Supporting information

The influence of spatiality on shipping emissions, air quality and potential human exposure in Yangtze River Delta/Shanghai, China

Junlan Feng¹, Yan Zhang^{1,2,3*}, Shanshan Li¹, Jingbo Mao¹, Allison P. Patton⁴, Yuyan Zhou¹, Weichun Ma^{1,3}, Cong Liu⁵, Haidong Kan⁵, Cheng Huang⁶, Jingyu An⁶, Li Li⁶, Yin Shen⁷, Qingyan Fu⁷, Xinning Wang⁷, Juan Liu⁷, Shuxiao Wang⁸, Dian Ding⁸, Jie Cheng⁹, Wangqi Ge⁹, Hong Zhu⁹, Katherine Walker⁴

¹ Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China

² Shanghai Academy of Environmental Sciences, Shanghai 200233, China

³ Shanghai Institute of Eco-Chongming (SIEC), Shanghai 200062, China

⁴ Health Effects Institute, 75 Federal Street, Suite 1400, Boston, MA 02110-1817, USA

⁵ Public Health School, Fudan University, Shanghai 200433, China

⁶ Shanghai Academy of Environmental Science, Shanghai 200233, China

⁷ Shanghai Environmental Monitoring Center, Shanghai 200030, China

⁸ State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China

⁹ Shanghai Urban-rural Construction and Transportation Development Research Institute, Shanghai 200032, China

Correspondence to: Yan Zhan (yan_zhang@fudan.edu.cn)

Summary of contents:

Additional Material and Methods

S1 Estimation of ship emissions

S2 Emission Factors, Low load adjustment multipliers, and Control factors

S3 Calculation of Statistical metrics in the model evaluation

Additional Figures and Tables

1. Figure S1 Nested simulation domains 1 to 4 in this study

2. Table S1 Pollution sources and pollutant types in national-scale non-shipping emission inventories

3. Table S2 Pollution sources and pollutant types in local-scale non-shipping emission inventories

4. Table S3 Inputs for each run of the simulations

5. Table S4 Average and peak contributions from ship emissions in different offshore coastal areas to the land ambient $PM_{2.5}$ concentrations in January and June

Additional Material and Methods

S.1 Estimation of ship emissions

Marine vessel emissions were calculated based on a bottom-up activity-based method.

The main engine load factor, LF_m, was calculated as

 $LF_m = (ActSpeed / MaxSpeed)^3$ (1)

where ActSpeed is the actual speed when ship is cruising and MaxSpeed is the maximum design speed for the ship.

Main engine emissions in grams, E_m, were calculated as

 $E_{m} = P_{m} \times LF_{m} \times LLAM \times T_{m} \times EF_{m} \times FCF_{m} \times CF_{m} \quad (2)$

where P_m is the installed power of ME (kw), LLAM is the low load adjustment multiplier for the main engine, T_m is operation time of the main engine (h), EF_m is the main engine emissions factor (g/kwh), FCF_m is the main engine fuel correction factor, and CF_m is the main engine control factor.

Auxiliary engine emissions in grams, Ea, were calculated as

 $\mathbf{E}_{a} = \mathbf{P}_{a} \times \mathbf{LF}_{a} \times \mathbf{T}_{a} \times \mathbf{EF}_{a} \times \mathbf{CF}_{a} \quad (3)$

where P_a is the installed power of the auxiliary engine (kw), LF_a is auxiliary engine load factors, T_a is operation time of the auxiliary engine (h), EF_a is auxiliary engine emissions factors (g/kwh), and CF_a is auxiliary engine control factors.

Auxiliary boiler emissions in grams, E_b, were calculated as

 $E_{b} = P_{b} \times LF_{b} \times T_{b} \times EF_{b} \times CF_{b}$ (4)

where P_b is the installed power of the auxiliary boiler (kw), LF_b is AB load factors, T_b is operation time of the auxiliary boiler (h), EF_b is auxiliary boiler emissions factors (g/kwh), and CF_b is auxiliary boiler control factors.

The total emissions of the ship in grams, E, was

$$\mathbf{E} = \mathbf{E}_{\mathrm{m}} + \mathbf{E}_{\mathrm{a}} + \mathbf{E}_{\mathrm{b}} \quad (5)$$

For ships available in Lloyd's register (Lloyds, 2009), the following data were derived from the Lloyd's database including: ship name, ship type, date of construction, flag name, revolutions per minute (RPM) of the main engine, speed, maximum design power of the main engine, maximum design power of the auxiliary engines and gross tonnage. For some domestic ships unavailable in Lloyd's database, the main engine power was assumed to be 7000 kw by default, based on the East China Sea-going ships in Lloyd's register (with main engine power mainly ranging from 11000 kw to 14000 kw) and domestic ships from the Chinese Classification Society (CCS) (with main engine power mainly ranging from 4000 kw to 6000 kw).

S.2 Emission Factors, Low load adjustment multipliers, and Control factors

The sulfur content of residual oil was about 2.7 %, and the sulfur content of marine distillate was 0.5 %. The emission factors for SO₂, NO_x, CO, NMVOC_s, PM₁₀, PM_{2.5} come primarily from the data published in Cooper (2004), ICF International (2009), and Goldsworthy and Goldsworthy (2015). Emissions factors for OC and EC were obtained from published data in Agrawal et al. (2008a), Agrawal et al. (2008b), Petzold et al. (2011), and Moldanov á et al. (2013). Table S1 lists emission factors used in the present study.

Emission factors are adjusted for loads below 20 % using tables from studies conducted in other countries (ICF International, 2009; Starcrest Consulting Group, 2009). Because adjustment multipliers were not available for organic carbon (OC) and elemental carbon (EC), these pollutants were assigned the same low load adjustment multiplier (LLAM) as PM in the present study. Table S2 represents LLAMs for main engine emission factors.

For all marine engines over 130 kilowatts (kW) for engines built on or after January 1, 2000, NO_x limits in Annex VI applied. We used a control factor of 0.9024 for main engines and a factor of 0.906 for auxiliary engines to adjust the NO_x emissions. For vessels built after 2010, and thus complying with "IMO Tier 2", we used a main engine control factor of 0.875 and an auxiliary engine control factor of 0.8767 to adjust main engine emissions from ships with emission controls. The control factors were from ICF International (2009).

The detailed emission factors and low load adjustment multipliers and control factors were listed in Fan et al. (2016).

S.3 Calculation of Statistical metrics in the model evaluation

The statistical metrics in the model evaluation include Normalized Mean Bias (NMB), Normalized Mean Error (NME), Root Mean-square Error (RMSE), and Pearson's correlation coefficient (r). The statistical metrics are calculated as follows:

$$NMB = \frac{\sum_{i=1}^{n} (S_i - O_i)}{\sum_{i=1}^{n} O_i} \times 100\%$$
(6)

NME =
$$\frac{\sum_{i=1}^{n} |S_i - O_i|}{\sum_{i=1}^{n} O_i} \times 100\%$$
 (7)

$$RMSE = \sqrt{\frac{\sum_{i=1}^{n} (S_i - O_i)^2}{n}}$$
(8)

$$r = \frac{\sum_{i=1}^{n} (S_i - \bar{S})(O_i - \bar{O})}{\sqrt{\sum_{i=1}^{n} (S_i - \bar{S})^2 \sum_{i=1}^{n} (O_i - \bar{O})^2}}$$
(9)

Where:

 S_i = the daily-average simulated data at a certain monitoring station, day i O_i = the daily-average observation data at a certain monitoring station, day i \overline{S} = the average simulated data at a certain monitoring station of all days

 \overline{O} = the average observation data at a certain monitoring station of all days

n = the total numbers of days of the monitoring stations for which the simulated results are compared with the observed ones

References:

- Agrawal, H., Malloy, Q. G. J., Welch, W. A., Miller, J. W., and Iii, D. R. C.: In-use gaseous and particulate matter emissions from a modern ocean going container vessel, Atmos. Environ., 42, 5504-5510, 10.1016/j.atmosenv.2008.02.053, 2008a.
- Agrawal, H., Welch, W. A., Miller, J. W., and Cocker, D. R.: Emission Measurements from a Crude Oil Tanker at Sea, Environ. Sci. Technol., 42, 7098, 10.1021/es703102y, 2008b.
- Cooper, D.: Methodology for calculating emissions from ships: 1. Update of emission factors, Swedish Methodology for Environmental Data (SMED), 2004.
- Goldsworthy, L., and Goldsworthy, B.: Modelling of ship engine exhaust emissions in ports and extensive coastal waters based on terrestrial AIS data - An Australian case study, Elsevier Science Publishers B. V., 45-60 pp., 2015.
- Moldanov á, J., Fridell, E., Winnes, H., and Holminfridell, S.: Physical and chemical characterisation of PM emissions from two ships operating in European Emission Control Areas, Atmos. Meas. Tech., 6, 3577-3596, 10.5194/amt-6-3577-2013, 2013.
- Petzold, A., Lauer, P., Fritsche, U., Hasselbach, J., Lichtenstern, M., Schlager, H., and Fleischer, F.: Operation of marine diesel engines on biogenic fuels: modification of emissions and resulting climate effects, Environ. Sci. Technol., 45, 10394-10400, 10.1021/es2021439, 2011.
- Starcrest Consulting Group: Port of Los Angeles Inventory of Air Emissions 2008, Technical Report Revision, 2009.

Additional Figures and Tables

Figure S1. Nested simulation domains 1 to 4 in this study

Domain	Pollution source	Pollutant type
Domain 1	Power plant, steel, cement	SO ₂ , NO _x , PM _{2.5} ,
(China) and		PM ₁₀ , CO, NH ₃
Domain 2	Industrial point source	SO ₂ , PM _{2.5} , PM ₁₀
	Industrial combustion, industrial process, domestic fuel	SO ₂ , NO _x , PM _{2.5} ,
	combustion, domestic biomass combustion, on-road traffic,	PM_{10} , VOC_s ,
	non-road traffic, open combustion	CO, NH ₃
	Residential solvent, industrial solvent	VOC _s
	Agriculture, residential and commercial, waste	CO, NH ₃

Table S1 Pollution sources and pollutant types in national-scale non-shipping emission inventories

Table S2 Pollution sources and pollutant types in local-scale non-shipping emission inventories

Domain	Pollution source	Pollutant type	
Domain 3	Power plant, industrial boiler,	SO ₂ , NO _x , PM _{2.5} , PM ₁₀ , CO, NH ₃ ,	
(YRD), and	industrial process, domestic source	VOCs	
Domain 4	On-road traffic	NO_x , $PM_{2.5}$, PM_{10} , CO , NH_3 , VOC_s	
(Shanghai)	Non-road traffic	SO_2 , NO_x , $PM_{2.5}$, PM_{10} , CO , VOC_s	
	Dust	PM _{2.5} , PM ₁₀	
	Agriculture	NH ₃	

Run	Run name	Land-Based Emissions	Shipping and
#			port-related emissions
	Domain 1 (D1), 81-km		
1	D1 baseline	National-scale land-based	National scale shipping
		emission inventory	inventory based on AIS
	Domain 2 (D2), 27-km		
2	D2 baseline	National-scale land-based	National scale shipping
		emission inventory	inventory based on AIS
	Domain 3 (D3), 9-km		
3	D3 baseline	Local YRD land-based	Shipping emission inventory
		emission inventory	based on AIS
4	Remove all coastal ships,	Local YRD land-based	Container trucks and port
	ocean-going ships and	emission inventory	machineries
	inland ships		
5	Remove 12-200Nm	Local YRD land-based	Shipping emissions inside 12
	shipping sources	emission inventory	Nm
6	Remove 24-200Nm	Local YRD land-based	Shipping emissions inside 24
	shipping sources	emission inventory	Nm
7	Remove 48-200nm	Local YRD land-based	Shipping emissions inside 48
	shipping sources	emission inventory	Nm
8	Remove 96-200nm	Local YRD land-based	Shipping emissions inside 96
	shipping sources	emission inventory	Nm
	Domain 4 (D4), 1 km		
10	D4 baseline	Local land-based emission	Local shipping inventory for
		inventory	inland-water ships and coastal
			ships, and container-cargo
			trucks and port terminal
			equipment

Table S3	Inputs	for eacl	h run	of the	simulations
----------	--------	----------	-------	--------	-------------

11	Remove cargo trucks and	Local land-based emission	Inland-water ships, and coastal
	port terminal equipment	inventory	ships
12	Remove inland-water ships	Local land-based emission	Coastal ships, and
	(including international	inventory	container-cargo trucks and port
	ships going on the rivers)		terminal equipment
13	Remove coastal ships	Local land-based emission	Inland-water ships, and
		inventory	container-cargo trucks and port
			terminal equipment

the fund unifold (1)(2,5 concentrations in sundary and sune						
Offshore distance	Average contribution to the		Maximum contribution to the			
	land ambient $PM_{2.5}$ (µg/m ³)		land ambient PM	$M_{2.5} (\mu g/m^3)$		
	January	June	January	June		
Inland and within 12 NM	0.24	0.56	1.62	4.02		
12-24 NM	0.01	0.04	0.05	0.2		
24-48 NM	0.04	0.07	0.11	0.34		
48-96 NM	0.07	0.07	0.14	0.3		
96-200 NM	0.003	0.01	0.02	0.05		

Table S4 Average and peak contributions from ship emissions in different offshore coastal areas to the land ambient $PM_{2.5}$ concentrations in January and June