Supplement

According to the characteristics of the SVISSR sensor onboard the FY-2C, the SWA modified by Hu et al. (2018) is utilized, and the T_s can be derived as:

$$T_{s} = a_{0} + a_{1}w + [a_{2} + (a_{3} + a_{4}w\cos\theta)(1 - \varepsilon_{s}) - (a_{5} + a_{6}w)\Delta\varepsilon]\frac{T_{i} + T_{j}}{2} + [a_{7} + a_{8}w + (a_{9} + a_{10}w)(1 - \varepsilon_{s}) - (a_{11} + a_{12}w)\Delta\varepsilon]\frac{T_{i} - T_{j}}{2},$$
(S1)

with $\varepsilon_s = (\varepsilon_i + \varepsilon_j)/2$ and $\Delta \varepsilon = \varepsilon_i - \varepsilon_j$, where T_i and T_j are the brightness temperature (BT) surveyed in channel *i* and *j* centered at 11.0 µm and 12.0 µm, respectively; ε_i and ε_j are the land surface emissivities (LSEs) of channel *i* and channel *j*, respectively; ε is the average emissivity; $\Delta \varepsilon$ the emissivity difference of channel *i* and *j*; *w* is the atmosphere WVC; θ is the viewing zenith angle (VZA); and a_0-a_{12} are the model coefficients.

The LSEs of channels 1 and 2 of the FY-2C can be replaced by the LSEs of bands 31 and 32 of MOD11C1 V41 product.

$$\varepsilon_{FIR1} = -0.0611 + 1.0614\varepsilon_{31},\tag{S2}$$

$$\varepsilon_{FIR2} = -0.0210 + 1.0199\varepsilon_{32},\tag{S3}$$

where ε_{FIR1} and ε_{FIR2} are the LSEs of channels FIR1 and FIR2 of the SVISSR, while ε_{32} and ε_{31} the LSEs of the MODIS bands 32 and 31, respectively.

Brutsaert (1975) proposed a parameterization ε_a estimation method based on ground measurements, which is written as follows.

$$\varepsilon_a = \lambda (e_a/T_a)^k \tag{S4}$$

where σ is the Stefan-Boltzmann constant and ε_a is the air emissivity. The suggested values of λ and k from Brutsaert are 1.24 and 1/7, respectively.

The detailed solutions for other variables in Table S1 can be found in Su et al. (2002).

Symbols	Variable Name	Units
R _n	Net radiation flux	$W \cdot m^{-2}$
H _s	Sensible heat flux	$W \cdot m^{-2}$
LE	Latent heat flux	$W \cdot m^{-2}$
G ₀	Soil heat flux	$W \cdot m^{-2}$
R _{swd}	Downwelling solar radiation at the land surface	$W \cdot m^{-2}$
α	Broadband albedo	
ε _a	Surface air emissivity	
ε _s	Land surface emissivity	
σ	Stefan-Boltzmann constant	$W \cdot m^{-2} \cdot K^{-4}$
T _a	Surface air temperature	К
T _s	Land surface temperature	К
α ₁	Reflectance of blue band	
α2	Reflectance of red band	
α ₃	Reflectance of near infrared band	
α_4	Reflectance of short wave infrared band	
Γ _s	Ratio of soil heat flux and net radiation flux for	
	bare soil	
Γ _c	Ratio of soil heat flux and net radiation flux for	
	full vegetation cover	
f _c	Vegetation coverage	
NDVI	Normalized difference vegetation index	
L	Obukhov length	m
c_p	Specific heat at constant pressure	$J \cdot kg \cdot K^{-1}$
θ_{v}	Surface potential virtual air temperature	К
u *	Friction velocity	$m \cdot s^{-1}$
k	Von Karman constant	
g	Acceleration due to gravity	$m \cdot s^{-2}$
u	Mean wind speed at reference height	$m \cdot s^{-1}$
Z	Reference height	m
<i>d</i> ₀	Zero plane displacement height	m
Z _{0m}	Roughness height for momentum transfer	m
Z _{0h}	Roughness height for heat transfer	m
Ψ_m	Stability correction function for momentum heat	
	transfer	
Ψ_h	Stability correction function for sensible heat	
	transfer	
θ_0	Potential temperature at the surface	К
θ_a	Potential temperature at reference height	К

Table S1: Glossary of variables used in determination of land surface heat fluxes.