simulation
 372 periods the model's predictions were compared with AMS hourly measurements that
 373 took place in several sites around Europe. All observation sites are representative of
 374 regional atmospheric conditions.

375 The PMF technique (Paatero and Tapper, 1994; Lanz et al., 2007; Ulbrich et
 376 al., 2009; Ng et al., 2010) was used to analyze the AMS organic spectra providing
 377 information about the sources contributing to the OA levels (Hildebrandt et al., 2010;
 378 Morgan et al., 2010). The method classifies OA into different types based on different
 379 temporal emission and formation patterns and separates it into hydrocarbon-like
 380 organic aerosol (HOA, a POA surrogate), oxidized organic aerosol (OOA, a SOA
 381 surrogate) and fresh bbOA. Additionally, factor analysis can further classify OOA
 382 into more and less oxygenated OOA components. Fresh bbOA can be compared
 383 directly to the PMCAMx-SR bbPOA predictions, whereas bbSOA should, in principle
 384 at least, be included in the OOA factors. The AMS HOA can be compared with
 385 predicted fresh POA. The oxygenated AMS OA component can be compared against
 386 the sum of anthropogenic and biogenic SOA (aSOA, bSOA), SOA-sv and SOA-iv,
 387 bbSOA and OA from long range transport.

388 PMCAMx-SR performance is quantified by calculating the mean bias (MB),
 389 the mean absolute gross error (MAGE), the fractional bias (FBIAS), and the fractional
 390 error (FERROR) defined as:

$$391 \quad MB = \frac{1}{n} \sum_{i=1}^n (P_i - O_i) \quad MAGE = \frac{1}{n} \sum_{i=1}^n |P_i - O_i|$$

$$392 \quad FBIAS = \frac{2}{n} \sum_{i=1}^n \frac{P_i - O_i}{P_i + O_i} \quad FERROR = \frac{2}{n} \sum_{i=1}^n \frac{|P_i - O_i|}{P_i + O_i}$$

393 where P_i is the predicted value of the pollutant concentration, O_i is the observed value
 394 and n is the number of measurements used for the comparison. AMS measurements
 395 are available in 4 stations (Cabauw, Finokalia, Melpitz and Mace Head) during 1-29
 396 May 2008 and 7 stations (Cabauw, Helsinki, Mace Head, Melpitz, Hyytiala,
 397 Barcelona and Chilbolton) during 25 February-23 March 2009.

398 During May 2008 a bbPOA factor was identified based on the PMF analysis
 399 of the measurements only in Cabauw and Mace Head. In the other two sites

400 (Finokalia and Melpitz) PMCAMx-SR predicted very low average bbPOA levels (less
401 than $0.1 \mu\text{g m}^{-3}$), so its predictions for these sites can be viewed as consistent with the
402 results of the PMF analysis. Figure 9 shows the comparison of the predicted bbPOA
403 by PMCAMx-SR with the observed values in Cabauw. The average AMS-PMF bbOA
404 was $0.4 \mu\text{g m}^{-3}$ and the predicted average bbPOA by PMCAMx-SR was also $0.4 \mu\text{g m}^{-3}$.
405 The mean bias was only $-0.01 \mu\text{g m}^{-3}$. The model however tended to overpredict
406 during the first 10 days and to underpredict during the last week. In Mace Head
407 PMCAMx-SR predicts high bbOA levels during May 14 – 15, but unfortunately the
408 available measurements started on May 16. During the last two weeks of the
409 simulation the model predicts much lower bbOA levels (approximately $0.35 \mu\text{g m}^{-3}$
410 less) than the AMS-PMF analysis. The same problem was observed in Cabauw
411 suggesting potential problems with the fire emissions during this period.

412 During winter the model tends to overpredict the observed bbOA values in
413 Barcelona, Cabauw, Melpitz, Helsinki and Hyttiala. On the other hand, the model
414 underpredicts the bbOA in Mace Head and Chibolton by approximately $0.3 \mu\text{g m}^{-3}$ on
415 average. The prediction skill metrics of PMCAMx-SR (base case and sensitivity test)
416 against AMS factor analysis during the modelled periods are also provided in the
417 Supplementary Information (Tables S2-S5). These problems in reproducing
418 wintertime OA measurements were also noticed by Denier van der Gon et al. (2015)
419 and suggest problems in the emissions and/or the simulation of the bbOA during this
420 cold period with slow photochemistry.

421 Given that bbOA contributed on average less than half of the total OA during the
422 summer, the performance (fractional bias and error) for OA of PMCAMx-SR (both
423 for the base case and the sensitivity test) was quite similar to that of the original
424 PMCAMx (Table S6). The performance of the sensitivity test was a little better
425 suggesting that the bbSOA production from the corresponding IVOCs could be
426 overpredicted. However, this can be also due to other sources of error in the model.
427 The situation was similar during the winter. There was a small reduction in the
428 already small fractional bias but overall the performance of PMCAMx-SR for OA and
429 OOA were quite similar to that of PMCAMx (Table S7). This however suggests that
430 the errors in the OA predictions are not due to the new treatment of bbOA but rather
431 to other errors that are also present in the original model.

432

433 **8 Conclusions**

434 A source-resolved version of PMCAMx, called PMCAMx-SR was developed
435 and tested. This new version can be used to study independently specific OA sources
436 (e.g. diesel emissions) if so desired by the user. We applied PMCAMx-SR to the
437 European domain during an early summer and a winter period focusing on biomass
438 burning.

439 The concentrations of bbOA (sum of bbPOA and bbSOA) and their
440 contributions to total OA over Europe are, as expected, quite variable in space and
441 time. During the early summer, the contribution of bbOA to total OA over Europe
442 was predicted to be 16%, while during winter it increased to 47%. Secondary biomass
443 burning OA was predicted to be approximately 70% of the bbOA during summer and
444 only 30% during the winter on average. The production of bbSOA increases the range
445 of influence of fires.

446 The IVOCs emitted by the fires can be a major source of SOA. In our
447 simulations, the IVOCs with saturation concentrations $C^*=10^5$ and $10^6 \mu\text{g m}^{-3}$
448 contributed approximately one third of the average bbOA over Europe. The emissions
449 of these compounds and their aerosol forming potential are uncertain, so the
450 formation of bbSOA clearly is an importance topic for future work.

451 PMCAMx-SR was evaluated against AMS measurements taken at various
452 European measurement stations and the results of the corresponding PMF analysis.
453 During the summer the model reproduced without bias the average measured bbPOA
454 levels in Cabauw and the practically zero levels in Finokalia and Melpitz. However, it
455 underpredicted the bbPOA in Mace Head. Its performance for oxygenated organic
456 aerosol (OOA) which should include bbSOA together with a lot of other sources was
457 mixed: overprediction in Cabauw (fractional bias +42%), Mace Head (fractional bias
458 +34%), and Finokalia (fractional bias +23%) and underprediction in Melpitz
459 (fractional bias -14%).

460 During the winter the model overpredicted the bbPOA levels in most stations
461 (Cabauw, Helsinki, Melpitz, Hyttiala, Barcelona), while it underpredicted in Mace
462 Head and Chibolton. At the same time, it reproduced the measured OOA
463 concentrations with less than 15% bias in Cabauw, Helsinki, and Hyttiala,
464 underpredicted OOA in Melpitz, Barcelona, and Chibolton and overpredicted OOA in
465 Mace Head. These results both potential problems with the wintertime emissions of
466 bbPOA and the production of secondary OA during the winter.

467 *Data availability.* The data in the study are available from the authors upon request
468 (spyros@chemeng.upatras.gr).

469
470 *Author contributions.* GNT conducted the simulations, analysed the results, and wrote
471 the paper. SNP was responsible for the design of the study, the synthesis of the results
472 and contributed to the writing of the paper.

473 *Competing interests.* The authors declare that they have no conflict of interest.

474 *Acknowledgements.* This study was financially supported by the European Union's
475 Horizon 2020 EUROCHAMP-2020 Infrastructure Activity (Grant agreement 730997)
476 and the Western Regional Air Partnership (WRAP Project No. 178-14).

477

478 **References**

479 Aiken, A. C., Salcedo, D., Cubison, M. J., Huffman, J. A., DeCarlo, P. F., Ulbrich, I.
480 M., Docherty, K. S., Sueper, D., Kimmel, J. R., Worsnop, D. R., Trimborn, A.,
481 Northway, M., Stone, E. A., Schauer, J. J., Volkamer, R. M., Fortner, E., de
482 Foy, B., Wang, J., Laskin, A., Shuthanandan, V., Zheng, J., Zhang, R.,
483 Gaffney, J., Marley, N. A., Paredes-Miranda, G., Arnott, W. P., Molina, L. T.,
484 Sosa, G., and Jimenez, J. L.: Mexico City aerosol analysis during MILAGRO
485 using high resolution aerosol mass spectrometry at the urban supersite (T0) -
486 Part 1: Fine particle composition and organic source apportionment, *Atmos.*
487 *Chem. Phys.*, 9, 6633–6653, doi:10.5194/acp-9-6633-2009, 2009.
488 Allan, J. D., Alfarra, M. R., Bower, K. N., Williams, P. I., Gallagher, M. W., Jimenez,
489 J. L., McDonald, A. G., Nemitz, E., Canagaratna, M. R., Jayne, J. T., Coe, H.,
490 and Worsnop, D. R.: Quantitative sampling using an Aerodyne Aerosol Mass
491 Spectrometer, Part 2: Measurements of fine particulate chemical composition
492 in two UK Cities, *J. Geophys. Res.*, 108, 4091, doi:10.1029/2002JD002359,
493 2003.
494 Alvarado, M. J., Lonsdale C. R., Yokelson R. J., Akagi S. K., Coe H., Craven J. S.,
495 Fischer E. V., McMeeking G. R., Seinfeld J. H., Soni T., Taylor J. W., Weise
496 D. R., and Wold C. E.: Investigating the links between ozone and organic
497 aerosol chemistry in a biomass burning plume from a prescribed fire in
498 California chaparral, *Atmos. Chem. Phys.*, 15, 6667–6668, 2015.
499 Andreae, M. O. and Crutzen, P. J.: Atmospheric aerosols: biogeochemical sources and
500 role in atmospheric chemistry. *Science*, 276, 1052–1058, 1997.
501 Bond, T.C., Streets, D.G., Yarber, K.F., Nelson, S.M., Woo, J.H., and Klimont, Z.: A
502 technology-based global inventory of black and organic carbon emissions
503 from combustion, *J. Geophys. Res.*, 109, doi:10.1029/2003JD003697, 2004.
504 Burtraw, D., Krupnick, A., Mansur, E., Austin, D., and Farrell, D.: Costs and benefits
505 of reducing air pollutants related to acid rain, *Contemp. Econ. Policy*, 16, 379–
506 400, 2007.

507 Carter, W.P.L.: Programs and files implementing the SAPRC-99 mechanism and its
508 associated emissions processing procedures for Models-3 and other regional
509 models, www.cert.ucr.edu/~carter/SAPRC99/, 2000.

510 Crippa, M., Canonaco, F., Lanz, V. A., Äijälä, M., Allan, J. D., Carbone, S., Capes,
511 G., Dall’Osto, M., Day, D. A., DeCarlo, P. F., Di Marco, C. F., Ehn, M.,
512 Eriksson, A., Freney, E., Hildebrandt Ruiz, L., Hillamo, R., Jimenez, J.-L.,
513 Junninen, H., Kiendler-Scharr, A., Kortelainen, A.-M., Kulmala, M., Mensah,
514 A. A., Mohr, C., Nemitz, E., O’Dowd, C., Ovadnevaite, J., Pandis, S. N.,
515 Petäjä, T., Poulain, L., Saarikoski, S., Sellegrí, K., Swietlicki, E., Tiitta, P.,
516 Worsnop, D. R., Baltensperger, U., and Prévôt, A. S. H.: Organic aerosol
517 components derived from 25 AMS data sets across Europe using a consistent
518 ME-2 based source apportionment approach, *Atmos. Chem. Phys.*, 14, 6159-
519 6176, 2014.

520 Cubison, M. J., Ortega, A. M., Hayes, P. L., Farmer, D. K., Day, D., Lechner, M. J.,
521 Brune, W. H., Apel, E., Diskin, G. S., Fisher, J. A., Fuelberg, H. E., Hecobian,
522 A., Knapp, D. J., Mikoviny, T., Riemer, D., Sachse, G. W., Sessions, W.,
523 Weber, R. J., Weinheimer, A. J., Wisthaler, A., and Jimenez, J. L.: Effects of
524 aging on organic aerosol from open biomass burning smoke in aircraft and
525 laboratory studies, *Atmos. Chem. Phys.*, 11, 12049–12064, 2011.

526 Denier van der Gon, H. A. C., Visschedijk, A., van der Brugh, H., and Droege, R.: A
527 high resolution European emission data base for the year 2005, TNO report
528 TNO-034-UT-2010-01895 RPTML, Utrecht, the Netherlands, 2010.

529 Denier van der Gon, H.A.C., Visschedijk, A., Fountoukis, C., Pandis, S.N.,
530 Bergstrom, R., Simpson, D., and Johansson, C.: Particulate emissions from
531 residential wood combustion in Europe - Revised estimates and an evaluation,
532 *Atmos. Chem. Phys.*, 15, 6503-6519, 2015.

533 Dockery, W. D., C. A. Pope, X. Xu, J. D. Spengler, J. H. Ware, M. E. Fay, Jr., B. G.
534 Ferris, F. E., and Speizer: An association between air pollution and mortality
535 in six U.S. cities, *The New England Journal of Medicine*, 329, 1753-1759,
536 1993.

537 Dockery, D. W., Cunningham J., Damokosh A. I., Neas L. M., Spengler J. D.,
538 Koutrakis P., Ware J. H., Raizenne M., and Speizer F. E.: Health effects of
539 acid aerosols on North America children: Respiratory symptoms,
540 *Environmental Health Perspectives*, 104, 26821-26832, 1996.

541 Donahue, N. M., Robinson, A. L., Stanier, C. O., and Pandis, S. N.: Coupled
542 partitioning, dilution, and chemical aging of semivolatile organics, *Environ.*
543 *Sci. Technol.*, 40, 2635–2643, 2006.

544 EFFIS (European Forest Fire Information System (EFFIS)) Available at:
545 <http://effis.jrc.ec.europa.eu/>.

546 ENVIRON: User’s Guide to the Comprehensive Air Quality Model with Extensions
547 (CAMx), Version 4.02, Report, ENVIRON Int. Corp., Novato, Calif.,
548 available at: <http://www.camx.com>, 2003.

549 Fahey, K. and Pandis, S. N.: Optimizing model performance: variable size resolution
550 in cloud chemistry modelling, *Atmos. Environ.*, 35, 4471–4478, 2001.

551 Fountoukis, C., Racherla, P. N., Denier van der Gon, H. A. C., Polymeneas, P.,
552 Charalampidis, P. E., Pilinis, C., Wiedensohler, A., Dall’Osto, M., O’Dowd,
553 C., and Pandis, S. N.: Evaluation of a three-dimensional chemical transport
554 model (PMCAMx) in the European domain during the EUCAARI May 2008
555 campaign, *Atmos. Chem. Phys.*, 11, 10331–10347, 2011.

556 Fountoukis, C., Butler, T., Lawrence, M. G., Denier van der Gon, H. A. C.,
557 Visschedijk, A. J. H., Charalampidis, P., Pilinis, C., and Pandis, S. N.: Impacts
558 of controlling biomass burning emissions on wintertime carbonaceous aerosol
559 in Europe, *Atmos. Environ.*, 87, 175–182, 2014.

560 Gauderman, W. J., McConnel R., Gilliland F., London S., Thomas D., Avol E., Vora
561 H., Berhane K., Rappaport E. B., Lurmann F., Margolis H. G., and Peters J.:
562 Association between air pollution and lung function growth in southern
563 California children, *American Journal of Respiratory and Critical Care
564 Medicine*, 162, 1383-1390, 2000.

565 Gaydos, T., Koo, B., and Pandis, S. N.: Development and application of an efficient
566 moving sectional approach for the solution of the atmospheric aerosol
567 condensation/evaporation equations, *Atmos. Environ.*, 37, 3303–3316, 2003.

568 Gelencser, A., May, B., Simpson, D., Sanchez-Ochoa, A., Kasper-Giebl, A.,
569 Puxbaum, H., Caseiro, A., Pio, C., and Legrand, M.: Source apportionment of
570 PM_{2.5} organic aerosol over Europe: primary/secondary, natural/anthropogenic,
571 fossil/biogenic origin, *J. Geophys. Res.* 112, D23S04,
572 doi:10.1029/2006JD008094, 2007.

573 Grieshop, A. P., Logue, J. M., Donahue, N. M., and Robinson, A. L.: Laboratory
574 investigation of photochemical oxidation of organic aerosol from wood fires 1:
575 measurement and simulation of organic aerosol evolution, *Atmos. Chem.
576 Phys.*, 9, 1263–1277, doi:10.5194/acp-9-1263-2009, 2009a.

577 Guenther, A., Karl, T., Harley, P., Wiedinmyer, C., Palmer, P. I., and Geron, C.:
578 Estimates of global terrestrial isoprene emissions using MEGAN (Model of
579 Emissions of Gases and Aerosols from Nature), *Atmos. Chem. Phys.*, 6, 3181–
580 3210, 2006.

581 Hennigan, C. J., Sullivan, A. P., Collett, J. L., and Robinson, A. L.: Levoglucosan
582 stability in biomass burning particles exposed to hydroxyl radicals, *Geophys.
583 Res. Lett.*, 37, L09806, doi:10.1029/2010GL043088, 2010.

584 Hennigan, C. J., Miracolo, M. A., Engelhart, G. J., May, A. A., Presto, A. A., Lee, T.,
585 Sullivan, A. P., McMeeking, G. R., Coe, H., Wold, C. E., Hao, W.-M.,
586 Gilman, J. B., Kuster, W. C., de Gouw, J., Schichtel, B. A., J. L. Collett Jr.,
587 Kreidenweis, S. M., and Robinson, A. L.: Chemical and physical
588 transformations of organic aerosol from the photo-oxidation of open biomass
589 burning emissions in an environmental chamber, *Atmos. Chem. Phys.*, 11,
590 7669–7686, 2011.

591 Hildebrandt, L., Donahue, N. M., and Pandis, S. N.: 2009. High formation of
592 secondary organic aerosol from the photo-oxidation of toluene, *Atmos. Chem.
593 Phys.*, 9, 2973–2986.

594 Hildebrandt, L., Engelhart, G. J., Mohr, C., Kostenidou, E., Lanz, V. A., Bougiatioti,
595 A., DeCarlo, P. F., Prevot, A. S. H., Baltensperger, U., Mihalopoulos, N.,
596 Donahue, N. M., and Pandis, S. N.: 2010. Aged organic aerosol in the Eastern
597 Mediterranean: the Finokalia Aerosol Measurement Experiment – 2008.
598 *Atmos. Chem. Phys.*, 10, 4167–4186.

599 Hildemann, L. M., Cass, G. R., and Markowski, G. R.: A dilution stack sampler for
600 collection of organic aerosol emissions – design, characterization and field-
601 tests, *Aeros. Sci. Tech.*, 10, 193–204, 1989.

602 Huffman, J. A., Docherty, K. S., Aiken, A. C., Cubison, M. J., Ulbrich, I. M.,
603 DeCarlo, P. F., Sueper, D., Jayne, J. T., Worsnop, D. R., Ziemann, P. J., and
604 Jimenez, J. L.: Chemicallyresolved aerosol volatility measurements from two
605 megacity field studies, *Atmos. Chem. Phys.*, 9, 7161–7182, 2009a.

606 Huffman, J. A., Docherty, K. S., Mohr, C., Cubison, M. J., Ulbrich, I. M., Ziemann,
607 P. J., Onasch, T. B., and Jimenez, J. L.: Chemically-resolved volatility
608 measurements of organic aerosol from different sources, *Environ. Sci.
609 Technol.*, 43, 5351–5357, 2009b.

610 Jayne, J. T., Leard, D. C., Zhang, X. F., Davidovits, P., Smith, K. A., Kolb, C. E., and
611 Worsnop, D. R.: Development of an aerosol mass spectrometer for size and
612 composition analysis of submicron particles, *Aerosol Sci. Tech.*, 33, 49–70,
613 2000.

614 Jimenez, J. L., Jayne, J. T., Shi, Q., Kolb, C. E., Worsnop, D. R., Yourshaw, I.,
615 Seinfeld, J. H., Flagan, R. C., Zhang, X., Smith, K. A., Morris, J., and
616 Davidovits, P.: Ambient aerosol sampling using the Aerodyne Aerosol Mass
617 Spectrometer, *J. Geophys. Res.*, 108, 8425, doi:10.1029/2001JD001213, 2003.

618 Jimenez, J. L., Canagaratna, M. R., Donahue, N. M., Prevot, A. S. H., Zhang, Q.,
619 Kroll, J. H., DeCarlo, P. F., Allan, J. D., Coe, H., Ng, N. L., Aiken, A. C.,
620 Docherty, K. D., Ulbrich, I. M., Grieshop, A. P., Robinson, A. L., Duplissy, J.,
621 Smith, J. D., Wilson, K. R., Lanz, V. A., Hueglin, C., Sun, Y. L., Tian, J.,
622 Laaksonen, A., T., R., Rautiainen, J., Vaattovaara, P., Ehn, M., Kulmala, M.,
623 Tomlinson, J. M., Collins, D. R., Cubison, M. J., Dunlea, E. J., Huffman, J.
624 A., Onasch, T. B., Alfarra, M. R., Williams, P. I., Bower, K., Kondo, Y.,
625 Schneider, J., Drewnick, F., Borrmann, S., Weimer, S., Demerjian, K.,
626 Salcedo, D., Cottrell, L., Griffin, R., Takami, A., Miyoshi, T., Hatakeyama, S.,
627 Shimono, A., Sun, J. Y., Zhang, Y. M., Dzepina, K., Kimmel, J. R., Sueper,
628 D., Jayne, J. T., Herndon, S. C., Trimborn, A. M., Williams, L. R., Wood, E.
629 C., Kolb, C. E., Baltensperger, U., and Worsnop, D. R.: Evolution of organic
630 aerosol in the atmosphere, *Science*, 326, 1525–1529, 2009.

631 Kanakidou, M., Seinfeld, J. H., Pandis, S. N., Barnes, I., Dentener, F. J., Facchini, M.
632 C., Van Dingenen, R., Ervens, B., Nenes, A., Nielsen, C. J., Swietlicki, E.,
633 Putaud, J. P., Balkanski, Y., Fuzzi, S., Horth, J., Moortgat, G. K.,
634 Winterhalter, R., Myhre, C. E. L., Tsigaridis, K., Vignati, E., Stephanou, E.
635 G., and Wilson, J.: Organic aerosol and global climate modelling: a review,
636 *Atmos. Chem. Phys.*, 5, 1053–1123, 2005.

637 Karydis, V. A., Tsimpidi, A. P., Fountoukis, C., Nenes A., Zavala, M., Lei, W.,
638 Molina, L. T., and Pandis, S. N.: Simulating the fine and coarse inorganic
639 particulate matter concentrations in a polluted megacity, *Atmos. Environ.*, 44,
640 608–620, 2010.

641 Koo, B., Pandis, S. N., and Ansari, A.: Integrated approaches to modeling the organic
642 and inorganic atmospheric aerosol components, *Atmos. Environ.*, 37, 4757–
643 4768, 2003.

644 Kulmala, M., Asmi, A., Lappalainen, H. K., Carslaw, K. S., P. oschl, U.,
645 Baltensperger, U., Hov, Ø., Brenquier, J.-L., Pandis, S. N., Facchini, M. C.,
646 Hansson, H.-C., Wiedensohler, A., and O'Dowd, C. D.: Introduction: European
647 Integrated Project on Aerosol Cloud Climate and Air Quality
648 interactions (EUCAARI) - integrating aerosol research from nano to global
649 scales. *Atmos. Chem. Phys.*, 9, 2825–2841, 2009.

650 Lane, T. E., Donahue, N. M., and Pandis, S. N.: Simulating secondary organic aerosol
651 formation using the volatility basis-set approach in a chemical transport
652 model, *Atmos. Environ.*, 42, 7439–7451, 2008a.

653 Lane, T. E., Donahue, N. M., and Pandis, S. N.: Effect of NO_x on secondary organic
654 aerosol concentrations, *Environ. Sci. Technol.*, 42, 6022–6027, 2008b.

655 Lanz, V. A., Alfarra, M. R., Baltensperger, U., Buchmann, B., Hueglin, C., and
656 Prévôt, A. S. H.: Source apportionment of submicron organic aerosols at an
657 urban site by factor analytical modelling of aerosol mass spectra, *Atmos. Chem. Phys.*, 7, 1503–1522, 2007.

659 Liang, C. K., Pankow J. F., Odum J. R., and Seinfeld J. H.: Gas/particle partitioning
660 of semi-volatile organic compounds to model inorganic, organic, and ambient
661 smog aerosols, *Environ Sci Technol*, 31, 3086–3092, 1997.

662 Lipsky, E. M. and Robinson, A. L.: Effects of dilution on fine particle mass and
663 partitioning of semivolatile organics in diesel exhaust and wood smoke,,
664 *Environ. Sci. Technol.*, 40, 155–162, 2006.

665 May, A. A., Levin, E. J. T., Hennigan, C. J., Riipinen, I., Lee, T., Collett, J. L.,
666 Jimenez, J. L., Kreidenweis, S. M., and Robinson, A. L.: Gas-particle
667 partitioning of primary organic aerosol emissions: 3. Biomass burning, *J. Geophys. Res.*, 118, 11327–11338, 2013.

669 Morgan, W. T., Allan, J. D., Bower, K. N., Highwood, E. J., Liu, D., McMeeking, G.
670 R., Northway, M. J., Williams, P. I., Krejci, R., and Coe, H.: Airborne
671 measurements of the spatial distribution of aerosol chemical composition
672 across Europe and evolution of the organic fraction, *Atmos. Chem. Phys.*, 10,
673 4065–4083, 2010.

674 Morris, R. E., McNally, D. E., Tesche, T. W., Tonnesen, G., Boylan, J. W., and
675 Brewer, P.: Preliminary evaluation of the community multiscale air quality
676 model for 2002 over the southeastern united states, *J. Air Waste Manage.*, 55,
677 1694–1708, 2005.

678 Murphy, B. N. and Pandis, S. N.: Simulating the formation of semivolatile primary
679 and secondary organic aerosol in a regional chemical transport model,
680 *Environ. Sci. Technol.*, 43, 4722–4728, 2009.

681 Murphy, B. N., Donahue, N. M., Robinson, A. L., and Pandis, S. N.: A naming
682 convention for atmospheric organic aerosol, *Atmos. Chem. Phys.*, 14, 5825–
683 5839, 2014.

684 Ng, N. L., Kroll, J. H., Keywood, M. D., Bahreini, R., Varutbangkul, V., Flagan, R.
685 C., and Seinfeld, J. H.: Contribution of first- versus second-generation
686 products to secondary organic aerosols formed in the oxidation of biogenic
687 hydrocarbons, *Environ. Sci. Technol.*, 40, 2283–2297, 2006.

688 Ng, N. L., Canagaratna, M. R., Zhang, Q., Jimenez, J. L., Tian, J., Ulbrich, I. M.,
689 Kroll, J. H., Docherty, K. S., Chhabra, P. S., Bahreini, R., Murphy, S. M.,
690 Seinfeld, J. H., Hildebrandt, L., Donahue, N. M., DeCarlo, P. F., Lanz, V. A.,
691 Prévôt, A. S. H., Dinar, E., Rudich, Y., and Worsnop, D. R.: Organic aerosol
692 components observed in Northern Hemispheric datasets from Aerosol Mass
693 Spectrometry, *Atmos. Chem. Phys.*, 10, 4625–4641, 2010.

694 O'Dowd, C. D., Langmann, B., Varghese, S., Scannell, C., Ceburnis, D., and
695 Facchini, M. C.: A Combined Organic-Inorganic Sea-Spray Source Function,
696 *Geophys. Res. Lett.*, 35, L01801, doi:10.1029/2007GL030331, 2008.

697 Odum, J. R., Hoffman, T., Bowman, F., Collins, D., Flagan, R. C., and Seinfeld, J. H.:
698 Gas/particle partitioning and secondary organic aerosol yields, *Environ. Sci.
699 Technol.*, 30, 2580–2585, 1996.

700 Paatero, P. and Tapper, U.: Positive matrix factorization – a nonnegative factor
701 model with optimal utilization of error-estimates of data values,
702 *Environmetrics*, 5, 111–126, 1994.

703 Pankow, J. F.: Review and comparative-analysis of the theories on partitioning
704 between the gas and aerosol particulate phases in the atmosphere, *Atmos.*
705 *Environ.*, 21, 2275-2283, 1987.

706 Pankow, J. F.: An absorption-model of gas-particle partitioning of organic-
707 compounds in the atmosphere, *Atmos. Environ.*, 28, 185-188, 1994.

708 Presto, A. A. and Donahue, N. M.: Investigation of α -pinene + ozone secondary
709 organic aerosol formation at low total aerosol mass, *Environ. Sci. Technol.*,
710 40, 3536-3543, 2006.

711 Pope, C. A.: Respiratory hospital admission associated with PM_{10} pollution in Utah,
712 Salt Lake and Cache Valleys, *Archives of Environmental Health*, 7, 46-90,
713 1991.

714 Puxbaum, H., Caseiro, A., Sanchez-Ochoa, A., Kasper-Giebl, A., Claeys, M.,
715 Gelencser, A., Legrand, M., Preunkert, S., and Pio, C.: Levoglucosan levels at
716 background sites in Europe for assessing the impact of biomass combustion on
717 the aerosol European background, *J. Geophys. Res.* 112, D23S05,
718 doi:10.1029/2006JD008114, 2007.

719 Roberts, G. C., Andreae, M. O., Zhou, J., and Artaxo, P.: Cloud condensation nuclei
720 in the Amazon Basin: "Marine" conditions over a continent?, *Geophys. Res.*
721 *Lett.*, 28, 2807-2810, 2001.

722 Robinson, A. L., Donahue, N. M., Shrivastava, M. K., Weitkamp, E. A., Sage, A. M.,
723 Grieshop, A. P., Lane, T. E., Pierce, J. R., and Pandis, S. N.: Rethinking
724 organic aerosol: semivolatile emissions and photochemical aging, *Science*,
725 315, 1259-1262, 2007.

726 Roth, C. M., Goss K. U., and Schwarzenbach R. P.: Sorption of a diverse set of
727 organic vapors to diesel soot and road tunnel aerosols, *Environ Sci Technol*,
728 39, 6632-6637, 2005.

729 Schwartz, J., Dockery D. W., and Neas L. M.: Is daily mortality associated
730 specifically with fine particles?, *J. Air Waste Manag. Assoc.*, 46, 927-939,
731 1996.

732 Seinfeld, J. H. and Pandis, S. N.: *Atmospheric Chemistry and Physics: From Air*
733 *Pollution to Global Change*, second ed. J. Wiley and Sons, New York, 2006.

734 Shrivastava, M. K., Lipsky, E. M., Stanier, C. O., and Robinson, A. L.: Modeling
735 semivolatile organic aerosol mass emissions from combustion systems.
736 *Environ. Sci. Technol.*, 40, 2671-2677, 2006.

737 Shrivastava, M. K., Lane, T. E., Donahue, N. M., Pandis, S.N., and Robinson, A. L.:
738 Effects of gas-particle partitioning and aging of primary emissions on urban
739 and regional organic aerosol concentrations, *J. Geophys. Res.*, 113, D18301,
740 doi:10.1029/2007JD009735, 2008.

741 Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M., Wang, W.,
742 and Powers, J. G.: A Description of the Advanced Research WRF Version 2.
743 NCAR Technical Note (<http://www.mmm.ucar.edu/wrf/users/docs/arwv2.pdf>),
744 2005.

745 Sofiev, M., Vankevich, R., Lanne, M., Koskinen, J., and Kukkonen, J.: On integration
746 of a Fire Assimilation System and a chemical transport model for near-real-
747 time monitoring of the impact of wild-land fires on atmospheric composition
748 and air quality, *Modelling, Monitoring and Management of Forest Fires*, Wit
749 *Trans. Ecol. Envir.*, 119, 343-351, 2008a.

750 Sofiev, M., Lanne, M., Vankevich, R., Prank, M., Karppinen, A., and Kukkonen, J.:
751 Impact of wild-land fires on European air quality in 2006-2008, *Modelling*,

752 Monitoring and Management of Forest Fires, *Wit Trans. Ecol. Envir.*, 119,
753 353–361, 2008b.

754 Stanier, C. O., Donahue, N. M., and Pandis, S. N.: Parameterization of secondary
755 organic aerosol mass fraction from smog chamber data, *Atmos. Environ.*, 42,
756 2276–2299, 2008.

757 Strader, R., Lurmann, F., and Pandis, S. N.: Evaluation of secondary organic aerosol
758 formation in winter, *Atmos. Environ.*, 33, 4849–4863, 1999.

759 Takegawa, N., Miyazaki, Y., Kondo, Y., Komazaki, Y., Miyakawa, T., Jimenez, J. L.,
760 Jayne, J. T., Worsnop, D. R., Allan, J., and Weber, R. J.: Characterization of
761 an Aerodyne Aerosol Mass Spectrometer (AMS): Intercomparison with other
762 aerosol instruments, *Aeros. Sci. Tech.*, 39, 760–770, 2005.

763 Tsimpidi, A. P., Karydis, V. A., Zavala, M., Lei, W., Molina, L., Ulbrich, I. M.,
764 Jimenez, J. L., and Pandis, S. N.: Evaluation of the volatility basis-set
765 approach for the simulation of organic aerosol formation in the Mexico City
766 metropolitan area, *Atmos. Chem. Phys.*, 10, 525–546, 2010.

767 Ulbrich, I. M., Canagaratna, M. R., Zhang, Q., Worsnop, D. R., and Jimenez, J. L.:
768 Interpretation of organic components from Positive Matrix Factorization of
769 aerosol mass spectrometric data, *Atmos. Chem. Phys.*, 9, 2891–2918, 2009.

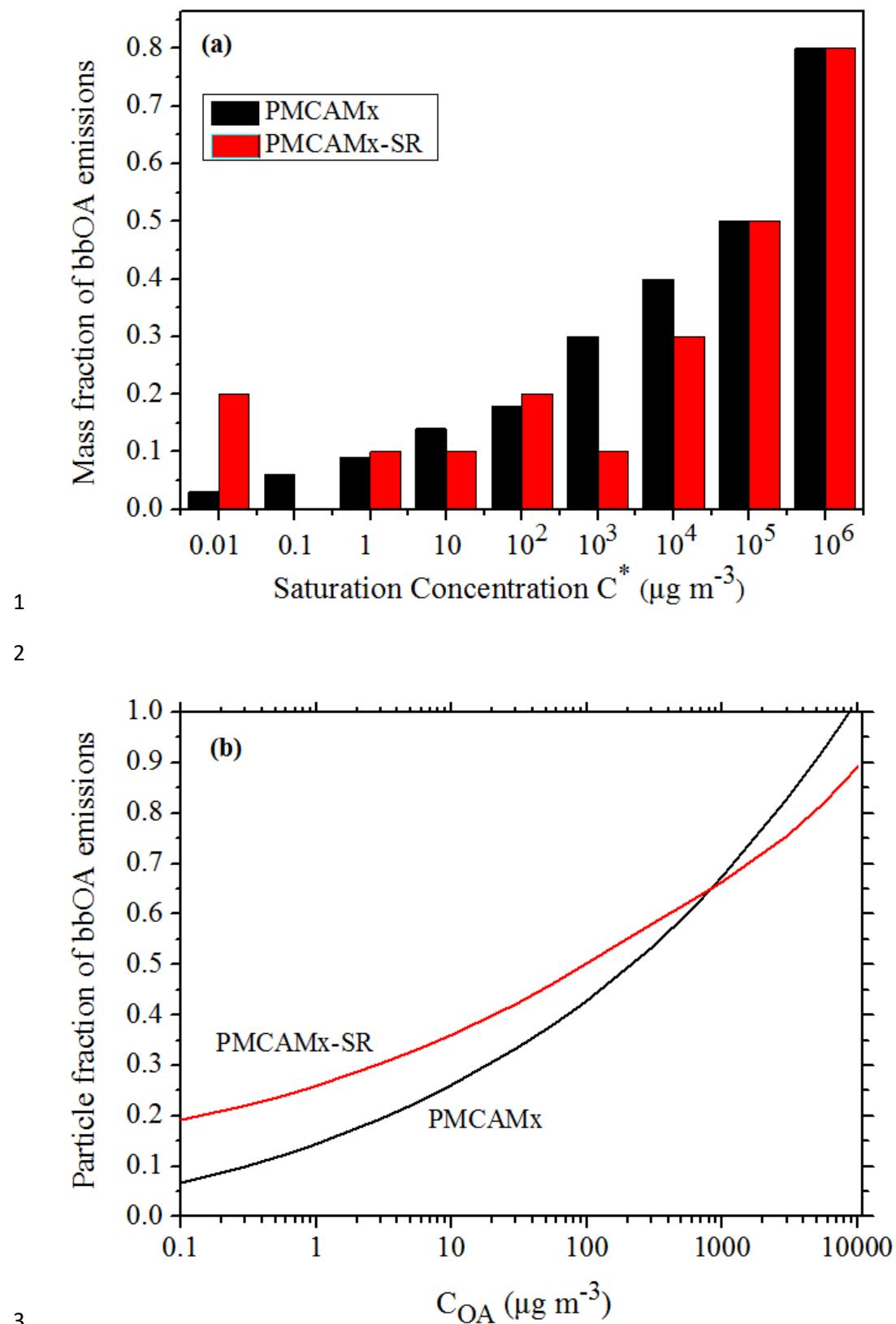
770 Visschedijk, A. J. H., Zandveld, P., and Denier van der Gon, H. A. C.: TNO Report
771 2007 A-R0233/B: A high resolution gridded European emission database for
772 the EU integrated project GEMS, The Netherlands, Organization for Applied
773 Scientific Research, 2007.

774 Wang, Z., Hopke P. K., Ahmadi G., Cheng Y. S., and Baron P. A.: Fibrous particle
775 deposition in human nasal passage: The influence of particle length, flow rate,
776 and geometry of nasal airway, *J. Aerosol Sci.*, 39, 1040–1054, 2008.

777 Zhang, Q., Canagaratna, M. C., Jayne, J. T., Worsnop, D. R., and Jimenez, J. L.: Time
778 and size-resolved chemical composition of submicron particles in Pittsburgh
779 Implications for aerosol sources and processes, *J. Geophys. Res.*, 110,
780 D07S09, doi:10.1029/2004JD004649, 2005.

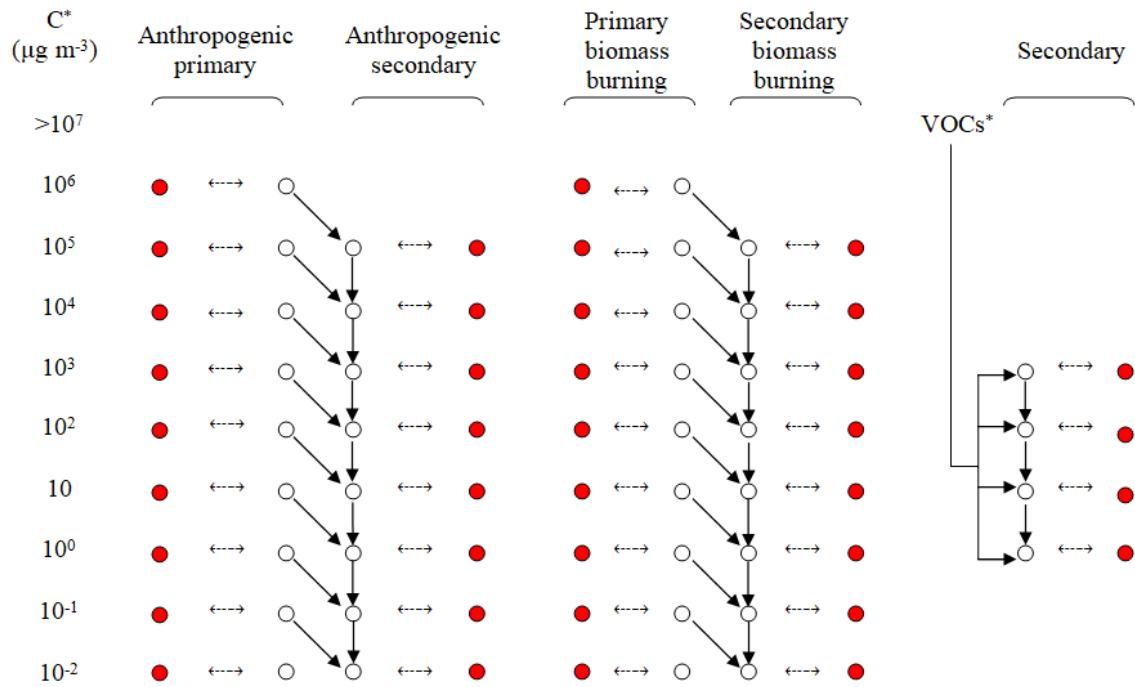
781 Zhang, Q., Jimenez, J. L., Canagaratna, M. R., Allan, J. D., Coe, H., Ulbrich, I.,
782 Alfarra, M. R., Takami, A., Middlebrook, A. M., Sun, Y. L., Dzepina, K.,
783 Dunlea, E., Docherty, K., De-Carlo, P., Salcedo, D., Onasch, T. B., Jayne, J.
784 T., Miyoshi, T., Shimono, A., Hatakeyama, N., Takegawa, N., Kondo, Y.,
785 Schneider, J., Drewnick, F., Weimer, S., Demerjian, K. L., Williams, P. I.,
786 Bower, K. N., Bahreini, R., Cottrell, L., Griffin, R. J., Rautianen, J., and
787 Worsnop, D. R.: Ubiquity and dominance of oxygenated species in organic
788 aerosols in anthropogenically-influenced Northern Hemisphere midlatitudes.
789 *Geophys. Res. Lett.*, 34, L13801, doi:10.1029/2007GL029979, 2007.

1 **Table 1.** Parameters used to simulate POA and bbPOA emissions in PMCAMx-SR.


2

C^* at 298 K ($\mu\text{g m}^{-3}$)	10^{-2}	10^{-1}	10^0	10^1	10^2	10^3	10^4	10^5	10^6
POA									
Fraction of POA emissions ¹									
	0.03	0.06	0.09	0.14	0.18	0.30	0.40	0.50	0.80
Effective Vaporization Enthalpy (kJ mol ⁻¹)									
	112	106	100	94	88	82	76	70	64
bbPOA (Base Case)									
Fraction of POA emissions									
	0.2	0.0	0.1	0.1	0.2	0.1	0.3	0.50	0.80
Effective Vaporization Enthalpy (kJ mol ⁻¹)									
	93	89	85	81	77	73	69	70	64
bbPOA (Sensitivity Test)									
Fraction of POA emissions									
	0.2	0.0	0.1	0.1	0.2	0.1	0.3	-	-
Effective Vaporization Enthalpy (kJ mol ⁻¹)									
	93	89	85	81	77	73	69	-	-

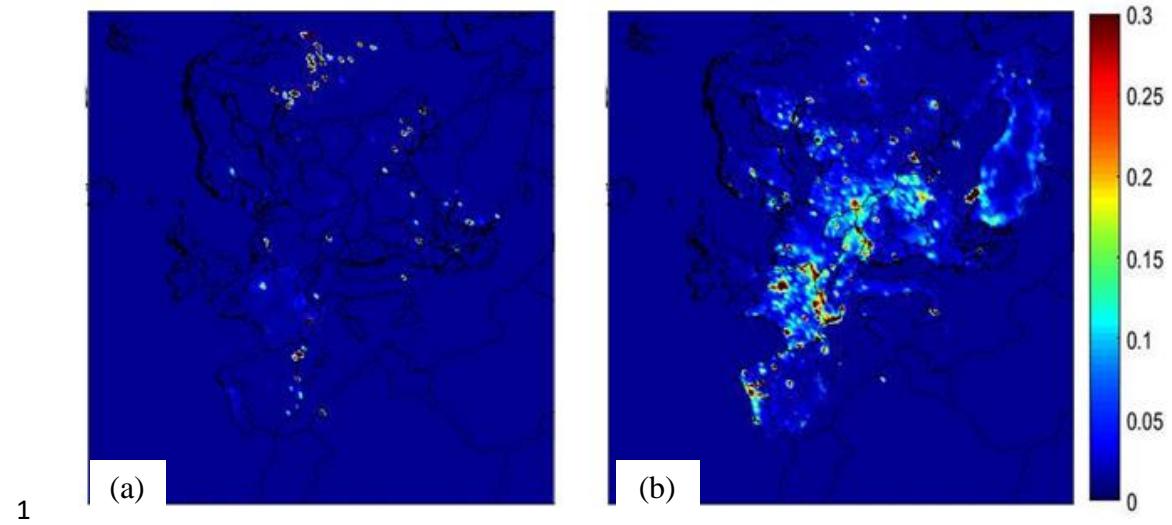
¹This is the traditional non-volatile POA included in inventories used for regulatory purposes. The sum of all fractions can exceed unity because a large fraction of the IVOCs is not included in these traditional particle emission inventories.


1 **Table 2.** Organic compound emission rates (in tn d⁻¹) over the modeling domain
2 during the simulated periods.

Emission rate (tn d ⁻¹)	
1 – 29 May 2008	
Wildfires	1,700
Residential	700
Agriculture - waste burning	300
25 February – 22 March 2009	
Wildfires	3,000
Residential	6,000
Agriculture - waste burning	320

4 **Figure 1.** (a) Volatility distribution of bbOA in PMCAMx and PMCAMx-SR. (b)
5 Particle fractions of bbOA emissions as a function of OA concentration at 298 K.

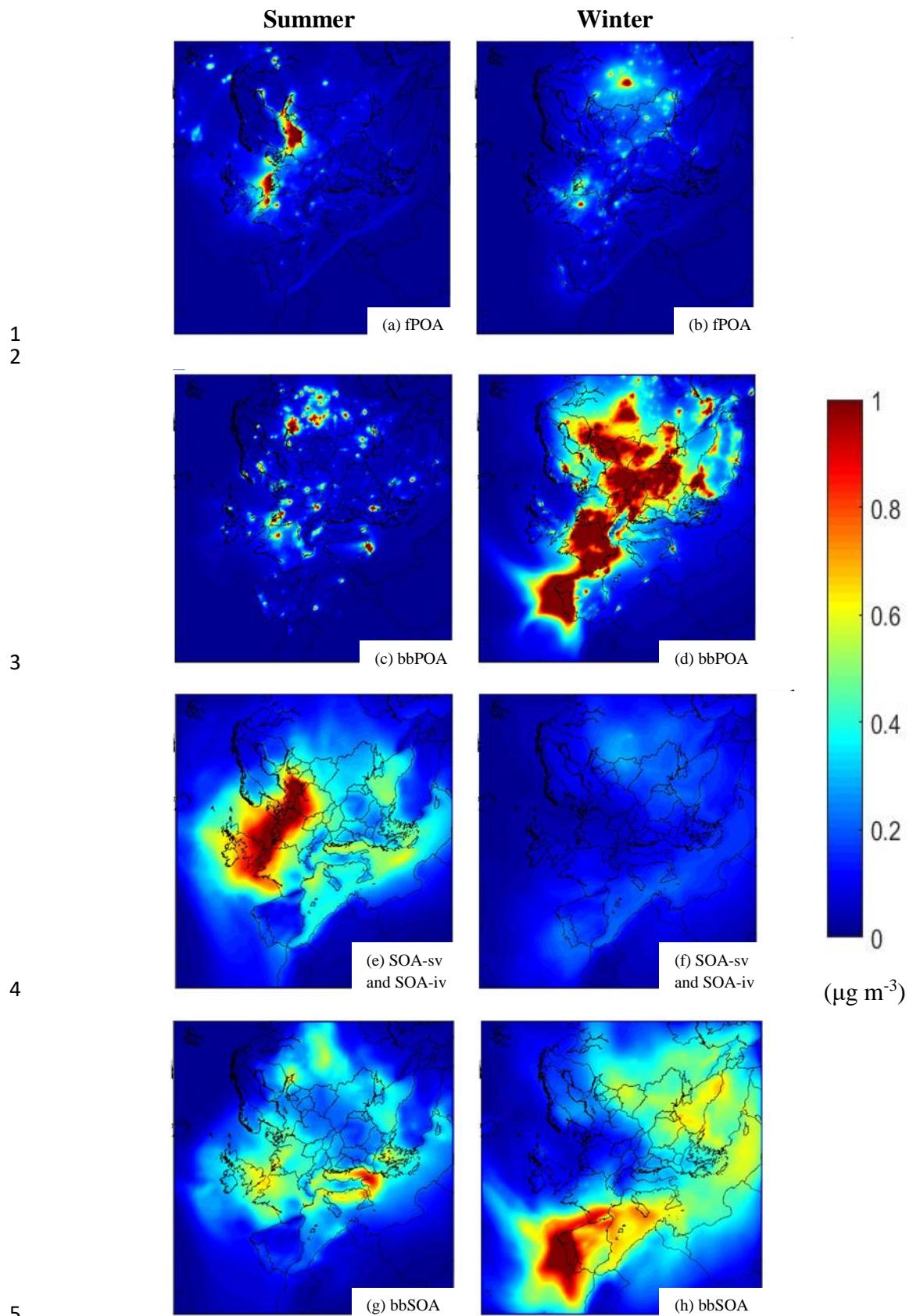
6

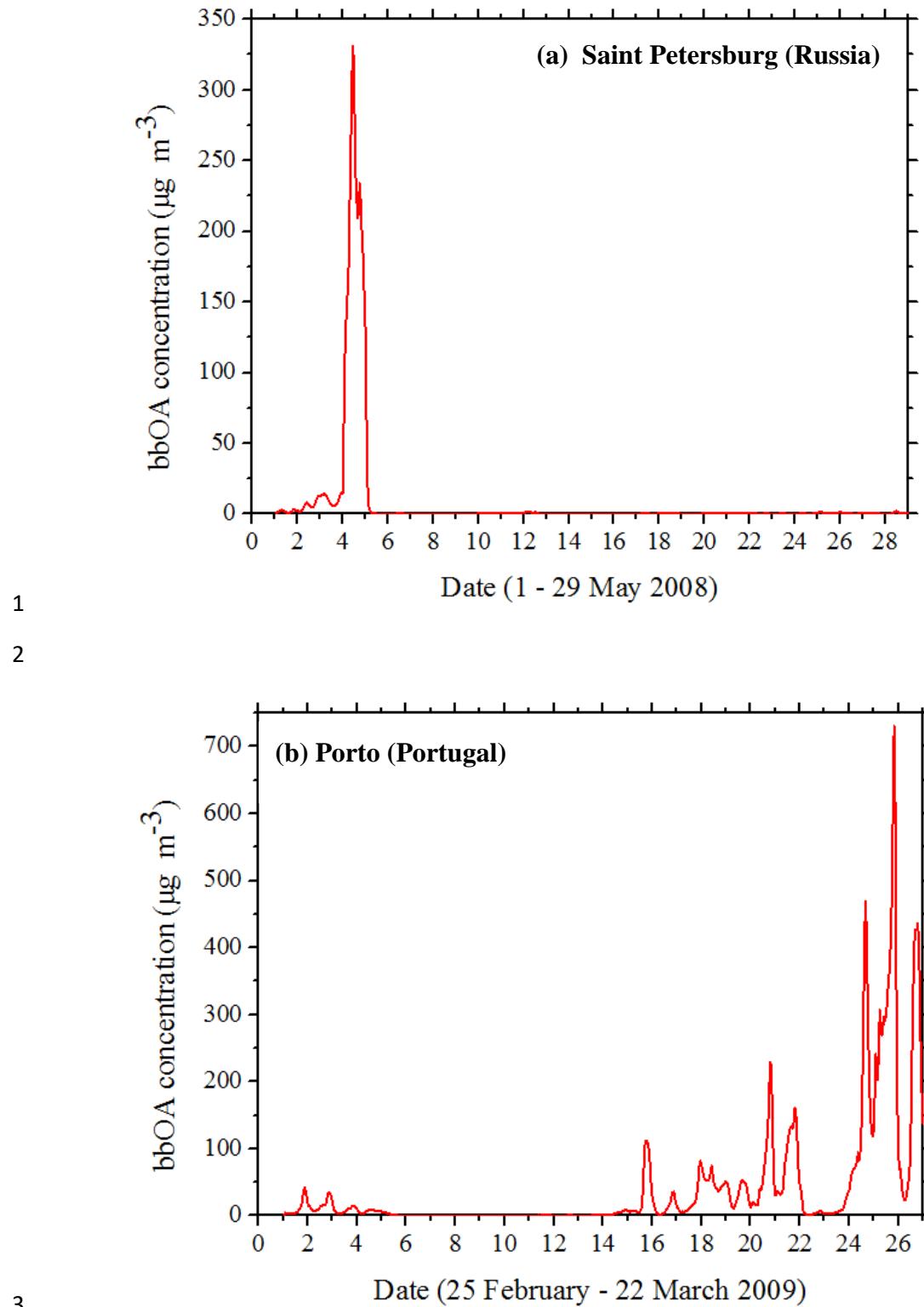

1 *For this application it is assumed that SOA formed by biogenic VOCs does not participate in aging reactions.

2

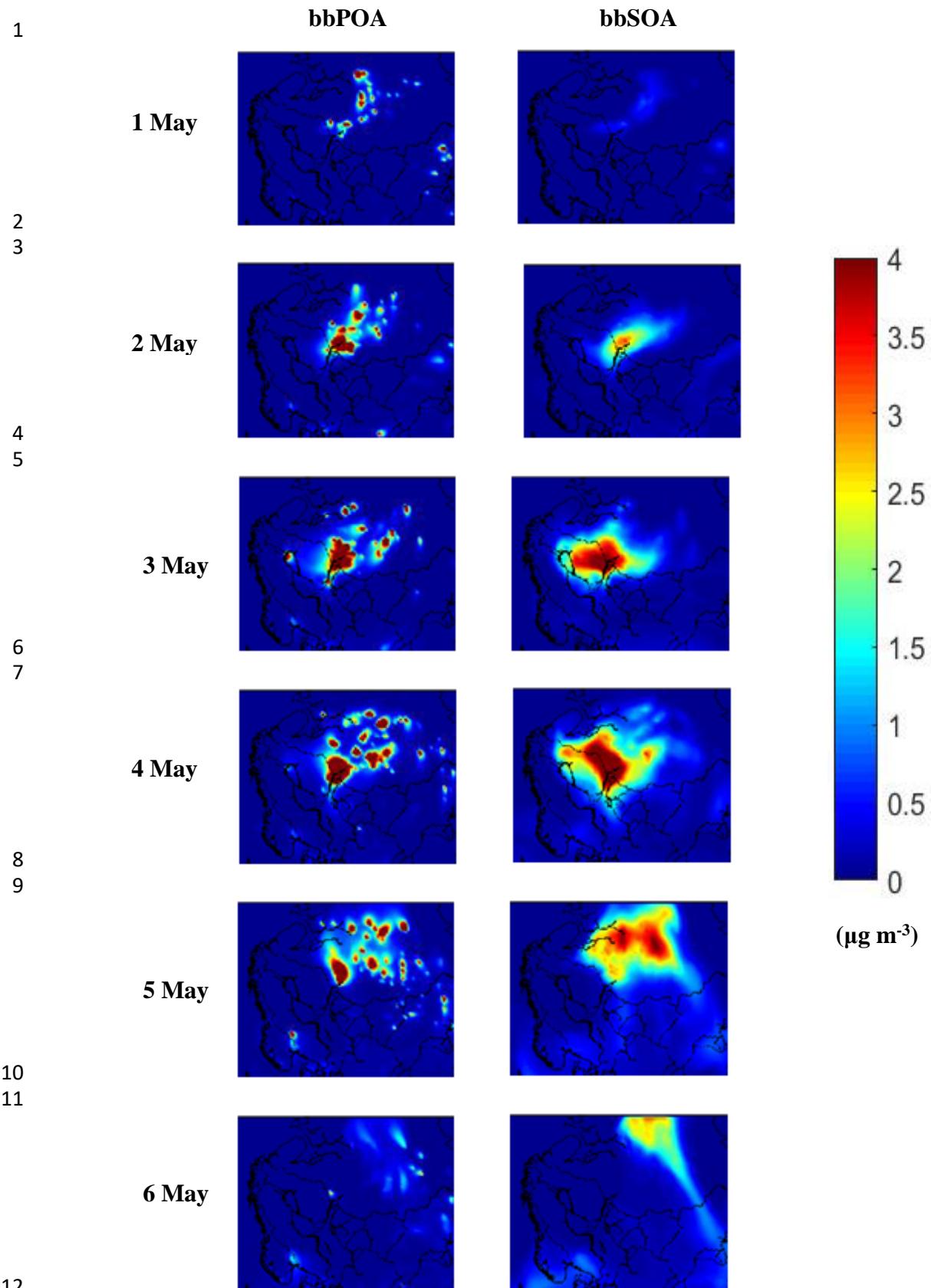
- 3 ● Particle phase
- 4 ○ Gas phase
- 5 ↔ Gas – particle partitioning
- 6 → Aging reaction

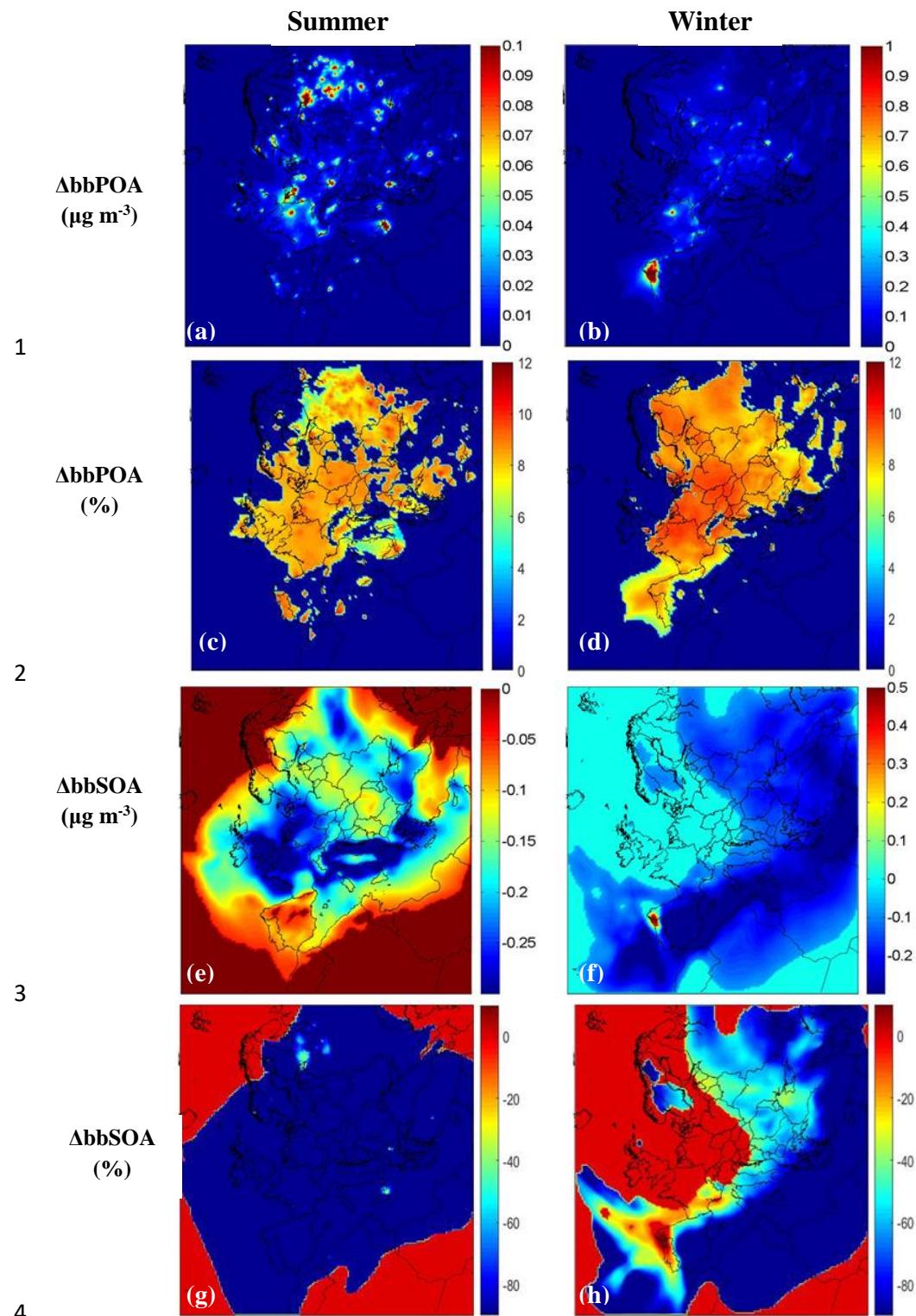
7

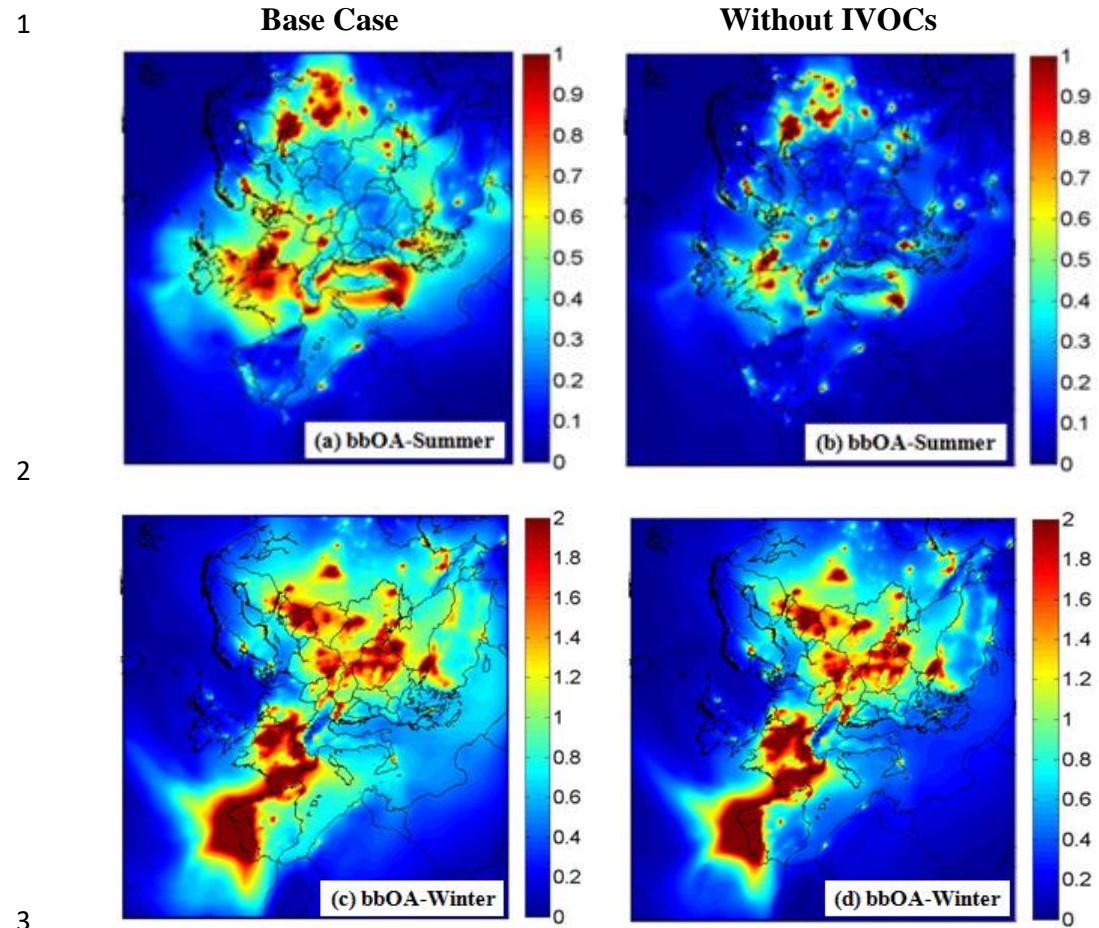

4 **Figure 2.** Schematic of the organic aerosol VBS-based modeling scheme in
5 PMCAMx-SR.

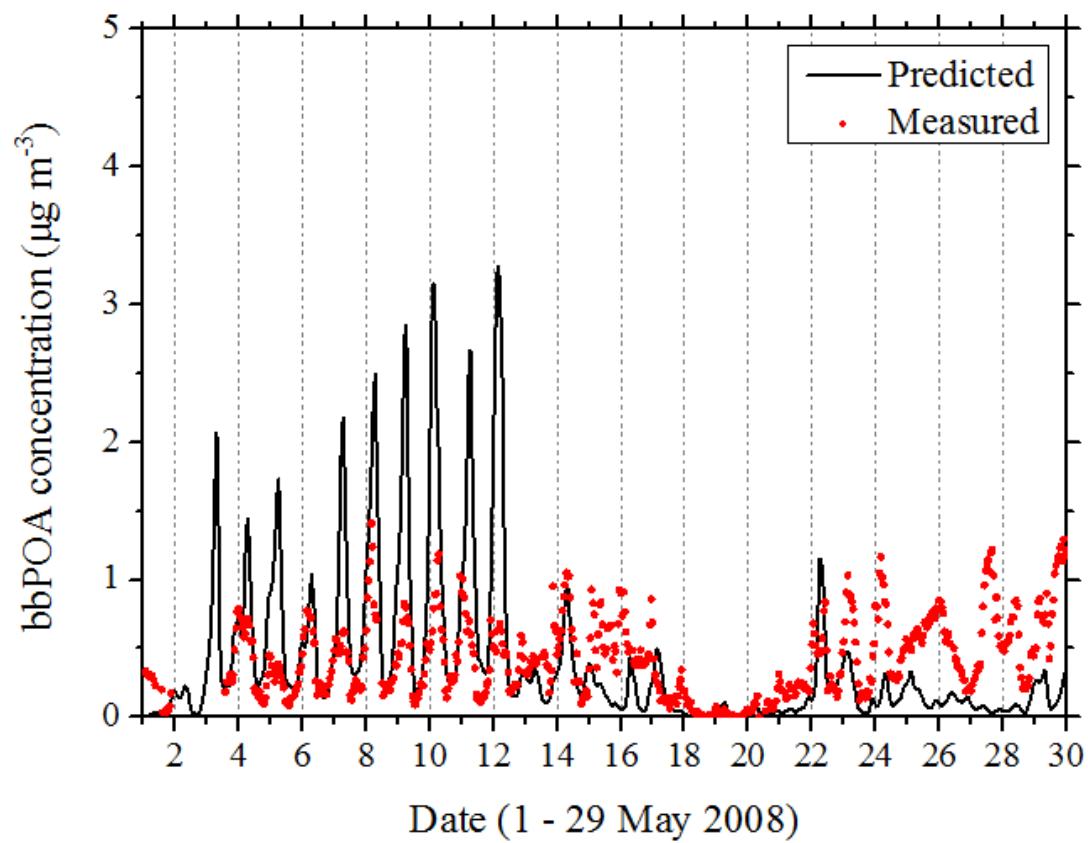

1

2


3 **Figure 3.** Spatial distribution of average biomass burning OA emission rates (kg d^{-1}
4 km^{-2}) for the two simulation periods: (a) 1-29 May 2008 and (b) 25 February-22
5 March 2009.


Figure 4. PMCAMx-SR predicted base case ground – level concentrations of PM_{2.5} (a-b) fPOA, (c-d) bbPOA, (e-f) SOA and (g-h) bbSOA, during the modeled summer and winter periods.


4 **Figure 5.** Timeseries of PM_{2.5} bbOA concentrations in (a) Saint Petersburg in Russia
 5 during 1-29 May 2008 and in (b) Porto in Portugal during 25 February-22 March
 6 2009.


Figure 6. PMCAMx-SR predicted base case ground – level concentrations of $\text{PM}_{2.5}$ bbPOA and bbSOA, during 1 – 6 May 2008 in the Scandinavian Peninsula and Russia.

5 **Figure 7.** Average predicted absolute ($\mu\text{g m}^{-3}$) difference (Sensitivity Case – Base
6 Case) of ground-level $\text{PM}_{2.5}$ (a-b) bbPOA and (e-f) bbSOA concentrations from
7 PMCAMx-SR base case and sensitivity simulations during the modeled periods. Also
8 shown the corresponding relative (%) change of ground-level $\text{PM}_{2.5}$ (c-d) bbPOA and
9 (g-h) bbSOA concentrations during the modeled periods. Positive values indicate that
10 PMCAMx-SR sensitivity run predicts higher concentrations.

5 **Figure 8.** Predicted ground-level concentrations of $\text{PM}_{2.5}$ total bbOA ($\mu\text{g m}^{-3}$) during
6 the modeled summer (a-b) and the modeled winter (c-d) period. The figures to the left
7 are for the PMCAMx-SR base case simulation while those to the right for the low-
8 IVOC sensitivity test.

1

2 **Figure 9.** Comparison of hourly bbPOA concentrations predicted by PMCAMx-SR
3 with values estimated by PMF analysis of the AMS data in Cabauw during 1-29 May
4 2008.