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Abstract 1 

Ambient pollutants in China changes significantly in recent years due to strict control strategies 2 

implemented by the government. The control strategies also bring uncertainties to both the “bottom-up” 3 

emission inventory and the model-ready gridded emission inputs especially in winter season. In this study, we 4 

updated the WRF/Chem-EnKF Data Assimilation system to quantitatively estimate the gridded hourly SO2 5 

emissions using hourly surface observations as constraints. Different from our previous study, in which 6 

meteorology and emission were both perturbed to obtain larger spread aiming to improve forecast skills; in 7 

this study, only emission was perturbed to ensure analyzed emission purely reflect necessary adjustments due 8 

to the emission uncertainties. In addition, direct emissions instead of emission scaling factors were used as 9 

analysis variable, which allowed for the detection of new emission sources. 2010 MEIC emission inventory 10 

(for January) was used as priori to generate 2015 and 2016 January analyzed emissions. The SO2 emission 11 

changing trends for northern, western and southern China from 2010 to 2015 and that from 2015 to 2016 (for 12 

the month of January) were investigated. The January 2010-2015 differences showed inhomogeneous change 13 

patterns in different regions: 1) significant emission reduction in southern China, 2) significant emission 14 

reduction in larger cities but widely increase in surrounding suburban and rural regions for northern China 15 

which may indicate the missing raw coal combustion for winter heating that not taken into account in the 16 

priori emission inventory; 3) significantly large emission increase in western China due to the energy 17 

expansion strategy. This not only reflected the changes during the five years, but also combined the 18 

uncertainties in the priori emissions. The January 2015-2016 differences showed widely emission reduction 19 

from 2015 to 2016, indicating the stricter control strategy fully executed nationwide. These changes were 20 

corresponded to facts in reality, indicating that the updated DA system was capable to detect the emission 21 

deficiencies and optimize the emission. By generating the hourly analyzed emissions, the diurnal pattern of 22 

emissions (in terms of hourly factors) were also obtained. Forecast experiments showed the improvements by 23 
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using analyzed emissions were much larger in southern China than that in northern and western China. For 1 

Sichuan Basin, Central China, Yangzi River Delta, and Pearl River Delta, BIAS and RMSE decreased by 2 

61.8%-78.2% and 27.9%-52.2%, respectively, and correlation coefficients increased by 12.5%-47.1%. 3 

However, the improvement in northern and western China were limited due to small spread. Another limitation 4 

of the study is that the analyzed emissions are still model dependent, as the ensembles are conducted through 5 

WRF/Chem model and thus the performances of ensembles are model dependent.   6 

 7 

1. Introduction 8 

Sulfur dioxide (SO2) is a reactive, short-lived atmospheric trace gas and the life time is a few hours in 9 

summer to a few days in winter (e.g. Lee et al., 2011). A few studies using satellite data revealed SO2 pollutants 10 

and emissions in China changed dramatically in the past decades (e.g. Fioletov et al., 2015, 2016; Ialongo et 11 

al., 2015, Krotkov et al., 2016, Koukouli et al. 2016, Lee et al., 2011, Li et al., 2010, Lin et al., 2017, 12 

McLinden et al., 2015, 2016; Wang et al., 2015; van der A, et al., 2017). Those studies revealed the widespread 13 

decline of annual SO2 in densely populated and industrialized eastern China from 2005-2015, but some studies 14 

also noticed that Ozone Monitoring Instrument (OMI)-measured SO2 in northwestern China appeared not to 15 

show a decreasing tread. The enhanced SO2 vertical column densities are potentially attributable to increasing 16 

SO2 emissions due to the development of large-scale energy industry bases in energy-abundant northwestern 17 

China under the national strategy for the energy safety in the 21st century. Those studies impressed the need 18 

to not only focus SO2 load studies on the national level, but also focus on emerging economies within the 19 

Chinese realm of introducing new industrial and power plant parks.  20 

Emission inventory is of fundamental importance for the scientific analysis of complex air pollution, 21 

especially for modeling studies. Traditionally the total amount of sectoral emissions have generally been 22 

estimated based on “bottom-up” approach that relied on available statistical information of activities (energy, 23 
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industrial production, vehicles etc.) and emission factors. For regional model application, the annual/monthly 1 

total amounts at national or provincial level are allocated spatially and temporally to generate hourly gridded 2 

emissions. Thus the uncertainties of the statistical information and the spatial-temporal allocation could both 3 

cause inaccurate representation of the hourly gridded emission input, and affect the performance of the model 4 

application. For example, Zhi et al. (2017) conducted village energy survey and revealed a huge amount of 5 

missing rural raw coal for winter heating in northern China, which implies an extreme underestimation of rural 6 

household coal consumptions by the China Energy Statistical Yearbooks. Although these surveys were 7 

conducted for the rural areas of only two cities, Baoding and Beijing, it revealed that rural emissions from raw 8 

coal in winter were higher than those from industrial and urban household sectors in the two cities in 2013. 9 

For the aspect of temporal allocation, as many emission sources have a large diurnal, weekly variability that 10 

is not fully represented; arbitrary hourly/weekly factors were used in the models. Furthermore, the control 11 

strategies in recent years in China bring dramatic changes in the SO2 emission spatial-temporal pattern 12 

(factories mitigated from urban to rural region, industry staggering peak production etc.), thus large 13 

uncertainties are expected when applying those time-lagged “bottom-up” emission inventories (e.g. 2010-14 

MEIC) in modelling studies for recent years (e.g. 2013 and afterward). 15 

Among various Data Assimilation (DA) approaches to estimate or improve source emissions (e.g. 16 

Evensen, 1994; Houtekamer et al., 2005, Hunt et al., 2007; Pagowski and Grell, 2012, Miyakazi, et al., 2012, 17 

2013, 2014, Dai et al., 2014), the Ensemble Kalman Filter (EnKF) is one of the most popular DA algorithms 18 

used to improve estimates of aerosols and gas-phase emissions (e.g. Tang et al., 2013, 2016). In our previous 19 

study, Peng et al. (2017) extended the ensemble square root filter algorithm to simultaneously optimize the 20 

chemical initial conditions and emission input aiming to improve the forecasting of atmospheric PM2.5. In the 21 

model, the deficiencies of concentration simulation come from varies aspects, including initial condition, 22 

emission, meteorology, chemistry and transport etc. In Peng et al. (2017), both meteorology and emission 23 
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were perturbed to reflect their uncertainties and also obtain larger spread. After DA, the differences between 1 

model and observations were attributed to the adjustments of emission and initial conditions. In this approach, 2 

the analyzed emission may be not purely reflect necessary adjustments due to the emission uncertainties but 3 

also the part from meteorology, as the meteorology perturbations changed the ensemble forecast thus also got 4 

involved in the error covariance calculation. In this study, we update the similar DA system to estimate SO2 5 

emissions. As our purpose is to investigate emission changes rather than to improve the forecast skills, thus 6 

we only perturb emissions. For our study, the foremost is to verify if the EnKF algorithm can be capable to 7 

detect the emission deficiencies and optimize the emission. In addition, Peng et al. (2017) analyzed emission 8 

scaling factors and thus does not allow the analysis of newly emerged emissions. To better detect the new 9 

emission sources, we update the system to directly analyze SO2 emissions instead of emission scaling factors.  10 

In this study, we focus on the winter-time SO2 pollution and emission changes from 2010 to 2015/2016, 11 

aiming to quantitatively analyze the SO2 emission trends by using the WRF/Chem-EnKF DA system, 12 

especially the inhomogeneous changing trends for northern, western and southern China. In this study, 2010 13 

January emission inventory (Zhang et al., 2009; Lei et al., 2011; He 2012; Li et al., 2014) is used as the prior 14 

for estimating 2015 and 2016 January emissions by assimilating hourly surface SO2 concentration 15 

observations. Then the 2010-2015 and 2015-2016 emission changes are investigated by comparing two groups 16 

(2015 analyzed emissions v.s. 2010 prior emissions; 2016 analyzed emissions v.s. 2015 analyzed emissions) 17 

respectively. While the comparison in the first group not only reflects the real emission trends from 2010 to 18 

2015, but also reflects the uncertainties in the original 2010 prior emission inventory. The second group more 19 

reflects the annual change from 2015 to 2016 as the uncertainties in the prior emissions are subtracted. 20 

The paper is organized as follows. In section 2, the DA system, prior emissions, observational data and 21 

experimental design are described. The trends in SO2 ambient concentrations by using the GSI 3DVAR DA 22 

system are analyzed in section 3, focusing on the ambient concentration spatial distribution and year-to-year 23 
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(2015-2016) changes. Section 4 described the results from the emission assimilation experiment using the 1 

updated WRF/Chem-EnKF system. This section starts from the evaluation of the ensemble performance to 2 

verify the DA system capability. Then the emission trends are given spatially in the whole domain and also in 3 

8 different regions illustrating the inhomogeneous changes spatially. The hourly emission factors from the 4 

assimilation experiment are also given in section 4. Although it is difficult to verify the accuracy of the 2015 5 

and 2016 analyzed emissions, we conducted two sets of forecast experiments with the priori emissions and 6 

the analyzed emissions respectively, and tried to analyze the differences attempting to check if any 7 

improvements were obtained with the analyzed emissions. The details are given in section 5 and conclusions 8 

are followed in section 6.       9 

2. Model description, observations and methodology  10 

We investigated the SO2 pollution by two different DA techniques. In the first approach, we extended the 11 

Gridpoint Statistical Interpolation (GSI) 3DVAR DA system, that originally developed by Liu et al. (2011) 12 

and recently updated by Chen et al. (2018), to assimilate the SO2 observations aiming to generate the SO2 13 

reanalysis fields; by analyzing the differences between control case (with priori emissions) and the reanalysis 14 

data, the deficiencies in the priori SO2 emission and the emission changing trends can be derived. In the later 15 

approach, we updated the EnKF DA system (that used in Peng et al., 2017) to estimate the WRF/Chem-based 16 

analyzed (posterior) SO2 emissions using surface observations as constraints. The WRF/Chem configurations 17 

are the same as in Chen et al. (2018) thus the details are neglected here. The update of the GSI 3DVAR DA 18 

system is also built upon Chen et al. (2018), and only a simple description is given in this section. More 19 

descriptions about the WRF/Chem-EnKF DA system, and also priori emissions, observations and 20 

experimental design are introduced in detail.   21 

 22 
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2.1 GSI 3DVAR DA system 1 

Built upon the GSI 3DVAR DA system that used in Chen et al. (2018), we extended the system capability 2 

to assimilate surface SO2 observations. The algorithm and the methodology for aerosol DA are described in 3 

Chen et al. (2018). Here only the differences for SO2 DA are addressed. 4 

The SO2 observation operator is rather simple, ∏� = ������. The unit of model simulated ���� is 5 

ppm, thus multiplication by unit conversion ��	was required to convert the unit to	μg	m�� for consistency 6 

with the observations. The observation errors are calculated similarly as in Chen et al. (2018). In data quality 7 

control process, the SO2 observational values larger than 650, or observations leading to 8 

innovations/deviations (observations minus the model-simulated observations determined form the first guess 9 

fields) exceeding 100 μg m-3 were not used. The static BECs were computed via the “National Meteorological 10 

Center (NMC)” method (Parrish and Derber, 1992) by taking the differences of the 24-hr and 12-hr 11 

WRF/Chem forecasts valid at the same time for 60 pairs valid at either 00UTC or 12UTC over January 2015. 12 

The standard deviations in the whole domain is shown in supplemental Fig. S1.  13 

 14 

2.2 WRF/Chem-EnKF DA system 15 

The WRF/Chem-EnKF assimilation system framework (Fig. 1) is very similar to that of Peng et al. (2017). 16 

Peng et al. (2017) focused on the joint analysis of both initial conditions and emissions of PM2.5, and addressed 17 

the forecasting skill improvement by using the EnKF system. Here we focus on the estimation of SO2 18 

emissions aiming to investigate the system capability to reflect the spatial-temporal emission changes by using 19 

observational data as constraints. In addition, instead of analyzing emission scaling factors as proxies, we 20 

attempt to directly analyze emissions which would allow the detection of new emission source. As in the 21 

previous approach, the emission scaling factors would be extremely large when a new emission source (e.g. a 22 

new power plant) occur in a originally “clean” model grid (priori emissions close to zero); the scaling factor 23 

is so large that it might be treated as “unrealistic” thus been filtered out in the system. The direct analysis of 24 
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emission is expected to be more appropriate for this case.  1 

The Ensemble Square Root Filter (EnSRF, Whitaker and Hamill 2002) algorithm is very similar as in 2 

Peng et al. (2017) except for some differences, such as the state variables (changed from aerosols to SO2 3 

concentrations and emissions) and the inflation factor. In addition, the forecast model for emissions is also 4 

different from Peng et al. (2017). More details of the differences from Peng et al. (2017) are described below. 5 

2.2.1 State variables  6 

The similar Ensemble Square Root Filter is used in this study to update a 50-member ensemble as in 7 

Peng et al. (2017). We also applied the state augmentation method (e.g. Aksoy et al., 2006; Miyazaki et al., 8 

2012). The only difference is that model parameter (SO2 emissions) is directly estimated by including it as 9 

part of the state vector together with the model forecast variable (SO2 concentration). The background 10 

ensemble is defined as below: 11 

x�
� = �

C�
�

E�
��                                 (1) 12 

In which, x�
� is the ith member’s background vector, consisted of model simulated SO2 concentrations 13 

C�
� and also the SO2 emission	E�

�.  14 

In Miyazaki et al. (2012), the state augmentation method was used to estimate NOx emissions by using 15 

satellite observations (Ozone Monitoring Instrument-OMI retrieved NO2 column) as constraints with a Local 16 

Ensemble Transform Kalman Filter (LETKF). The employment of combining state vectors (both NO2 17 

concentrations and NOx emissions) allowed indirect relationships between NO2 concentrations and NOx 18 

emissions caused complex chemical and transport processes to be considered through the use of the 19 

background error covariance, which are produced by ensemble Chemical Transport Model-CTM forecast. 20 

Built upon Miyazaki et al. (2012), we used the similar approach aiming to address the indirect relationships 21 

between SO2 concentrations and SO2 emissions caused chemical (e.g. the conversion of SO2 to aerosol species 22 
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sulfate) and transport processes.  1 

To reduce spurious correlations due to sampling error, covariance localization was applied following 2 

Schwartz et al. (2013, 2014) and Peng et al. (2017): EnSRF analysis increments were forced to zero 1280km 3 

from an observation in the horizontal and 1 scale height (in log pressure coordinates) in the vertical using a 4 

Gaspari and Cohn (1999) polynomial piecewise function.  5 

2.2.2 Inflation factor in EnSRF 6 

Further, multiplicative inflation was applied to posterior (after assimilation) perturbations about ensemble 7 

mean analyses, following Whitaker and Hamill (2012)’s “relaxing-to-prior spread” approach with an inflation 8 

parameter �. 9 

�x�
� ← �x�

� ��
�����

��
+ 1�,                                         (2) 10 

In which, �x�
�  is the ith member’s analysis perturbation about the mean analysis, � is the inflation factor, 11 

and  �� and �� are the prior (before assimilation) and posterior standard deviations at each model grid point, 12 

respectively. Using the definition of standard deviation, Eq.(2) can be expressed as 13 

           �� ← 	��� + (1 − �)��,                                          (3) 14 

Assimilating observations reduces ensemble spread, thus without inflation, �� < ��. From Eq.(3), if 15 

� > 1, the inflated posterior spread is forced to be larger than the prior spread (��). Conversely, for � <1, 16 

the inflated posterior spread must be less than ��. As no prior or additive inflation was employed, � > 1 17 

was necessary to maintain ensemble spread and we used inflation factor of � = 1.12. 18 

 19 

2.2.3 Forecast models for emissions 20 

The forecast model is important as it propagates observation information, inflates the analysis spread and 21 

determines the quality of the first guess. In Peng et al. (2017), a smoothing operator served as the forecast 22 
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model for the emission scaling factors. In this study, the direct emissions instead of scaling factors were treated 1 

as part of the state variables; thus similar method of the forecasting approach was used as in Miyazaki et al. 2 

(2012): a linearized forecast model (M) provides a first guess of the state vector for data assimilation based 3 

on the background error covariance from the previous analysis time �� to the new analysis time ����, 4 

P(����)	
� = 0.75	 × MP(��)

� M� +	0.25 × P(��)	
� ,                        (4) 5 

in which a persistent forecast model (M=I) is used for SO2 emissions and the estimated emissions are used in 6 

the next step ensemble forecasting. To prevent the parameter covariance magnitude reduction, we added the 7 

initial priori ensemble as random noises. The forecast model for direct emissions is weighted 75% toward the 8 

results from the previous analyses time and 25% toward the static initial prior ensemble. The initial prior 9 

ensemble of SO2 emissions for the first EnSRF analysis was constructed from the priori emissions by taking 10 

Gaussian random draws from a standard Gaussian distribution and varied for each ensemble member as in 11 

Peng et al. (2017). This approach incorporates the useful information from the previous time step and also the 12 

prior emissions, which propagate the observation information from one step to the next while still keeping 13 

some of the characteristics of the prior features.  14 

 15 

2.3 Priori emissions  16 

The Multi-resolution Emission Inventory for China (MEIC) (Zhang et al., 2009; Lei et al., 2011; He 2012; 17 

Li et al., 2014) for January 2010 is used as the prior emission input. The pre-process to covert the original 18 

emission inventory (in 0.25 × 0.25 degree) to match the model grid spacing (40-km) is the same as in Chen et 19 

al. (2018). The spatial distribution of prior SO2 emission in the simulation domain is shown in Fig. 2. A number 20 

of studies have revealed the uncertainties of the “bottom-up” emission inventories, including the energy 21 

statistics from national/provincial levels (e.g. Hong et al., 2017), emission factors from different industry 22 

sectors (e.g. Zhao et al., 2017). While our purpose is to investigate not only the uncertainty of the prior MEIC 23 

emission, but also the capability of DA system to dynamically update the SO2 emissions by using surface 24 
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observations as constraints. For this purpose, the changing trends of SO2 emissions from the priori emission 1 

year (2010) to our focusing years (2015 and 2016) are emphasized.  2 

Actually, there are several different driving factors in different regions that may lead to inhomogeneous 3 

changing trends during those years (especially from 2010 to 2015). As the Chinese government has 4 

implemented desulphurization legislation (since 2005-2006 but with stricter control of actual use of the 5 

installations since 208-2009) and strict control strategies to insure the air quality during winter seasons since 6 

2013, significant SO2 emission reductions are expected since 2010. However, there are converse results for 7 

certain regions: village energy survey reveals missing rural raw coal in northern China (Zhi et al., 2017), OMI-8 

measured increasing SO2 emissions due to energy industry expansion in northwestern China , especially new 9 

power plants installation in Xinjiang and Shaanxi, e.g. Shen et al. (2016). Eight different regions are illustrated 10 

to address the issue. Northern China is divided into two regions, North China Plain (NCP) and Northeastern 11 

China (NEC), as North China Plain is more emission intensive and may experience more strict control 12 

strategies than Northeastern China in winter haze periods. Northwestern China is also divided into two regions, 13 

including EGT (Energy Golden Triangle) and XJ (Xinjiang). Southern China is divided into four regions 14 

according to their geographic characteristics, including SB (Sichuan Basin), CC (Central China), YRD 15 

(Yangzi River Delta), and PRD (Pearl River Delta). The spatial distribution of the SO2 emissions in the 8 16 

regions are also illustrated in Fig. 2.  17 

To improve the simulation, we also applied predefined functions for the diurnal variations of the priori 18 

SO2 emissions, but the hourly factors are the same for all the sectors and all the grids, which are not optimal. 19 

As the diurnal variability is not publically released and highly uncertain, it brings large uncertainty in the 20 

simulations. We also want to investigate the capability of the DA system if it can improve the diurnal variations 21 

of SO2 emissions by using hourly surface SO2 concentrations as constraints.     22 

 23 
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2.4 Observations 1 

Hourly surface SO2 concentrations for January 2015 and 2016 were obtained from the China National 2 

Environmental Monitoring Center (CNEMC). There are around 1600+ sites in our modeling domain (black 3 

dots in Fig. 2). As the 1600+ monitoring sites fall into 531 model grids, the observations within the same grid 4 

are averaged (the latitude and longitude too) for the purpose of statistics and verification. The observation 5 

sites spanned mostly in the northern, central and eastern China and are relatively sparse in western China. To 6 

ensure data quality before DA, SO2 observational values larger than 650 μg	m�� were deemed unrealistic 7 

and not assimilated in neither the GSI 3DVAR nor EnKF DA system. 8 

 9 

2.5 Experimental design 10 

To analyze SO2 changing trend and also qualitatively evaluate the deficiencies of the priori SO2 emission, 11 

the CONC_DA experiment with continuously cycling GSI 3DVAR was performed to generate the SO2 12 

reanalysis fields, and a control experiment (NO_DA) was also performed for comparison. The simulated 13 

periods are January of 2015 and 2016. In the NO_DA experiment, it initialized a new WRF/Chem forecast 14 

every 6-hr starting 00UTC, 20 December of previous year to spin up chemistry fields and run through 23UTC, 15 

31 January. The chemistry fields were simply carried over from cycle to cycle while the meteorological Initial 16 

Condition (IC) and Boundary Condition (BC) were updated from GFS analysis data every 6-hr to prevent 17 

meteorology simulation drifting. For CONC_DA, GSI 3DVAR updated the SO2 concentration every hour 18 

starting from 00UTC, 1 January. The background of the first cycle at 00UTC, 1 January was from the NO_DA 19 

experiment and the later ones were from the previous cycle’s 1-hr forecast. The GFS analysis data in 6-hr 20 

frequency were interpolated in 1-hr and were used to update meteorological IC/BC in each 1-hr GSI 3DVAR 21 

cycle.  22 

To estimate the SO2 emissions using surface observations as constraints, the EMIS_DA experiment with 23 

continuously cycling WRF/Chem-EnKF was performed for January of 2015 and 2016. The initialization and 24 
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spin-up procedures of the 50 member ensemble were conducted by a three-day ensemble forecasts starting 1 

from 00UTC, 29 December of pervious year to 00UTC, 1 January of the next year, using the same method as 2 

in Peng et al. (2017), that lateral boundary conditions, initial condition of meteorology and emissions are 3 

perturbed. Then a 50-memble ensemble SO2 forecasts valid at 00UTC, 1 January were generated, which were 4 

used as part of the background (C�
� in Eq. 1) in the first EMIS_DA cycle. The other part of the background 5 

(E�
� in Eq. 1) are the perturbed emissions of the last time step (at 23UTC, 31 December). Following the 6 

procedure in Figure 1, the EMIS_DA experiment started to conduct EnSRF analysis and generated both the 7 

updated SO2 concentration fields and also the updated analyzed SO2 emissions for the previous time step. In 8 

the next 1-hr forecast step, the updated SO2 concentration fields of each member were used as the IC of the 9 

WRF-Chem 1-hr forecast; the forecast model (Eq. 4) generated the forecast emissions of each member by 10 

combining the previous time step’s analyzed emissions and also the perturbed priori emissions. In this hourly 11 

cycling approach, the 1-hour WRF/Chem-EnKF cycling was conducted for January of 2015 and 2016, hourly 12 

analyzed SO2 emissions were then generated.    13 

 To assess the analyzed emissions by the EnKF DA system, two forecast experiments (NO_DA_forecast 14 

and EMIS_DA_forecast) were conducted for the same period. 24-hour forecasts were performed at 00UTC of 15 

each day from 1-31 January for 2015 and 2016. The original prior emission and the updated analyzed emission 16 

were used respectively in NO_DA_forecast and EMIS_DA_forecast experiments. The chemistry initial 17 

conditions for each forecast in the two forecast experiments were from the 1-hour cycling GSI 3DVAR DA 18 

experiment. The meteorological IC and BC are all from GFS analysis and forecast data. The concentration 19 

differences between the two sets of 24-hour forecasts reflects the effects of updated emissions.        20 

3. Trends in ambient concentrations 21 

This section presents the simulated SO2 concentration results by NO_DA and CONC_DA. As shown in 22 

Chen et al. (2018), the 1-hr cycling GSI 3DVAR DA system produces reliable PM2.5 reanalysis fields; as the 23 

Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-1152
Manuscript under review for journal Atmos. Chem. Phys.
Discussion started: 4 January 2019
c© Author(s) 2019. CC BY 4.0 License.



14 
 

methodology and the procedure are the same for SO2, we can expect that the improvement of SO2 assimilation 1 

is as good as that of PM2.5, evidenced by the basic statistics including mean bias (MEAN/BIAS), standard 2 

deviation (STDV), and root-mean-square errors (RMSE) between NO_DA/CONC_DA and observations 3 

shown in Supplemental Fig. S2. Therefore, the purpose of this section is not to verify the performance of the 4 

GSI 3DVAR assimilation experiment, but to investigate the differences between NO_DA and CONC_DA. As 5 

NO_DA is the simulation with 2010 emission inventory while CONC_DA can serve as gridded reanalysis 6 

data from real observations, the difference of the two runs actually reflect the possible deficiencies in the 7 

model. As the meteorology are from the 6-hr GFS reanalysis data, we assume that most of the deficiencies 8 

come from using the 2010 priori emissions for the year 2015 and 2016 in the model and the comparisons also 9 

provide an idea of the changing trends of the emissions.    10 

 11 

3.1 Spatial distribution 12 

 Figure 3 show the observed and modeled monthly average of surface SO2 for January in 2015 and 2016. 13 

The observations show great differences between northern and southern China reflecting the dominating role 14 

of heating relevant emissions in northern China during winter season. The high values in northern China also 15 

show localized characteristics (no smooth transitions from high value region to surroundings) that reveal the 16 

localization of SO2 emission and transport. NO_DA experiment significantly overestimates surface SO2 in 17 

Sichuan Basin and Central China but underestimates it at several locations in northern China and Xinjiang. 18 

After GSI 3DVAR hourly cycling DA, CONC_DA experiment is very close to observations that it corrected 19 

most of the biases in NO_DA except for the very high values at some of the “hot spots” in northern China. 20 

The failure at those spots may come from the data filtering process that rejects SO2 data with either the 21 

observed values larger than 650, or innovations exceeding 100 μg m-3. The differences between CONC_DA 22 

and NO_DA more clearly revealed the inhomogeneous emission changes in different regions: for 2015, great 23 

SO2 decrease from NO_DA to CONC_DA in most of eastern and southern regions but increase in Northeastern 24 
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China, Energy Golden Triangle and Xinjiang, indicating that 2010 January priori emissions should be adjusted 1 

accordingly (in decreasing/increasing trends respectively) to reflect the 2015 January status. The negative 2 

discrepancies in the eastern and southern regions are even larger for 2016, indicating continuous emission 3 

decreasing there.     4 

To further investigate the deficiencies in priori emissions, the spatial distribution of the statistics (MEAN 5 

BIAS, RMSE and CORR) at each observational sites (with more than 2/3 valid data in the month) in January 6 

of 2015 and 2016 for the two experiments are shown in Fig. 4. We start from the 2015 statistics and then 7 

address the differences in 2016. In NO_DA, consistent with Fig. 3, surface SO2 in southern China (Sichuan 8 

Basin, Central China, Pearl River Delta and Yangzi River Delta) is generally overestimated by 20-50 μg m-3, 9 

but it is underestimated in Northeastern China and Energy Golden Triangle. The BIAS also showed the 10 

localized characteristics with positive biases in mega-cities (e.g. Beijing) while negative biases surroundings 11 

indicating overestimated/underestimated emissions respectively. There are also high RMSEs in Northeastern 12 

China, Northern China Plain and Energy Golden Triangle indicating wide spread of the differences between 13 

observational data and NO_DA simulations, which may also indicate the model deficiency in reproducing the 14 

strong temporal fluctuations (with the same daily emission and fixed hourly factors in the priori emissions). 15 

The poor correlations (less than 0.5) at the most of the sites also indicate the assumption. From year to year, 16 

the biases in 2016 are even more prominent. With GSI 3DVAR hourly cycling, the BIAS, RMSE and CORR 17 

are greatly improved as expected while the improvements in northern China are smaller than that in southern 18 

China.  19 

 20 

3.2 Changes from 2015 to 2016   21 

The differences in January of the two years (2015-2016) are shown in Fig. 5. Observations (Fig. 5a) show 22 

mostly decrease from 2015 to 2016 for most sites especially in Northern China Plain and southern China. In 23 

NO_DA experiment (same emission and different meteorology), some decreases are shown reflecting the 24 
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meteorology condition differences between the two years; but the observed significant decrease in Northern 1 

China Plain and southern China are not captured. CONC_DA (Fig. 5b) did reproduce the large decrease in 2 

Northern China Plain and southern China from 2015 to 2016. From the difference of Fig. 5b and 5c, it can be 3 

assumed that factors other than meteorology (e.g. emission control measures) did play important role in 4 

making the decreasing trend. CONC_DA failed to reproduce the large positive changes at 3 locations in Energy 5 

Golden Triangle region, as CONC_DA failed to reproduce the high SO2 concentrations in both years due to 6 

data filtering processes. 7 

4. Trends in emissions  8 

Before the emission trends analysis, the ensemble performance was evaluated. To compare with prior 9 

emissions, the analyzed hourly emissions were averaged monthly. The analysis of total amount and spatial 10 

changes were conducted for the aforementioned 8 regions. We focus on the emission trends for two periods, 11 

2010-2015 and 2015-2016. Besides, the hourly factors (diurnal cycle) of the optimized emissions were given 12 

to reflect the value of hourly DA.  13 

 14 

4.1 Ensemble performance 15 

In a well-calibrated system, when compared to the observations, the prior ensemble mean root-mean 16 

square error (RMSE) would equal the prior “total spread” defined as the square root of the sum of the 17 

observation error variance and ensemble variance of simulated observations (Houtekamer et al., 2005). Time 18 

series of the hourly prior ensemble mean RMSE and total spread for surface SO2 in the 8 regions are shown 19 

in Figure 6. The time series of two months (Jan. 2015 and Jan. 2016) are given separately. The magnitudes of 20 

the total spread and the RMSE are influenced by the diurnal cycle and the pollution events (driven by 21 

meteorology pattern and emissions). As expected, all the total spreads in the 8 regions are smaller than the 22 

RMSE for almost the whole periods except the first few days in 2015. As in spin-up procedure lateral boundary 23 
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and initial conditions of meteorology were also perturbed in addition to emission perturbation, that lead to 1 

larger spreads in the first DA cycle which may keep for a short period. For all the other periods without 2 

meteorology perturbation, insufficient spread of SO2 ensemble forecasts were shown; while the cases in 3 

northern and western regions (North China Plain, Northeastern China, Energy Golden Triangle, Xinjiang) 4 

were worse than that in southern regions (Sichuan Basin, Central China, Yangzi River Delta, Pearl River 5 

Delta), as the priori ensemble mean RMSE in the northern regions were much larger but the total spreads were 6 

fairly constant. The distinction of the comparisons among different regions (North China Plain v.s. Yangzi 7 

River Delta/Pearl River Delta) indicated the deficiencies of perturbation procedure in the DA system when 8 

applying to the northern regions. Further investigations should be conducted to generate larger spreads for 9 

northern regions in the future studies.  10 

  11 

4.2 Analyzed 2015 and 2016 emissions  12 

The optimized SO2 emissions obtained from the assimilation for Jan. of 2015 and 2016 are shown in Fig. 13 

7. To address the changes from 2010 to 2015 and also that from 2015 to 2016, the differences and also ratios 14 

of the two groups (2010 v.s. 2015, 2015 v.s. 2016) are given. Actually for the comparison of 2015 analyzed 15 

emissions with 2010 priori emissions, as real observations are used to constrain the 2015 emission, the 16 

differences between the two sets of emissions actually reflects the necessary adjustments based on the 2010 17 

priori emissions which are needed to better capture observations, thus it not only reflects the changing trends 18 

from 2010 to 2015, but also may indicate the deficiencies of the 2010 priori emission. It should be noted that 19 

the two aspects are just mixed in interpreting the results. While the comparison of 2015 analyzed with 2016 20 

analyzed emissions are more straightforward, as they are both from observation constraints, the differences 21 

between the two reflect the annual changes between the two year and the impacts from prior emission 22 

deficiencies are just removed in the subtraction.  23 

 Compared to the 2010 priori emissions, the analyzed emissions for 2015 show different changes 24 
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spatially (northern, western, southern China). Large emission decreases in southern China (Sichuan Basin, 1 

Central China, Yangzi River Delta and Pearl River Delta) are shown but there are also some small amount of 2 

emission increases in scattered regions. Those increases are relatively small in absolute values (shown as light 3 

yellow color in Fig. 7c) but the 2015/2010 ratios can reach large numbers (shown as orange to red colors in 4 

Fig. 7d), as the priori emissions in those regions are very small (Fig. 2) thus small amount of changes lead to 5 

large ratios. For northern China (North China Plain, Northeastern China), the change pattern is somewhat 6 

opposite. Emission increases are shown for most of the regions with decreases only in scattered points. Large 7 

2015/2010 increase ratios are also shown in western China (Xinjiang and Energy Golden Triangle) while the 8 

prior emissions are very sparse in those two region, thus the emission increases are more significant which 9 

may indicate new emission sources. For the changes from 2015 to 2016, the pattern is rather homogenous in 10 

the whole domain with almost decreases in all the regions.  11 

 12 

4.3 Trends in different regions  13 

To further illustrate the changes in different regions, the details of 8 regions are given in Fig. 8 (2015 v.s. 14 

2010) and Fig. 9 (2016 v.s. 2015). Similar to Fig. 7, the emission changes in absolute values (left) and the 15 

ratios (right) are given for each region. To better understand the geographic changes, the center locations of 16 

some large cities (capital cities of provinces and municipal centers at city level) in those regions are labeled. 17 

According to Fig. 7, the change patterns are different in northern, western and southern China for 2015, thus 18 

the discussions are also given based on this classification. We start from the comparison of 2015 analyzed 19 

emissions with 2010 priori emissions, as the there are five year time lag between the two sets of emissions, 20 

large uncertainties and thus large changes are expected.  21 

It is interesting to see that for northern China (North China Plain and Northeastern China), most 22 

significant decreases occur in or around the large cities (city center locations are labeled as black dots). The 23 

phenomenon is very prominent in North China Plain, as we can see some “cold” spots (grids with cold colors) 24 
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in Fig. 8a, they are either overlapped with the city center locations (Beijing, Tianjin, Xingtai, Handan in 1 

Beijing-Tianjin-Hebei Region, and Dongying, Jinan, Zibo, Jining in Shandong Province) or just adjacent of 2 

the center locations (Shijiazhuang, Linyi, Zaozhuang). As the center locations are represented as 3 

latitudes/longitudes that don’t cover the whole city areas, thus there might be some shifting in interpretating 4 

the results when the city areas are too large (e.g. Shijiazhuang, Changchun, Shenyang) that been split into two 5 

or more grids in the model. While it still indicate that from 2010 to 2015, the emissions in those larger cities 6 

decreased due to the strict control strategies in those cities (factory migration from urban regions to remote 7 

regions, desulfurized equipment in factories/vehicle, low-sulfur energy etc.). However there are some 8 

emission increases in the suburban and rural regions surrounding those larger cities, either due to the emission 9 

migration from urban regions or the new emission sources newly added due to the urbanization development. 10 

It might also indicate that the control strategies are executed at different levels in urban (more strict) and 11 

suburban-rural regions during 2010 to 2015. In Northeastern China, significant “cold spots” also occur in the 12 

three larger cities, including Ha’erbing, Changchun, and Shenyang, but mostly increase in other areas 13 

indicating the similar trend as in North China Plain, that large emission decrease/mild emission increase in 14 

bigger cities/suburban-to-rural regions from 2010 to 2015 respectively. In addition to the possible reasons that 15 

aforementioned to account for the different changing trend of urban/suburban-rural regions from 2010 to 2015, 16 

it should be noted that the month of January is right the heating season for North China Plain and Northeastern 17 

China, the large areas of emission increase might also indicate some heating emissions (from the energy that 18 

has not been well statistically recorded, e.g. crop combustion, residential coal combustion) that are missing in 19 

the priori emissions.           20 

In western China, where the emission intensities are not so high and the emission sources are relatively 21 

sparse, the emission changing trends from 2010 to 2015 are more obvious and are more meaningful to 22 

distinguish new emission sources/regions. As some studies revealed increasing SO2 emissions due to energy 23 
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industry expansion and relocation in northwestern China from OMI measurements (Ling et al., 2017), our 1 

2015 analyzed emissions also show large emission increase in the whole areas of Energy Golden Triangle and 2 

Xinjiang except for very few larger cities (Yinchuan, Wuhai, Lanzhou; Kelamayi). The emissions in other 3 

areas of Energy Golden Triangle and Xinjiang are almost increasing from 2010 to 2015; especially for 4 

Xinjiang, the increase of emissions are all attributed to the rapid-developing cities, including Wulumuqi, 5 

A’kesu, Ku’erle, Yecheng, Manasi, Tacheng, Huocheng, Bachu, A’tushi, Shanshan, Shache etc. This is 6 

consistent with the satellite observations (Koukouli et al. 2016; Shen et al. 2016). These locations belong to 7 

provinces in Energy Golden Triangle and Xinjiang with emerging economies which are in haste to install 8 

power plants and are possibly viewed leniently by the authorities, in favor of growth. 9 

In southern China, the decreasing trends are shown for large areas especially in Yangzi River Delta and 10 

Pearl River Delta, that decreasing trends in larger cities are clearly shown, e.g. Shanghai, Nanjing, Hangzhou 11 

in Yangzi River Delta and Guangzhou, Shenzhen and Foshan in Pearl River Delta with relatively larger 12 

decreasing ratios in more well-developed cities. In Sichuan Basin and Central China, the decrease in larger 13 

cities is also significant and different extent are achieved at different levels of cities. For Chengdu, Chongqing, 14 

Zunyi, Guiyang, Yunyang in Sichuan Basin and Wuhan and Changsha in Central China, around 40-50% 15 

reduction are shown from 2010 to 2015. For other larger cities (municipal centers of cities), 20-30% reduction 16 

is shown.  17 

As aforementioned, the comparisons between the 2015 and 2016 analyzed emissions (Fig. 9) are more 18 

straightforward and reflect the necessary emission changes from 2015 to 2016 as the uncertainties in the priori 19 

emissions are subtracted. As expected, the decreasing trends are shown for almost all the labeled cities 20 

indicating the continuing control strategy strictly executed. However, there are still some grids with emission 21 

increases (around 10-30%) in surrounding regions especially in North China Plain which might reflect the 22 

emission increase from January 2015 to January 2016. As shown in Fig. 10 of Chen et al. (2018), the 23 
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temperature in January 2016 is much colder than that in 2015, the emission increase at those points may 1 

indicate heating relevant emissions. Compared with Fig. 8 (2015 v.s. 2010), the changes from 2015 to 2016 2 

(either increase or decrease) in Fig. 9 are much milder.    3 

  The regional averages of 2015 and 2016 January emissions are summarized in Table 1. In northern 4 

China (North China Plain, Northeastern China) and western China (Energy Golden Triangle and Xinjiang), 5 

the 2015 analyzed emissions are all larger than 2010 prior emissions. The increase percentage are 12.7%, 6 

49.4%, 25.6% and 72% for North China Plain, Northeastern China, Energy Golden Triangle and Xinjiang 7 

respectively, indicating the increase trend from 2010 January to 2015 January, either due to the emission 8 

increase in reality (possibly in Energy Golden Triangle and Xinjiang) or the uncertainties in the 2010 prior 9 

emissions (possibly in North China Plain and Northeastern China). The largest increase occurred in Xinjiang, 10 

reaching 72% consistent with the previous findings of the newly added emission sources in that region. In 11 

southern China, the 2015 analyzed emissions are all smaller, and the decreasing ratios are -10.5%, -9.9%, -12 

13.8% and -22.9% for Sichuan Basin, Central China, Yangzi River Delta and Pearl River Delta respectively. 13 

For the changes from 2015 to 2016, decrease trend are shown for all the regions with the ratios range from -14 

5.3% to -16.1%.     15 

 16 

4.4 Hourly factors  17 

As hourly observations were used to constrain the emissions, the analyzed emissions in hourly frequency 18 

are obtained which provided us an opportunity to investigate the emission hourly factors from observations. 19 

To retrieve the hourly factors, the emissions in each hour (24-hr) are averaged based on the EMIS_DA 20 

experiment for the whole period (Jan. 2-31). The retrieved hourly factors for 2015 and 2016 and also the 2010 21 

prior emissions are shown in Fig. 10. The priori hourly factors are given arbitrary with two peaks during the 22 

day, 01UTC (09 Beijing-BJ time) and 09UTC (17 BJ time) to reflect the emissions during rush hours. While 23 

the retrieved hourly factors in northern and western China showed two peaks at around 02TC (10 BJ time) 24 

Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-1152
Manuscript under review for journal Atmos. Chem. Phys.
Discussion started: 4 January 2019
c© Author(s) 2019. CC BY 4.0 License.



22 
 

and 12UTC (20 BJ time), but the second peaks are obscure in southern regions. In addition, the second peak 1 

of the hourly factors in northern and western regions are much lower than that of the first one, different from 2 

the predefined curve. In Xinjiang, the peaks come later than the other regions indicating the time zone 3 

differences caused the different energy consumption/emission pattern. It should be noted that the hourly 4 

factors are derived from the analyzed emissions constraining from ambient concentration observations, thus 5 

the response time from emission to ambient concentration are simplified in the assimilation system. Although 6 

the background emissions contain the information from the previous cycles and thus may help to pass the 7 

response information, there might still be some time-lag in the retrieved hourly factors which should be further 8 

verified.       9 

5. Forecast improvements 10 

As there are large uncertainties in the “bottom-up” 2010 priori emission inventory and also the 11 

assimilation process itself, it’s difficult to verify the accuracy of the 2015 and 2016 January analyzed emissions. 12 

The “bottom-up” emission inventory for the two years are not yet available for comparison. Thus two sets of 13 

forecast experiment with the priori emissions and the analyzed emissions were conducted (NO_DA_forecast 14 

v.s. EMIS_DA_forecast, details in section 2.5). The forecast differences between the two experiments can 15 

reflect to some extent the performance/improvement of the analyzed emissions. To show the differences 16 

spatially, the statistics at single observational sites in the two forecast experiments are given and compared. In 17 

addition, the improvement from the hourly forecast is more meaningful to show the system capability of hourly 18 

emission optimization. Thus the time series of regional mean in 8 regions are also given to show the 19 

performance temporally.          20 

 21 

5.1 Changes of spatial statistics  22 

Figure 11 and 12 show the performances of the NO_DA_forecast and EMIS_DA_forecast experiments 23 
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for January of 2015 and 2016 respectively. Statistics, including BIAS, RMSE and CORR, are chosen to 1 

evaluate the two forecast experiments with prior emission and analyzed emissions respectively. As for single 2 

one site, the three statistics (BIAS, RMSE and CORR) may change in two directions (e.g. BIAS getting worse 3 

but RMSE and CORR getting better). To fairly evaluate and show the overall changes, the lumped 531 sites 4 

are classified into five different groups to reflect the differences of statistics. The classification and the 5 

performance are listed in Table 2. The spatial distribution of the NO_DA_forecast statistics for each sites are 6 

given in Fig. 11a and Fig. 12a. To better illustrate the changes of the statistics after applying analyzed 7 

emissions, the differences (EMIS_DA_forecast – NO_DA_forecast) instead of the absolute values are shown 8 

for the five defined groups in Fig. 11b-11f and Fig. 12b-12f. Specifically, the absolute values of BIAS are used 9 

in the difference calculation.   10 

For single statistics, BIAS, RMSE and CORR are improved at 383, 444 and 426 sites respectively for the 11 

year 2015 (Table 2), while the total valid sites are 524 in the whole domain; that’s to say that the ratio of sites 12 

being improved are 73%, 85% and 81% respectively using BIAS, RMSE and CORR as single criteria. When 13 

considering the overall performances using the three statistics, 300 sites (57%) are fully improved 14 

(BIAS/RMSE decrease and CORR increase), 138 sites (26%) are partially improved (either BIAS and RMSE 15 

improved, or RMSE and CORR improved), only 16 sites (3%) are overall worse and around 13% remaining 16 

sites can’t be justified. The performance of 2016 is even better than 2015 that the sites fully improved/overall 17 

worse are more/less compared with the 2015 case.  18 

Figure 11b show that the overall improvements are achieved in the whole domain, while the largest BIAS 19 

corrections occur at the sites in Sichuan Basin, Central China, Yangzi River Delta and Pearl River Delta 20 

(reaching 60-70% reduction), and the largest CORR improvement occurs in Xinjiang (reaching 0.35). The 21 

sites partially improved (Fig. 11c, d) and unclassified (Fig. 11e) are not in specific region but scattered in the 22 

whole domain. The sites overall getting worse (Fig. 11f) are very few and the variances are relatively small. 23 
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Consistent with Table 2, the performance of 2016 (Fig. 12) is even better than 2015 (Fig. 11), the bias 1 

corrections are more significant especially in Sichuan Basin, Central China, Yangzi River Delta and Pearl 2 

River Delta, and the CORR improvements are even larger in Xinjiang.      3 

 4 

5.2 Time series of regional mean  5 

Figure 13 show the time series of regional mean forecast (NO_DA_forecast and EMIS_DA_forecast) 6 

and observed SO2 concentrations in 8 regions for 2015 and 2016. From the aspect of regional mean, forecast 7 

with prior emissions are severely overestimated in southern China (Sichuan Basin, Central China, Yangzi 8 

River Delta, Pearl River Delta) and the overestimations are largely corrected in the forecast with analyzed 9 

emissions. For Northeastern China, Energy Golden Triangle and Xinjiang, forecast with prior emissions are 10 

underestimated, and forecast with analyzed emissions helped to correct the biases. It is surprising to see that 11 

the regional averages in North China Plain matches well the observations although the site-to-site comparison 12 

(Fig.11 and 12) show large biases in single sites. As the sites in one region are averaged thus the 13 

positive/negative biases among different sites might offset in the averaged time series. For this reason, RMSE 14 

and CORR of all the hourly data in one region are also calculated as verification.  15 

The statistics of BIAS, RMSE and CORR in the 8 regions are given in Table 3. From the aspect of 16 

regional mean, the improvements after applying the analyzed emissions are much significant in southern China 17 

than that in northern China, that RMSE decreased by 27.9-39.3% and BIAS decreased by 63.3% -78.2%, 18 

CORR increases by 16.7%-45.0% for the year 2015. For northern China, although the improvements are not 19 

so large, the BIAS still decreases (except North China Plain) and the decrease ratio ranges from 6.3% to 22.9%, 20 

RMSE decreases by 4.2-8.8% and CORR increases by 7.7% to 366.7%. The largest CORR increase occurs in 21 

Xinjiang from 0.06 to 0.28, indicating that the newly added emission sources in the analyzed emissions are 22 

necessary. Compared to 2015, the improvements in 2016 are also larger consistent with previous discussions.   23 
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6. Conclusions 1 

Based upon our previous study (Peng et al. 2017), we further updated the WRF/Chem-EnKF DA system 2 

to quantitatively estimate the gridded hourly SO2 emissions using hourly surface observations as constraints. 3 

Different from Peng et al. (2017), in which meteorology and emission were both perturbed to obtain larger 4 

spread aiming to improve forecast skills; in this study, only emission were perturbed to ensure analyzed 5 

emission purely reflect necessary adjustments due to the emission uncertainties. In addition, direct emissions 6 

instead of emission scaling factors were used as analysis variables which allows for the detection of new 7 

emission sources. 8 

2010 January MEIC prior emissions were used to generate 2015 and 2016 January analyzed emissions 9 

by using hourly surface SO2 observations as constraints. Compared with the 2010 priori emissions, the 10 

analyzed emissions in January 2015 showed inhomogeneous change patterns in different regions: 1) 11 

significant emission reduction in southern China, including Sichuan Basin, Central China, Yangzi River Delta 12 

and Pearl River Delta; however, there are still some grids with slight emission increase surrounding larger 13 

cities, indicating the emission transition due to urbanization development; the reduction ratio of the total 14 

January emissions for the aforementioned four regions are -10.5%, -9.9%, -13.8% and -22.9% respectively; 15 

2) for northern China (Northern China Plain and Northeastern China), the situation is more complicated during 16 

the winter heating season; comparisons show large emission reduction in larger cities but widely increase in 17 

surrounding suburban and rural regions, which may indicate the missing raw coal combustion not taken into 18 

account in the priori emission inventory; the increase ratios of the total January emissions for Northern China 19 

Plain and Northeastern China are 12.7% and 49.4% respectively; 3) significantly large emission increase in 20 

western China (Energy Golden Triangle, Xinjiang) due to the energy expansion strategy, which are consistent 21 

with the satellite observations (e.g. Ling et al., 2017); the increase ratio of the total January emissions for 22 

Energy Golden Triangle and Xinjiang are 25.6%, and 72.0% respectively. It should be noted that the 23 

Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-1152
Manuscript under review for journal Atmos. Chem. Phys.
Discussion started: 4 January 2019
c© Author(s) 2019. CC BY 4.0 License.



26 
 

comparisons between 2010 prior emission and the 2015 analyzed emission not only reflect the changes during 1 

the five years, but also combine the uncertainties in the priori emissions (either due to the uncertainties in total 2 

annual/monthly emissions or the allocation process from the provincial emissions to the gridded data). 3 

Comparisons of the 2015 and 2016 analyzed emissions show widely emission reduction from 2015 to 2016, 4 

indicating the stricter control strategy fully executed nationwide. These changes were corresponded to facts 5 

in reality indicating that the updated DA system is capable to detect the emission deficiencies and optimize 6 

the emission with limited perturbations. The detection of the emission changes by the DA system can be 7 

localized to city levels as the benefit from the intensive observations and the model grid resolution. By 8 

generating the hourly-analyzed emissions, the diurnal variations of emissions were also obtained. 9 

It is difficult to verify the accuracy of the analyzed emissions, as the top-down emission inventory for 10 

2015 and 2016 are not yet available for comparison. Two sets of forecast experiment with the priori emissions 11 

and the analyzed emissions were conducted to show the differences and improvements. Among the lumped 12 

531 sites, 300 sites are fully improved (BIAS and RMSE reduced, and CORR increased) and only 16 sites are 13 

entirely worse for the year 2015; other 138 sites are partially improved (two statistics get better). The 14 

improvements are much larger in southern China than that in northern and western China. By using the 15 

analyzed emissions, BIAS and RMSE are reduced by 61.8%-78.2% and 27.9%-52.2% respectively, and 16 

correlation coefficient increase by 12.5% -47.1% for southern China regions (Sichuan Basin, Central China, 17 

Yangzi River Delta, and Pearl River Delta). However, for northern and western China where the original BIAS 18 

and RMSE are larger, the decrease are relatively smaller. Nevertheless, the correlations are indeed improved 19 

especially for Xinjiang, as new emissions are captured in the analyzed emissions. The distinction of the 20 

comparisons among different regions (northern/western regions v.s. southern regions) indicated the 21 

deficiencies of perturbation procedure in the DA system when applying to the northern/western regions. 22 

Further investigations should be conducted to generate larger spreads for those regions in the future studies.  23 
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Our study serves as an example that the Ensemble Kalman Filter algorithm combing with WRF/Chem 1 

regional model can be used to optimize model-ready gridded hourly emission inputs, by using hourly surface 2 

observations as constraints. This approach is useful to assess the emission control strategy and can also 3 

improve the forecast skills. While the limitation of the study is that the analyzed emissions are still model 4 

dependent as the ensembles are conducted through WRF/Chem model and thus the performance of ensembles 5 

is model dependent. Changes in model configurations (e.g. spatial resolutions, chemistry options) can cause 6 

differences in the DA system. In our study, the model resolution is 40-km which might be too coarse for SO2 7 

as it’s a relatively short-life-time specie and the localized characteristics might not be captured by the system. 8 

In addition, the reactions of SO2 is only reflected in the WRF/Chem system but not in the EnKF process, 9 

considering the reaction time of SO2 in the ambient, there might be some time lag of the hourly emission 10 

factors. 11 
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Tables and Figures 1 

Table 1. Prior and analyzed January emissions, and changing ratios for 8 regions (unit: 106 kg per day)  2 

Table 2. Overall statistics changes of the EMIS_DA_FCST experiment compared with NO_DA_FCST 3 

experiment   4 

Table 3. Statistics of the EMIS_DA_FCST and NO_DA_FCST experiments in 8 regions (unit: µg m-3 for 5 

BIAS and RMSE) 6 

Figure 1. Flow chart of the data assimilation system that simultaneously optimizes the chemical initial 7 

conditions and emissions. 8 

Figure 2. Spatial distribution of prior SO2 emissions used in this study. Regions defined in red rectangles are: 9 

a-NCP (North China Plain), b-NEC (Northeastern China), c-EGT (Energy Golden Triangle), d-XJ (Xinjiang), 10 

e-SB (Sichuan Basin), f-CC (Central China), g-YRD (Yangzi River Delta), h-PRD (Pearl River Delta). Unit: 11 

mol km-2 h-1.  12 

Figure 3. Observed and modeled monthly average of SO2 concentrations for January in 2015 (Left) and 13 

2016 (right). (a) Observations, (b) NO_DA, (c) CONC_DA, (d) CONC_DA-NO_DA. Unit: µg m-3. 14 

Figure 4. The spatial distribution of statistics between model simulations and observations for (a) January 15 

2015 and (b) January 2016. Top: NO_DA v.s. observation, bottom: CONC_DA v.s. observation.  Units: µg 16 

m-3 for BIAS and RMSE. 17 

Figure 5. Observed and modeled SO2 ambient concentration changes (January 2016 - January 2015). (a) 18 

Observations, (b) NO_DA, (c) CONC_DA.  (Unit: µg m-3) 19 

Figure 6. Regional averaged RMSE and total spread for (a) January 2015 and (b) January 2016 in 8 regions 20 

(Unit: µg m-3) 21 

 22 

Figure 7. Analyzed emissions for (a) January 2015 and (b) January 2016. (c) The differences of 2015-23 

2010_prior, (d) Ratios of 2015/2010_priori, (e) The differences of 2016-2015 and (f) Ratios of 2016/2015. 24 

Unit is mol km-2 h-1 for (a), (b), (c) and (e).  25 

Figure 8. The differences of analyzed 2015 January emissions and 2010 priori emissions in 8 regions. Left 26 

panels are emission differences of 2015-2010 (unit: mol km-2 h-1) and right panels are ratios of 2015/2010 in 27 

each region. 28 

Figure 9. Same as Figure 8, but for the differences of analyzed 2016 January emissions and 2015 January 29 

emissions in 8 regions. Left panels are emission differences of 2016-2015 (unit: mol km-2 h-1) and right 30 

panels are ratios 2016/2015 in each region. 31 

Figure 10. Hourly factors in priori emission inventory and those derived from EMIS_DA experiment in 8 32 

regions. 33 
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Figure 11. The spatial distribution of error statistics between model simulations and observations for 1 

January 2015. (a) Statistics between NO_DA_FCST and observations, BIAS and RMSE in µg m-3; (b)-(f) 2 

are the statistics improvements from NO_DA_FCST to EMIS_DA_FCST for different groups of sites 3 

(classification in table 2), the BIAS and RMSE improvements are in percentage.  4 

Figure 12. Same as Figure 11 but for January 2016. 5 

 6 

Figure 13. Time series of regional mean SO2 concentrations from observations and model simulations with 7 

priori and analyzed (posterior) emissions for (a) January 2015 and (b) January 2016 in 8 regions. (Unit: µg m-8 
3) 9 

 10 
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Table 1. Prior and analyzed January emissions, and changing ratios for 8 regions 

(unit: 106 kg per day)  

 

 2010_prior 2015_posterior 2016_ posterior (2015-2010) 

/2010 

(2016-2015) 

/2015 

NCP 16.23 18.29 17.33 12.7% -5.3% 

NEC 4.12 6.16 5.30 49.4% -13.9% 

ETR 11.01 13.82 13.01 25.6% -5.9% 

XJ 1.62 2.79 2.34 72.0% -16.1% 

SB 17.12 15.33 13.43 -10.5% -12.4% 

CC 9.95 8.96 7.57 -9.9% -15.5% 

YRD 5.80 5.00 4.65 -13.8% -7.0% 

PRD 1.82 1.40 1.23 -22.9% -12.6% 
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Table 2. Overall statistics changes of the EMIS_DA_FCST experiment compared 

with NO_DA_FCST experiment   

Types BIAS RMSE CORR  

2015 

Better 383 444 426  

Worse 141 80 97 

2016 

Better 375 444 456  

Worse 148 79 67 

 

Groups BIAS RMSE CORR 2015 2016 

A. Overall improved decrease decrease increase 300 321 

B. Partially improved (BIAS, 

RMSE) 

decrease decrease decrease 61 43 

C. Partially improved (RMSE, 

CORR) 

increase decrease increase 77 71 

D. Not justified    70 77 

E. Overall worse increase increase decrease 16 11 
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Table 3. Statistics of the EMIS_DA_FCST and NO_DA_FCST experiments in 8 

regions (unit: µg m-3 for BIAS and RMSE) 

 BIAS RMSE CORR 

 N 

sites 

N 

data 

NO_DA EMIS_DA Changes 

(%) 

NO_DA EMIS_DA Changes 

(%) 

NO_DA EMIS_DA Changes 

(%) 

2015 

NCP 67 46699 -9.6 -10.1 5.2% 53.7 49.0 -8.8% 0.52 0.62 19.2% 

NEC 30 20910 -29.3 -22.6 -22.9% 61.8 57.1 -7.6% 0.52 0.56 7.7% 

EGT 45 31365 -41.2 -38.6 -6.3% 84.8 81.2 -4.2% 0.53 0.58 9.4% 

XJ 19 13243 -12.6 -10.3 -18.3% 36.8 33.7 -8.4% 0.06 0.28 366.7% 

SB 48 33456 9.7 2.7 -72.2% 45.1 32.5 -27.9% 0.20 0.29 45.0% 

CC 53 36941 6.1 -1.4 -77.0% 49.7 34.6 -30.4% 0.32 0.39 21.9% 

YRD 34 23698 10.9 4.0 -63.3% 37.0 24.9 -32.7% 0.47 0.55 17.0% 

PRD 20 13940 8.7 1.9 -78.2% 24.7 15.0 -39.3% 0.42 0.49 16.7% 

2016 

NCP 67 46699 2.1 -0.3 -85.7% 41.5 36.2 -12.8% 0.58 0.69 19.0% 

NEC 30 20910 -16.8 -14.7 -12.5% 41.2 36.9 -10.4% 0.50 0.58 16.0% 

EGT 45 31365 -27.7 -26.6 -4.0% 64.5 61.2 -5.1% 0.56 0.63 12.5% 

XJ 19 13243 -5.8 -6.0 3.4% 30.5 26.9 -11.8% 0.23 0.47 104.3% 

SB 48 33456 14.5 5.2 -64.1% 38.9 23.1 -40.6% 0.17 0.25 47.1% 

CC 53 36941 11.2 2.6 -76.8% 38.0 22.2 -41.6% 0.28 0.37 32.1% 

YRD 34 23698 12.3 4.7 -61.8% 33.7 20.1 -40.4% 0.48 0.54 12.5% 

PRD 20 13940 9.8 2.4 -75.5% 20.9 10.0 -52.2% 0.30 0.39 30.0% 
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Figure 1. Flow chart of the data assimilation system that simultaneously optimizes the chemical initial 

conditions and emissions. 
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(a) NCP (b) NEC (c) EGT 

 

 
(d) XJ 

 

(e) SB (f) CC (g) YRD (h) PRD 

 

 

Figure 2. Spatial distribution of prior SO2 emissions used in this study. Regions defined in red rectangles are: 

a-NCP (North China Plain), b-NEC (Northeastern China), c-EGT (Energy Golden Triangle), d-XJ (Xinjiang), 

e-SB (Sichuan Basin), f-CC (Central China), g-YRD (Yangzi River Delta), h-PRD (Pearl River Delta). Unit: 

mol km-2 h-1.  
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2015 2016 

(a) Observation 

 

(b) NO_DA 

 
(c) CONC_DA 

 
(d) CONC_DA – NO_DA 

 

Figure 3. Observed and modeled monthly average of SO2 concentrations for January in 2015 (Left) and 

2016 (right). (a) Observations, (b) NO_DA, (c) CONC_DA, (d) CONC_DA-NO_DA. Unit: µg m-3. 
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(a). 2015 - NO_DA (top) and CONC_DA (bottom)  

 

 

 

Figure 4. (a) The spatial distribution of statistics between model simulations and observations for January 

2015. Top: NO_DA v.s. observation, bottom: CONC_DA v.s. observation.  Units: µg m-3 for BIAS and 

RMSE. 
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(b). 2016 - NO_DA (top) and CONC_DA (bottom)  

Figure 4. (b) Continue. Same as Figure 4a, but for 2016. 
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(a) Observation (b) NO_DA (c) CONC_DA 

   
 

Figure 5. Observed and modeled SO2 ambient concentration changes (January 2016 - January 2015). (a) 

Observations, (b) NO_DA, (c) CONC_DA.  (Unit: µg m-3) 
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（a）2015 

 

（b）2016 

 

Figure 6. Regional averaged RMSE and total spread for (a) January 2015 and (b) January 2016 in 8 regions 

(Unit: µg m-3) 
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(a) 2015 (b) 2016 

  

(c) 2015-2010_Prior (d) 2015/2010_prior 

 

(e) 2016-2015 (f) 2016/2015 

 

Figure 7. Analyzed emissions for (a) January 2015 and (b) January 2016. (c) The differences of 2015-

2010_prior, (d) Ratios of 2015/2010_priori, (e) The differences of 2016-2015 and (f) Ratios of 2016/2015. 

Unit is mol km-2 h-1 for (a), (b), (c) and (e).  
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Figure 8. The differences of analyzed 2015 January emissions and 2010 priori emissions in 8 regions. Left 

panels are emission differences of 2015-2010 (unit: mol km-2 h-1) and right panels are ratios of 2015/2010 in 

each region. 
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Figure 9. Same as Figure 8, but for the differences of analyzed 2016 January emissions and 2015 January 

emissions in 8 regions. Left panels are emission differences of 2016-2015 (unit: mol km-2 h-1) and right 

panels are ratios 2016/2015 in each region. 
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Figure 10. Hourly factors in priori emission inventory and derived from 2015January and 2016 January 

EMIS_DA experiment in 8 regions. 
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(a) NO_DA_FCST 

 

 

(b) Differences (EMIS_DA_FCST - NO_DA_FCST) - Group A 

BIAS changes (%) RMSE changes (%) CORR changes 

(c) Group B 
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(d) Differences (EMIS_DA_FCST - NO_DA_FCST) - Group C 

BIAS changes (%) RMSE changes (%) CORR changes 

(e) Group D 

(f) Group E 

 

Figure 11. The spatial distribution of error statistics between model simulations and observations for 

January 2015. (a) Statistics between NO_DA_FCST and observations, BIAS and RMSE in µg m-3; (b)-(f) 

are the statistics improvements from NO_DA_FCST to EMIS_DA_FCST for different groups of sites 

(classification in table 2), the BIAS and RMSE improvements are in percentage.  
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(a) NO_DA_FCST 

 

(b) Differences (EMIS_DA_FCST - NO_DA_FCST) - Group A 

BIAS changes (%) RMSE changes (%) CORR changes 
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(d) Differences (EMIS_DA_FCST - NO_DA_FCST) - Group C 

BIAS changes (%) RMSE changes (%) CORR changes 

(e) Group D 

(f) Group E 

 

 

Figure 12. Same as Figure 11 but for January 2016. 
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(a) 

 

Figure 13. Time series of regional mean SO2 concentrations from observations and model simulations with 

priori and analyzed (posterior) emissions for (a) January 2015 and (b) January 2016 in 8 regions. (Unit: µg 

m-3) 
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Figure 13(b) 
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