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Abstract. Despite the significant progress in improving the chemical transport models (CTMs), applications of these modeling 35 

endeavours are still subject to the large and complex model uncertainty. Model Inter-Comparison Study for Asia III (MICS-36 

Asia III) has provided the opportunity to assess the capability and uncertainty of current CTMs in East Asia applications. In 37 

this study, we have evaluated the multi-model simulations of nitrogen dioxide (NO2), carbon monoxide (CO) and ammonia 38 

(NH3) over China under the framework of MICS-Asia III. Thirteen modeling results, provided by several independent groups 39 

from different countries/regions, were used in this study. Most of these models used some modeling domain with a horizontal 40 
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resolution of 45km, and were driven by common emission inventories and meteorological inputs. New observations over North 41 

China Plain (NCP) and Pearl River Delta (PRD) regions were also available in MICS-Asia III, allowing the model evaluations 42 

over highly industrialized regions. The evaluation results show that most models well captured the monthly and spatial patterns 43 

of NO2 concentrations in the NCP region though NO2 levels were slightly underestimated. Relatively poor performance in 44 

NO2 simulations was found in the PRD region with larger root mean square error and lower spatial correlation coefficients, 45 

which may be related to the coarse resolution or inappropriate spatial allocations of the emission inventories in the PRD region. 46 

All models significantly underpredicted CO concentrations in both the NCP and PRD regions, with annual mean concentrations 47 

65.4% and 61.4% underestimated by the ensemble mean. Such large underestimations suggest that CO emissions might be 48 

underestimated in current emission inventory. In contrast to the good skills in simulating the monthly variations of NO2 and 49 

CO concentrations, all models failed to reproduce the observed monthly variations of NH3 concentrations in the NCP region. 50 

Most models mismatched the observed peak in July and showed negative correlation coefficients with the observations, which 51 

may be closely related to the uncertainty in the monthly variations of NH3 emissions and the NH3 gas-aerosol partitioning. 52 

Finally, model inter-comparisons have been conducted to quantify the impacts of model uncertainty on the simulations of these 53 

gases which are shown increase with the reactivity of species. Models contained more uncertainty in the NH3 simulations. This 54 

suggests that for some highly active and/or short-lived primary pollutants, like NH3, model uncertainty can also take a great 55 

part in the forecast uncertainty besides the emission uncertainty. Based on these results, some recommendations are made for 56 

future studies. 57 

1 Introduction 58 

As the rapid growth in East Asia’s economy with surging energy consumption and emissions, air pollution has become 59 

an increasingly important scientific topic and political concern in East Asia due to its significant environmental and health 60 

effects (Anenberg et al., 2010;Lelieveld et al., 2015). Chemical transport models (CTMs), serving as a critical tool in both the 61 

scientific research and policy makings, have been applied into various air quality issues, such as air quality prediction, long-62 

range transport of atmospheric pollutants, development of emission control strategies and understanding of observed chemical 63 

phenomena (e.g. Cheng et al., 2016;Li et al., 2017a;Lu et al., 2017;Ma et al., 2019;Tang et al., 2011;Xu et al., 2019;Zhang et 64 

al., 2019). Nevertheless, air quality modeling remains a challenge due to the multi-scale and non-linear nature of the complex 65 

atmospheric processes (Carmichael et al., 2008). It still suffers from large uncertainties related to the missing or poorly 66 

parameterized physical and chemical processes, inaccurate and/or incomplete emission inventories as well as the poorly 67 

represented initial and boundary conditions (Carmichael et al., 2008;Dabberdt and Miller, 2000;Fine et al., 2003;Gao et al., 68 

1996;Mallet and Sportisse, 2006). Understanding such uncertainties and their impacts on the air quality modeling is of great 69 

importance in assessing the robustness of models for their applications in scientific research and operational use. 70 

There are specific techniques to assess these uncertainties. Monte Carlo simulations, based on different values of model 71 

parameters or input fields sampled from a predefined probability density function (PDF), can provide an approximation to the 72 
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PDF of possible model output and serves as an excellent characterization of the uncertainties in simulations (Hanna et al., 73 

2001). However, this method is more suited to deal with the uncertainty related to the continuous variables, such as input data 74 

or parameters in parameterization. The ensemble method, based on a set of different models, is an alternative approach to 75 

accounting for the range of uncertainties (Galmarini et al., 2004;Mallet and Sportisse, 2006). For example, the Air Quality 76 

Model Evaluation International Initiative (AQMEII) has been implemented in Europe and North America to investigate the 77 

model uncertainties of their regional-scale model predictions (Rao et al., 2011). To assess the model performances and 78 

uncertainties in East Asia applications, the Model Inter-Comparison Study for Asia (MICS-Asia) has been initiated in year 79 

1998. The first Phase of MICS-Asia (MICS-Asia I) was carried out during period 1998–2002, mainly focusing on the long-80 

range transport and depositions of sulfur in Asia (Carmichael et al., 2002). In 2003, the second phase (MICS-Asia II) was 81 

initiated and took more species related to the regional health and ecosystem protection into account, including nitrogen 82 

compounds, O3 and aerosols. Launched in 2010, MICS-Asia III has greatly expanded its study scope by covering three 83 

individual and interrelated topics: (1) evaluate strength and weaknesses of current multi-scale air quality models and provide 84 

techniques to reduce uncertainty in Asia; (2) develop a reliable anthropogenic emission inventories in Asia and understanding 85 

uncertainty of bottom-up emission inventories in Asia; (3) provide multi-model estimates of radiative forcing and sensitivity 86 

analysis of short-lived climate pollutants. 87 

This study addresses one component of topic 1, focusing on the three gas pollutants of NO2, CO and NH3. Compared with 88 

MICS-Asia II, more modeling results (fourteen different models with thirteen regional models and one global model) were 89 

brought together within the topic 1 of MICS-Asia III, run by independent modeling groups from China, Japan, Korea, United 90 

States of America and other countries/regions. The different models contain differences in their numerical approximations 91 

(time step, chemical solver, etc.) and parameterizations, which represent a sampling of uncertainties residing in the air quality 92 

modeling. However, it would be difficult to interpret the results from inter-comparison studies when the models were driven 93 

by different meteorological fields and emission inventories. Thus, in MICS-Asia III the models were constrained to be operated 94 

under the same conditions by using the common emission inventories, meteorological fields, modeling domain and horizontal 95 

resolutions. The simulations were also extended from the four months in MICS-Asia II to one-full year of 2010. 96 

NO2, CO and NH3 are three important primary gas pollutants that has wide impacts on the atmospheric chemistry. As a 97 

major precursor of O3, NO2 plays an important role in the tropospheric O3 chemistry, and also contributes to the rainwater 98 

acidification and the formation of secondary aerosols (Dentener and Crutzen, 1993;Evans and Jacob, 2005). CO is a colorless 99 

and toxic gas ubiquitous throughout the atmosphere which is of interest as an indirect greenhouse gas (Gillenwater, 2008) and 100 

a precursor for tropospheric O3 (Steinfeld, 1998). Being the major sink of OH, CO also controls the atmosphere’s oxidizing 101 

capacity (Levy, 1971;Novelli et al., 1998). As the only primary alkaline gas in the atmosphere, NH3 is closely associated with 102 

the acidity of precipitations for one thing, for another it can react with sulfuric acid and nitric acid forming ammonium sulfate 103 

and ammonium nitrate which account for a large proportion of fine particulate matter (Sun et al., 2012;Sun et al., 2013). 104 

Assessing their model performances is thus important to help us better understand their environmental consequences and also 105 

help explain the model performances for their related secondary air pollutants, such as O3 and fine particulate matter. 106 
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In previous phase of MICS-Asia, no specific evaluation and inter-comparison work has been conducted for these gases, 107 

especially for CO and NH3. In MICS-Asia II, model performance of NO2 was evaluated as a relevant species to O3 (Han et al., 108 

2008b), however such evaluations were limited to the observation sites from EANET (Acid Deposition Monitoring Network 109 

in East Asia). Model evaluations and inter-comparisons in industrialized regions of China has not been performed due to the 110 

limited number of monitoring sites in China from EANET, which hindered our understanding of the model performance in 111 

industrialized regions. More densely observations over highly industrialized regions of China, namely the North China (NCP) 112 

Plain and Pearl River Delta (PRD) regions, were first included in MICS-Asia III, allowing the model evaluations over highly 113 

industrialized regions. Meanwhile, the emission inventories of these three gases still subject to the large uncertainties 114 

(Kurokawa et al., 2013;Li et al., 2017b), which is a major source of uncertainties in air quality modeling and forecast. 115 

Evaluating these gases’ emission inventories from a model perspective is also a useful way to identify the uncertainties in 116 

emission inventories (Han et al., 2008a;Noije et al., 2006;Pinder et al., 2006;Stein et al., 2014;Uno et al., 2007).  117 

In all, this paper is aimed at evaluating the NO2, CO and NH3 simulations using the multi-model data from MICS-Asia 118 

III, three questions are trying to be addressed: (1) what is the performance of current CTMs in simulating the NO2, CO and 119 

NH3 concentrations over highly industrialized regions of China, (2) what are the potential factors responsible for the model 120 

deviations from observations and differences among models, and (3) how large are the impacts of model uncertainties on the 121 

simulations of these gases. 122 

2 Inter-comparison frameworks  123 

2.1 Description on the participating models and input datasets  124 

Six different chemical transport models have participated in MICS-Asia III with their major configurations summarized 125 

in Table 1. These models included NAQPMS (Wang et al., 2001), three versions of CMAQ (Byun and Schere, 2006), WRF-126 

Chem (Grell et al., 2005), NU-WRF (Peters-Lidard et al., 2015), NHM-Chem (Kajino et al., 2012) and GEOS-Chem 127 

(http://acmg.seas.harvard.edu/geos/). All models employed a same modeling domain (Fig. 1) with a horizontal resolution of 128 

45km except M13 (0.5° of latitude×0.667° of longitude) and M14 (64km×64km). Detailed information on each component of 129 

these CTMs can be obtained from the companion paper by Chen et al., 2019 and Tan et al., 2019.  130 

Standard model input datasets of raw meteorological fields, emission inventory and boundary conditions were provided 131 

by MICS-Asia III for all participants. Raw meteorological fields were generated from a whole year simulations of 2010 using 132 

Weather Research and Forecasting Model (WRF) version 3.4.1 (Skamarock, 2008) with horizontal resolution of 45km and 133 

vertically 40 layers from surface to the model top (10hPa). Initial and lateral boundary conditions for meteorological simulation 134 

were generated every six hours by using the 1°×1° NCEP FNL (Final) Operational Global Analysis data (ds083.2). Real-time, 135 

global, sea surface temperature (RTG_SST_HR) analysis were used to generate and update lower boundary conditions for sea 136 

areas. Four-dimensional data assimilation nudging (Gridded FDDA & SFDDA) was performed during the simulation to 137 

increase the accuracy of WRF after the objective analysis with NCEP FNL (Final) Operational Global Analysis data (ds083.2), 138 
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NCEP ADP Global Surface Observation Weather Data (ds461.0) and NCEP ADP Global Upper Air and Surface Weather Data 139 

(ds337.0). Detailed configurations of the standard meteorological model are available in supplementary Table S1. The 140 

simulated wind speed, relative humidity and air temperature were evaluated against the observations over the NCP and PRD 141 

regions with detailed results shown in supplementary Sect. S1. In general, the standard meteorological simulations well 142 

captured the main features of meteorological conditions in the NCP and PRD regions with high correlation coefficient, small 143 

biases and low errors for all meteorological parameters (supplementary Fig.S1-S3 and Table S2). 144 

Standard emission inventories provided by the MICS-Asia III were used by all participants. The anthropogenic emissions 145 

were provided by a newly developed anthropogenic emission inventory for Asia (MIX) which integrated five national or 146 

regional inventories, including Regional Emission inventory in Asia (REAS) inventory for Asia developed at the Japan 147 

National Institute for Environment Studies, the Multi-resolution Emission Inventory for China (MEIC) developed at Tsinghua 148 

University, the high-resolution ammonia emission inventory in China developed at Peking University, the Indian emission 149 

inventory developed at Argonne National Laboratory in the United States, and the Clean Air Policy Support System (CAPSS) 150 

Korean emission inventory developed at Konkuk University (Li et al., 2017b). Hourly biogenic emissions for the entire year 151 

of 2010 in MICS-Asia III were provided by the Model of Emissions of Gases and Aerosols from Nature version 2.04 (Guenther 152 

et al., 2006). The Global Fire Emissions Database 3 (Randerson et al., 2013) was used for biomass burning emissions. Volcanic 153 

SO2 emissions were provided by the Asia Center for Air Pollution Research (ACAP) with a daily temporal resolution. Air and 154 

ship emissions with an annual resolution were provided by the HTAPv2 emission inventory for 2010 (Janssens-Maenhout et 155 

al., 2015). NMVOC emissions were spectated into the model-ready inputs for three chemical mechanisms: CBMZ, CB05 and 156 

SAPRC-99 and the weekly and diurnal profiles for emissions were also provided.  157 

MICS-Asia III has provided two sets of top and lateral boundary conditions for year 2010, which were derived from the 158 

3-hourly global CTM outputs of CHASER (Sudo et al., 2002a; Sudo et at., 2002b) and GEOS-Chem 159 

(http://acmg.seas.harvard.edu/geos/), run by Nagoya University (Japan) and the University of Tennessee (USA) respectively. 160 

GEOS-Chem was run with 2.5º×2º resolution and 47 vertical layers while CHASER model was run with 2.8º×2.8º and 32 161 

vertical layers. 162 

All participants were required to use the standard model input data to drive their model run so that the impacts of model 163 

input data on simulations could be minimized. However, models are quite different from each other, and it is difficult to keep 164 

all the inputs the same. The majority of models have applied the standard meteorology fields, while the GEOS-Chem and 165 

RAMS-CMAQ utilized their own meteorology models. The GEOS-Chem was driven by the GEOS-5 assimilated 166 

meteorological fields from the Goddard Earth Observing System of the NASA Global Modeling Assimilation Office, and the 167 

RAMS-CMAQ was driven by meteorological fields provided by Regional Atmospheric Modeling System (RAMS) (Pielke et 168 

al., 1992). WRF-Chem utilized the same meteorology model (WRF) as the standard meteorological simulation, but two of 169 

them considered the two-way coupling effects of pollutants and meteorological fields. The meteorological configurations of 170 

these WRF-Chem models were compared to the configurations of the standard meteorological model (supplementary table 171 

S1), which shows slight differences from the standard meteorological model. The CTM part of NHM-Chem is coupled with 172 
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the JMA’s non-hydrostatic meteorological model (NHM) (Saito et al., 2006), but an interface to convert a meteorological 173 

model output of WRF to a CTM input was implemented (Kajino et al., 2018). Thus, the standard meteorology field was used 174 

in the NHM-Chem simulation, too. 175 

2.2 Data and statistical methods 176 

All modeling groups have performed a base year simulations of 2010 and were required to submit their modeling results 177 

according to the data protocol designed in MICS-Asia III. Gridded monthly concentrations of NO2, CO, NH3 and ammonium 178 

(NH4
+) in the surface layer were used in this study. Note that modeling results from M3 and NH3 simulations from M8 were 179 

excluded due to their incredible results, thus only thirteen modeling results were used in this study. 180 

Hourly observed concentrations of NO2 and CO were collected over the NCP (19 stations) and PRD (13 stations) regions, 181 

obtained from the air quality network over North China (Tang et al., 2012) and the Pearl River Delta regional air quality 182 

monitoring network (PRD RAQMN), respectively. The air quality monitoring network over North China was set up by the 183 

Chinese Ecosystem Research Network (CERN), the Institute of Atmospheric Physics (IAP) and the Chinese Academy of 184 

Sciences (CAS) since 2009 within an area of 500×500 km� in northern China. All monitoring stations were selected and set 185 

up according to the US EPA method designations (Ji et al., 2012). The PRD RAQMN network was jointly established by the 186 

government of the Guangdong Province and the Hong Kong Special Administrative Region, consisting of 16 automatic air 187 

quality monitoring stations across the PRD region (Zhong et al., 2013). Thirteen of these stations are operated by the 188 

Environmental Monitoring Centers in the Guangdong Province which were used in this study, while the other three are located 189 

in Hong Kong (not included in this study) and are managed by the Hong Kong Environmental Protection Department. Monthly 190 

averaged observations were calculated for the comparisons with the simulated monthly surface NO2 and CO concentrations. It 191 

should be noted that these networks measured the NO2 concentrations using a thermal conversion method, which would 192 

overestimate the NO2 concentrations due to the positive interference of other oxidized nitrogen compounds (Xu et al., 2013).  193 

NH3 observations for long-term period are indeed challenging and limited due to its strong spatial and temporal variability, 194 

quick conversion from one phase to another and also its stickiness to the observational instruments (von Bobrutzki et al., 2010). 195 

Measurements of surface NH3 concentrations in year 2010 were not available in this study, however, one-year surface 196 

measurement of monthly NH3 concentrations over China from September of 2015 to August of 2016 were used as a reference 197 

dataset in this study, which were obtained from the Ammonia Monitoring Network in China (AMoN-China) (Pan et al., 2018) 198 

The AMoN-China was established based on the CERN and the Regional Atmospheric Deposition Observation Network in 199 

North China Plain (Pan et al., 2012), which consists of 53 sites over the whole China and measured the monthly ambient NH3 200 

concentrations using the passive diffusive technique. Eleven stations located in the NCP region were used in this study. 201 

Distributions of the observation sites of NO2, CO and NH3 over the NCP and PRD regions as well as their total emissions in 202 

year 2010 provided by MICS-Asia III are shown in Fig. 1. Besides the surface observations, the satellite retrievals of NH3 total 203 

columns from IASI (Infrared Atmospheric Sounding Interferometer) were also used in this study to qualitatively evaluate the 204 

modeled monthly variations of NH3 concentrations. The ANNI-NH3-v2.1R-I retrieval product (Van Damme et al., 2017;Van 205 
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Damme et al., 2018) was used in this study which is the reanalysis version of NH3 retrievals from IASI instruments and 206 

provides the daily morning (~9:30 am local time) NH3 total columns from year 2008 to 2016. More detailed information and 207 

the processing of satellite data are available in supplementary sect. S2.  208 

Mean bias error (MBE), normalized mean bias (NMB), root mean square error (RMSE) and correlation coefficient (R) 209 

were calculated for the assessment of model performances. Standard deviation of the ensemble models was used to measure 210 

the ensemble spread and the impacts of model uncertainty. Coefficient of variation (hereinafter, CV), defined as the standard 211 

deviation divided by the average with larger value denoting lower consistency among models, was also used to measure the 212 

impacts of model uncertainty in a relative sense. However, by this definition, there is a tendency that lower concentrations are 213 

more likely associated with higher value of CV, thus we did not calculate the values of CV over model grids whose simulated 214 

concentrations were lower than 0.1 ppbv for NO2 and NH3, and 0.1 ppmv for CO, respectively. March–May, Jun–August, 215 

September–November and December–February were used to define the four seasons that are spring, summer, autumn and 216 

winter, respectively. 217 

3 Results 218 

3.1 Evaluating the ensemble models with observations  219 

To facilitate comparisons, the modeling results were interpolated to the observation sites by taking the values from the 220 

grid cell where the monitoring stations located. Model evaluation metrics defined in Sect. 2.2 were then calculated to evaluate 221 

the modeling results against the observations.  222 

3.1.1 NO2 223 

Figure 2 displays the comparisons between the observed and simulated annual mean NO2 concentrations over the NCP 224 

(2a) and PRD(2b) regions with calculated model evaluation metrics summarized in Table 2. M13 is not included in the 225 

evaluation of NO2 since it did not submitted the NO2 concentrations. In general, the majority of models underpredicted NO2 226 

levels in both the NCP and PRD regions. Calculated MBE (NMB) ranges from -6.54 ppbv (-28.4%) to -2.45 (-10.6%) ppbv 227 

over the NCP region and from -9.84 ppbv (-44.0%) to -1.84 ppbv (-8.2%) over the PRD region among these negatively-biased 228 

models. These underpredicted NO2 concentrations are consistent with the overpredicted O3 concentrations by these models 229 

found in the companion paper by Li et al., 2019. O3 productions can either increase with NOx under NOx limited conditions or 230 

decrease under the NOx saturated (also called volatile organic compounds (VOCs) limited) conditions (Sillman, 1999). Both 231 

the NCP and PRD regions are industrialized regions in China with high NOx emissions (Fig. 1). Observations also showed that 232 

the NCP and PRD regions are falling into or changing into the NOx saturated regimes (Shao et al., 2009;Jin and Holloway, 233 

2015). Therefore, the underestimated NO2 concentrations may contribute to the overpredicted O3 concentrations in these two 234 

regions. The detailed results about the O3 predictions can be found in the companion paper by Li et al., 2019. In addition, as 235 

we mentioned in Sect.2.2, the negative biases in the simulated NO2 concentrations can be also partly attributed to the positive 236 
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biases in the NO2 observations. M5, M8, M9 and M11 in the NCP region and M5, M8 and M11 in the PRD region were 237 

exceptions that overpredicted NO2 concentrations. M11 showed good performances in predicting NO2 levels in the NCP region 238 

with smallest RMSE, while M9 significantly overestimated NO2 with largest MBE and RMSE values. NO2 predictions by M8 239 

were close to the observations over the PRD region with smallest RMSE value. Meanwhile, we also found that models 240 

exhibited better NO2 modeling skills in the NCP region than that in the PRD region with smaller bias and RMSE values.  241 

According to the spatial correlation coefficients (Table 2), all models well reproduced the main features of the spatial 242 

variability of NO2 concentrations in the NCP region with correlation coefficients ranging from 0.57 to 0.70. However, models 243 

failed in capturing the spatial variability of NO2 concentrations in the PRD region with correlation coefficients only ranged 244 

from 0.00 to 0.38. Such low correlation might be attributed to the coarser model resolution (45km) that some local impacts on 245 

the NO2 concentrations might not be well resolved in the model, and/or related to the uncertainties in emission inventories 246 

which were not well resolved in the PRD region. To investigate it, we have conducted an additional one-year simulation with 247 

finer horizontal resolutions (15km and 5km, supplementary Fig.S4) in the PRD region using the NAQPMS model. Detailed 248 

experimental settings are presented in the supplementary Sect.S3. The experiment results indicate that when using the same 249 

emission inventory as the coarse-resolution simulation, the high-resolution simulation still show poor model performances in 250 

capturing the spatial variability of NO2 concentrations in the PRD region, with calculated correlation coefficient only of 0.03 251 

and 0.02 for 15km and 5km resolutions, respectively ( supplementary Sect. S3, Fig. S5-6 and Table S3). Thus, the poor model 252 

performance in the PRD region could be more related to the coarse resolution and/or inappropriate spatial allocation of the 253 

emission inventories. These results also suggested that only increasing the resolutions of model may not help improve the 254 

model performance. 255 

Figure 3 presents the monthly timeseries of the observed and simulated regional mean NO2 concentrations over the NCP 256 

(3a) and PRD (3b) regions from January to December in 2010. The models well captured the monthly variations of NO2 257 

concentrations both in the NCP and PRD regions. According to Table 2, the correlation coefficient ranges from 0.28 to 0.96 258 

in the NCP region and from 0.52 to 0.95 in the PRD region. M8 showed the largest overestimation among all models in summer 259 

that MBE (NMB) can reach 12.1 ppbv (75.8%) in the NCP region, which may help explain the low correlation of this model. 260 

M9 exhibited a significant overestimation in winter in the NCP region with MBE (NMB) up to 22.0 ppbv (79.3%) while much 261 

less overestimation or even underestimation (summer) in other seasons. This discrepancy may be explained by that M9 was 262 

an online coupled model which considers two-way coupling effects between the meteorology and chemistry. During the period 263 

with heavy haze, the radiation can be largely reduced by aerosol dimming effects, leading to weakened photochemistry, 264 

lowered boundary layer height and thus the increase of NO2 concentrations. Severe haze was reported to occur in North China 265 

in January 2010, with maximum hourly PM2.5 concentration even reached as high as ~500 μg/m� in urban Beijing (Gao et al., 266 

2018). Such high aerosol loadings in atmosphere could trigger interactions between chemistry and meteorology. Interestingly, 267 

M9 did not overestimate NO2 during winter in the PRD region. This might be related to the lower aerosol concentrations and 268 

weaker chemistry-and-meteorology coupling effects in the PRD region.  269 
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3.1.2 CO 270 

Similar analyses were performed for modeling results of CO. All models significantly underestimated the annual mean 271 

CO concentrations both in the NCP and PRD regions (Figs. 2c-d and Table 2). Calculated MBE (NMB) ranges from -1.69 272 

ppmv (-76.2%) to -1.16 ppmv (-52.0%) in the NCP region and from -0.67 ppmv (-69.6%) to -0.50 ppmv (-52.3%) in the PRD 273 

region (Table 2). Such large negative biases in all models were not likely to be explained by the model uncertainties, suggesting 274 

the negative biases in the CO emissions over China. This is consistent with the inversion results of Tang et al., 2013 which 275 

indicates a significant underestimation of CO emissions over the Beijing and surrounding areas in the summer of 2010. Over 276 

the latest decades, global models also reported CO underestimations in north hemisphere (Naik et al., 2013;Stein et al., 2014) 277 

and a number of global model inversion studies have been conducted to derive the optimized CO emissions. Most of these 278 

studies have reported a significant underestimation of CO emissions in their a priori estimates (Bergamaschi et al., 279 

2000;Miyazaki et al., 2012;Petron et al., 2002;Petron et al., 2004). Our findings agree with these studies and indicate that more 280 

accurate CO emissions are needed in future studies. Model performances in simulating spatial variability of CO concentrations 281 

were still poor in the PRD region according to Table 2 with most models showing negative correlation coefficients.  282 

Timeseries of the observed and simulated regional mean CO concentrations in the NCP and PRD regions are presented 283 

in Fig.3c-d. It shows that the models well reproduced the monthly variations of CO concentrations in both the NCP and PRD 284 

regions with high temporal correlation coefficient except M5 (Table 2). All models, however, underestimated CO 285 

concentrations throughout the year and showed largest underestimations in winter with MBE (NMB) by ensemble mean up to 286 

-2.1 ppmv (-64.9%) in the NCP region and -0.75 ppmv (-60.6%) in the PRD region. 287 

3.1.3 NH3 288 

Figure 2e shows the comparisons of the observed and simulated annual mean NH3 concentrations in the NCP region. 289 

Since we used the NH3 observations from September 2015 to August 2016, negative biases are expected according to the 290 

increasing trend of atmospheric ammonia during period 2003–2016 detected by recently retrievals from the Atmospheric 291 

Infrared Sounder (AIRS) aboard NASA’s Aqua satellite (Warner et al., 2016;Warner et al., 2017). Due to the interannual 292 

uncertainty, we mainly focused on the disparities among different models rather than the deviation from observations. 293 

Large differences can be seen in simulated NH3 concentrations from different models. M14 simulated very low 294 

concentrations and exhibited the largest negative biases with MBE (NMB) of -12.2 ppbv (-66.3%), which may be related to 295 

the higher conversion rate of NH3 to NH4
+ in M14 (discussed in later part of this section). On the contrary, M9 provided much 296 

higher NH3 concentrations than other models with MBE (NMB) up to 21.8 ppbv (118.7%). For the CMAQ models, M1 and 297 

M2 exhibited higher NH3 concentrations and larger spatial variability compared to other CMAQ models. Such discrepancy 298 

may be explained by that M1 and M2 are two model runs using CMAQ v5.0.2. The bi-directional exchange of NH3 has been 299 

integrated into CMAQ from version 5.0. This module can simulate the emitted and deposited processes of NH3 between 300 
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atmosphere and the surfaces, allowing the additional NH3 emissions to the atmosphere (US EPA Office of Research and 301 

Development). 302 

As can be seen in Table 2, the observed spatial variations of NH3 over the NCP region can be well reproduced by all 303 

models (R = 0.57-0.71), indicating that the spatial variations of current NH3 emissions over the NCP region are well represented 304 

in emission inventories. However, all models failed to capture the observed monthly variations of NH3 concentrations with 305 

most models mismatching the observed NH3 peak (July) and showing negative correlation coefficients. M10 and M13 are 306 

exceptions showing good temporal correlations of 0.64 and 0.65, respectively (Fig. 3e and Table 2). This is quite different 307 

from the model behavior in simulating the monthly variations of NO2 and CO concentrations. As seen in Fig. 3e, the 308 

observation showed the peak concentrations of NH3 in summer months and lower concentrations in autumn and winter, which 309 

is consistent with the previous NH3 observations in the NCP region (Shen et al., 2011;Xu et al., 2016;Meng et al., 2011). 310 

Newly derived satellite-measured NH3 at 918 hPa averaged between September 2002 and August 2015 also demonstrated 311 

higher concentrations in spring and summer and lower concentrations in autumn and winter (Warner et al., 2016). However, 312 

all models predicted a peak concentration in November except M10 in August in and M13 in June. We also used the satellite 313 

retrievals of NH3 total columns from IASI to further evaluate the modeled monthly variations of NH3 concentrations, since 314 

evaluating the model results using observations from different years may be inappropriate due to the emission change of NH3. 315 

Comparisons of the surface NH3 observations from AMoN-China and NH3 total columns form IASI (supplementary Fig.S7) 316 

suggest that the IASI measurement can well represent the monthly variations of surface NH3 concentrations, which can be 317 

used to qualitatively evaluate the modeled monthly variations of surface NH3 concentrations. The monthly time series of the 318 

regional mean NH3 total columns over the NCP region from January, 2008 to December, 2016 are shown in supplementary 319 

Fig. S8, which shows similar monthly variations to the surface NH3 observations with highest value in July and confirms the 320 

poor model performances in reproducing the monthly variations of NH3 concentrations. The IASI measurement also indicates 321 

that the interannual variability of monthly variations of NH3 concentrations over the NCP region was small from year 2008 to 322 

2016, which suggest that using observations from different years could still provide valuable clues for verifying the modeled 323 

monthly variations. 324 

The simulated monthly variations of NH3 concentrations were closely related to the monthly variations of the NH3 325 

emissions. Most models predicted three peak values of NH3 concentrations in June, August and November but exhibited a 326 

significant decrease in July, which was in good agreement with the peaks and drops of the NH3 emission rates in these months 327 

(Fig.4). The strong relationship between the simulated NH3 concentrations and the emission rates suggests that the poor model 328 

performance in reproducing the monthly variations of NH3 concentrations is probably related to the uncertainties in the monthly 329 

variations of NH3 emissions. This is consistent with the recent bottom-up and top-down estimates of agriculture ammonia 330 

emissions in China by (Zhang et al., 2018), which shows more distinct seasonality of Chinese NH3 emissions. 331 

It is worth noting that there are also important uncertainties in the models beyond emission uncertainty. In order to 332 

investigate this issue, we have analyzed the impact of gas-aerosol partitioning of NH3 on the simulations of NH3 concentrations. 333 

Figure 5 shows the timeseries of the simulated total ammonium (NHx = NH3 + NH4
+) in the atmosphere along with the ratio 334 



11 
 

of gaseous NH3 to the total ammonium. M10 is excluded in Fig.5 since the GOCART model does not predict NH4
+ 335 

concentrations. As a result, the emitted NH3 would be only presented as the gas phase in M10, leading to higher NH3 predictions. 336 

This may also help explain the different monthly variations of NH3 concentrations seen in M10. Without the considerations of 337 

NH4
+, the monthly variations of NH3 concentrations in M10 were more consistent with the monthly variations of NH3 338 

emissions, which highlighted the importance of gas-aerosol partitioning of NH3 on the predictions of monthly variations of 339 

NH3 concentrations. As seen in fig.5, there are large discrepancy in the simulated gas-aerosol partitioning of NH3 from different 340 

models. M7 and M9 showed higher NH3/NHx ratio than other models, which means that these two models tended to retain the 341 

NH3 in the gas phase and thus predicted higher NH3 concentrations than other models. For example, M7 predicted comparable 342 

magnitude of total ammonium with most models, while gas NH3 concentration in M7 accounted for more than 60% of total 343 

ammonium in summer and even 90% in winter. The lower conversion rate of NH3 to NH4
+ in M9 may be related to the gas 344 

phase chemistry used in the model. M9 used the RADM2 mechanism which gives lower reaction rates of oxidation of SO2 and 345 

NO2 by the OH radical as compiled by Tan et al., 2019, leading to lower productions of acid and thus lower conversion rate of 346 

NH3 to NH4
+. In case of M7, the hydrolysis of N2O5 was not considered in M7, which leads to a lower tendency in the prediction 347 

of NO3
- (Chen et al., 2019) and partly explains the higher NH3 predictions of M7. On the contrary, M14 showed a much lower 348 

NH3/NHx ratio than most models, which would be related to its higher production rates of sulfate than other models as seen in 349 

Chen et al., 2019. In terms of monthly variations, most models predicted lower NH3/NHx ratio in summer than that in other 350 

seasons, suggesting the higher conversion rates of NH3 from gas phase to aerosol phase in summer. This would be related to 351 

the higher yield of ammonium sulfate due to the enhanced photochemical oxidation activity in summer. However, different 352 

from the modeling results, the NH3 and NH4
+observations over the NCP region indicated a lower NH3/NHx ratio with higher 353 

ammonium concentrations in autumn and winter (Shen et al., 2011;Xu et al., 2016). Although observed NH4
+ was largest in 354 

summer at a rural site in Beijing, observed NH3/NHx ratio was still highest in summer according to observations from Meng 355 

et al., 2011. These results indicate that there would be large uncertainties in the modeling of seasonal variations of the gas-356 

aerosol partitioning of NH3 over the NCP region. The formation of NH4
+ mainly depends on the acid gas concentrations, 357 

temperature, water availability (Khoder, 2002) and the flux rates of NH3 (Nemitz et al., 2001). Compared with spring and 358 

summer, the lower temperature and higher SO2 and NOx emissions should favor the gas-to-particle phase conversion of NH3 359 

and lead to higher NH4
+ concentrations. This contrast indicates that some reaction pathways of acid productions (H2SO4 or 360 

HNO3) may be missing in current models, such as aqueous-phase and heterogeneous chemistry (Cheng et al., 2016;Wang et 361 

al., 2016;Zheng et al., 2015). Such uncertainty may be another important factor contributing to the poor model performances 362 

in reproducing the monthly variations of NH3 concentrations over the NCP region. 363 

3.2 Quantifying the impacts of model uncertainty 364 

In this section, we further investigate the discrepancies among the different models to quantify the impacts of model 365 

uncertainty on the simulations of these gases. As we mentioned in Sect. 2, most of these models employed common 366 
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meteorology fields and emission inventories over China under the same modeling domain and horizontal resolutions, which 367 

composed an appropriate set for investigating the model uncertainties.  368 

Figures 6–8 present the simulated annual mean concentrations of NO2, CO and NH3 from different models. The spatial 369 

distributions of the simulated NO2, CO and NH3 concentrations from different models agreed well with each other, similar to 370 

the spatial distributions of their emissions (Fig. 1). High NO2 concentrations were mainly located in the north and central-east 371 

China, and several hot-spots of NO2 were also detected in the northeast China and the PRD region. M5, M8, M9, and M11 372 

predicted higher NO2 concentrations than other models especially for M8 which also predicted very high NO2 levels over 373 

southeast China. Similar to NO2, high CO concentrations were generally located over the north and central-east China as well 374 

as the east of Sichuan basin. M8, M9 and M11 predicted higher CO concentrations than other models as well. In terms of NH3, 375 

although most models shared similar spatial patterns of NH3 simulations, the simulated NH3 concentrations varied largely from 376 

different models. High NH3 concentrations were mainly located over the north China and India peninsula, which was in 377 

accordance with the distribution of agricultural activity intensity over East Asia. Among these models, M9 and M10 produced 378 

much higher NH3 concentrations over East Asia while M4, M5, M6, M13 and M14 produced much lower concentrations. 379 

The impacts of model uncertainty on the simulations of NH3 (9a), CO (9b) and NO2 (9c) were then quantified in Fig.9, 380 

denoted by the spatial distributions of the standard deviation (ensemble spread) and the corresponding distributions of CV on 381 

the annual and seasonal basis. Note that M13 and M14 were excluded in the calculation of ensemble spread and CV to reduce 382 

the influences of the meteorological input data and horizontal resolutions. It seems that the impacts of model uncertainty 383 

increase with the reactivity of gases. NH3 simulations were affected most by the model uncertainty, while CO suffered least 384 

from the uncertainty in models.  385 

The ensemble spread of NH3 simulations exhibited a strong spatial variability with higher values mainly located in the 386 

NCP region. Standard deviation of the annual mean NH3 concentrations can be over 20 ppbv in Henan province and 15 ppbv 387 

in the south of Hebei province, which is about 60–80% and 40–60% of the ensemble mean respectively according to the CV 388 

distribution. As we mentioned in Sect. 3.1.3, these large modeling differences can be partly explained by the differences in the 389 

bi-directional exchange and gas-aerosol partitioning of NH3 in different models. A strong seasonal pattern was also found in 390 

the differences of NH3 simulations over the NCP region. The ensemble spread was smallest in spring while largest in autumn, 391 

up to 25 ppbv in most areas of the NCP region. However, in the relative sense, the modeling differences were larger in summer 392 

and winter while less in spring and autumn. The southeast China shared a similar magnitude of the ensemble spread (2–5 ppbv) 393 

and showed weaker seasonal variability. However, the modeling differences in the relative sense were larger than that in the 394 

NCP region with CV over 1.0 in all seasons except that in Summer. This can be due to that the simulated concentrations may 395 

be more influenced by the model processes over the areas with low emissions, while more constrained by the emissions over 396 

high emission rate areas.  397 

CO was least affected by the model uncertainty among the three gases which is consistent with its weaker chemical 398 

activity and longer lifetime in the atmosphere. The ensemble spread of annual mean CO concentration was about 0.05–0.2 399 

ppmv in the east China, only about 20%–30% of the ensemble mean. Meanwhile, CO modeling differences was more 400 
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uniformly distributed in east China with CV less than 0.3 over most areas of east China. However, large modeling differences 401 

were visible over Myanmar during spring when there were high CO emissions from biomass burning. Model differences turned 402 

to be larger during winter in the NCP region with ensemble spread and CV about 0.3–0.5 ppmv and 0.3–0.4, respectively.  403 

NO2 was mediumly affected by the model uncertainty among the three gases. Ensemble spread of annual mean NO2 404 

concentration was 5–7.5 ppbv in the NCP region and 2.5–5 ppbv in the southeast China, which accounted for about 20%–30% 405 

of the ensemble mean in the former but more than 70% in the latter. The ensemble spread was largest in winter which was 406 

over 10 ppbv in the NCP region (30%–40%) and 5–7.5 ppbv in southeast China (over 70%). Similar to NH3, southeast China 407 

exhibited more modeling differences than the NCP region in relative sense with CV higher than 0.7 in most areas of southeast 408 

China. 409 

4 Summary 410 

In this study, thirteen modeling results of surface NO2, CO and NH3 concentrations from MICS-Asia III were compared 411 

with each other and evaluated against the observations over the NCP and PRD regions. Three questions are trying to be 412 

addressed which are related to the performance of current CTMs in simulating the NO2, CO and NH3 concentrations over the 413 

highly industrialized regions of China, potential factors responsible for the model deviations from observations and differences 414 

among models, and the impacts of model uncertainty on the simulations of these gases. 415 

Most models showed underestimations of NO2 concentrations in the NCP and PRD regions, which could be an important 416 

potential factor contributing to the overpredicted O3 concentrations in these regions. According to Xu et al., 2013, such 417 

underestimations would also be related to the positive biases in the NO2 observations. The models showed better NO2 model 418 

performance in the NCP region than that in the PRD region with smaller biases and RMSE. Most models well reproduced the 419 

observed temporal and spatial patterns of NO2 concentrations in the NCP region, while relatively poor model performance was 420 

found in the PRD region in terms of the spatial variations of NO2 concentrations. A sensitivity test with finer horizontal 421 

resolutions has been conducted to investigate the potential reasons for the poor model performance in the PRD region. The 422 

results shows that only increasing the model resolution cannot improve the model performance in the PRD region, which 423 

suggest that the poor model performance in the PRD region would be more related to the coarse resolution and/or inappropriate 424 

spatial allocations of the emission inventories in the PRD regions. All models significantly underestimated the CO 425 

concentrations in the NCP and PRD regions throughout the year. Such large underestimations of all models are not likely to 426 

be fully explained by the model uncertainty, which suggests that CO emissions may be underestimated in current emission 427 

inventories. More accurate estimate of CO emissions is thus needed for year 2010. Underestimations of CO emissions may be 428 

alleviated in recent years due to the decreasing trends of the Chinese CO emissions in recent years(Jiang et al., 2017;Zhong et 429 

al., 2017;Sun et al., 2018;Muller et al., 2018;Zheng et al., 2018;Zheng et al., 2019). The inversion results of Zheng et al., 2018 430 

also agree well with the MEIC inventory for CO emissions in China from 2013 to 2015. However uncertainties still exist in 431 

the CO emissions for recent years, according to previous studies, the estimated CO emissions in China ranges from 134–202 432 
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Tg/yr in year 2013 (Jiang et al., 2017;Zhong et al., 2017;Sun et al., 2018;Muller et al., 2018;Zheng et al., 2018;Zheng et al., 433 

2019). Zhao et al., 2017 also suggested a -29%–40% uncertainty of CO emissions from the industrial sector in year 2012. For 434 

NH3 simulations, in contrast to the good skills in the monthly variations of NO2 and CO concentrations, all models failed to 435 

reproduce the observed monthly variations of NH3 concentrations in the NCP region, as shown by both the surface and satellite 436 

measurements. Most models mismatched the observed peak and showed negative correlation coefficient with observations, 437 

which may be closely related to the uncertainty in the monthly variations of NH3 emissions and also the uncertainty in the gas-438 

aerosol partitioning of NH3.  439 

Several potential factors were found to be responsible for the model deviation and differences, including the emission 440 

inventories, chemistry-and-meteorology coupling effects, bi-directional exchange of NH3 and the NH3 gas-aerosol partitioning, 441 

which would be important aspects with respect to the model improvements in future. Previous studies also suggest that the 442 

nitrous acid (HONO) chemistry plays an important role in the atmospheric nitrogen chemistry, which influences the 443 

simulations of NO2 and NH3 (Fu et al., 2019;Zhang et al., 2017;Zhang et al., 2016). Heterogeneous conversion from NO2 to 444 

HONO (2NO2(g) + H2O(l) → HONO(l) + HNO3(l)) is one of the dominant sources of HONO in the atmosphere, which has been 445 

considered in most models of MICS-Asia III, including CMAQ since version 4.7, NAQPMS, NHM-Chem and GEOS-Chem. 446 

However, some other important sources of HONO may still be underestimated by models in MICS-Asia III. For example, Fu 447 

et al., 2019 suggested that the high relative humidity and strong light could enhance the heterogeneous reaction of NO2 , and 448 

the photolysis of total nitrate were also important sources of HONO. These sources has not been included in the models of 449 

MICS-Asia III, which would lead to the deviations from observations. The inter-comparisons of the ensemble models 450 

quantified the impacts of model uncertainty on the simulations of these gases, which shows that the impacts of model 451 

uncertainty increases with the reactivity of these gases. Models contained more uncertainties in the prediction of NH3 than the 452 

other two gases. Based on these findings, some recommendations are made for future studies: 453 

 1) More accurate estimation of CO and NH3 emissions are needed in future studies. Both bottom-up and top-down method 454 

(inversion technique) can help address this problem. The inversion of NH3 emissions would be more complicated than the 455 

inversion of CO emissions due to the larger uncertainties in modeling the atmospheric processes of NH3. Nevertheless, it could 456 

still provide valuable clues for verifying the bottom-up emission inventories (Zhang et al., 2009) if the models were well 457 

validated. In addition, by using the ground or satellite measurements, the top-down methods could also give valuable 458 

information on the spatial and temporal patterns of NH3 emissions, such as the inversions studies by Paulot et al., 2014 and 459 

Zhang et al., 2018. However, more attention should be paid to the validations of model before the inversion estimation of NH3 460 

emissions. How to represent the model uncertainties in the current framework of emission inversion is also an important aspect 461 

in future studies. Things could be better for CO considering its small and weakly spatial-dependent model uncertainties.  462 

2) For some highly active and/or short-lived primary pollutants, like NH3, model uncertainty can also take a great part in 463 

the forecast uncertainty. Emission uncertainty alone may not be sufficient to explain the forecast uncertainty and may cause 464 

underdispersive, and overconfident forecasts. Future studies are needed in how to better represent the model uncertainties in 465 
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the model predictions to obtain a better forecast skill. Such model uncertainties also emphasize the need to validate the 466 

individual model before using its results to make important policy recommendation. 467 

3) Gas-aerosol partition of NH3 is shown to be an important source of uncertainties in NH3 simulation. The formation of 468 

NH4
+ particles is mainly limited by the availability of H2SO4 and HNO3 under ammonia-rich conditions, which involves 469 

complex chemical reactions, including gas-phase, aqueous-phase and heterogeneous chemistry (Cheng et al., 2016;Wang et 470 

al., 2016;Zheng et al., 2015). These processes are needed to be verified and incorporated into models to better represent the 471 

chemistry in the atmosphere. 472 

4) The gas chemistry mechanisms used in this study are SAPRC 99, CB05, CBMZ, RACM and RADM2, and some of 473 

them have an updated version such as CB06 and SPARC 07. Our conclusions may not be applicable to these newer versions 474 

of mechanisms and thus more comparisons studies can be performed to understand the differences in these new mechanisms.  475 
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Tables 751 

Table 1: Basic configurations of participating models in MICS-Asia III 752 

No 
Horizontal 

resolution 

Vertical 

resolution 

First 

layer 

height 

Horizontal 

advection 

Vertical 

advection 

Horizontal 

Diffusion 

Vertical 

Diffusion 

Gas phase 

chemistry 

Aerosol 

processes 

Dry 

depositiono

f gases 

Wet 

deposition 

of gases 

Meteorology 
Boundary 

condition 

Online 

(Yes or No) 

M1 45km 40�� level 57 m 

Yamo 

(Yamartino, 

1993) 

ppm (Collella 

and 

Woodward, 

1984) 

multiscale 

ACM2 

(Pleim, 

2007) 

SAPRC99 

(Carter, 2000) 

Aero6 

(Binkowski 

and Roselle, 

2003) 

Wesely 

(1989) 
Henry’s law Standarda 

GEOS-Chem 

(Martin et al., 

2002) 

No 

M2 45km 40�� level 57 m Yamo ppm multiscale ACM2 SAPRC99 Aero6 
Wesely 

(1989) 
Henry’s law Standarda Default No 

M3 45km 40�� level 57 m Yamo Yamo multiscale ACM2 
CB05 (Yarwood 

et al., 2005) 
Aero5 

Wesely 

(1989) 
Henry’s law Standarda GEOS-Chem No 

M4 45km 40�� level 57 m ppm ppm multiscale 
ACM2_ 

inline 
SAPRC99 Aero5 

Wesely 

(1989) 
Henry’s law Standarda 

CHASER 

(Sudo et al., 

2002a) 

No 

M5 45km 40�� level 57 m ppm ppm multiscale 
ACM2_ 

inline 
SAPRC99 Aero5 

M3DRY 

(Pleim et 

al., 2001) 

Henry’s law Standarda CHASER No 

M6 45km 40�� level 57 m Yamo Yamo multiscale 
ACM2_ 

inline 
SAPRC99 Aero5 M3DRY ACM Standarda CHASER No 

M7 45km 40�� level 29 m WRF 
5th order 

Monotonic 
WRF 

3rd order 

Monotonic 

RACM-ESRL 

with KPP 

( Goliff  et 

al.,2013 ) 

MADE 

(Ackerman

n et al., 

1998) 

Wesely 

(1989) 
Henry’s law WRF/NCEPa Default No 

M8 45km 40�� level 57 m 
5th order 

Monotonic 

3rd order 

Monotonic 
MYJ MYJ RACM with KPP MADE 

Wesely 

(1989) 
AQCHEM WRF/NCEPa CHASER Yes 

M9 45km 40�� level 16 m 
5th order 

Monotonic 

3rd order 

Monotonic 

Smagorinsky 

first order 

closure 

YSU (Hong 

et al., 2006) 

RADM2 

(Stockwell et al., 

1990) 

MADE 
Wesely 

(1989) 

Easter et al., 

(2004) 
WRF/NCEPa GEOS-Chem Yes 

M10 45km 60�� level 44 m Monotonic 
3rd order 

Monotonic 

2nd order 

Monotonic 
YSU RADM2 GOCART 

Wesely 

(1989) 
Grell 

WRF/ 

MERRA2a 

MOZART + 

GOCARTb 
No 

M11 45km 20�� level 50 m 
Walcek and 

Aleksic (1998) 

Walcek and 

Aleksic (1998) 
multicale K-theory 

CBMZ (Zaveri et 

al.,1999) 

ISORROPI

A1.7 

(Nenes et 

al.,1998) 

Wesely 

(1989) 
Henry’s law Standarda CHASER No 
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M12 45km 40 �� level 54 m 
Walcek and 

Aleksic (1998) 

Walcek and 

Aleksic (1998) 
FTCS FTCS SAPRC99 

Kajino et al. 

(2012) 

Zhang et al. 

(2003) 
Henry’s law Standarda CHASER No 

M13 0.5°×0.667° 47�� level 60 m ppm ppm 

Lin and 

McElroy, 

2010 

Lin and 

McElroy, 

2010 

NOx-Ox-HC 

ISORROPI

A2.0 

(Fountoukis 

and Nenes, 

2007) 

Wesely Henry’s law GEOS-5a Geos-Chem No 

M14 64km 15�� level 100 m ppm ppm multiscale ACM2 SAPRC99 
ISORROPI

A1.7 

Wesely 

(1989) 
Henry’s law RAMS/NCEPa Geos-Chem No 

 753 
a Standard represents the reference meteorological field provided by MICS-Asia III project; WRF/NCEP and WRF/MERRA represents the meteorological field of the participating model itself, which was run by WRF driven by the NCEP and 754 

Modern Era Retrospective-analysis for Research and Applications (MERRA) reanalysis dataset. RAMS/NCEP is the meteorology field run by RAMS driven by the NCEP reanalysis dataset.  755 
b Boundary conditions of M10 are from MOZART and GOCART (Chin et al., 2002; Horowitz et al.,2003), which provided results for gaseous pollutants and aerosols, respectively. 756 

 757 

 758 

 759 

 760 

 761 

 762 

 763 

 764 

 765 

 766 

 767 
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Table 2: Statistics of simulated annual mean concentrations over the NCP and PRD regions. 768 

Species Regions Statistics 
Model 

M1 M2 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 Ense 

NO2 

NCP 

R(spatial)a 0.63  0.67  0.67  0.67  0.67  0.70  0.70  0.59  0.57  0.66  0.69  - 0.70  0.67  

R(temporal)b 0.82  0.92  0.93  0.86  0.92  0.81  0.28  0.85  0.95  0.75  0.90  - 0.96 0.91 

MBE -4.11  -5.66  -6.54  1.86  -5.12  -5.04  3.30  8.28  -2.45  0.00  -3.81  - -2.99  -1.86  

NMB(%) -17.8  -24.5  -28.4 8.0  -22.2 -21.9 14.2  35.9  -10.6  0.02  -16.5 - -13.0 -8.0  

RMSE 7.40  8.25  8.79  6.75  8.01  7.55  6.54  12.74  7.72  6.37  7.38  - 6.68  6.36  

PRD 

R(spatial) a 0.12  0.06  0.07  0.07  0.06  0.12  0.20  0.38  0.00  0.08  0.12  - 0.02  0.10  

R(temporal)b 0.93  0.80  0.86  0.88  0.79  0.68  0.83  0.95  0.74  0.74  0.75  - 0.52  0.86  

MBE -6.73  -9.84  -7.21  1.96  -6.66  -3.99  3.24  -7.61  -1.84  3.02  -5.49  - -5.03  -3.85  

NMB(%) -30.1  -44.0  -32.3  8.8  -29.8  -17.9  14.5  -34.0  -8.2  13.5  -24.6  - -22.5  -17.2  

RMSE 11.31  13.14  12.00  10.80  11.84  10.60  8.73  10.69  10.72  10.51  11.68  - 12.00  10.15  

CO 

NCP 

R(spatial) a 0.35 0.48 0.27 0.34 0.36 0.22 0.19 0.48 0.49 0.33 0.35 -0.13 0.29 0.37 

R(temporal)b 0.94  0.96  0.92  0.22  0.90  0.77  0.94  0.92  0.82  0.85  0.94  0.85  0.88  0.92  

MBE -1.53 -1.35 -1.59 -1.69 -1.52 -1.64 -1.29 -1.16 -1.55 -1.37 -1.38 -1.53 -1.51 -1.47 

NMB(%) -68.9 -60.9 -71.4 -76.2 -68.2 -73.7 -58.2 -52.0 -70.0 -61.6 -62.3 -68.9 -68.0 -66.2 

RMSE 1.71 1.54 1.77 1.86 1.70 1.82 1.51 1.36 1.74 1.57 1.58 1.74 1.70 1.66 

PRD 

R(spatial) a 0.04 -0.24 -0.25 -0.23 -0.22 -0.05 0.08 0.55 -0.02 -0.01 -0.22 0.09 -0.21 -0.06 

R(temporal)b 0.96  0.91  0.93  0.84  0.95  0.90  0.90  0.96  0.83  0.87  0.93  0.76  0.82  0.94  

MBE -0.66 -0.64 -0.65 -0.64 -0.62 -0.64 -0.51 -0.57 -0.50 -0.51 -0.58 -0.52 -0.67 -0.59 

NMB(%) -68.4 -67.0 -67.0 -66.7 -64.7 -66.5 -53.3 -59.7 -52.3 -52.7 -60.7 -54.1 -69.6 -61.7 

RMSE 0.70 0.70 0.70 0.69 0.67 0.69 0.57 0.62 0.56 0.57 0.64 0.58 0.72 0.65 

NH3 NCP 

R(spatial)a 0.72 0.70 0.69 0.70 0.71 0.65 - 0.70 0.57 0.62 0.67 0.61 0.58 0.69 

R(temporal)b -0.48 -0.22 -0.45 -0.55 -0.41 0.04 - -0.19 0.64 0.08 -0.37 0.65 -0.04 -0.17 

MBE -0.69 2.95 -6.14 -6.61 -3.89 4.94 - 21.8 10.5 -0.07 0.31 -5.19 -12.2 0.47 

NMB(%) -3.8 16.1 -33.5 -36.0 -21.2 26.9 - 118.7 57.1 -0.4 1.69 -28.3 -66.3 2.59 

RMSE 7.20 10.04 8.95 9.24 7.48 8.78 - 29.24 13.48 8.30 7.33 8.82 14.48 7.20 

a R(spatial) represents the spatial correlation coefficients between simulated and observed concentrations sampled from different stations in the NCP and PRD regions; 769 
b R(temporal) represents the temporal correlation coefficients between simulated and observed monthly mean concentrations from January to December in 2010; 770 

 771 
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Figures 772 

 773 

Figure 1: Modeling domains of the participated models except M13 and M14 along with spatial distributions of the total emissions 774 
of (a) NOx, (b) CO and (c) NH3 in 2010 provided by MICS-Asia III (upper panel), and the distributions of observation stations of (d) 775 
NO2 and CO over the NCP and PRD regions, as well as (e) NH3 over the NCP region (lower panel). The horizontal resolution is 776 
45km×45km. Note that domains of M13 and M14 are shown in fig. 7 and only six of nineteen observational sites (green) over the 777 
NCP region have CO measurements. 778 
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 779 

Figure 2: Boxplot of simulated and observed annual mean NO2, CO and NH3 concentrations sampled from different stations over 780 
the NCP (a, c, e) and PRD (b, d) regions. The outlier was defined as values larger than �� + �.� × (�� − ��) or less than �� −781 
�.� × (�� − ��), where �� denotes the 75th percentile, and �� the 25th percentile. This approximately corresponds to 99.3 percent 782 
coverage if the data are normally distributed. 783 
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 784 

Figure 3: Timeseries of regional mean NO2, CO concentrations over the NCP (a, c) and PRD (b, d) regions as well as NH3 785 
concentrations over the NCP (e) region from January to December in year 2010. 786 

 787 

 788 

 789 

 790 
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 791 

Figure 4: Timeseries of NH3 emissions over the NCP region provided by MICS-Asia III on a horizontal resolution of 45km from 792 
January to December in year 2010. 793 
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 803 

Figure 5: Timeseries of the multi-model simulated total ammonium (NHx = NH3 + NH4
+) in atmosphere along with the ratio of 804 

gaseous NH3 to the total ammonium over the NCP region from January to December in year 2010. 805 
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 815 

Figure 6: Spatial distribution of the annual mean NO2 concentrations from each modeling results of MICS-Asia III. Note that M13 816 
are not included in this figure. 817 
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 824 

Figure 7: Spatial distribution of the annual mean CO concentrations from each modeling results of MICS-Asia III. 825 
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 833 

Figure 8: Spatial distribution of the annual mean NH3 concentrations from each modeling results of MICS-Asia III. 834 
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 836 

Figure 9: Spatial distribution of the standard deviation of (a) NH3, (b) CO and (c) NO2 multi-model predictions from MICS-Asia III, 837 
as well as the corresponding distribution of CV on the annual and seasonal basis. 838 


