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Abstract. Despite significant progress in improving chemical transport models (CTMs), applications of these modeling 

endeavours are still subject to the large and complex model uncertainty. Model Inter-Comparison Study for Asia III (MICS-

Asia III) provides the opportunity to assess the capability and uncertainty of current CTMs in East Asia applications. In this 35 

study, we evaluated the multi-model simulations of nitrogen dioxide (NO2), carbon monoxide (CO) and ammonia (NH3) over 

China under the framework of MICS-Asia III. Compared with MICS-Asia II, modeling results were provided by a larger 

number of independent groups from different countries/regions and covered a longer period of time (one-full year). 

Furthermore, most of these groups used a common emission inventory, common meteorological inputs, and the same modeling 

domain and horizontal resolutions. New observations over North China Plain (NCP) and Peral River Delta (PRD) were also 40 
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available in MICS-Asia III, allowing model evaluations over highly industrialized regions. The results show that most models 

well captured the monthly and spatial patterns of NO2 in NCP though NO2 levels were slightly underestimated. Relatively poor 

performance in NO2 simulations was found in PRD with larger root mean square error and lower spatial correlation coefficients, 

possibly due to the relative coarse model resolutions. All models significantly underpredicted CO concentrations both in NCP 

and PRD, with annual mean concentrations 65.4% and 61.4% underestimated by the ensemble mean respectively. Such large 5 

underestimations suggest that CO emissions might be underestimated in current emission inventory. In contrast to the good 

skills in simulating the monthly variations of NO2 and CO concentrations, all models failed to reproduce the observed monthly 

variations of NH3 concentrations in NCP. Most models mismatched the observed peak in July and showed negative correlation 

coefficients with observations, which may be closely related to the uncertainty in the monthly variations of NH3 emissions and 

the NH3 gas-aerosol partitioning. Finally, inter-comparisons of these model results were conducted to quantify the impacts of 10 

model uncertainty on the simulations of these gases, which are shown increase with the reactivity of species. Models contained 

more uncertainty in the NH3 simulations. This suggests that for some highly active and/or short-lived primary pollutants, like 

NH3, model uncertainty can also take a great part in the forecast uncertainty in addition to the emission uncertainty. Based on 

these results, some recommendations are made for future studies. 

1 Introduction 15 

As the rapid growth in East Asia’s economy with surging energy consumption and emissions, air pollution has become 

an increasingly important scientific topic and political concern in East Asia due to its significant environmental and health 

effects (Lelieveld et al., 2015). Chemical transport models (CTMs), serving as a critical tool both in scientific research and 

policy makings, have been applied into various air quality issues, including air quality prediction, long-range transport of 

atmospheric pollutants, development of emission control strategies and understanding of observed chemical phenomena. 20 

However, challenges still remain in the air quality modeling due to the multi-scale and non-linear nature of the complex 

atmospheric processes (Carmichael et al., 2008). Air quality modeling still suffers from large uncertainties related to missing 

or poorly parameterized physical and chemical processes, inaccurate and/or incomplete emission inventories as well as poorly 

represented initial and boundary conditions (Carmichael et al., 2008). Understanding such uncertainties and their impacts on 

air quality modeling is of great importance in assessing the robustness of models for their applications in scientific research 25 

and operational use. 

There are specific techniques to assess these uncertainties. Monte Carlo simulations, based on different values of model 

parameters or input fields sampled from a predefined probability density function (PDF), can provide an approximation to the 

PDF of possible model output and serves as an excellent characterization of the uncertainties of simulations (Hanna et al., 

2001). However, this method is more suited to deal with the uncertainty related to the continuous variables, such as input data 30 

or parameters in parameterization. The ensemble method, based on a set of different models, is an alternative approach to 

accounting for the range of uncertainties (Galmarini et al., 2004;Mallet and Sportisse, 2006).In Europe and North America, 
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the Air Quality Model Evaluation International Initiative (AQMEII) has been implemented to investigate the model 

uncertainties of their regional-scale model predictions (Rao et al., 2011). The Model Inter-Comparison Study for Asia (MICS-

Asia) provides the opportunity to assess the model performances and uncertainties in East Asia applications. The first Phase 

of MICS-Asia (MICS-Asia I) was initiated in 1998 and carried out during period 1998–2002, mainly focusing on the long-

range transport and depositions of sulfur in Asia (Carmichael et al., 2002). In 2003, the second phase (MICS-Asia II) was 5 

initiated and took account of more species related to the regional health and ecosystem protection, including nitrogen 

compounds, O3 and aerosols. Launched in 2010, MICS-Asia III greatly expanded the study scope by covering three individual 

and interrelated topics: (1) evaluate strength and weaknesses of current multi-scale air quality models and provide techniques 

to reduce uncertainty in Asia; (2) develop a reliable anthropogenic emission inventories in Asia and understanding uncertainty 

of bottom-up emission inventories in Asia; (3) provide multi-model estimates of radiative forcing and sensitivity analysis of 10 

short-lived climate pollutants. 

This study addresses one component of topic 1, mainly focusing on the three gas pollutants of NO2, CO and NH3. 

Compared with MICS-Asia II, more modeling results (fourteen different models with thirteen regional models and one global 

model) were brought together within the topic 1 of MICS-Asia III, each run by independent modeling groups in China, Japan, 

Korea, United States of America and other countries/regions. The different models contain differences in their numerical 15 

approximations (mesh size, time step, chemical solver, etc.) and parameterizations, which represent a sampling of uncertainties 

residing in the air quality modeling. It would be difficult to interpret the results from intercomparison studies when the models 

are operated using different meteorological fields and emission inventories. Thus, in MICS-Asia III the models were 

constrained to be operated under the same conditions by using a common emission inventory, meteorological fields, modeling 

domain and horizontal resolutions. The simulations were also extended from the four months in MICS-Asia II to one-full year 20 

of 2010. 

NO2, CO and NH3 are three important primary gas pollutants that has wide impacts on the atmospheric chemistry. As a 

major precursor of O3, NO2 plays an important role in the tropospheric O3 chemistry, and can also lead to rainwater acidification 

and secondary aerosol formations by forming nitric acid (HNO3) through oxidations (Dentener and Crutzen, 1993;Evans and 

Jacob, 2005). CO is a colorless and toxic gas ubiquitous throughout the atmosphere which is of interest as an indirect 25 

greenhouse gas (Gillenwater, 2008) and a precursor for tropospheric O3 (Steinfeld, 1998). Being the major sink of OH, CO 

also controls the atmosphere’s oxidizing capacity (Levy, 1971; Novelli et al., 1998). As the only primary alkaline gas in the 

atmosphere, NH3 is closely associated with the acidity of precipitations for one thing, for another it could react with sulfuric 

acid and nitric acid forming ammonium sulfate and ammonium nitrate which account for a large proportion of the inorganic 

constituents of the fine particulate matter (Sun et al., 2012;Sun et al., 2013). Assessing their model performances is thus 30 

important to help us better understand their environmental consequences and also help explain the model performances for 

their related secondary air pollutants, such as O3 and fine particulate matter. 

In previous phase of MICS-Asia, no specific evaluation and inter-comparison work has been conducted for these gases, 

especially for CO and NH3. In MICS-Asia II, model performance of NO2 was evaluated as a relevant species to O3(Han, Z. et 
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al., 2008), however such evaluations were limited to the observation sites from EANET (Acid Deposition Monitoring Network 

in East Asia). Model evaluations and inter-comparisons in industrialized regions of China has not been performed due to the 

limited number of monitoring sites in China from EANET, which hindered our understanding of the model performance in 

industrialized regions. More densely observations over highly industrialized regions of China, namely North China (NCP) and 

Peral River Delta (PRD), were first included in MICS-Asia III, allowing the model evaluations over highly industrialized 5 

regions. Meanwhile, emission inventories of these three gases are still subject to large uncertainties (Kurokawa et al., 2013;Li 

et al., 2017), which is a major source of uncertainties in air quality modeling and forecast. Evaluating these gases’ emission 

inventories from a model perspective is a useful way to identify the uncertainties in emission inventory (Han, K. M. et al., 

2008;Noije et al., 2006;Stein et al., 2014;Uno et al., 2007).  

This study is aimed at the evaluation of the NO2, CO and NH3 simulations using the multi-model data from MICS-Asia 10 

III. Three questions are addressed: (1) what is the performance of current CTMs in simulating NO2, CO and NH3 over highly 

industrialized regions of China; (2) what are the potential factors responsible for the model deviations from observations and 

differences among models; and (3) how large are the model uncertainties on the simulations of these gases. 

2 Intercomparison frameworks  

2.1 Description on participating models and input data 15 

Table 1 summarizes the chemical transport models participating in the MICS-Asia III as well as their configurations. 

These models included NAQPMS (Wang et al., 2001), two version of CMAQ (Byun and Schere, 2006), WRF-Chem (Grell et 

al., 2005), NU-WRF (Tao et al., 2013; Peters-Lidard et al., 2015), NHM-Chem (Kajino et al., 2018) and GEOS-Chem 

(http://acmg.seas.harvard.edu/geos/). All models employed the same modeling domain (Fig. 1) and horizontal resolutions 

(45km×45km) except M13 (0.5° of latitude×0.667° of longitude) and M14 (64km×64km). 20 

Standard model input datasets of raw meteorological fields, emission inventory and boundary conditions were provided 

by MICS-Asia III for all participants. Raw meteorological fields were generated from a whole year simulations of 2010 using 

Weather Research and Forecasting Model (WRF) version 3.4.1 (Skamarock, 2008) with 45km×45km horizontal resolution in 

a lambert conform projection and vertically 40 layers from surface to the model top (10hPa). Initial and lateral boundary 

conditions (IC & BC) for meteorological simulation were generated every six hours using 1°×1° NCEP FNL (Final) 25 

Operational Global Analysis data (ds083.2). Real-time, global, sea surface temperature (RTG_SST_HR) analysis were used 

to generate and update lower BC for sea areas. Four-dimensional data assimilation nudging (Gridded FDDA & SFDDA) was 

performed during the simulation to increase the accuracy of WRF after the Objective Analysis with NCEP FNL (Final) 

Operational Global Analysis data (ds083.2), NCEP ADP Global Surface Observation Weather Data (ds461.0) and NCEP ADP 

Global Upper Air and Surface Weather Data (ds337.0). 30 

Standard emission inventory provided by MICS-Asia III were used by all participants. The anthropogenic emissions were 

provided by a newly developed anthropogenic emission inventory for Asia (MIX) which integrated five national or regional 
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inventories, including REAS (Regional Emission inventory in Asia) inventory for Asia developed at the Japan National 

Institute for Environment Studies (NIES), the Multi-resolution Emission Inventory for China (MEIC) developed at Tsinghua 

University, the high-resolution ammonia emission inventory in China developed at Peking University, the Indian emission 

inventory developed at Argonne National Laboratory in the United States and the CAPSS (Clean Air Policy Support System) 

Korean emission inventory developed at Konkuk University (Li et al., 2017). Hourly biogenic emissions for the entire year of 5 

2010 in MICS-Asia III were provided by the Model of Emissions of Gases and Aerosols from Nature version 2.04 

(MEGANv2.04; Guenther et al., 2006). The Global Fire Emissions Database 3 (GFEDv3; Randerson et al., 2013) was 

employed for biomass burning emissions. Volcanic SO2 emissions were provided by the Asia Center for Air Pollution Research 

(ACAP) with a daily temporal resolution. Air and ship emissions with an annual resolution were provided by the HTAPv2 

emission inventory for 2010 (Janssens-Maenhout et al., 2015). NMVOC emissions were spectated into the model-ready inputs 10 

for three chemical mechanisms: CBMZ, CB05 and SAPRC-99 and the weekly and diurnal profiles for emissions were also 

provided.  

MICS-Asia III provides two sets of top and lateral boundary conditions of the modeling domain for the year 2010, which 

were derived from the 3-hourly global CTM outputs of CHASER (Sudo et al., 2002a; Sudo et at., 2002b) and GEOS-Chem 

(http://acmg.seas.harvard.edu/geos/) run by Nagoya University (Japan) and the University of Tennessee (USA), respectively. 15 

GEOS-Chem was run with 2.5º×2º resolution and 47 vertical layers while CHASER model was run with 2.8º×2.8º and 32 

vertical layers. 

All participants were required to use the standard model input data to drive their model run so that impacts of model input 

data on simulations could be minimized. However, models are quite different from each other, and it is difficult to keep all the 

inputs the same. The majority of models have applied the standard meteorology fields, while some other models utilized their 20 

own meteorology models, including GEOS-Chem and RAMS-CMAQ. GEOS-Chem was driven by the GEOS-5 assimilated 

meteorological fields from the Goddard Earth Observing System of the NASA Global Modeling Assimilation Office, and The 

RAMS-CMAQ was driven by meteorological fields provided by Regional Atmospheric Modeling System (RAMS; Pielke et 

al., 1992). WRF-Chem utilized the same meteorology model (WRF) as the standard meteorological simulation, but two of 

them considered the two-way coupling effects of pollutants and meteorological fields. The CTM part of NHM-Chem is coupled 25 

with the JMA’s non-hydrostatic meteorological model (NHM; Saito et al., 2006), but an interface to convert a meteorological 

model output of WRF to a CTM input was implemented (Kajino et al., 2018). Thus, the standard meteorology field was used 

in the NHM-Chem simulation, too. 

2.2 Data and statistical methods 

All modeling groups performed a base year simulations of 2010 and were required to submit their modeling results 30 

according to the data protocol designed in MICS-Asia III. Gridded monthly concentrations of NO2, CO, NH3 and ammonium 

in the surface layer were used in this study. Note that modeling results from M3 and NH3 simulations from M8 were excluded 

due to their incredible results, therefore only thirteen modeling results were actually used in this study. 

Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-1158
Manuscript under review for journal Atmos. Chem. Phys.
Discussion started: 6 May 2019
c© Author(s) 2019. CC BY 4.0 License.



6 

 

Hourly observed concentrations of NO2 and CO were collected over the NCP (19 stations) and PRD (13 stations) from 

the air quality network over North China (Tang et al., 2012) and the Pearl River Delta regional air quality monitoring network 

(PRD RAQMN), respectively. The air quality monitoring network over North China was set up by the Chinese Ecosystem 

Research Network (CERN), the Institute of Atmospheric Physics (IAP) and the Chinese Academy of Sciences (CAS) since 

2009 within an area of 500×500 km2 in northern China. All monitoring stations were selected and set up according to the US 5 

EPA method designations (Ji et al., 2012). The PRD RAQMN network was jointly established by the government of the 

Guangdong Province and the Hong Kong Special Administrative Region, consisting of 16 automatic air quality monitoring 

stations across the PRD (Zhong et al., 2013). Thirteen of these stations are operated by the Environmental Monitoring Centers 

in the Guangdong Province (this study used) while the other three located in Hong Kong (not included in this study) are 

managed by the Hong Kong Environmental Protection Department. Monthly averaged observations were then calculated for 10 

comparison with the simulated monthly surface NO2 and CO concentrations.  

NH3 observations for long-term period are indeed challenging and limited due to its strong temporal and spatial variability, 

quick conversion of NH3 from one phase to another and also its stickiness to the observational instruments (von Bobrutzki et 

al., 2010). Measurements of surface NH3 concentrations in year 2010 were not available in this study, however, one-year 

measurement of monthly NH3 concentrations over China was conducted by the Ammonia Monitoring Network in China 15 

(AMoN-China) during September of 2015 to August of 2016 (Pan et al., 2018), which was used as a reference dataset in this 

study. The AMoN-China was established based on the CERN and the Regional Atmospheric Deposition Observation Network 

in North China Plain (READ-NCP; Pan et al., 2012), consisting of 53 sites over the whole China with monthly integrated 

measurements using the passive diffusive technique. 11 stations located in the NCP were used in this study. Distributions of 

the observation stations of NO2, CO and NH3 over NCP and PRD as well as their total emissions in year 2010 provided by 20 

MICS-Asia III are presented in Fig. 1.  

Mean bias error (MBE), normalized mean bias (NMB), root mean square error (RMSE) and correlation coefficient (R) 

were calculated for the assessment of model performances. Standard deviation of ensemble models was calculated to measure 

the ensemble spread and the impacts of model uncertainty. Coefficient of variation (hereinafter, CV), defined as the standard 

deviation divided by average with larger value denoting lower consistency among models, was also used to measure the 25 

impacts of model uncertainty in relative sense. However, by this definition, there is a tendency that lower concentrations are 

more likely associated with higher value of CV, thus we did not calculate the values of CV over model grids whose simulated 

concentrations were lower than 0.1 ppbv for NO2 and NH3, and 0.1 ppmv for CO respectively. March–May, Jun–August, 

September–November and December–February were used to define the season spring, summer, autumn and winter, 

respectively. 30 
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3 Results 

3.1 Evaluating the ensemble models with observations  

To facilitate comparisons, the modeling results were interpolated to the observation stations by taking the value from the 

grid cell where the monitoring stations located. Model evaluation metrics defined in Sect. 2.2 were then calculated to evaluate 

the modeling results against the observations.  5 

3.1.1 NO2 

Figure 2 displays the comparisons between the observed and simulated annual mean NO2 concentrations sampled from 

different observation sites over NCP (2a) and PRD(2b) with calculated model evaluation metrics summarized in Table 2. M13 

is not included in the evaluation of NO2 since it submitted NOx rather than NO2. In general, the majority of models 

underpredicted NO2 levels both in NCP and PRD. Calculated MBE (NMB) ranges from -6.54 ppbv (-28.4%) to -2.45 (-10.6%) 10 

ppbv over NCP and from -9.84 ppbv (-44.0%) to -1.84 ppbv (-8.2%) over PRD among the negatively-biased models. These 

underpredicted NO2 concentrations may help explain the overpredicted O3 concentrations by these models found in the 

companion MICS paper by Li, J. et al., 2019. O3 productions can either increase with NOx under NOx limited conditions or 

decrease under the NOx saturated (also called volatile organic compounds (VOCs) limited) conditions (Sillman, 1999). Both 

NCP and PRD are industrialized regions in China with high NOx emissions (Fig. 1). Observations also showed that NCP and 15 

PRD are falling into or changing into the NOx saturated regimes (Shao et al., 2009;Jin and Holloway, 2015). Therefore, the 

underestimated NO2 concentrations may contribute to the overprediction in O3 concentrations over these two regions and more 

details about the O3 predictions can be found in the companion paper by Li, J. et al., 2019. M5, M8, M9 and M11 in NCP and 

M5, M8 and M11 in PRD were exceptions that overpredicted NO2 concentrations. M11 showed good performances in 

predicting NO2 levels in NCP with smallest RMSE, while M9 significantly overestimated NO2 with largest MBE and RMSE. 20 

Simulated NO2 by M8 in PRD was close to the observations with smallest RMSE. Meanwhile, we also found that models 

exhibited better NO2 modeling skills in NCP than that in PRD with smaller bias and RMSE.  

According to the spatial correlation coefficients (Table 2), all models well reproduced the main features of the spatial 

variability of NO2 concentrations in NCP with correlation coefficients ranging from 0.57 to 0.70. However, models failed in 

capturing the spatial variability in PRD with correlation coefficients only ranged from 0.00 to 0.38. Such low correlation might 25 

be partly attributed to the coarser model resolution (45km) than that of the observations. Some local impacts on the NO2 

concentrations may not be well resolved by the model with 45km horizontal resolution, indicating models’ weaknesses in 

representing the sub-grid processes.  

Figure 3 presents the monthly timeseries of the observed and simulated regional mean NO2 concentrations over NCP (3a) 

and PRD (3b) from January to December in 2010. The models well captured the monthly variations of NO2 concentrations 30 

both in NCP and PRD. According to Table 2, the correlation coefficient ranges from 0.28 to 0.96 in NCP and from 0.52 to 

0.95 in PRD. M8 showed the largest overestimation among all models in summer that MBE (NMB) can reach as 12.1 ppbv 
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(75.8%), which may help explain the low correlation of this model. M9 exhibited a significant overestimation in winter in NCP 

with MBE (NMB) up to 22.0 ppbv (79.3%) while much less overestimation or even underestimation (summer) in other seasons. 

This discrepancy may be explained by that M9 was an online coupled model considering the two-way coupling effects between 

meteorology and chemistry. During the period with heavy haze, the radiation can be largely reduced by aerosol dimming 

effects, leading to weakened photochemistry, lowered boundary layer height and the increase of NO2 concentrations. Severe 5 

haze was reported to occur in North China in January 2010, with maximum hourly PM2.5 concentration even reached as high 

as ~500 μg/m3  in urban Beijing (Gao et al., 2018). Such high aerosol loadings in atmosphere could trigger interactions 

between chemistry and meteorology. Interestingly, M9 did not overestimate NO2 during winter in PRD as in NCP. This might 

be related to the lower aerosol concentrations and weaker chemistry-and-meteorology coupling effects in PRD.  

3.1.2 CO 10 

Similar analyses were performed for CO modeling. All models significantly underestimated the annual mean CO 

concentrations both in NCP and PRD (Figs. 2c-d and Table 2). Calculated MBE (NMB) ranges from -1.69 ppmv (-76.2%) to 

-1.16 ppmv (-52.0%) in NCP and from -0.67 ppmv (-69.6%) to -0.50 ppmv (-52.3%) in PRD (Table 2). Such large biases in 

all the models are probably related to the bias in the CO emission inventory over China. Tang et al., 2013 estimated the CO 

emissions over Beijing and surrounding areas in the summer of 2010 using the ensemble Kalman filter and reported a 15 

significant underestimation in the a priori estimate of CO emissions. Over the latest decades, global models also reported CO 

underestimations in north hemisphere (Stein et al., 2014) and a number of global model inversion studies have been conducted 

to derive the optimized CO emissions, of which most studies reported a significant underestimation of CO emissions in their 

a priori estimates(Bergamaschi et al., 2000;Miyazaki et al., 2012;Petron et al., 2002;Petron et al., 2004). Our findings agree 

with these studies and indicate that more accurate CO emissions are needed in future studies. Model performance in simulating 20 

spatial variability of CO concentrations was still poor in PRD according to Table 2 that most models showed negative 

correlation coefficients.  

Timeseries of the observed and simulated regional mean CO concentrations in NCP and PRD (Fig.3c-d) show that the 

models well reproduced the monthly variation of CO concentrations in NCP and PRD with high temporal correlation 

coefficients, except M5 in NCP (Table 2). All models, however, underestimated CO concentrations throughout the whole year 25 

and showed largest underestimations in winter that MBE (NMB) by ensemble mean can be up -2.1 ppmv (-64.9%) in NCP 

and -0.75 ppmv (-60.6%) in PRD. 

3.1.3 NH3 

Figure 2e show the observed and simulated annual mean NH3 concentrations over different sites in NCP. The NH3 

observations in 2010 were not available and the observed monthly mean NH3 concentrations in NCP from September 2015 to 30 

August 2016 were used as a reference data in this study. Negative biases are expected according to the increasing trend of 

atmospheric ammonia during period 2003–2016 detected by recently retrievals from the Atmospheric Infrared Sounder (AIRS) 

Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-1158
Manuscript under review for journal Atmos. Chem. Phys.
Discussion started: 6 May 2019
c© Author(s) 2019. CC BY 4.0 License.



9 

 

aboard NASA’s Aqua satellite (Warner et al., 2016;Warner et al., 2017). Due to the interannual uncertainty, we mainly focused 

on the disparities among different models rather than the deviation from observations. 

Large differences can be seen in simulated NH3 concentrations from different models. M14 simulated very low 

concentrations and exhibited the largest negative biases with MBE (NMB) -12.2 ppbv (-66.3%). This may be related to the 

higher conversion rate of NH3 to NH4
+ in M14 which will be discussed in later part of this section. On the contrary, M9 5 

provided much higher NH3 concentrations with MBE (NMB) up to 21.8 ppbv (118.7%). For the CMAQ models, M1 and M2 

exhibited higher NH3 concentrations and larger spatial variability compared to other CMAQ models. Such discrepancy could 

be explained by that M1 and M2 are two model runs using CMAQ v5.0.2. The bi-directional exchange of NH3 has been 

integrated into CMAQ from version 5.0. This module can simulate the emitted and deposited processes of NH3 between 

atmosphere and the surfaces, allowing the additional NH3 emissions to the atmosphere (US EPA Office of Research and 10 

Development). 

As can be seen in Table 2, the observed spatial variations of NH3 over NCP can be well reproduced by all models (R = 

0.57-0.71), indicating that the spatial variations of current NH3 emissions over NCP are reasonable. However, all models failed 

to capture the observed monthly variations of NH3 concentrations with most models mismatching the observed NH3 peak (July) 

and showing negative correlation coefficients except the M10 and M13 showing good temporal correlations of 0.64 and 0.65, 15 

respectively (Fig. 3e and Table 2). This is quite different from the model behavior in simulating the monthly variation of NO2 

and CO concentrations. As can be seen in Fig. 3e, the observation showed the peak concentrations of NH3 in summer months 

and low concentrations in autumn and winter, which is consistent with the previous NH3 observations in NCP (Shen et al., 

2011;Xu et al., 2016;Meng et al., 2011). Newly derived satellite-measured NH3 at 918 hPa averaged between September 2002 

and August 2015 also demonstrated higher concentrations in spring and summer and lower concentrations in autumn and 20 

winter (Warner et al., 2016). However, all models predicted a peak concentration in November except M10 in August in and 

M13 in June.  

Figure 4 presents the timeseries of NH3 emission rates in NCP from January to December in 2010. The monthly variations 

of NH3 concentrations simulated by most models were closely related to the variations of the NH3 emissions. The simulated 

NH3 concentrations had three peaks in June, August and November but exhibited a significant decrease in July, which was 25 

corresponding to the peaks and the drop of the NH3 emission rates in these months. The strong relationship between the 

simulated NH3 concentrations and emission rates suggests that the poor performance in reproducing the observed monthly 

variations of NH3 concentrations is probably related to the uncertainties in the estimated monthly variations of NH3 emissions 

by current emission inventories. This is consistent with the recent reconciled bottom-up and top-down estimates of agriculture 

ammonia emission in China by Zhang et al., 2018.  30 

It is worth noting that the NH3 simulations suggest that there are important uncertainties in the models beyond those due 

to emission uncertainty. In order to investigate this issue, the impact of the modeling of the NH3 gas-aerosol partitioning on 

the NH3 simulation was analyzed. Figure 5 displays the timeseries of the simulated total ammonium (NHx = NH3 + NH4
+) 

concentrations in atmosphere along with the ratio of gaseous NH3 to the total ammonium. Large discrepancy can be seen in 
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the simulated gas-aerosol partitioning of NH3 from different models. Among the models, M7 and M9 had higher NH3/NHx 

ratio than other models, which means that the two models tended to retain more emitted NH3 in gas phase and had higher NH3 

concentrations than other models. For example, M7 predicted comparable magnitude of total ammonium with most models, 

while gas NH3 concentration in M7 accounted for more than 60% of total ammonium in summer and even 90% in winter and 

therefore was higher than most models. On the contrary, M14 showed a much lower NH3/NHx ratio and produced much lower 5 

NH3 concentrations than most models. Moreover, most models showed lower NH3/NHx ratio in summer than other seasons, 

suggesting higher conversion rates of NH3 from gas phase to aerosol phase in summer. This would be related to the higher 

yield of ammonium sulfate due to the enhanced photochemical oxidation activity in summer (Husain and Dutkiewicz, 1990) 

estimated by most models. However, different from the above model results, the NH3 and NH4
+observations over NCP by 

Shen et al., 2011;Xu et al., 2016 showed a lower NH3/NHx ratio and higher ammonium in autumn and wither. Although 10 

observed NH4
+ was largest in summer at a rural site in Beijing, observed NH3/NHx ratio was still highest in summer by Meng 

et al., 2011. These results indicate that large uncertainties exist in modeling the seasonal variations of gaseous NH3 and aerosol 

NH4
+ partitioning. The formations of NH4

+ mainly depends on the acid gas concentrations, temperature, water availability 

(Khoder, 2002) and the flux rates of NH3 (Nemitz et al., 2001). Compared with spring and summer, the lower temperature and 

higher SO2 and NOx emissions should favor the gas-to-particle phase conversion and lead to higher NH4
+ aerosol 15 

concentrations. This indicate that some reaction pathways of acid productions (H2SO4 or HNO3) may be missed in current 

models, such as aqueous-phase and heterogeneous chemistry (Cheng et al., 2016;Wang et al., 2016;Zheng et al., 2015). Such 

uncertainty may be another important factor contributing to the misrepresented monthly variation of NH3 concentrations in 

NCP by the models. 

3.2 Quantifying the impacts of model uncertainty 20 

In this section, we further investigate the differences between the ensemble models to quantify the impacts of model 

uncertainty on these gases’ simulations. As we mentioned in Sect. 2, most of these models employed the same raw meteorology 

fields and emission inventories over China under the same modeling domain and horizontal resolutions, which composed an 

appropriate set for investigation of the model uncertainties.  

Figures 6-8 present the simulated annual mean concentrations of NO2, CO and NH3 from thirteen modeling results. Spatial 25 

distributions of the simulated NO2, CO and NH3 from different models agreed well with each other, similar to the spatial 

distributions of their emissions as shown in Fig. 1. High NO2 concentrations were mainly located in the north and central-east 

China and several hot-spots of NO2 could also been detected in the northeast China and PRD by all models. M5, M8, M9, and 

M11 produced higher NO2 concentrations than other models especially for M8 which also predicted very high concentrations 

over southeast China. Similar to NO2, high CO concentrations were generally located over the north and central-east China as 30 

well as the east of Sichuan basin. M8, M9 and M11 produced higher CO concentrations as well. In terms of NH3, although 

most models shared similar spatial patterns of NH3 simulations, the simulated NH3 concentrations varied largely from different 

models. High NH3 concentrations were mainly located over the north China and India peninsula, which was in accordance 
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with the distribution of agricultural activity intensity over East Asia. Among these models, M9 and M10 produced much higher 

NH3 concentrations over East Asia while M4, M5, M6, M13 and M14 produced much lower concentrations. 

Figure 9 gives us more quantitative analysis of the impacts of model uncertainty on the simulations of NH3 (9a), CO (9b) 

and NO2 (9c), denoted by the spatial distribution of the standard deviation (ensemble spread), as well as the corresponding 

distributions of CV for each gas on the annual and seasonal basis. Note that M13 and M14 are excluded in the calculation of 5 

ensemble spread and CV to reduce the influences of the meteorological conditions and mesh sizes. It seems that the impacts 

of model uncertainty increase with the reactivity of the gases. NH3 simulations were affected most by the model uncertainty, 

while CO suffered least from the uncertainty in the complex chemistry modeling.  

The ensemble spread of NH3 simulations exhibited a strong spatial variability with higher value mainly located in NCP. 

Standard deviation of the annual mean NH3 concentrations can be over 20 ppbv in Henan province and 15 ppbv in the south 10 

of Hebei province, which is about 60–80% of the ensemble mean in Henan province and 40–60% in Hebei Province according 

to the CV distribution. As we mentioned in Sect. 3.1.3, these large modeling differences can be partly explained by the different 

treatments of the bi-directional exchange and gas-aerosol partitioning of NH3 in different models. We can also see a strong 

seasonal pattern in the modeling differences of NH3 in NCP. The ensemble spread was smallest in spring while largest in 

autumn, up to 25 ppbv in most areas of NCP. However, in the relative sense, the modeling differences were larger in summer 15 

and winter while less in spring and autumn. The southeast China shared similar magnitude of the ensemble spread which was 

about 2–5 ppbv and showed weaker seasonal variability. However, the modeling differences were larger than that in NCP in 

the relative sense that CV can be over 1.0 in all seasons except Summer. This can be due to that the simulated concentrations 

may be more influenced by the model processes over the areas with low emissions while more constrained by the local 

emissions over the high emission rate area.  20 

CO was least affected by the model uncertainty among the three gases which is consistent with its weaker chemical 

activity and longer lifetime in the atmosphere. The ensemble spread of annual mean CO concentration was about 0.05–0.2 

ppmv in the east China, only about 20%–30% of the ensemble mean. Meanwhile, CO modeling differences was more 

uniformly distributed in east China than NH3 with CV less than 0.3 over most areas of east China. However, large modeling 

differences were visible over Myanmar during spring when there were high CO emissions from biomass burning. Modeling 25 

differences turned to be larger during winter in NCP that the ensemble spread was about 0.3–0.5 ppmv and CV about 0.3–0.4, 

but were still less than the modeling differences of NH3.  

NO2 was mediumly affected by the model uncertainty among the three gases. Ensemble spread of annual mean NO2 

concentration was 5–7.5 ppbv in NCP and 2.5–5 ppbv in the southeast China, which accounted for about 20%–30% of the 

ensemble mean in former but more than 70% in latter. The ensemble spread was largest in winter which was over 10 ppbv in 30 

NCP (30%–40%) and 5–7.5 ppbv in southeast China (over 70%). Similar to NH3, southeast China exhibited more modeling 

differences than NCP in the relative sense that CV can be over 0.7 in most areas of southeast China. 

These analysis gives us a quantified result of the impact of model uncertainty on the forecast uncertainty of these gases. 

It indicated that for some highly active and/or short-lived primary pollutants, like NH3, model uncertainty can also take a great 
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part in the forecast uncertainty besides the emission uncertainty, and further air quality data assimilation and model 

improvement efforts should pay special attention to such uncertainties. 

4 Summary 

In this study, thirteen modeling results of surface NO2, CO and NH3 concentrations from MICS-Asia III has been 

compared with each other and evaluated against the observations over NCP and PRD. Three questions are trying to be 5 

addressed which are related to the performance of current CTMs in simulating NO2, CO and NH3 over highly industrialized 

regions of China, potential factors responsible for the model deviations from observations and differences among models, as 

well as the impacts of model uncertainty on these gases’ simulations.   

Most models underpredicted NO2 concentrations in NCP and PRD, which could be an important potential factor 

contributing to the overpredicted O3 concentrations in these regions. NO2 prediction skills were shown to be better in NCP 10 

than that in PRD with smaller biases and RMSE. Most models well reproduced the observed temporal and spatial variations 

of NO2 concentrations in NCP, while relatively poor performance has been detected in PRD in terms of the spatial variations. 

All models significantly underestimated the CO concentrations both in NCP and PRD throughout the whole year. Such larger 

underestimations suggest that CO emissions were very likely to be underestimated in current emission inventories. More 

accurate estimate of CO emissions is needed in future studies. In contrast to the good skills in monthly variations of NO2 and 15 

CO concentrations, a noteworthy phenomenon has been detected that all models failed to reproduce the observed monthly 

variation of NH3 concentrations in NCP. Most models mismatched the observed peak and showed negative correlation 

coefficient, which may be closely related to the uncertainty in monthly variations of NH3 emissions and the NH3 gas-aerosol 

partitioning. Several potential factors were found to be responsible for the model deviation and differences, including 

chemistry-and-meteorology coupling effects, model resolutions, bi-directional exchange of NH3 and gas-aerosol partition of 20 

NH3, which could be the important aspects with respect to the model improvements in future. Inter-comparisons of the 

ensemble model quantified the impacts of model uncertainty on these gases’ simulations. It shows that the impacts of model 

uncertainty increase with the reactivity of these gases. Models contained more uncertainties in the prediction of NH3 than the 

other two gases. Based on these findings, some recommendations are made for future studies: 

 1) More accurate estimation of CO and NH3 emissions are needed in future studies. Both bottom-up and top-down method 25 

(inversion technique) can help address this problem. For top-down method, advanced inversion techniques can fully take 

advantage of the CTMs and observations from various platforms (ground stations, satellite and radar, etc.) which has been 

widely used in the emission inventory estimate and correction (Miyazaki et al., 2017). However, the accuracy of emission 

inversion is highly subject to the model uncertainties. According to this study, NH3 simulation was largely affected by the 

model uncertainties, which may cause the overcorrection of emission inventories and reduce the accuracy of emission estimate 30 

by inversion work. How to represent the model uncertainties in the current framework of emission inversion is an important 

aspect in future studies. Things could be better for CO considering its small and weakly spatial-dependent model uncertainties.  
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2) For some highly active and/or short-lived primary pollutants, like NH3, model uncertainty can also take a great part in 

the forecast uncertainty. Emission uncertainty alone may not be sufficient to explain the forecast uncertainty and may cause 

underdispersive, and overconfident forecasts. Future studies are also needed in how to better represent the model uncertainties 

in the model predictions to obtain a better forecast skill.  

3) Gas-aerosol partition of NH3 is shown to be an important source of uncertainties in NH3 simulation. The formation of 5 

NH4
+ particles is mainly limited by the availability of H2SO4 and HNO3 under ammonia-rich conditions, which involves very 

complex chemical reactions, including gas-phase, aqueous-phase and heterogeneous chemistry (Cheng et al., 2016;Wang et 

al., 2016;Zheng et al., 2015). These processes are needed to be verified and incorporated into models to better represent the 

chemistry in the atmosphere. 
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Tables 

Table 1:  Basic configurations of participating modeling systems in MICS-Asia III 

No 
Horizontal 

resolution 

Vertical 

resolution 

First 

layer 

height 

Horizontal 

advection 

Vertical 

advection 

Horizontal 

Diffusion 

Vertical 

Diffusion 

Gas phase 

chemistry 

Aerosol 

processes 

Dry 

depositiono

f gases 

Wet 

deposition 

of gases 

Meteorology 
Boundary 

condition 

Online 

(Yes or No) 

M1 45km 40𝜎𝑝 level 57 m 

Yamo 

(Yamartino, 

1993) 

ppm (Collella 

and 

Woodward, 

1984) 

multiscale 
ACM2 (Pleim, 

2007) 

SAPRC99 

(Carter, 2000) 

Aero6 

(Binkowski 

and Roselle, 

2003) 

Wesely 

(1989) 
Henry’s law Standarda 

GEOS-Chem 

(Martin et al., 

2002) 

No 

M2 45km 40𝜎𝑝 level 57 m Yamo ppm multiscale ACM2 SAPRC99 Aero6 
Wesely 

(1989) 
Henry’s law Standarda Default No 

M3 45km 40𝜎𝑝 level 57 m Yamo Yamo multiscale ACM2 
CB05 (Yarwood 

et al., 2005) 
Aero5 

Wesely 

(1989) 
Henry’s law Standarda GEOS-Chem No 

M4 45km 40𝜎𝑝 level 57 m ppm ppm multiscale 
ACM2_ 

inline 
SAPRC99 Aero5 

Wesely 

(1989) 
Henry’s law Standarda 

CHASER 

(Sudo et al., 

2002a) 

No 

M5 45km 40𝜎𝑝 level 57 m ppm ppm multiscale 
ACM2_ 

inline 
SAPRC99 Aero5 

M3DRY 

(Pleim et 

al., 2001) 

Henry’s law Standarda CHASER No 

M6 45km 40𝜎𝑝 level 57 m Yamo Yamo multiscale 
ACM2_ 

inline 
SAPRC99 Aero5 M3DRY ACM Standarda CHASER No 

M7 45km 40𝜎𝑝 level 29 m Monotonic Monotonic no diffusion no diffusion 

RACM-ESRL 

with KPP 

( Goliff  et 

al.,2013 ) 

MADE 

(Ackerman

n et al., 

1998) 

Wesely 

(1989) 
Henry’s law WRF/NCEPa Default No 

M8 45km 40𝜎𝑝 level 57 m 
5th order 

Monotonic 

3th order 

Monotonic 
MYJ MYJ RACM with KPP MADE 

Wesely 

(1989) 
AQCHEM WRF/NCEPa CHASER Yes 

M9 45km 40𝜎𝑝 level 16 m 
5th order 

Monotonic 

3th order 

Monotonic 

Smagorinsk

y first order 

closure 

YSU (Hong et 

al., 2006) 

RADM2 

(Stockwell et al., 

1990) 

MADE 
Wesely 

(1989) 

Easter et al., 

(2004) 
WRF/NCEPa GEOS-Chem Yes 

M10 45km 60𝜎𝑝 level 44 m Monotonic 
3th order 

Monotonic 

2th order 

Monotonic 
YSU RADM2 GOCART 

Wesely 

(1989) 
Grell 

WRF/ 

MERRA2a 

MOZART + 

GOCARTb 
No 

M11 45km 20𝜎𝑧 level 50 m 
Walcek and 

Aleksic (1998) 

Walcek and 

Aleksic (1998) 
multicale K-theory 

CBMZ (Zaveri et 

al.,1999) 

ISORROPI

A1.7 

(Nenes et 

al.,1998) 

Wesely 

(1989) 
Henry’s law Standarda CHASER No 
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M12 45km 40 𝜎𝑝 level 54 m 
Walcek and 

Aleksic (1998) 

Walcek and 

Aleksic (1998) 
FTCS FTCS SAPRC99 

Kajino et al. 

(2012) 

Zhang et al. 

(2003) 
Henry’s law Standarda CHASER No 

M13 0.5°×0.667° 47𝜎𝑝 level 60 m ppm 

Huynh/Van 

Leer/Lin full 

monotonicity 

constraint 

Lin and 

McElroy, 

2010 

Lin and 

McElroy, 

2010 

Tropchem 

ISORROPI

A2.0 

(Fountoukis 

and Nenes, 

2007) 

Wesely Henry’s law GEOS-5a Geos-Chem No 

M14 64km 15𝜎𝑧 level 100 m ppm ppm multiscale ACM2 SAPRC99 
ISORROPI

A1.7 

Wesely 

(1989) 
Henry’s law RAMS/NCEPa Geos-Chem No 

 

a Standard represents the reference meteorological field provided by MICS-Asia III project; WRF/NCEP and WRF/MERRA represents the meteorological field of the participating model itself, which was run by WRF driven by the NCEP and 

Modern Era Retrospective-analysis for Research and Applications (MERRA) reanalysis dataset. RAMS/NCEP is the meteorology field run by RAMS driven by the NCEP reanalysis dataset.  

b Boundary conditions of M10 are from MOZART and GOCART (Chin et al., 2002; Horowitz et al.,2003), which provided results for gaseous pollutants and aerosols, respectively. 
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Table 2: Statistics of simulated annual mean concentrations sampled from different sites in NCP and PRD. 

Species Regions Statistics 
Model 

M1 M2 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 Ense 

NO2 

NCP 

R(spatial)a 0.63  0.67  0.67  0.67  0.67  0.70  0.70  0.59  0.57  0.66  0.69  - 0.70  0.67  

R(temporal)b 0.82  0.92  0.93  0.86  0.92  0.81  0.28  0.85  0.95  0.75  0.90  - 0.96 0.91 

MBE -4.11  -5.66  -6.54  1.86  -5.12  -5.04  3.30  8.28  -2.45  0.00  -3.81  - -2.99  -1.86  

NMB(%) -17.8  -24.5  -28.4 8.0  -22.2 -21.9 14.2  35.9  -10.6  0.02  -16.5 - -13.0 -8.0  

RMSE 7.40  8.25  8.79  6.75  8.01  7.55  6.54  12.74  7.72  6.37  7.38  - 6.68  6.36  

PRD 

R(spatial) a 0.12  0.06  0.07  0.07  0.06  0.12  0.20  0.38  0.00  0.08  0.12  - 0.02  0.10  

R(temporal)b 0.93  0.80  0.86  0.88  0.79  0.68  0.83  0.95  0.74  0.74  0.75  - 0.52  0.86  

MBE -6.73  -9.84  -7.21  1.96  -6.66  -3.99  3.24  -7.61  -1.84  3.02  -5.49  - -5.03  -3.85  

NMB(%) -30.1  -44.0  -32.3  8.8  -29.8  -17.9  14.5  -34.0  -8.2  13.5  -24.6  - -22.5  -17.2  

RMSE 11.31  13.14  12.00  10.80  11.84  10.60  8.73  10.69  10.72  10.51  11.68  - 12.00  10.15  

CO 

NCP 

R(spatial) a 0.35 0.48 0.27 0.34 0.36 0.22 0.19 0.48 0.49 0.33 0.35 -0.13 0.29 0.37 

R(temporal)b 0.94  0.96  0.92  0.22  0.90  0.77  0.94  0.92  0.82  0.85  0.94  0.85  0.88  0.92  

MBE -1.53 -1.35 -1.59 -1.69 -1.52 -1.64 -1.29 -1.16 -1.55 -1.37 -1.38 -1.53 -1.51 -1.47 

NMB(%) -68.9 -60.9 -71.4 -76.2 -68.2 -73.7 -58.2 -52.0 -70.0 -61.6 -62.3 -68.9 -68.0 -66.2 

RMSE 1.71 1.54 1.77 1.86 1.70 1.82 1.51 1.36 1.74 1.57 1.58 1.74 1.70 1.66 

PRD 

R(spatial) a 0.04 -0.24 -0.25 -0.23 -0.22 -0.05 0.08 0.55 -0.02 -0.01 -0.22 0.09 -0.21 -0.06 

R(temporal)b 0.96  0.91  0.93  0.84  0.95  0.90  0.90  0.96  0.83  0.87  0.93  0.76  0.82  0.94  

MBE -0.66 -0.64 -0.65 -0.64 -0.62 -0.64 -0.51 -0.57 -0.50 -0.51 -0.58 -0.52 -0.67 -0.59 

NMB(%) -68.4 -67.0 -67.0 -66.7 -64.7 -66.5 -53.3 -59.7 -52.3 -52.7 -60.7 -54.1 -69.6 -61.7 

RMSE 0.70 0.70 0.70 0.69 0.67 0.69 0.57 0.62 0.56 0.57 0.64 0.58 0.72 0.65 

NH3 NCP 

R(spatial)a 0.72 0.70 0.69 0.70 0.71 0.65 - 0.70 0.57 0.62 0.67 0.61 0.58 0.69 

R(temporal)b -0.48 -0.22 -0.45 -0.55 -0.41 0.04 - -0.19 0.64 0.08 -0.37 0.65 -0.04 -0.17 

MBE -0.69 2.95 -6.14 -6.61 -3.89 4.94 - 21.8 10.5 -0.07 0.31 -5.19 -12.2 0.47 

NMB(%) -3.8 16.1 -33.5 -36.0 -21.2 26.9 - 118.7 57.1 -0.4 1.69 -28.3 -66.3 2.59 

RMSE 7.20 10.04 8.95 9.24 7.48 8.78 - 29.24 13.48 8.30 7.33 8.82 14.48 7.20 

a R(spatial) represents the spatial correlation coefficients between simulated and observed concentrations sampled from different stations in NCP or PRD; 

b R(temporal) represents the temporal correlation coefficients between simulated and observed monthly mean concentrations from January to December in 2010; 
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Figures 

 

Figure 1: Modeling domains of the participated models except M13 and M14 along with spatial distributions of the total emissions 

of (a) NOx, (b) CO and (c) NH3 in 2010 provided by MICS-Asia III (upper panel), and the distributions of observation stations of (d) 

NO2 and CO over NCP and PRD, as well as (e) NH3 over NCP (lower panel). The horizontal resolution is 45km×45km. Note that 5 
domains of M13 and M14 are shown in fig. 7 and only six of nineteen observational sites (blue) over NCP have CO measurements. 
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Figure 2: Boxplot of simulated and observed annual mean NO2, CO and NH3 concentrations sampled from different stations over 

NCP (a, c, e) and PRD (b, d). The outlier was defined as values larger than 𝒒𝟑 + 𝟏. 𝟓 × (𝒒𝟑 − 𝒒𝟏) or less than 𝒒𝟏 − 𝟏. 𝟓 × (𝒒𝟑 − 𝒒𝟏), 
where 𝒒𝟑 denotes the 75th percentile, and 𝒒𝟏 the 25th percentile. This approximately corresponds to 99.3 percent coverage if the 

data are normally distributed. 5 
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Figure 3: Timeseries of regional mean NO2, CO concentrations over NCP (a, c) and PRD (b, d) as well as NH3 concentrations over 

NCP (e) from January to December in year 2010. 
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Figure 4: Timeseries of NH3 emissions over NCP provided by MICS-Asia III on a horizontal resolution of 45km×45km from January 

to December in year 2010. 
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Figure 5: Timeseries of the multi-model simulated total ammonium (NHx = NH3 + NH4
+) in atmosphere along with the ratio of 

gaseous NH3 to the total ammonium over NCP from January to December in year 2010. 
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Figure 6: Spatial distribution of the annual mean NO2 concentrations from each modeling results of MICS-Asia III. Note that M13 

are not included in this figure. 
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Figure 7: Spatial distribution of the annual mean CO concentrations from each modeling results of MICS-Asia III. 
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Figure 8: Spatial distribution of the annual mean NH3 concentrations from each modeling results of MICS-Asia III. 
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Figure 9: Spatial distribution of the standard deviation of (a) NH3, (b) CO and (c) NO2 multi-model predictions in MICS-Asia III, 

as well as the corresponding distribution of CV on the annual and seasonal basis. 
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