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Dear Reviewer #1 and Abhay,

We would first like to thank you for your time and effort. Your insightful comments have
significantly improved this paper. The clarity and substance of the manuscript have
been developed, and I have included all recommended changes by the reviewers. The
most significant changes made to the manuscript were the addition of Table summa-
rizing specifics of the microphysics schemes associated with all the model used in this
study and the addition of Fig. 13. Figure 13 applies an additional stratification of the
results based upon the specifics of the cloud microphysics schemes: namely, 1) mod-
els that calculate both cloud ice and cloud water as prognostic cloud variables and 2)
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models that calculate a single mixing ratio of total water and use a temperature depen-
dent partition to determine phase. The result shows indicate that models that treat both
cloud ice and cloud water as prognostic variables produce more ice and more winter
low clouds than models that treat total cloud water as the prognostic variable and use a
temperature dependent partition. This result directly implicates the cloud microphysical
scheme differences as a key driver of the inter-model differences in the simulation of
the Arctic low cloud annual cycle.

Thank you for your comments as they have strengthened the conclusions of this study.

Sincerely

Patrick C. Taylor Research Scientist NASA Langley Research Center Climate Science
Branch

Attached PDF contains the full response with figures.

Reviewer Responses for Referee #1

1. The authors need to show that the results are robust to changes in model groups.
Perhaps 1/3 of the models are very close to a 1:1 line they use to select models. What
happens if you change the grouping of models? Does it change the results?

Thanks. We have tested that slight changes in the model grouping has a small effect
on the results and does not affect our main conclusions. To do so, we created a third
group, containing five models closest to the 1:1 line (hereafter Group 3; Figure 1)
and constructed joint distributions of cloud amount (CA) for this group (these models
are bcc-csm1-1, CMCC-CM, CanESM2, MPI-ESM-MR, and MPI-ESM-LR; 2 Group
1 models and 3 Group 2 models). These models have smaller differences between
average winter and summer CA compared to other models in their respective groups,
thus we wouldn’t expect the joint distributions for this group to resemble either Group
1 or Group 2 explicitly. Below is joint distribution for DJF for Group 3, to be compared
to Fig. 8 in the paper. The table on the right shows average DJF CA for the ensemble,
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Group 1, Group 2, and Group 3. Ensemble Mean Group 1 Group 2 Group 3 Avg. DJF
CA (%) 21.9% 28.3% 18.6% 25.9%

The joint distribution for Group 3 contains features present in the joint distributions
of both Group 1 and 2 as expected, given that Group 3 is made up of models from
each group. For DJF, CA increases with increasing -ïĄů500 for low-medium stability
(similar to Group 2) but with larger average cloud amount (similar to Group 1). Also
similar to Group 1 is the larger CA present at high stability and rising motion. The
average values of CA from the table indicate that Group 1 CA > Group 3 CA > Group
2 CA, as expected for Group 3 given that it contains models from both Group 1 and
2. These examples are given to show that the 1:1 line separating Groups 1 and 2 is
a good measure for group selection- if this were not the case then we might expect
Group 3 joint distributions to resemble either Group 1 or Group 2. Since Group 3 joint
distributions show features from both groups, this is an indication that even the models
closest to the 1:1 still represent the low cloud responses of their respective groups.

2. The authors claim that since their results agree with earlier work, it is fine to use
monthly data. That is not sufficient. They are averaging over regimes that may yield
very different results, and they need to verify with a single model perhaps that monthly
data for joint PDFs for example matches high frequency (daily or higher) data.

To address this concern, joint distributions of low cloud amount binned by LTS and
-ïĄů500 were constructed using daily data (Figure 2)from IPSL-CM5A-LR for winter
(DJF) months and summer (JJA) months for the historical period 1979-2005. Addi-
tionally, eqn (1) from the paper was also calculated using the daily data to confirm
the validity of monthly data. The CMIP5 archive only had daily vertical cloud amount
available for one model, (IPSL-CM5A-LR, the one from Group 1). The results from this
model are presented below:

Equation 1: (LCA) ÌĚ=
∑

_(i, j)LCA(LTS_i,−ωãĂŮ_(500,j)
)*RFO(ãĂŰLTSãĂŮ_i,ãĂŰ-ωãĂŮ_(500,j))ãĂŮ, describing the weighted sum of low
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cloud amount over LTS and -ïĄů500 from each i,j bin where LCA(ãĂŰLTSãĂŮ_i,ãĂŰ-
ωãĂŮ_(500,j) ) is the low cloud amount as a function of LTS and -ïĄů500 and
RFO(ãĂŰLTSãĂŮ_i,ãĂŰ-ωãĂŮ_(500,j)) is the relative frequency of occurrence of
each LTS and -ïĄů500 bin. Applying (1) to daily data from IPSL-CM5A-LR reproduces
the domain-averaged LCA with the same accuracy as shown by monthly data in Table
2.

IPSL-CM5A-LR DJF domain-averaged LCA: 25.95% IPSL-CM5A-LR DJF LCA from
Eq. (1): 25.91% IPSL-CM5A-LR JJA domain-averaged LCA: 16.6% IPSL-CM5A-LR
JJA LCA from Eq. (1): 16.5%

Joint distributions for DJF (left) and JJA (right) low cloud amount binned by LTS and
-ïĄů500 are shown below for IPSL-CM5A-LR constructed from daily data (top row) and
monthly data (bottom row). Joint distributions for JJA look very similar between the
daily and monthly versions: both show a strong gradient in LCA when LTS increases,
and the largest LCA for high stability and rising motion. Additionally, the frequency
of occurrence of LTS/-ïĄů500 regimes is similar when using either daily or monthly
data. One difference between the JJA joint distributions is the presence of highly-stable
regimes captured in the daily data (LTS > 25) that are not present in the monthly. How-
ever, these highly-stable regimes occur very infrequently (less than the 0.1% frequency
of occurrence contour). Differences in DJF joint distributions are larger than for JJA.
For low stability (LTS < 12), both daily and monthly distributions show LCA dependent
on LTS with little dependence on -ïĄů500. For medium stability (12 < LTS < 26), both
show similar amounts of low cloud (particularly in the most frequent regimes) but the
daily data shows a slight gradient of larger LCA with increasing -ïĄů500 (this matches
with the monthly joint distribution for Group 1 (Fig. 8a in the paper)). The largest differ-
ences between daily and monthly data occur for very high stability, as was the case for
JJA. Daily joint distributions show the largest LCA for LTS > 34, particularly with rising
motion. This is an infrequent regime, however, that the monthly distribution does not
capture.
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Overall, we admit that there are some shortcomings that come with using monthly data,
namely the reduced dynamic range. However, we think that the use of monthly data
still provides useful results especially in regimes with most frequent LTS/-ïĄů500 bins,
which is also the most frequent regimes with daily data. The differences between daily
and monthly data do exist, but only occur in the least frequent LTS/-ïĄů500 bins. Lastly,
the vertical profiles of cloud data on daily time scale are not available in many model
outputs. New text was added to the paper (line 162-167) to point out the potential
differences between using daily and monthly model output.

3. The lack of ice fraction is limiting. Analysis shows ice and liquid, with no sense of
what the fraction of ice is. This is related to #2 above.

This is a very helpful suggestion. The production of cloud liquid vs ice is tied to low
cloud amount differences, so we have added analysis to the paper and included joint
distributions of ice condensate fraction (cloud ice water mixing ratio divided by total
cloud condensate mixing ratio) stratified by Ta and RH and LTS and -ïĄů500 (Figs. 11
and 12). Further, an interesting result of this discussed in the paper and below (also
see response to comment #5) is that models with a temperature-dependent phase
partitioning as opposed to treating cloud ice and liquid as prognostic variables simulate
less cloud ice fraction.

4. The authors need to document models better. There needs to be a table of models
with references.

A table of CMIP5 models (Table 1) and corresponding references has been added,
along with a column containing relevant cloud fraction and microphysics schemes used
for each model.

5. In addition, it would be particularly useful to group those models which have ice
supersaturation and look at their results.

When adding the table showing the relevant microphysics parameterizations for each
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model, as suggested by comment #4, we did not find documentation of whether or
not ice supersaturation is allowed for many of the models (though from our reading,
most models do not account for ice supersaturation). We did, however, find a recently
published paper that documented the change in Arctic cloud biases in the ECHAM6
atmospheric model when ice supersaturation was allowed (Kretzschmar et al. 2018,
published in ACP). The authors found a positive cloud cover bias when compared to
CALIPSO due to an overestimation of low-level liquid-containing clouds, and attributed
the bias to cloud microphysics. They were able to improve the phase partition between
cloud liquid and ice by improving the Wegener-Bergeron-Findeisen process, but the
cloud cover bias was only reduced when they allowed for slight supersaturation with
respect to ice. Without having the specific information on which of the models in our
study have ice supersaturation, the findings in Kretzschmar et al. mirror what we see
in our analysis for the models that produce larger low cloud cover. These models
have a much larger ice fraction and while one might expect that this leads to more
precipitation/removal of ice and hence less cloud cover, other microphysical processes
were found to overcompensate for this.

While we did not have complete information on which models allowed supersaturation
w.r.t. ice, we do think it is a good suggestion to try grouping the models based on
differences in the cloud microphysical parameterizations. Below (Fig. 3) are joint distri-
butions in DJF of CA (first row), CLW (second row), CLI (third row), and ice condensate
fraction (ICF, fourth row) for two new groupings of models: 1) calculate both cloud ice
and cloud water as prognostic cloud variables, and 2) calculate a single mixing ratio of
total water and use a temperature dependent partition to determine phase.

The first thing to notice about the above plots is a visualization of the process de-
scribed in the previous paragraph whereby the models possessing higher ice frac-
tion/ice mass actually have more cloud cover rather than less. Second, the models
that calculate a mixing ratio of total water have less ice and more water than those
that calculate both ice and liquid prognostically. For these models, the bounds of the
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temperature-dependent partitions that determine ice vs. liquid vary. In between these
boundary conditions are mixed-phase clouds, and individual model parameterizations
determine the growth of ice via the Wegener-Bergeron-Findeisen process or heteroge-
neous freezing. Since the mixed-phase cloud regime is very common in the Arctic, and
that relative concentrations of liquid and ice in the mixed-phase regime vary strongly
for different model microphysics parameterizations, it is no surprise that the difference
plots for CLW, CLI, and ICF (right column) between these two groupings of models are
very large. The difference in cloud fraction between these groupings is smaller than
that between the two model groups in our paper, indicating that differences in cloud
microphysical schemes is part of the answer as to why the models simulate different
clouds, but not the whole story.

6. There is minimal use of observations and comparison with observations in this work.
It is hard to tell what is right, would like to see more comparisons against observations,
and discussion and conclusions which focus on comparisons with observations. Which
group is more like observations?

We too are interested in knowing which of these models or groups are “correct”. How-
ever, this is a difficult question to answer and thoroughly addressing this question is
beyond the scope of this paper. Our focus in this study is answering the question
‘Why are the models low cloud amount annual cycle so different?’. A detailed obser-
vational comparison study is underway and will be part of a second paper using the
same methodology (joint distribution analysis stratifying cloud amount by atmospheric
state and cloud influencing factors) applied to observations and CALIPSO-CloudSAT
satellite simulator output from available models. We have added a few sentences to
the discussion about the observational comparison (Line 561-567).

Moreover, Referee #2 also indicated an interest in how the results might change if
we used a different reanalysis dataset. To compare against the model output, the
corresponding results based on one observational dataset (C3M) and 2 reanalysis
datasets (MERRA-2 and ERA-Interim) are presented in the bottom panels of Figure 3.
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Specific Comments:

Page 5, L164: I’m not sure I would say that the low cloud differences are spatially
uniform. Differences seem lower over open water than sea ice for example, and largest
differences are over land.

To address the reviewer’s concern, we have calculated the average difference in the low
and high clouds in DJF and JJA seasons between groups G1 and G2, for all gridpoints,
land gridpoints, and ocean gridpoints separately. The results are below:

DJF Low Cloud Differences G1-G2all gridpoints = 12.02% G1-G2land only = 11.20%
G1-G2ocean only = 12.57% DJF High Cloud Differences G1-G2all gridpoints = 6.38%
G1-G2land only = 7.24% G1-G2ocean only = 5.81% JJA Low Cloud Differences G1-
G2all gridpoints = -7.30% G1-G2land only = -6.56% G1-G2ocean only = -7.78% JJA
High Cloud Differences G1-G2all gridpoints = 3.69% G1-G2land only = 3.34% G1-
G2ocean only = 3.92%

From the above, one can see that CA differences between Group 1 and Group 2 are
very similar whether you use all gridpoints, or ocean and land separately. In order
to further quantify the effect of surface type, we have calculated the 95% confidence
intervals for the difference in G1-G2 between land gridpoints vs all gridpoints and ocean
gridpoints vs all gridpoints.

Results are below: DJF Low Cloud Differences G1-G2land only - G1-G2all gridpoints
= 11.20% - 12.02% = -0.82% with a 95% CI of [-0.99, -0.65] G1-G2ocean only - G1-
G2all gridpoints = 12.57% - 12.02% = 0.54% with a 95% CI of [0.39, 0.69] DJF High
Cloud Differences G1-G2land only - G1-G2all gridpoints = 7.24% - 6.38% = 0.86% with
a 95% CI of [0.81, 0.91] G1-G2ocean only - G1-G2all gridpoints = 5.81% - 6.38% =
-0.57% with a 95% CI of [-0.61, -0.53] JJA Low Cloud Differences G1-G2land only - G1-
G2all gridpoints = -6.56% - -7.30% = 0.74% with a 95% CI of [0.6, 0.87] G1-G2ocean
only - G1-G2all gridpoints = -7.78% - -7.30% = -0.49% with a 95% CI of [-0.58, -0.4]
JJA High Cloud Differences G1-G2land only - G1-G2all gridpoints = 3.34% - 3.69% =
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-0.35% with a 95% CI of [-0.4, -0.29] G1-G2ocean only - G1-G2all gridpoints = 3.92%
- 3.69% = 0.23% with a 95% CI of [0.2, 0.26]

In all months for all cloud types, the group difference G1-G2 between all gridpoints
and land gridpoints/all gridpoints and ocean gridpoints is never more than 1% within
the 95% confidence interval, which is much less than the average difference between
Group 1 and Group 2. For this reason, we think it is appropriate to perform our calcu-
lations using all gridpoints. We added a comment about these results to lines 257-259.

Page 6, L191: shouldn’t you do this by season (winter-summer) or at least comment
on differences between winter and summer PDFs. Maybe show a sub set?

We constructed winter (DJF) and summer (JJA) PDFs for different cloud influencing
factors:

DJF: (Figure 4)

And JJA:

While the average values of these quantities/shape of the PDF differ between DJF, JJA,
and annual-mean, the difference between groups 1 and 2 remains consistent across
different seasons: i.e., Group 1 models are relatively drier, have lower stability, larger
ice fraction, and a smaller amount of liquid condensate compared to Group 2. This
point has been added in the new text.

Page 6, L215: why are there vertical stripes here? Is this one model? Does it represent
anything physical? The stripes result from two models, bcc-csm1-1 and NorESM1-
ME, and do not represent anything physical, but are due to differences is the vertical
resolution of these models relative to the others.

Reviewer Responses for Referee #2

1) Let us remind ourselves that we are in the Arctic, the region that has been chroni-
cally problematic not only for models, but also for observations and reanalysis datasets.
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I can’t help but wonder if the conclusions would change if the authors use ERAIn-
terim/ERA5/JMA etc. instead of MERRA-2. Hinging their conclusions drawn from the
stratification analysis (esp LTS, w) only on MERRA 2 is a bit risky.

We agree with you that reanalysis in the Arctic has significant problems, especially
in the lower tropospheric temperature profile. However, we would like to clarify that
the results of our analysis do not hinge on a reanalysis. The stratification analysis is
performed with CMIP5 model output LTS, vertical velocity, and low cloud amount. In
the future observational analysis the reanalysis used must be a prime consideration.
To provide an additional reanalysis perspective, we have now included ERA-Interim in
the analysis of Arctic cloud amount (e.g. Figs. 1 and 2).

2) The parameters like LWP and IWP have the largest uncertainties, no matter if you
analyse reanalysis or observational data. How does this play a role? Also, can all
models explicitly resolve cloud ice and cloud liquid water separately? Or does the
partitioning depend on the temperature profile?

Referee #1 suggested that a table giving more details of the model microphysics
schemes would be helpful, and we agree. We have added a new Table to provide
a short description of cloud microphysics scheme. Many models do calculate cloud
liquid and ice separately, while others calculate a single mixing ratio of total water, and
use a temperature dependent partition to obtain liquid and ice. Both types of schemes
are presented in Group 1 and Group 2, indicating that a model’s specific microphysics
scheme is not solely responsible for the seasonal cycle biases. For example, we may
hypothesize that models that obtain cloud ice and liquid individually rather than a total
condensate more accurately represent Arctic mixed phase clouds, but if these models
also had too coarse a vertical resolution to resolve the supercooled liquid water layer,
we would not see an improvement in the simulation of cloud amount. This is not to
say that the way in which models treat cloud water phase is not important, only that
the complexity of GCMs is such that only one parameterization alone cannot explain
the cloud fraction differences we see. We found Komurcu et al 2014 (“Intercompar-
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isons of the cloud water phase among global climate models”) to be an informative
resource; they studied the response of simulated cloud phase in GCMs to changes in
ice nucleation schemes and found that implementing the same ice nucleation scheme
in all of the models did not reduce the spread in cloud phase. In response to Referee
#1, we grouped the models by those that prognostically calculate both ice and liquid,
and those that calculate a single mixing ratio of total water and use a temperature de-
pendent partitioning to determine cloud ice and liquid and plotted joint distributions of
CA, CLI, CLW, and ice fraction. Please see the discussion on the differences in model
parameterizations above in the response to reviewer #1.

3) Over the Arctic Ocean, what kind of biases in the annual cycles of cloudiness models
show if they are stratified according to sea-ice conditions, for example, permanently
sea-ice covered regions versus completely ice-free regions?

We have plotted seasonal cycles of cloud fraction for three surface types (Fig. 5) to
address this comment: (Land: top left; Ocean: top right; Sea ice: bottom left)

The similarities in seasonal cycle biases between the three surface types include 1)
the largest model spread occurring in winter, and 2) the same models with too few
winter clouds over the entire domain also have too few winter clouds over each sur-
face type (and vice versa for those models with too many winter clouds). The largest
difference between the three surface types is found during summer, where land shows
a smaller cloud fraction than either ocean or sea ice. Additionally, even though the
general pattern of each models’ seasonal cycle is similar across surface types, the
seasonal amplitudes (winter versus summer) are greatest over sea ice and ocean and
damped over land.

4) The differences in the representation of dynamical meteorology among models are
also importing while interpreting the results. For example, do models show similar heat
and moisture transport into the Arctic, which has a strong influence on cloudiness?

This is a very interesting and important question. Previous work (e.g., Morrison et al.
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2012) highlights the important role that moisture advection plays in the maintaining
low-level mixed phase clouds in the Arctic. Moreover, Boisvert et al. (2016) show
the important effect that moisture transport by storms can have on Arctic sea ice and
clouds. However, moisture advection/transport is a metric and process that we think
is inadequately represented and potentially misrepresented by monthly averaged data.
Therefore, we have decided to not include analysis of the influence of dynamics here.
We recommend and will incorporate this comment into our future work, as we agree
with you that atmospheric dynamics and moisture transport is a key consideration here.
Addressing the role of dynamics requires the use of daily model output.

References Boisvert, L.N.; Petty, A.A.; Stroeve, J.C. The Impact of the Extreme Winter
2015/16 Arctic Cyclone on the Barents–Kara Seas. Mon. Weather Rev. 2016, 144,
4279–4287. Komurcu, M., Storelvmo, T., Tan, I., Lohmann, U., Yun, Y., Penner, J.
E., Wang, Y., Liu, X., and Takemura, T. (2014), Intercomparison of the cloud water
phase among global climate models, J. Geophys. Res. Atmos., 119, 3372– 3400,
doi:10.1002/2013JD021119.

Kretzschmar, J., Salzmann, M., Mülmenstädt, J., and Quaas, J.: Arctic cloud cover
bias in ECHAM6 and its sensitivity to cloud microphysics and surface fluxes, Atmos.
Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-1135, in review, 2018.

Morrison, H.; de Boer, G.; Feingold, G.; Harrington, J.; Shupe, M.D.; Sulia, K.
Resilience of persistent Arctic mixed-phase clouds. Nat. Geosci. 2012, 5, 11–17.

Please also note the supplement to this comment:
https://www.atmos-chem-phys-discuss.net/acp-2018-1159/acp-2018-1159-AC1-
supplement.pdf

Interactive comment on Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-1159,
2018.
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Fig. 1. Average winter low cloud fraction within LTS and omega500 regimes for the five models
closest to observations.

C13

Fig. 2. Joint distributions of average low cloud fraction binned by LTS and omega500 using
daily data from the IPSL-CM5A-LR in winter
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Fig. 3. Joint distributions of average low cloud fraction binned by LTS and omega500 for Group
A and Group B
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Fig. 4. Probability distributions of cloud influencing factors in winter and summer

C16



Fig. 5. Seasonal cycle of cloud fraction by surface type (Land: top left; Ocean: top right; Sea
ice: bottom left)
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