
Average versus high surface ozone levels over the continental U.S.A.: Model bias, background 

influences, and interannual variability, Jean Guo et al., ACP, (2018) 

Authors’ response is written in bold type; Reviewer comment in normal type. Figures, including 

new ones added to the paper that were not in direct response to reviewer’s comments are at the 

end. 

Author response to Reviewer #1 

This manuscript presents an attempt to derive information about mean maximum daily 8-hour 

average (MDA8) O3 in the United States, based on ambient measurements and using the global 

model GEOS-CHEM. Sensitivity simulations examine different sources that affect the 10 highest 

O3 events and that affect the 10 days with highest model bias against observations for 2004 to 

2012 for each 10 EPA regions.  

General comments: The analysis is a valuable contribution to the current understanding of 

ground level O3 and air quality standard settings. The topic itself is highly relevant and thus will 

be of interest to the readers of ACP. Discussion of the results and their implications is also 

scientifically sound and the paper includes comprehensive analyses. However, I feel that the 

paper tried to cover lots of information, which makes it a bit hard for the reader to follow key 

conclusions from this study. Thus, I recommend that the paper should be published after 

addressing the following comments.  

General  

Some comment about day of week effects and model biases in temperature as they relate to the 

questions raised in the paper seem warranted. There should be comment dramatic changes in the 

temperature dependence of ozone over this period coincident with the NOx changes. Those 

changes should have a day of week variation that might appear in the top 10 days.  

We have addressed the biases in temperature by adding a comparison to the Global 

Historical Climatology Network Global Historical Climatology Network (GHCN) and the 

Climate Anomaly Monitoring System (CAMS). See Supplemental Table 4 and the 

associated discussion in the text (lines 363-364): “The model monthly mean temperatures in 

the model (from the MERRA reanalysis) closely match the observed GHCN+CAMS dataset 

(Supplemental Table 1).” 

The request to investigate day of week effects substantially widens the scope of the paper. 

The general comments suggest that the manuscript is already covering too much 

information. We feel that tackling day of week effects and its changes over time is a study 

unto itself and thus outside the scope of this particular paper.  

Specific comments: The authors use terms “Baseline O3” and “U.S. background O3”. U.S. 

background O3 is defined as “the O3 levels that would exist in the absence of U.S. anthropogenic 

emissions of precursors” and Baseline O3 is defined as “tropospheric O3 concentrations that have 

a negligible influence from local anthropogenic emissions”. They sound the same, don’t they? If 

yes, please be consistent in the text.  



These definitions are not the same. Clarification has been added in lines 105-107. “Baseline 

O3 is a measurable quantity and differs from background O3 in that it contains some influence 

from U.S. anthropogenic emissions that were not recently emitted but contributed to the global 

background.”  We follow here the definitions of Jaffe et al., 2018 which builds on the 2009 

National Academies report “Global Sources of Local Pollution”, and the HTAP 2010 

report (available at www.htap.org). 

Page 4, lines 106-109, Please clarify if the authors apply Schnell et al. (2014)’s interpolation 

procedure or they use their dataset. Schnell et al. (2014) use surface MDA8 O3 measurements 

from air quality networks for 2000–2009, while this paper analyzes the data from 2004-2012.  

Jordan Schnell is a co-author and provided the dataset that we used here. The 

interpolation procedure for his dataset is described in his 2014 paper; he provided us with 

the data for the years since 2009. We have edited the citation to reflect a newer paper in 

which this extended dataset has been used. See lines 118-120: “we use an available 1° x 1° 

grid of surface MDA8 O3 measurements that were interpolated from the AQS, CASTNet, and 

Canadian NAPS networks (Schnell and Prather, 2017).” 

A valuable addition would be a statement about the chemistry scheme applied in the version 

GEOS-Chem at the 2.3 section (GEOS-Chem model simulation). The authors mention issues of 

isoprene chemistry in last paragraph of Conclusions but a brief description or reference to the 

specific version of the chemistry should be presented before the last paragraph of the paper.  

On lines 158-160 we now state: “We use the standard v9_02 chemical mechanism which 

includes recycling of isoprene nitrates (Mao et al., 2013) in contrast to the mechanisms used 

in earlier versions of GEOS-Chem (e.g., Zhang et al., 2014 as discussed in Fiore et al., 2014).” 

The last paragraph of page 6 needs elaboration where the authors state the sensitivity 

simulations. The notations for all model simulations should be mentioned and the description of 

Table 1 should be modified so that the Table is read from top to bottom. We have completely 

rewritten this section with the intent of improving clarity. See paragraph starting from line 

183 (“We first perform a base simulation…”). 

Figure 3: Observed O3 concentrations should be represented in a different color to be more 

visible (maybe black instead of grey) and I would also suggest to plot the curves as an average 

for 2004-2012 period with associated error bars. Thanks for this suggestion. We have edited 

the figure to show the curves as an average for 2004-2012 period with associated error 

bars. 

Minor comments: The tables start from Table 2 at the manuscript and Table 1 is referenced at 

Page 8 for the first time. Please fix ordering of table numbers as they appear in the text. Fixed 

Page 7, line 195: “a maximum in and” should read “a maximum in summertime and” Thank 

you. Section has been edited and this sentence was removed. 

 

 



Author response to Reviewer #2 

General:  

The paper is very well-written and concerns a topic of considerable interest to air quality 

planners. However, there are some concerns about the suitability of this particular model 

configuration to address some of the stated objectives of the paper (lines 76-79), as discussed 

below. In general, the paper would be improved if there was greater clarity about the potential 

connections between the findings and possible configuration concerns. The value of the paper 

would be enhanced if the conclusions section was bolstered with a “next steps” or 

“considerations” sentence or two that described how such a global model-based sensitivity study 

could be improved in the future. 

We have attempted to strengthen the paper throughout as suggested by the reviewer. In 

particular, we added a sentence in the introduction, (lines 77-80) to highlight the key 

benefit and drawback of using a coarse resolution model: “Though coarse resolution global 

models such as GEOS-Chem will mix emissions into the same grid cell that may remain 

separate in the real atmosphere, a global model is necessary to quantify background O3 

transported intercontinentally, including that produced via oxidation of methane.” 

We added a sentence in the conclusion (lines 476-481) to emphasize a need to confirm our 

findings with finer scale models: “Future work with high-resolution models (e.g., at the 

regional scale, ideally with boundary conditions that include source attributions from a global 

model) is needed, along with observational evidence, to quantify the extent to which biogenic 

VOC and NOx contribute to the highest observed O3 levels in the warm season. The 

importance of temperature sensitive sources like biogenic VOC and NOx emissions to 

background O3 imply that in a warmer climate, these background influences on O3 will play 

an even more important role in driving up O3 levels.” 

In particular, there is concern about the use of a coarse resolution model (2 x 2.5 deg) to 

investigate contributions of U.S. anthropogenic emissions (O3_USA) given that those 

contributions originate at scales much smaller than the resolution of the model (i.e., point source 

emissions, urban area emissions). The paper acknowledges the limitations associated with the 

coarse modeled resolution in several places (lines 212, 242, 399). The paper may want to revisit 

these caveats in the conclusion and perhaps provide some thoughts on what alternate global 

model configurations would be better suited for an analysis of source contributions.  

Agreed. Please see above. 

Kudos to the authors for providing sufficient detail regarding the performance evaluation to 

allow readers to interpret the contribution findings in light of the model bias/error. However, the 

ozone overestimations (3-14 ppb in JJA MDA8 top 10 days by region, even worse for JJA all-

day averages) suggest caution should be exercised in overinterpreting the contributions. Based 

on Figure 5 and the associated analyses, it appears that the model vastly overestimates ozone on 

hot days in the late summer, especially in the eastern U.S. (even without consideration of 

potential additional emissions due to increased power demand on those days). Section 3.3 briefly 



summarizes potential causes for this overestimation based on similar studies, but it would be 

valuable if the paper provided more application-specific hypotheses for the underlying cause.  

We have added more discussion of the potential for biases in the meteorology (see 

responses to reviewer #3), as well as in anthropogenic NOx emissions to contribute to the 

summertime overestimate in the model compared to observations. As our set of sensitivity 

simulations identifies a potential role for biogenic VOC and soil NOx in contributing to the 

bias, we have added to the text some discussion calling out the need for better constraints 

on these biogenic emissions, though we do note that the model nevertheless shows some 

skill at capturing the observed year-to-year variability, which includes a correlation with 

O3 produced from natural sources (BVOC and soil NOx), which, like total O3, correlate 

with temperature (Figure 6).  

We now state, in lines 441-449 “Our finding that BVOC emissions contribute to the 

summertime surface O3 biases could reflect poor representation of the emissions (and 

subsequent oxidation chemistry). Earlier work has noted that MEGAN BVOC emissions are 

too high over California (Bash et al., 2016), Southeast Texas (Kota et al., 2015), the Ozarks in 

southern Missouri (Carlton and Baker, 2011), and across much of the U.S.A. (Wang et al., 

2017). One recent model study uniformly reduced MEGAN isoprene emissions by 20% (Li et 

al., ACP 2018), but we did not apply any such scaling here. In regions that are highly NOx-

sensitive, additional isoprene should not strongly influence O3, as found over southeast Texas 

(Kota et al., 2015). While not eliminated entirely, the summertime model bias does lessen in 

the simulation with BVOC emissions set to zero, suggesting that the O3 bias is indeed 

exacerbated if BVOC emissions are overestimated in the model.” 

FYI, along w/ the possible causes from the Travis research, others have raised concerns about 

MEGAN biogenic VOC estimates (e.g., Bash et al., 2016; Carlton and Baker, 2011; Kota et al., 

2015; Wang et al., 2017). Thank you for pointing these out. We added these references (see 

previous response). 

One of the more noteworthy findings concerns the modeled trends over the 10-year period (e.g., 

lines 386-389) where the analysis appears to confirm previous findings that improving trends in 

U.S. air quality from emissions controls have been tempered by increases in background 

contributions (and increases in temperature). However, one interesting finding here that could 

use additional explanation is the regional breakout of this “USB vs. USA” tradeoff. Table 5 

suggests that the largest increases in high JJA-day O3_USB concentrations between 2004-2006 

and 2010-2012 have occurred in the New England and Mid-Atlantic regions, not the western 

regions where USB concerns are typically greatest. More explanation of the regional differences 

in modeled USB trends would be beneficial (e.g., is this just an artifact of the meteorology of the 

two 3-year periods in these regions).  

We agree. The “trends” over such a short period are strongly influenced by fluctuations in 

temperature. While it may indeed be an ‘artifact’ of looking at such a short period, it 

nevertheless suggests that regionally produced background O3 from temperature-sensitive 

emissions (BVOC and NOx) may grow in importance in the coming decades in light of a 



warming climate. We have attempted to make this clearer by adding a column to Table 4 

that shows the change in temperature between these two 3-year periods in each region. We 

have edited the accompanying discussion to the main text: 

Starting from line 364: “Table 4 shows that regions with O3_USB increases generally 

experienced rising temperatures over this period, as the 2010-2012 period includes two of the 

warmest years on record. Figure 6 shows that O3_NAT tracks with…” 

In response to a comment from Reviewer 1, we have also added Supplementary Table 4 

that evaluates monthly mean model temperatures with the Global Historical Climatology 

Network. 

Given model performance findings, would the authors see value in revising the “2-step” 

contribution analysis (assessing contributions on high-bias days, then assessing contributions on 

high/all observed days) to a “3-step” contribution where as an intermediate step you also 

investigated contributions on top-10 modeled days? This could be valuable presuming that the 

subset of days would differ from top 10 highest bias days.  

Though we did conduct some exploratory analysis using this 3-step method early on, we did 

not end up pursuing this method in the paper because the highest model days are less 

relevant to the “real world” and if this method were used throughout our paper, the 

number of figures would have doubled. As the paper is already lengthy, we choose to focus 

on the days in the observations when the O3 NAAQS is most likely to be exceeded.  

We have, however added text that clarifies the extent to which there is overlap between the 

highest 10 days in the model and the 10 days with the highest biases: “There is at most a 2-6 

day overlap between the top 10 O3_Base days and the top 10 most biased days in 2004-2012 

across all regions, but during most years, the overlap is around 0-2 days. We restrict our 

analysis to examining the top 10 observed O3 days as these days are most relevant from a 

policy perspective.” (lines 137-139). 

Rather than lumping the Mount Bachelor observations (and subsequent pairs) with surface sites 

in Region 10, it would be interesting to see how model contributions varied as functions of 

model performance and observation concentration as a standalone site.  

Thanks for this suggestion. We now include a more detailed analysis of Mount Bachelor as 

a separate standalone section (Section 3.2) that includes new figures (Figure 3 and 

Supplemental Figure 4).  

Specific:  

Line 86: “download” should be “downloaded”. FIXED 

Lines 124-127: Would be easier to read, if a new sentence was started w/ “On the days with . . .”. 

FIXED 

Line 146: “Avian” should be “Aviation”. FIXED 



Line 195: Is the word “summer” missing from this sentence . . . “The model, however, has a 

maximum in [summer] and underestimates springtime baseline O3”? Thank you. Section has 

been edited and this sentence was removed 

Line 205: Are Travis et al. (2016) conclusions regarding 2011 NEI relevant to a model 

configuration based on 2005 NEI w/ annual scalars?  

We add a comparison with Travis et al. (2016) in lines 226-230: “Travis et al. (2016) find 

that the 3.5 Tg N y-1 NEI 2011 estimate for U.S. fuel NOx emissions is too high and 

contributes to excessive surface O3. Our simulations include even higher U.S. fuel NOx 

emissions of 4.4 Tg N y-1 during 2010-2012 (Supplemental Table 3), implying that some 

portion of the model O3 bias reflects excessively high anthropogenic NOx emissions (Travis et 

al., 2016).” 

Line 248: Clarify that these monthly averages are MDA8 O3 (not hourly)? FIXED 

Line 367: Move mention of lack of daily variation in emissions to early section? Done. Now at 

lines 179-183)   

Line 396: Same as above, maybe mention this earlier in modeling methodology section?  See 

lines 179-183)  

 

Author response to Reviewer #3 

This paper presents a comprehensive modeling analysis of surface ozone and the various factors 

that contribute to its variability over the United States. By conducting multiple sensitivity 

simulation removing various sources for the 2004-2012 period, the authors estimate the influence 

of different background sources and of U.S. anthropogenic sources on mean surface O3 and high 

O3 events as a function of region, season, and year.  

Two aspects of the paper that I’d like to see more discussion on are listed below:  

1) The paper is very detailed with many figures and tables and is one more study on top of a rich 

set of published work, including by some of the co-authors. The authors often cite previous 

work, saying it is consistent with their results, but it would be useful to highlight what are the 

new key contributions from their specific analysis. What new information did the detailed 

modeling analysis bring to this prolific field?  

We added text with the intent of providing stronger motivation to the introduction in which 

we highlight the use of sensitivity simulations to help us identify which sources contribute 

most to the summertime bias and to the highest O3 days (lines 70-87). To our knowledge, 

the finding that increasing O3 production from temperature-sensitive biogenic emissions 

might be offsetting some of the gains achieved by reducing anthropogenic ozone precursor 

emissions is new, and potentially of growing importance as record-setting warm years have 

been increasing. We believe that our finding that the summertime bias is associated with 

regionally produced ozone – including both U.S. anthropogenic and components of U.S. 



background – rather than transported background (either internationally or 

intercontinentally) is also new. We have also rewritten the conclusions to emphasize these 

points. 

2) There isn’t much discussion on the causes of the large summer bias over the Eastern US and 

how this bias affects the interpretation of the results.  

To our knowledge, prior studies have not used such a broad set of sensitivity simulations to 

interpret which sources are contributing most in places and times when the model is most 

biased against observations. Section 3.3 in the submitted paper is entirely devoted to 

addressing this point. We thus assume that the reviewer is instead driving at the deeper 

question of the specific causes of the bias, beyond what we can identify cleanly with the 

sensitivity simulations. We have added additional discussion in response to reviewer 2 that 

attempts to address both the causes and how it affects the interpretation of the results. 

Specifically, we added  

1) A sentence in the introduction, (lines 77-80) to highlight the key benefit and 

drawback of using a coarse resolution model: “Though coarse resolution global 

models such as GEOS-Chem will mix emissions into the same grid cell that may 

remain separate in the real atmosphere, a global model is necessary to quantify 

background O3 transported intercontinentally, including that produced via oxidation of 

methane.” 

2) We also added a sentence in the conclusion (lines 476-481) to emphasize a need to 

confirm our findings with finer scale models: “Future work with high-resolution 

models (e.g., at the regional scale, ideally with boundary conditions that include source 

attributions from a global model) is needed, along with observational evidence, to 

quantify the extent to which biogenic VOC and NOx contribute to the highest observed 

O3 levels in the warm season. The importance of temperature sensitive sources like 

biogenic VOC and NOx emissions to background O3 imply that in a warmer climate, 

these background influences on O3 will play an even more important role in driving up 

O3 levels.” 

3) We now state, in lines 441-449 “Our finding that BVOC emissions contribute to the 

summertime surface O3 biases could reflect poor representation of the emissions (and 

subsequent oxidation chemistry). Earlier work has noted that MEGAN BVOC 

emissions are too high over California (Bash et al., 2016), Southeast Texas (Kota et al., 

2015), the Ozarks in southern Missouri (Carlton and Baker, 2011), and across much of 

the U.S.A. (Wang et al., 2017). One recent model study uniformly reduced MEGAN 

isoprene emissions by 20% (Li et al., ACP 2018), but we did not apply any such scaling 

here. In regions that are highly NOx-sensitive, additional isoprene should not strongly 

influence O3, as found over southeast Texas (Kota et al., 2015). While not eliminated 

entirely, the summertime model bias does lessen in the simulation with BVOC 

emissions set to zero, suggesting that the O3 bias is indeed exacerbated if BVOC 

emissions are overestimated in the model.” 



Discussing this in more detail would strengthen the paper. The authors have one sentence 

addressing this by referring to the work of Travis et al. (2016) using a more recent version of the 

GEOS-Chem model. They mention potential errors in anthropogenic NOx emission in the NEI 

inventory, but Travis et al. use the NEI 2011 inventory while the authors use the NEI 2005 

inventory. How different are they? If the NEI NOx inventory is indeed too high, how would that 

affect the calculation of O3_USA?  

We now directly compare our NOx emissions to those used in Travis et al., 2016 and 

include a supplementary table (see above – Supplemental Table 3) providing the NOx 

emissions applied in each year within the U.S.A. and globally. 

Lines 226-230: “Travis et al. (2016) find that the 3.5 Tg N y-1 NEI 2011 estimate for U.S. fuel 

NOx emissions is too high and contributes to excessive surface O3. Our simulations include 

even higher U.S. fuel NOx emissions of 4.4 Tg N y-1 during 2010-2012 (Supplemental Table 

3), implying that some portion of the model O3 bias reflects excessively high anthropogenic 

NOx emissions (Travis et al., 2016).” 

They mention meteorological factors associated with boundary layer mixing and cloud cover 

which would affect the vertical distribution of O3, but Travis et al. used different meteorological 

fields (GEOS-FP) compared to the MERRA fields used by the authors. It is unclear whether 

these potential explanations apply in this case. If MERRA meteorology is indeed biased, then 

that would certainly affect the validity of the relative influence of various sources on the “most-

biased” days analysis and on the average MDA8 O3 levels. A discussion of this would be 

valuable.  

Thanks for this suggestion. We have attempted to address this point by including more 

discussion of published evaluations of MERRA meteorology: 

1) Lines 152-157: “MERRA meteorology captures summer mean surface temperatures to 

within 1-2 K across U.S. regions and precipitation to within 0.5 mm d-1 except for over 

the Northern Great Plains where a positive bias exceeds 1 mm d-1, but the variance in 

summer mean precipitation is lower than observed in some regions (Bosilovich, 2013). 

While interannual variability in cloudiness observed at weather stations is largely 

captured by MERRA, the reanalysis generally underestimates cloud cover and thus 

overestimates observed downward surface shortwave fluxes (Free et al., 2016).” 

2) Lines 230-232: “The low bias in cloud cover in the MERRA meteorology and 

associated overestimate in downward shortwave surface radiation (Free et al., 2016) 

may also contribute to excessive O3 production in the model.” 

3) We also added our own evaluation of surface temperature over the U.S.A. in the 

MERRA fields (Supplemental Table 4). 

Minor comments:  

Line 154. “Anthropogenic emissions. . . are scaled each year on the basis of economic data”. It 

would be useful to have a bit more discussion on how anthropogenic emissions are scaled over 



the continental U.S. which uses 2005 as the baseline. By how much do NOx emissions change 

over the time period of the simulation 2004-2012.  

Supplemental Table 3 was added to provide the NOx emissions within each year, both 

globally and within the U.S.A. (Lines 178-183) 

Are these scaling factors taken from the NEI trends report (https://www.epa.gov/air-emissions-

inventories/air-pollutant-emissions-trends-data) itself or was independent estimate done?  

The van Donkelaar et al., 2008 describes the standard GEOS-Chem emissions scaling 

reference. The scale factors use government statistics where available.  

Edited this sentence (lines 169-170) to include “provided by individual countries, where 

available” 

Line 195. “a maximum in and underestimate springtime. . .” is “summer” missing after 

maximum? Yes. Thank you 

Line 196. While the authors talk about potential causes for the springtime underestimate 

(stratospheric intrusions), they do not talk about the summertime overestimate, which is quite 

large. 

See response to general comments above and our additions above regarding anthropogenic 

NOx emissions and citations of prior work evaluating MERRA meteorology (temperature, 

precipitation and cloud cover). 

 

  



Figures and tables edited/added in response to reviewer’s comments: 

Figure 1: Monthly 2004-2012 average 24-hour O3 concentrations at Mount Bachelor Observatory. Observations (grey) 

are the same in both panels. Simulations from the GEOS-Chem model are sampled in the grid cell containing Mount 

Bachelor at (a) 2.7 km (the height of the Mount Bachelor Observatory) and at (b) the surface: O3_Base (blue), O3_USB 

(red), O3_NAT (light green), O3_ICT+CH4 (pink), and O3_USA (dark green). The shaded range spans the highest and 

lowest years.  

 

Supplemental Figure 1: Monthly average of observed (a) daily 24-hour and (b) MDA8 O3 concentrations averaged across 

2004-2012 at Mount Bachelor Observatory. Black line shows the average of each month from 2004-2012. Error bars show 

the standard deviation in the interannual variability in each month. Dashed lines show the concentrations for each 

individual year. 

 



Table 1: Change in MDA8 O3 concentrations from 2004-2006 to 2010-2012 on O3_top10obs_JJA days in the observations, 

O3_Base, O3_USB, O3_USA, and temperature. 

 

 

 

Supplemental Table 1: Monthly average temperature across all days in each season (average of 2004-2012) in (1) GEOS-Chem, 
in (2) the Global Historical Climatology Network (GHCN) and the Climate Anomaly Monitoring System (CAMS) (in degrees C), 
and (3) the difference between these values. 

 

 



Supplemental Table 2: Global and US emissions totals for 2004-2012. 

 

 

Additional figures/tables added to paper: 

Supplemental Table 3: Correlation between (1) O3_Base and O3_USB and (2) O3_Base and O3_USA on the average of 
O3_top10obs_JJA days from 2004-2012 in each region. 

 

 



 

Figure 2: The three 4th highest days in each year (solid dots) that went into the calculation of the three-year average of the 4th 
highest MDA8 O3 day (hollow diamond). Error bars show the range between the highest and lowest O3_top10obs days across 
each 3-year span (i.e, across 30 total points) occurring between March and October in the (a) Southeast and (b) Mountains and 
Plains regions in the observations (black), and the O3_Base (blue) and O3_USB (red) simulations sampled on the same days as 
the top 10 observed values.  



 

 

Supplemental Figure 2: Summary information for each region showing the three 4th highest days in each year (solid dots) 

that went into the calculation of the three-year average of the 4th highest MDA8 O3 day (hollow diamond). Error bars show 

the range between the highest and lowest O3_top10obs days across each 3-year span (i.e, across 30 total points) occurring 

between March and October in (a) New England, (b) NY+NJ, (c) Mid-Atlantic, (d) Midwest, (e) South Central, (f) Plains, (g) 

Pacific SW, and (h) Pacific NW. Observations are shown in black, O3_Base is in blue, and O3_USB is in red. 



Table 2: Summary information for each region. The first row next to each region reports the range across 2004-2012 of the 

4th highest values from each of the 9 individual years for the observations, O3_Base, and O3_USB. The second row reports 

the range across 2004-2012 of each of the 3-year averages of the 4th highest values (7 values) in each region for the 

observations, O3_Base, and O3_USB. 

 

Region Range Obs O3_Base O3_USB

4th highest day 15 16 10

3-year average 4th highest day 9 10 3

Difference -6 -6 -7

4th highest day 11 10 12

3-year average 4th highest day 6 2 6

Difference -5 -8 -6

4th highest day 13 36 25

3-year average 4th highest day 7 21 10

Difference -6 -15 -15

4th highest day 9 24 10

3-year average 4th highest day 6 9 4

Difference -3 -15 -7

4th highest day 13 22 24

3-year average 4th highest day 8 11 10

Difference -6 -11 -14

4th highest day 11 26 22

3-year average 4th highest day 8 13 13

Difference -3 -13 -9

4th highest day 14 32 24

3-year average 4th highest day 9 18 11

Difference -5 -15 -13

4th highest day 9 23 20

3-year average 4th highest day 6 13 13

Difference -2 -10 -7

4th highest day 5 23 20

3-year average 4th highest day 3 5 5

Difference -2 -18 -15

4th highest day 11 14 15

3-year average 4th highest day 5 9 12

Difference -5 -5 -3

Plains

Mountains + Plains

Pacific SW

Pacific NW

New England

NY+NJ 

Mid-Atlantic

Southeast

Midwest

South Central
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Abstract. U.S. background ozone (O3) includes O3 produced from anthropogenic O3 precursors emitted outside of the 

U.S.A., from global methane, and from any natural sources. Using a suite of sensitivity simulations in the GEOS-20 

Chem global chemistry-transport model, we estimate the influence from individual background versus U.S. 

anthropogenic sources on total surface O3 over ten continental U.S. regions from 2004-2012. Evaluation with 

observations reveals model biases of +0-19 ppb in seasonal mean maximum daily 8-hour average (MDA8) O3, highest 

in summer over the eastern U.S.A. Simulated high-O3 events cluster too late in the season. We link these model biases 

to excessive regional O3 production (e.g., U.S. anthropogenic, biogenic volatile organic compounds (BVOC), and soil 25 

NOx, emissions), or coincident missing sinks. On the ten highest observed O3 days during summer (O3_top10obs_JJA), 

U.S. anthropogenic emissions enhance O3 by 5-11 ppb and by less than 2 ppb in the eastern versus western U.S.A. 

The O3 enhancement from BVOC emissions during summer is 1-7 ppb higher on O3_top10obs_JJA days than on 

average days, while intercontinental pollution is up to 2 ppb higher on average vsversus on O3_top10obs_JJA days. 

In the model, regional sources of O3 precursor emissions drive interannual variability in the highest observed O3 levels. 30 

During the summers of 2004-2012, monthly regional mean U.S. background O3 MDA8 levels vary by 10-20up to 15 

ppb. Simulated from year to year. Observed and simulated summertime total surface O3 levels on O3_top10obs_JJA 

days decline by 3 ppb (averaged over all regions) from 2004-2006 to 2010-2012 in both the observations and the 

model, reflecting rising U.S. background (+2 ppb) and declining U.S. anthropogenic O3 emissions (-6 ppb). in the 



2 

 

model. The model attributes interannual variability in U.S. background O3 on O3_top10obs days to natural sources, 35 

not international pollution transport. We find that a three-year averaging period is not long enough to eliminate 

interannual variability in background O3. on the highest observed O3 days.  

1 Introduction 

In the United States, ozone (O3) is regulated as a criteria pollutant under the National Ambient Air Quality 

Standard (NAAQS). The current NAAQS for ground-level O3, set in October 2015, states that the 4th-highest daily 40 

maximum 8-hour average (MDA8) O3, averaged across three consecutive years, cannot be 71 ppb or higher (U.S. 

Environmental Protection Agency, 2015). The three-year average is nominally intended to smooth out fluctuations 

in O3 levels resulting from natural variability in meteorology within the timing constraints of the federal Clean Air 

Act for air quality planning. As even one ppb of excess O3 may be enough to push a county out of NAAQS 

attainment, it is relevant to understand which sources influence the severity and timing of the highest O3 events. 45 

AsSince measured O3 does not retain a signature of the source from which it was produced, estimates of background 

O3 rely on models, ideally evaluated closely with observational valuesobservations, to build confidence in the model 

capability for source attribution. Here we apply a global chemistry-transport model alongside O3 observations to 

examine the highest 10 observed O3 events, as well as average conditions, to determine which sources are 

influencing average versus high-O3 events, and the extent to which they vary from year-to-year. 50 

As U.S. anthropogenic emissions of O3 precursors decline, the relative importance of “U.S. background” to 

total surface O3 rises. U.S. background O3 is defined here as the O3 levels that would exist in the absence of U.S. 

anthropogenic emissions of O3 precursors, nitrogen oxide (NOx) and non-methane volatile organic compound 

(NMVOC) precursors.). U.S. background O3 thus includes naturally occurring O3 as well as O3 produced from global 

methane (including U.S. anthropogenic emissions) and from O3 precursor emissions outside of the U.S.A. Jaffe et al. 55 

(2018) review the current understanding on U.S. background O3 from models and observations, and its relevance to 

air quality standard setting and implementation. Previous studies estimating background O3 over the United States 

found that background sources of O3, including stratospheric O3 intrusions (Lin et al., 2012, 2015a), increasing Asian 

anthropogenic emissions (Lin et al., 2015b), and more frequent wildfires in summer (Abatzoglou and Williams, 2016; 

Jaffe, 2011; Yang et al., 2015), may present challenges to obtaining the O3 standard, especially since regional emission 60 

controls may be offset by a warming climate (Fiore et al., 2015). At high-altitude Westernsites in the western U.S.A. 
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(WUS) sites in spring, the influence from stratospheric intrusions and foreign transport, combined with relatively deep 

planetary boundary layers, can lead to high background O3 events (Fiore et al., 2002; Zhang et al., 2011). Lin et al. 

(2017) investigated surface O3 trends over the U.S.A. from 1980-2014 with the GFDL AM3 model and found that 

emissions controls decreased the 95th percentile summer O3 values in the Easterneastern U.S.A. (EUS) by 0.2-0.45-10 65 

ppb yr-1 over 1988-2014, but rising Asian emissions offset the effect of U.S. emissions reductions, leading toincreased 

by 2-8 ppb increases in monthly mean O3 at individual sites in the WUS over the period (Lin et al., 2016).  

Earlier work in the GEOS-Chem model analyzing background O3 during a single meteorological year noted 

a tendency for the model to underestimate springtime O3 at high-altitude WUS sites but overestimate summertime 

O3 over the EUS (e.g. Fiore et al., 2002, 2003; Wang et al., 2009; Zhang et al., 2011, 2014). Identifying the extent to 70 

which these biases reflect poor representation of U.S. anthropogenic versus background sources is relevant for 

assessing uncertainties in estimates of background O3 on days when the O3 NAAQS is exceeded. We build upon 

these prior studies by analyzing MDA8 O3 measurements and 9-year model simulations spanning 2004-2012 from 

the GEOS-Chem 3D global chemistry-transport model (CTM). We use a suite of GEOS-Chem sensitivity 

simulations to estimate the influence from various individual background sources on O3 concentrations and the 75 

interannual variability in background O3 levels, with a focus on the highest 10 events in each EPA region during 

each summer (JJA) or year.(e.g. Fiore et al., 2002, 2003; Wang et al., 2009; Zhang et al., 2011, 2014). Identifying 

the extent to which these biases reflect poor representation of U.S. anthropogenic versus background O3 sources is 

relevant for assessing uncertainties in estimates of background O3 on days when the O3 NAAQS is exceeded. We 

build upon prior studies by analyzing MDA8 O3 measurements and 9-year model simulations spanning 2004-2012 80 

from the GEOS-Chem 3D global chemistry-transport model (CTM). A suite of sensitivity simulations in which 

different emissions of O3 precursors are perturbed allows us to identify which sources are contributing the most to 

observed high-O3 days and on the days with the highest model bias. We assess here whether biases in the model 

reflect problems in the modeled transported background versus O3 produced within the U.S. from both background 

and anthropogenic sources. In addition, the availability of these simulations for 2004-2012 allow us to investigate 85 

the year-to-year variability in background sources and the extent to which this variability is relevant for observed 

high events, and therefore, potentially to attaining the O3 NAAQS. Though coarse resolution global models such as 

GEOS-Chem will mix emissions into the same grid cell that may remain separate in the real atmosphere, a global 

model is necessary to quantify background O3 transported intercontinentally, including that produced via oxidation 
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of methane. We estimate the influence from various individual background sources on O3 concentrations and the 90 

interannual variability in background O3 levels with a focus on the highest 10 events in each of the 10 U.S. EPA 

regions during each summer (JJA) or year. We aim to answer the following questions: (1) Which sources exert the 

strongest influence on O3 on the ten days with the highest model biases against observations? (2) Which background 

sources influence total O3 the most on average versus the 10 highest O3 days? (3) Which sources influence the 

interannual variability of O3 in each region on average versus the 10 highest O3 days? 95 

2 Observations and model simulations 

2.1 Observations 

We use observed 2004-2012 MDA8 O3 data from the EPA Air Quality System (AQS) network of urban, 

suburban, and rural monitoring sites, the Clean Air Status and Trends Network (CASTNet), and the Mount Bachelor 

Observatory 100 

(https://digital.lib.washington.edu/researchworks/browse?type=subject&value=Mt.+Bachelor+Observatory) in 

Oregon. MDA8 O3 values for the AQS sites were downloaddownloaded from 

http://aqsdr1.epa.gov/aqsweb/aqstmp/airdata/download_files.html#Daily (2004-2012 data last updated June 28, 

2013). This dataset includes 1644 total sites from the contiguous U.S.A. from 2004-2012 with 1207 to 1333 sites 

collecting data each year (U.S. Environmental Protection Agency, 2014) (Supplemental Figure 1). The number of 105 

AQS sites measuring data per year is listed in Supplemental Figure 1.Supplemental Table 1).  

The CASTNet (ftp://ftp.epa.gov/castnet/data) O3 monitoring sites are located in rural areas away from 

emission sources and densely populated regions. CASTNet sites are designed to capture background O3 levels and 

characterize the broad spatial and temporal O3 trends of air pollutants. We calculate the MDA8 O3 concentration 

from hourly values at 108 CASTNet sites with data between 2004-2012, requiring at least 18 hours of data per day 110 

for each MDA8 O3 calculation. 

The Mount Bachelor Observatory, established in 2004 by the University of Washington Jaffe Research 

Group, is located 2.7 km above sea level on the summit of Mount Bachelor, an extinct volcano in the Cascade 

Mountains of central Oregon. It provides an estimate of baseline O3 levels over the West Coast of the United States. 

Baseline O3 is troposphericdefined as the O3 concentrationsconcentration at sites that have awith negligible influence 115 

from local emissions (National Research Council, 2010). Here we take all hourly O3 concentrations from Mount 

Bachelor and calculate the MDA8 O3 concentrations for 2004-2012. Daily averages are included only if at least 18 

https://digital.lib.washington.edu/researchworks/browse?type=subject&value=Mt.+Bachelor+Observatory
http://aqsdr1.epa.gov/aqsweb/aqstmp/airdata/download_files.html#Daily
ftp://ftp.epa.gov/castnet/data
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hours of data are available per day. As we did not archive three-dimensional high frequency data, all MDA8 O3 

values from the model are sampled at the lowest surface layer for comparison to observation sites. Monthly MDA8 

O3 averages from Mount Bachelor are included only if at least 20 days out of the month contain valid daily data. For 120 

our comparison to monthly mean measurements at Mount Bachelor, we sample the model at the height closest to 2.7 

km.  

Baseline O3 is a measurable quantity and differs from background O3 in that it contains some influence 

from U.S. anthropogenic emissions that were not recently emitted but contributed to the global background. This 

station represents variations in baseline O3 concentrationsIn order to evaluate the GEOS-Chem model O3 simulation 125 

(described below in Sect. 2.3) at a spatial scale comparable to the coarse horizontal resolution global grid (2º x 2.5º), 

we use an available 1° x 1° grid of interpolated surface MDA8 O3 measurements described by Schnell et al. (2014). 

We degrade the Schnell et al. (2014) dataset to 2° x 2.5° to match that of the GEOS-Chem simulations.  

2.22.1 Analysis regions 

Each observational site in the EPA AQS and CASTNet datasets is linked to one of the 10 EPA air quality 130 

regions (Figure 1) based on which state the site is in. The Mount Bachelor data were included with the Region 10 

(Pacific Northwest) sites (Table 2) as a station representative of variations in baseline O3 concentrations in the 

U.S.A. (Baylon et al., 2016) and is analyzed as a standalone site in Section 3.2 given the relevance of high-altitude 

measurements for downwind surface O3 (Stauffer et al., 2017). We take all hourly O3 concentrations from Mount 

Bachelor and calculate the MDA8 O3 concentrations for 2004-2012. Daily averages are included only if at least 18 135 

hours of data are available and monthly averages require at least 20 days with valid 24-hour mean or MDA8 data. 

For our comparison to monthly average O3 at Mount Bachelor Observatory, we sample the model both at the level 

closest to 2.7 km and at the surface.  

We use temperature data from a 0.5º x 0.5º resolution gridded dataset developed by Fan and van den Dool 

(2008) using data from the Global Historical Climatology Network (GHCN) and the Climate Anomaly Monitoring 140 

System (CAMS). Each observational site is matched to the temperature model grid cell it falls in and the average 

monthly temperature is computed by averaging across all the sites in each region. 

In order to evaluate the GEOS-Chem model O3 simulation (described below in Sect. 0) at a spatial scale 

comparable to the coarse horizontal resolution global grid (2º x 2.5º), we use an available 1° x 1° grid of surface 

MDA8 O3 measurements, interpolated from the AQS, CASTNet, and Canadian NAPS networks (Schnell and 145 
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Prather, 2017). We degrade this 1° x 1° dataset to 2° x 2.5° to match the horizontal resolution of the GEOS-Chem 

simulations. As we did not archive three-dimensional high frequency data, all MDA8 O3 values from the model are 

sampled at the lowest surface layer for comparison to observational sites. 

2.2 Analysis regions 

even though it is not a regulatory monitor. Similar toEach observational site in the EPA AQS and 150 

CASTNet datasets is linked to one of the 10 U.S. EPA air quality regions (Supplemental Figure 1) based on which 

state the site is in. The Mount Bachelor data were included with Region 10 (Pacific Northwest) sites even though it 

is not a regulatory monitor. Following Reidmiller et al. (2009), we select two regions, the Southeast (Region 4) and 

Mountains and Plains (Region 8), as representative regions for the EUS and WUS for illustration purposes in the 

main text. Figures showing our results for the other sixeight regions are included in the supplement. 155 

WeTo find the daily mean O3 concentration within each region, we first match each observational site to 

the model grid within which it falls. We then average across all sites in each region to obtain a regional mean MDA8 

O3 value for each day.in the observations and in the model. From the regionally averaged observed MDA8 O3, we 

find: (1) the ten days with the highest observed O3 during each year (hereafter, O3_top10obs days;), similar to the 

definition for extreme events used in Schnell et al., 2014)Schnell et al. (2014), (2) the ten days with the highest O3 160 

observations during each season (hereafter, O3_top10obs_MAM, O3_top10obs_JJA, and O3_top10obs_SON), and 

(3) the 4th highest MDA8 O3 within each year. In addition, we sample the model to find the ten days each year with 

the highest positive biases. There is at most a 2-6 day overlap between the top 10 O3_Base days and the top 10 most 

biased days in 2004-2012 across all regions, but during most years, the overlap is around 0-2 days. We restrict our 

analysis to examining the top 10 observed O3 days as these days are most relevant from a policy perspective. We use 165 

O3_top10obs as our primary metric, however, instead of the policy-relevant 4th highest O3 because the model bias is 

comparativelytypically lower; on the days with the 4th highest values, the model bias is generally more strongly 

negative in the west and South Central regions and more strongly positive in the Midwest than on O3_top10obs days 

(Supplemental Figure 2, versus Supplemental Figure 3). In addition, while the model rarely captures the exact day of 

the 4th highest MDA8 O3 event, there is a 3-4 day overlap on average between the O3_top10obs days and the highest 170 

10 MDA8 O3 days in the model. This overlap is similar to the 3 and 6 day overlap Jaffe et al. (2017) found in their 

regional models for May 1st to September 29th, 2011. 



7 

 

). On the days when the 4th highest values occur, the model bias is generally more strongly negative in the 

west and South Central regions and more strongly positive in the Midwest than on O3_top10obs days (Supplemental 

Figure 2, Supplemental Figure 3). In addition, while the model rarely captures the exact day of the 4th highest 175 

MDA8 O3 event, there is a 3-4 day overlap on average between the O3_top10obs days and the highest 10 MDA8 O3 

days in the model. This overlap is similar to the 3 and 6 day overlap Jaffe et al. (2018) found in their regional 

models for May 1st to September 29th, 2011.  

2.3 GEOS-Chem model simulations 

We use the GEOS-Chem v9_02 global 3D chemical transport model (CTM) (http://www.geos-chem.org)  180 

simulations driven by Modern-Era Retrospective analysis for Research and Applications (MERRA) reanalysis 

meteorology from the NASA Global Modeling and Assimilation Office for 2004-2012 (Rienecker et al., 2011). The 

MERRA reanalysis is available at 1/2º by 2/3º horizontal resolution, which we degrade here to 2º by 2.5˚ horizontal 

resolution.5º horizontal resolution. MERRA meteorology captures summer mean surface temperatures to within 1-

2 K across U.S. regions and precipitation to within 0.5 mm d-1 except for over the Northern Great Plains where a 185 

positive bias exceeds 1 mm d-1, but the variance in summer mean precipitation is lower than observed in some regions 

(Bosilovich, 2013). While interannual variability in cloudiness observed at weather stations is largely captured by 

MERRA, the reanalysis generally underestimates cloud cover and thus overestimates observed downward surface 

shortwave fluxes (Free et al., 2016). Methane surface concentrations are prescribed each month using spatially 

interpolated surface distributions from NOAA Global Monitoring Division flash data. We use the standard v9_02 190 

chemical mechanism which includes recycling of isoprene nitrates (Mao et al., 2013) in contrast to the mechanisms 

used in earlier versions of GEOS-Chem (e.g., Zhang et al., 2014 as discussed in Fiore et al., 2014). Anthropogenic 

base emissions are from the Emission Database for Global Atmospheric Research (EDGAR) version 3.2-FT2000 

inventory (Olivier et al., 2005) for inorganic compounds and the REanalysis of the TROpospheric chemical 

composition (RETRO) inventory (Hu et al., 2015; Schultz, 2007) for organic compounds. Inorganic emissions are 195 

overwritten by regional inventories for the U.S. (EPA National Emissions Inventory 2005), Canada (Criteria Air 

Contaminants), Mexico (Big Bend Regional Aerosol and Visibility Observational study; Kuhns and Green, 2003), 

Europe (European Monitoring and Evaluation Programme; Auvray and Bey, 2005), and South and East Asia (Streets 

et al., 2006). Separate global inventories are used for ammonia (Bouwman et al., 1997), black carbon (Bond et al., 

2007; Leibensperger et al., 2012), and ethane (Xiao et al., 2008). Anthropogenic surface emissions have diurnal and 200 

http://www.geos-chem.org/
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monthly variability, some with additional weekly cycles, and are scaled each year on the basis of economic data and 

estimates provided by individual countries, where available (Van Donkelaar et al., 2008). Aircraft emissions are 

from the Avian(van Donkelaar et al., 2008). The model does not include daily variations in U.S. anthropogenic 

emissions associated with higher electricity demand on hotter days (e.g., Abel et al., 2017). Aircraft emissions are 

from the Aviation Emissions Inventory Code (AEIC) inventory (Stettler et al., 2011) and shipping emissions are 205 

from International Comprehensive Ocean-Atmosphere Data Set (ICOADS; Lee et al., 2011; Wang et al., 2008). 

Biomass burning emissions follow the interannually-varying monthly Global Fire Emissions Database version 3 

(GFED3) inventory driven by satellite observations of fire activity (Giglio et al., 2010; Van Der Werf et al., 2010). 

Biofuel emissions are constant (Yevich and Logan, 2003). Biogenic VOC emissions from terrestrial plants follow 

the Model of Emissions of Gases and Aerosols from Nature (MEGAN) scheme version 2.1 (Guenther et al., 2012) 210 

and vary with meteorology (Barkley et al., 2011). Emissions of NOx from soil microbial activity follow Hudman et 

al. (2012). Methane surface concentrations are prescribed each month using spatially interpolated surface 

distributions from NOAA Global Monitoring Division flash data.Global and U.S. emissions are 29.5 Tg N yr-1 and 

5.2 Tg N yr-1 respectively, for anthropogenic NOx emissions (including biofuels); 4.2 Tg N yr-1 and 0.1 Tg N yr-1 for 

biomass burning; 8.7 Tg N yr-1 and 0.9 Tg N yr-1 for soil NOx; 6.7 Tg N yr-1 and 1.0 Tg N yr-1 for lightning NOx; 215 

466.1 Tg C yr-1 and 20.6 Tg C yr-1 for isoprene emissions. Emissions for NOx sources and isoprene are provided 

globally and within the U.S.A. for each year in Supplemental Table 3.  

We first perform a base simulation (O3_Base) in whichwith all emissions are prescribed normallyturned on 

for 2003-2012. We then performconduct a parallel suite of sensitivity simulations, in which selected sources are 

removed. In all simulations, we discard 2003 from our analysis as initialization. Our first set of sensitivity simulations 220 

estimates three different “background” definitions: (1) “North American Background” (denoted O3_NAB) in which 

we remove individual sources (Table 1), including (1) U.S. anthropogenic emissions within Canada, Mexico, and 

the U.S.A. are set to zero, but maintainingmethane surface abundances are kept at present-day methane 

concentrations; the O3 in this simulation provides an estimate of values; (2) “U.S. background O3 (hereafter,” 

(O3_USB), which is similar to O3_USB); (2) an otherwise identical simulation that also excludes thoseNAB except 225 

only U.S. anthropogenic emissions from Mexico and Canada, O3 in this simulation is referred to as “North American 

Background” O3 (O3_NAB);are set to zero;  (3) wildfire emissions, (4) biogenic VOC emissions, (5) Soil NOx, and 

(6) Lightning NOx. In addition, we perform a “natural” simulation“Natural background” (O3_NAT), in which all 
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anthropogenic emissions have been removed globally and methane is prescribed at preindustrial levels to provide an. 

We estimate of “natural” Canadian and Mexican influence (O3 (_CA+MX) on U.S. O3 by subtracting O3_NAB from 230 

O3_USB; the influence from intercontinental pollution transport plus global methane (O3_ICT+CH4) is estimated by 

subtracting O3_NAT). In all  from O3_NAB. A second set of sensitivity simulations, we discard 2003 from our 

analysis as initialization. We enable us to estimate the contribution of each individual sector“background” sources 

to the total concentration simulated surface O3 by subtracting the O3 in each sensitivitya simulation in whichwith that 

source has been removedshut off from the O3_Base simulation. As in all “zero-out” perturbation simulations,: (1) 235 

O3_NALNOx by turning off North American lightning NOx; (2) O3_SNOx by zeroing out global soil NOx; (3) 

O3_BVOC by zeroing out terrestrial biogenic VOC emissions (we also examine this “O3_noBVOC” simulation in 

Section 3.3); (4) O3_BB by zeroing-out biomass burning emissions, as summarized in Table 1. Due to non-linearities 

in atmospheric photochemistry make this a simple estimate, these “zero-out” estimates of the contribution of each 

source, and the contribution of each source depends contributions depend on the presence of all other precursor 240 

emissions at present-day levels (e.g., the impact of BVOCs emissions is sensitive to the amount of anthropogenic 

NOx emissions). Hereafter, the terms listed in the “Notation” column of Table 1 will be used to refer to the influence 

of each source on total O3 (O3_Base). Note that this in the Base simulation). This set of model simulations does not 

directly isolate stratospheric O3 or Asian influences. Previous work has shown that stratospheric O3 can increase 

springtime O3 levels by 17-40 ppb in the WUS in spring when MDA8 O3 levels are 70-85 ppb, and Asian emissions 245 

can contribute 8-15 ppb to MDA8 O3 on days above 60 ppb (Lin et al., 2012, 2015a). Stratospheric and Asian 

influences are included as part of ourin O3_USB estimates; Asian influences are included in O3_ICT+CH4,; and 

O3_NAT contains the influence ofincludes stratospheric O3 along with natural , biogenic precursor emissions of O3 

precursors, wildfires, and lightning NOx. As O3_BVOC includes O3 produced from biogenic VOC reacting with both 

natural and anthropogenic NOx, O3_USA and O3_BVOC are not additive. O3_BVOC thus contributes to both 250 

O3_USA and O3_USB. 

3 Model evaluation 

3.1 MDA8 O3 distributions  

Previous studies have found that averaging all observational sites within a model grid cell tend to 

disproportionately represent urban stations, especially when looking at high O3 days (Schnell et al., 2014). To 255 

evaluate the ability of our coarse resolution model to capture observed high-O3 events, we compare the MDA8 O3 
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simulated by GEOS-Chem to the observations in two ways. First, we use the Schnell et al. (2014) gridded dataset 

degraded to the model resolution. Second, we compare each individual observational site to the model grid cell 

within which it resides.averaged over each of the 10 EPA regions simulated by GEOS-Chem to the observations in 

two ways. In the first method, we use the (Schnell and Prather, 2017) gridded dataset degraded to the model 260 

resolution and sample the model directly at each of the degraded Schnell grid cells prior to calculating the regional 

average. In the second method, we sample the model grid cell containing each individual observational site (EPA 

AQS, CASTNet, and Mount Bachelor Observatory) prior to calculating the regional average. The model is biased 

positively with either method (Figure 1a, b), but the shape of the model distribution constructed with the latter 

approach (Figure 1b) better matches the observed distribution than that of the former (Figure 1a). Matching 265 

individual sites to the nearest model grid (Figure 1b) results inyields a better estimate of high-O3 days; the model 

overestimates the percentage of days above 70 ppb by about three times when we match to individual measurement 

sites (3.14% of days are above 70 ppb in the observations versus 9.92% in model) but by about ten times in 

comparison to the re-gridded Schnell (2014) dataset (0.37% of days are above 70 ppb in the observations versus 

3.91% in the re-gridded dataset).  270 

Simulated seasonal mean MDA8 averaged over the full 2004-2012 period is higher than observed by 5-30 

ppb (Figure 2a, b, c), with the largest biases typically occurring in the Northeast and Midwest. The model bias is 

highest in summer (JJA) (15-30 ppb at most sites), followed by fall (SON) (10-20 ppb) (Figure 2a, b, c). Recent 

work in a newer version of GEOS-Chem attributes some of the positive model bias in the EUS to excessive NOx 

emissions in the 2011 National Emission Inventory (NEI) (Travis et al., 2016), an inability of the model to resolve 275 

vertical mixing in the boundary layer, and a weak response to cloud cover (Travis et al., 2017). Travis et al. (2016) 

find that the 3.5 Tg N y-1 NEI 2011 estimate for U.S. fuel NOx emissions is too high and contributes to excessive 

surface O3. Our simulations include even higher U.S. fuel NOx emissions of 4.4 Tg N y-1 during 2010-2012 

(Supplemental Table 3), implying that some portion of the model O3bias reflects excessively high anthropogenic 

NOx emissions (Travis et al., 2016). The low bias in cloud cover in the MERRA meteorology and associated 280 

overestimate in downward shortwave surface radiation (Free et al., 2016) may also contribute to excessive O3 
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production in the model. The model is closest to the observations in spring, with a positive bias usually <10 ppb 

over the eastern states and generally within ±5 ppb over most western sites (Figure 2a, b, c). 

3.2 Baseline O3 at Mount Bachelor 

3.23.1 Baseline O3 at Mount Bachelor 285 

Mount Bachelor Observatory is located at 2.7 km above sea level, where it(MBO) regularly samples free 

tropospheric O3 and is rarely influenced by local anthropogenic emissions (Reidmiller et al., 2009). It is therefore, a 

valuable site for examining baseline O3 values. Figure 3 compares modeled and observed monthly mean O3 at 

Mount Bachelor. The observations peak in springtime and then fall in the summer months. The model, however, has 

a maximum in and underestimates springtime baseline O3. We infer, consistent with our analysis below, that the 290 

model does not resolve springtime high-O3 events, possibly reflecting an underestimate of stratospheric influences 

(see Fiore et al., 2014; Zhang et al., 2011; 2014). The model indicates that O3_USB dominates O3_Base (Figure 3). 

Even at this baseline site, however, the model indicates that U.S. anthropogenic emissions enhance monthly mean 

O3 by at least a few ppb (estimated as the difference between O3_Base and O3_USB). . In Supplemental Figure 4, we 

compare the observed 24-hour and MDA8 O3 concentrations at MBO for 2004-2012. The observed O3 295 

concentrations vary from year to year, and by definition, MDA8 O3 is a few ppb higher than the 24-hour mean 

mixing ratios. However, the seasonal pattern is similar across both metrics, with a springtime peak, maximum in 

April, and a secondary summertime peak in July. 

Figure 3 compares modeled and observed monthly mean 24-hour O3 concentrations at the grid box that 

contains Mount Bachelor. For the model, we examine O3_Base and O3_USB 24-hour average concentrations at 2.7 300 

km, the height of the Mount Bachelor Observatory, as well as at the surface. It is important to note that the diurnal 

variations on the mountain may not be well captured by the CTM, due to upslope (daytime)/downslope (nighttime) 

flow. We focus on the 24-hour average because we only archived hourly O3 fields from the model at the surface and 

thus, do not have the MDA8 O3 metric available at 2.7 km. The year-to-year variability is smaller in the model than 

observed (narrower shaded range). In all months, the O3_Base and O3_USB values are higher by 9-14 ppb and 11-21 305 

ppb, respectively, at 2.7 km than at the surface. The model captures the magnitude of the observed springtime peak 

at 2.7 km, but summertime values are too high, with an overall peak in August. O3_USB contributes a greater 

fraction to O3_Base at 2.7 km (92-94%) than at the surface (72-94%). The simulated seasonal cycle differs at the 
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surface, peaking in spring (March-April) and in September. In 2012, the observations show equivalent springtime 

and summertime peaks, more similar to the modeled seasonal cycle. While the observations generally decline from 310 

spring into summer, the model indicates an increase, leading to a substantial model overestimate during summer in 

most years. This model bias occurs across much of the U.S.A. as we show below. 

Our sensitivity simulations enable us to interpret the sources contributing to the simulated seasonal 

distribution. The model indicates that at MBO, O3_USB is the major component of O3_Base, including during the 

summertime overestimate. In turn, the model indicates that the seasonality of O3_USB is largely driven by O3_NAT, 315 

which includes the influence from biogenic VOC and NOx, lightning NOx, as well as stratospheric O3. O3_ICT+CH4 

contributes around 15 ppb at 2.7km and 5-10 ppb at the surface (Figure 3). The model does suggest a springtime 

peak influence from O3_ICT+CH4 in the WUS, consistent with earlier work (e.g., Task Force on Hemispheric 

Transport of Air Pollution, 2010). Even at this baseline site, the model indicates that O3_USA enhances monthly 

mean O3 by at least a few ppb at 2.7 km; at the surface, the model simulates a seasonal cycle for O3_USA that is 320 

typical of photochemical production from regional precursor emissions. O3_CA+MX is less than a few ppb at MBO 

whether the model is sampled at 2.7 km or the surface (not shown). 

3.3 Magnitude and timing of high-O3 events 

Simulated seasonal mean MDA8 averaged over the full 2004-2012 period is higher than observed by 5-30 

ppb (Figure 4a, b, c), with the largest biases typically occurring in the Northeast and Midwest. The model bias is 325 

highest in summer (JJA) (15-30 ppb at most sites), followed by fall (SON) (10-20 ppb) (Figure 4a, b, c). Recent 

work in a newer version of GEOS-Chem attributes some of the positive model bias in the EUS to excessive NOx 

emissions in the 2011 National Emission Inventory (NEI) (Travis et al., 2016), an inability of the model to resolve 

vertical mixing in the boundary layer, and a weak response to cloud cover (Travis et al., 2017). The model is closest 

to the observations in spring, with a positive bias usually <10 ppb over the eastern states and generally within ±5 330 

ppb over most western sites (Figure 4a, b, c). On O3_top10obs days, however,the model biases are typically lower 

than on average days (Figure 2, Table 3;, Table 2; see also year-by-year maps in Supplemental Figure 2). At some 

WUS sites, the model underestimates O3 levels during the highest events by 10-20 ppb. We note that theThe model 

systematically underestimates O3 in the Central Valley of California in all three seasons, which we attribute to the 
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inability of the coarse model resolution to resolve topographical gradients and valley circulations (or stagnation) in 335 

this region which experiences some of the highest observed O3 in the nation.  

We compare the MDA8 O3 distributions in the observations versus the model (O3_Base) during the 10 

most biased days in each of the ten regions across the nine years (900 total events). These “most-biased” days in 

the model tend to fall around the observed median (Figure 1c) during the warm season (June - October), with 

almost 40% of the days falling in August alone (Figure 5Supplemental Figure 5), and are 9-45 ppb higher than the 340 

observations (circles in Figure 6, Supplemental Figure 3Supplemental Figure 6). We analyze the perturbation 

simulations (Table 1) to identify which sources influence simulated O3 most strongly on the “most-biased” days 

versus on average (i.e., all 365 or 366 days), which we assume are also likely the main drivers of the bias. In all 

regions, the largest sources on the “most-biased” model days are O3_USA (3-30 ppb higher MDA8 O3 than on 

average with the exception of the Pacific SW where O3_USA is smaller than on average days), O3_BVOC (by 1-15 345 

ppb), and O3_SNOx (by 1-10 ppb; Figure 4, Supplemental Figure 3)., Supplemental Figure 6). By contrast, 

O3_ICT+CH4 is up to a few ppb higher on average days than on the most-biased model days. The 10 most biased 

days in the model tend to be 10°C warmer than average (Figure 6, Supplemental Figure 3), contributing to the 

higher O3_BVOC and O3_SNOx. We emphasize that O3_USA and O3_BVOC are not additive as anthropogenic 

NOx reacts with biogenic VOC to produce O3.  350 

To explore possible drivers of model biases across the different seasons, we evaluate the timing of the 

highest ten events across each year in the O3_Base, O3_USB, and O3_noBVOC (BVOCs shut off) simulations for 

each region (900 events). We bin these 900 events by month and calculate the percentage of the total events that 

fall within each month. Note that all the top ten days fall between March and October. The standard model 

(O3_Base) underestimates the occurrence of high events early in the O3 season (March-June) and overestimates 355 

them later in the season (July-September) (Figure 7). While the model indicates that most top ten O3 days fall 

between July-August (35% each), the observations show that May through August each contain around 15-25% 

with the maximum in June at 25%. When we examine the highest ten O3 events in the O3_USB case (U.S. 

anthropogenic emissions shut off), we see 5-10% fewer top ten events in July and August (27% in July and 28% in 

August), suggesting that O3_USA is contributing most to the temporal shift (and general summertime 360 

overestimate) relative to the observations. The O3_USB case does capture some early spring events in April (5%) 

and May (10%), though still fewer than observed (12% and 17% respectively). In the O3_noBVOC case, there are 



14 

 

5-10% more events during April and May than in the O3_Base case, but the shortage of high spring O3 events 

remains. The lack of high events in spring may stem from the springtime underestimate in this model, particularly 

at high altitude sites (e.g., Figure 5; see also Figures 4 and 6 of Fiore et al. (2014)), and may reflect poor 365 

representation of stratospheric O3 intrusions at the coarse resolution of the CTM (Zhang et al., 2014). The 

summertime overestimate of high-O3 events is less pronounced in the O3_noBVOC case than in the O3_Base case, 

implying that BVOCs are also contributing to the misplaced seasonal timing of the highest events, either through 

excessive O3 production or a missing coincident sink.Supplemental Figure 7). While the model indicates that most 

top ten O3 days fall between July-August (35% each), the observations show that May through August each 370 

contain around 15-25% with the maximum in June at 25%. Both O3_noBVOC and O3_USB shift the relative 

timing of the 10 highest O3 events towards April and May compared to O3_Base, but the shortage of high 

springtime O3 events remains (Supplemental Figure 7). The lack of high events in spring may reflect in part poor 

representation of stratospheric O3 intrusions at the coarse resolution of the CTM (Lin et al., 2012; Zhang et al., 

2014), in addition to the role of U.S. anthropogenic and BVOC emissions in the temporal mis-match as indicated 375 

by the improvements to the timing that occur in the O3_USB (U.S. anthropogenic emissions shut off) and 

O3_noBVOC simulations. In addition to contributions from these sources, poor representation of O3 sinks may 

contribute to the model biases. For example, Makar et al. (2017) suggest that failing to represent canopy turbulence 

and shading effects on photolysis can lead to high-O3 biases in models. 

3.4 Interannual variability 380 

Figure 8Supplemental Figure 8 shows the Pearson correlations coefficients (r) between monthly average 

observed and O3_Base values from 2004-2012. In May, correlations are generally strong (r ≥ 0.9) in the Mid-

Atlantic and Southeast regions, but much lower (r = 0.2) in the New England region. This pattern may reflect 

shortcomings in representing the onset of BVOC emissions. In July, the regions flip, with lower correlations in the 

Southeast and higher correlations in New England. At some sites in the WUS, lower correlations occur during 385 

summer months, which may be tied to excessive influence from lightning NOx advected from Mexico (see also 

Zhang et al., 2011; 2014) or anomalous events such as wildfires that are not well- captured by the model.  

In general, correlations only average about r = 0.2 in the winter and early spring over much of the United 

States (Supplemental Figure 8); the drivers for these weak correlations may be connected to the model tendency to 
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underestimate the occurrence of springtime high-O3 events. From May to September, however, the months during 390 

which high-O3 events are most likely to occur, the correlation between 2004-2012 observed and simulated O3 

monthly averages over much of the contiguous United States exceed r = 0.7 (Figure 8, Supplemental Figure 

4).Supplemental Figure 8). We conclude that the model broadly captures monthly variations from year-to-year 

during the warm season and can thus be applied to interpret the role of background sources in contributing to 

interannual variations during most of the high-O3 season. We note that Clifton et al. (2017) found that the GEOS-395 

Chem model does not capture interannual variability in deposition velocities observed at Harvard Forest, MA, but it 

is unclear to what extent this process would amplify or dampen interannual variability associated with changes in 

emissions. 

4 Influence of individual sources on average versus high-O3 days 

In Tables 3Table 2 and 4,Table 3, we report the influence of the O3 sources defined in Table 1Table 1 on 400 

average versus O3_top10obs days separately for spring (MAM), summer (JJA), and fall (SON) (ten days from each 

of the nine simulation years for 900 events for each region and season). We also report the difference in source 

influences between average and O3_top10obs days, which we interpret as the enhancement from that source relative 

to average conditions.  

We first consider the average ranges in MDA8 O3 contributed by the various sources. Both O3_USA and 405 

O3_USB tend to follow the seasonal cycle of O3_Base, with highest abundances in summer. The model indicates 

that O3_USB is 30-6050 ppb (range over regions) during summer and highest over the WUS. O3_USA is generally 

20-30 ppb over the EUS in summer, but only 10-20 ppb over the WUS. (Table 2). O3_ICT+CH4 averages 2-13 ppb 

over all regions and is highest in spring (8-13 ppb compared to 2-11 ppb in summer and 6-12 ppb in fall) (Table 

4,(Table 3, Figure 5, Supplemental Figure 9). O3_NALNOx has a relatively minor influence (at most 1.5 ppb) in all 410 

regions and seasons. The influence from O3_CA+MX is generally less than a couple of ppb. except in NY+NJ and 

New England where it can be as much as 4-7 ppb (Table 3, Supplemental Figure 9). 

We interpret the “difference” lines in Tables 3Table 2 and 4Table 3 as the enhancements from each source 

on high days in each season (O3_top10obs_MAM, O3_top10obs_JJA, O3_top10obs_SON) relative to average 

conditions. Over all regions, O3_BVOC and O3_SNOx influence O3_Base more on O3_top10obs days (for all 415 

seasons) than on average days whereas O3_ICT+CH4 is typically lower by up to 3 ppb on O3_top10obs days (for all 
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seasons) than on average days (Table 3, Table 4,(Table 2, Table 3, Figure 5, Supplemental Figure 9). O3_USA is 8-

11 ppb higher on O3_top10obs_JJA days versus average days over the New England, NY+NJ, Mid-Atlantic, 

Midwest, and South Central regions, but only up to 5 ppb higher over other regions (Table 3, Figure 9, Supplemental 

Figure 5).(Table 2, Figure 5, Supplemental Figure 9). The model indicates an even stronger anthropogenic 420 

enhancement (up to 19 ppb) on O3_top10obs_SON days in some EUS regions (Table 3).(Table 2). O3_USB is 

enhanced on O3_top10obs_JJA days by 2-12 ppb relative to average days, with the smallest enhancements occurring 

in the Mid-Atlantic, Southeast, and Midwest regions, and the largest enhancements occurring in the Pacific NW. In 

contrast to all the other regions, O3_USB is the dominant source enhancing O3_top10days_JJA over the Mountains 

and Plains, Pacific NW, and Pacific SW regions (4-12 ppb for O3_USB but < 5 ppb from either O3_USA or 425 

O3_BVOC). In line with earlier work reviewed by Jaffe et al. (2017)(2017), enhanced O3_USA dominates 

O3_top10obs_JJA days over much of the U.S.A., whereas in the WUS, O3_USB enhancements exceed O3_USA 

enhancements on O3_top10days_JJA. O3_BVOC enhances O3_top10obs days (for all seasons) by up to 9 ppb, with 

the influence often largest in fall (when O3 formation is more sensitive to VOC; e.g., Jacob et al., 1995Jacob et al., 

1995). We re-emphasize that BVOCs contribute both to O3_USA when reacting with anthropogenic NOx and to 430 

O3_USB when reacting with all other NOx sources. In contrast to the sources discussed above, O3_ICT+CH4 

influences average days by up to a few ppb more than on O3_top10obs days (for all seasons), with the largest 

differences between average and high days occurring in EUS regions (1-3 ppb lower on O3_top10obs days (for all 

seasons) in New England, NY+NJ, Mid-Atlantic; Table 4, Figure 9Table 3, Figure 5, Supplemental Figure 9). 

O3_NALNOx is at most 2 ppb higher than average on O3_top10obs days. The O3_CA+MX influence is roughly 435 

equivalent (generally to within a ppb) on average versus O3_top10obs days during all seasons (Table 4).. 

5 Interannual variability in the sources influencing high vs. average ground-level O3 

Despite its high mean bias and seasonal phase shift, the model does capture some of the observed 

interannual variability in observed O3_top10obs_JJA MDA8 O3 concentrations (Figure 8Figure 6, Supplemental 

Figure 10; r = 0.5 to ≥ 0.9). Comparing the 2004-2006 period with 2010-2012, both observed and simulated MDA8 440 

O3 concentrations on O3_top10obs_JJA days hold steady or decrease across all regions. This change reflects 

opposing influences in the model: rising O3_USB (by 2 ppb averaged over all regions) and declining O3_USA 

concentrations (by 6 ppb averaged over all regions) (Figure 6, Table 5, , Table 4, Supplemental Figure 10). We note 
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that over the Pacific NW there is a 4 ppb decrease in O3_USB from 2004-2006 to 2010-2012. Over this period, 

temperatures generally warm over the EUS, but slightly cool in the WUS. Within the ten regions, the model captures 445 

the sign of the changes in MDA8 O3 over this period but not the magnitude (Table 5). We emphasize thatTable 4). 

The model monthly mean temperatures in the model (from the MERRA reanalysis) closely match the observed 

GHCN+CAMS dataset (Supplemental Table 4). Table 4 shows that regions with O3_USB increases generally 

experienced rising temperatures over this period, as the 2010-2012 period includes two of the warmest years on 

record (. Figure 6). Figure 10 shows that O3_NAT tracks with O3_USB, indicating that the year-to-year variability in 450 

O3_USB is primarily driven in the model by meteorology as opposed to variability in upwind international 

anthropogenic emissions. O3_USB and O3_NAT on O3_top10obs_JJA days generally track meteorological changes, 

with temperature (dips in MDA8 O3 occurringoccur during years with cooler temperatures (2008-2009) and 

increases in years with warmer temperatures (2011-2012) (), indicating that year-to-year variability in O3_USB on 

O3_top10obs_JJA days is primarily driven in the model by natural sources sensitive to meteorology rather than 455 

international O3 transport (Figure 6, Supplemental Figure 10). Note that althoughAlthough 2012 was the hottest year 

on average between 2004-2012 (except in the Pacific NW where 2004 was warmer by aroundabout a degree), it was 

not the hottest summer in all regions. 

We find that O3_USB drives the interannual variability on O3_top10obs_JJA days in the WUS (r = 0.72-

0.85 for O3_USB versus O3_Base, whereas r = 0.05-0.64 for O3_USA versus O3_Base; Supplemental Table 5). In 460 

NY+NJ, the Southeast, Midwest, South Central, and Plains regions, O3_USB and O3_USA both contribute to the 

interannual variability on O3_top10obs_JJA days (r = 0.5-0.8 for both O3_USB and O3_USA versus O3_Base) while 

in New England and the Mid-Atlantic regions, O3_USA drives the interannual variability more than O3_USB (r = 

0.64 and 0.72 for O3_USA versus O3_Base but only 0.28 and 0.54, respectively, for O3_USB versus O3_Base; 

Supplemental Table 5).  465 

Year-to-year variations in monthly average O3_USB are relatively large, with 10-15 ppb differences  

between the highest and lowest O3_USB years during the warmest months (Figure 7, Supplemental Figure 8)., 

Supplemental Figure 11). Seasonal variations also differ by region, especially during summer. For example, the 

western U.S. regions have a smooth seasonal cycle with O3_USB concentrations rising from January to a peak in 

July and August, and then declining again. Interannual and seasonal variability in O3_USB are generally greater in 470 
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the Southeast than in the Mountains and Plains, and Plains regions (Figure 7, Supplemental Figure 8)., Supplemental 

Figure 11). Year-to-year variability in O3_BVOC is smaller than O3_USB, with a maximum range of about 10 ppb 

between the highest and lowest years during August. (Figure 7, Supplemental Figure 12). O3_SNOx ranges by a few 

ppb throughout the summer in the Southeast, and by up to 6 ppb over the Mountains and Plains in August (Figure 

7)., Supplemental Figure 13).  475 

O3_USA anomalies relative to the 2004-2012 average illustrate declining influence in all regions, with 

negative anomalies after 2007 on both O3_top10obs and average days (Figure 8, Supplemental Figure 5). This 

finding is well established by earlier work demonstrating decreases in high-O3 concentrations as a result of regional 

NOx emissions reductions over the past few decades (Cooper et al., 2012, 2014a; Jaffe et al., 2017; Young et al., 

2017). O3_BVOC is the main driver of the high and low O3 anomalies (up to ±5 ppb on O3_top10obs_JJA days) 480 

from year-to-year., Supplemental Figure 14). This finding is well established by earlier work demonstrating 

decreases in high-O3 concentrations as a result of regional NOx emissions reductions over the past few decades 

(Cooper et al., 2012, 2014a; Jaffe et al., 2018; Young et al., 2017). O3_BVOC is the main driver of the high and low 

O3 anomalies (up to ±5 ppb on O3_top10obs_JJA days) from year-to-year (Figure 8, Supplemental Figure 15).  

Specific events can affect O3 in any given year. For example, in 2008, there were extensive fires across 485 

much of California in May, June, and July. In 2008, the Pacific SW region that includes California, Nevada, and 

Arizona, shows a positive anomaly in O3_BB (> 1 ppb) on the O3_top10obs days, stronger than during any other 

year in that region (Supplemental Figure 15). If we restrict our analysis solely to Reno, NV, the anomaly for O3_BB 

was 7 ppb in July 2008 relative to the 2004-2012 July average (not shown). We emphasize that a single location can 

be more strongly influenced by a specific source than the regional averages on which we have focused.  490 

Currently, the U.S. EPA uses a 3-year averaging period. of the 4th-highest MDA8 O3 to assess compliance 

with the O3 NAAQS. We evaluate here the extent to which thethis 3-year averaging period removes interannual 

variability in meteorology (the grounds for the averaging). In ) (Figure 9 (, Supplemental Figure 16). The observed 

range is generally much smaller than the model estimate. We find that the 3-year average of the 4th highest day 

decreases the range by 2-6 ppb and in Supplemental Figure 12, Supplemental Figure 13),5-18 ppb in the 495 

observations and O3_Base respectively when compared to taking the 4th highest day in any given year when we 

examine the range for each regionlook across all regions (Table 5). However, the 3-year average of the 4th highest 
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day still ranges from 3-9 ppb and 2-11 ppb in the observations and O3_Base, respectively, across all regions 

(compared to 5-15 ppb and 10-36 ppb in the observations and O3_Base on the 4th highest day in each individual 

year). Thus, while averaging across the years decreases the spread, variability remains. In keeping with our 500 

previous analysis of the O3_top10obs days between 2004-2012 in , we compare the observations, O3_Base, and 

O3_USB. The dots indicate wherespread of the 4th- highest MDA8 O3 day fell forin each simulation. For the 2004 

to 2012 period, the range of the three-year averages of the observations is a few ppb lower than the annual years to 

the range covered by the 10 highest events (Figure 13, Supplemental Figure 12, Supplemental Figure 13). The 

annual range in the model (O3_Base) sampled on O3_top10obs days tends to be wider than the observed range 505 

(except for a few years in New England and NY+NJ) by as little as a few ppb to as much as 20 ppb. This modeled 

range overestimate lessens when averaged over three years (Figure 13a, b versus Figure 13c, d). We also include in 

Figure 12 (and Supplemental Figures 12 and 13) the range of the O3_USB onof the O3_top10obs days. While the 

three-year averaging period reduces the range in O3_USB on the highest days, variability remains, and over the 

Mountains and Plains regions this across each three year span; the 4th highest days can range almost as widely as 510 

the O3_top10obs days in some years, but in other years, are clustered closer together (Figure 9). Figure 9 shows 

that the range in O3_top10obs days for O3_Base generally correlates with O3_UBS in the WUS, suggesting that 

O3_USB is the dominant source influencing theseinfluence on the high days (Figure 13b, d).there, but there is little 

correlation in the EUS. We conclude that a three-year smoothing period is not long enough to eliminate entirely the 

interannual variability in background MDA8 O3 levels. , and in the WUS, this interannual variability tends to 515 

reflect variations in O3_USB. 

6 Discussion and Conclusions 

As air quality controls decrease U.S. anthropogenic precursor emissions to O3, the relative importance of the 

background influence on total surface O3 increases. We use O3 MDA8 concentrations spanning 2004-2012 from the 

EPA AQS, CASTNet, and Mount Bachelor Observatory sites, and various sensitivity simulations from the global 520 

GEOS-Chem 3D chemistry transport model to estimate the influence from various individual background sources on 

O3 in each of the ten EPA regions in the continental U.S.A. We examine differences between background and U.S. 

anthropogenic influences on average- and high-O3 days and on interannual variability. The global scale of the GEOS-

Chem model allows us to quantify intercontinental transport (including global methane) in addition to regional natural 
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and anthropogenic sources of O3. The sensitivity simulations span nine years, allowing us to examine the role of these 525 

sources in contributing to interannual variability. Our analysis contrasts average- and high-O3 days.  

Correlations between monthly averages across 2004-2012 show that the model captures monthly variations 

from year-to-year, especially during summer (JJA). The model shows substantial variability in simulated U.S. 

background O3 concentrations from year-to-year, on the order of 10-20 ppb between 2004-2012 in summer (Figure 

7). We find that the extent to which the current three-year averaging period for assessing compliance with the National 530 

Ambient Air Quality Standard for O3 succeeds in smoothing out interannual variability depends on the range in 

consecutive years, and thus varies by region and time period, but is generally not long enough to completely eliminate 

the interannual variability in background O3 (Figure 9).  

We find substantial biases in the severity (+0-19 ppb in maximum daily 8-hour average (MDA8) O3) and 

timing of high-O3 events in the model. The model underestimates the frequency of high events in spring, possibly 535 

associated with stratospheric intrusions (Fiore et al., 2014; Zhang et al., 2011; 2014). Future efforts would benefit 

from quantifying the stratospheric (as well as Asian) influence alongside the other background sources we consider. 

We find a stronger influence of U.S. anthropogenic emissions on regionally averaged MDA8 O3 (up to 30 ppb) from 

BVOCs (up to 15 ppb) and soil NOx (up to 10 ppb) on the ten most biased days as compared to average days. We 

conclude that regional production of O3 is driving the pervasive high positive model bias in summer, as opposed to 540 

transported background, although our sensitivity simulations do not allow us to rule out the possibility of a 

coincident missing sink.  

Our finding that BVOC emissions contribute to the summertime surface O3 biases could reflect poor 

representation of the emissions (and subsequent oxidation chemistry). Earlier work has noted that MEGAN BVOC 

emissions are too high over California (Bash et al., 2016), Southeast Texas (Kota et al., 2015), the Ozarks in 545 

southern Missouri (Carlton and Baker, 2011), and across much of the U.S.A. (Wang et al., 2017). One recent model 

study uniformly reduced MEGAN isoprene emissions by 20% (Li et al., ACP 2018), but we did not apply any such 

scaling here. In regions that are highly NOx-sensitive, additional isoprene should not strongly influence O3, as found 

over southeast Texas (Kota et al., 2015). While not eliminated entirely, the summertime model bias does lessen in 

the simulation with BVOC emissions set to zero, suggesting that the O3 bias is indeed exacerbated if BVOC 550 

emissions are overestimated in the model. 
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We find substantial biases in the severity (+0-19 ppb in maximum daily 8-hour average (MDA8) O3) and 

timing of high-O3 events in the model. The model underestimates the frequency of high events in spring. The ten 

most biased days (considering regionally-averaged MDA8 O3 values in each of the ten EPA regions) tend to be 

around 10°C warmer than average days. Our model does not include daily variations in U.S. anthropogenic 555 

emissions associated with higher electricity demand on hotter days (e.g., Abel et al., 2017), but we still find that the 

influence of U.S. anthropogenic emissions on regionally averaged MDA8 O3 is up to 30 ppb higher on the ten most 

biased days as compared to average days. The model does include daily variability in temperature-sensitive biogenic 

emissions and simulates higher than average O3 from BVOCs (up to 15 ppb) and soil NOx (up to 10 ppb) on the ten 

most biased days. We conclude that regional production of O3 is driving the pervasive high positive model bias in 560 

summer, as opposed to transported background.  

On the ten days with the highest observed MDA8 O3 values (O3_top10obs) in each season, the model 

indicates that U.S. anthropogenic and biogenic VOC emissions are the most important drivers relative to average 

days, over most regions (Tables 3, 4).(Table 2, Table 3). O3_top10obs_MAM and O3_top10obs_SON days (i.e., the 

ten highest spring and fall MDA8 O3 days) are up to 9°C warmer than average, but O3_top10obs_JJA days (i.e., the 565 

ten highest summer MDA8 O3 days) are only 1-2 °C warmer than average. (Table 2). U.S. anthropogenic emissions 

enhance O3_top10obs_JJA days by 5-11 ppb above average in the eastern U.S. regions, but by less than 2 ppb over 

the three western regions. Over these westernmost regions, U.S. background O3 is 4-12 ppb higher on 

O3_top10obs_JJA days than on average. (Table 2). Across the continental U.S.A., biogenic VOC emissions enhance 

O3 by 1-7 ppb above average on O3_top10obs_JJA days, while intercontinental pollution is either similar or up to 2 570 

ppb higher on average days. (Table 3). Analysis of our simulations thus indicates that the highest O3 events are 

associated with regional O3 production rather than transported background. We emphasize, however, that our model 

is likely missing springtime events associated with stratospheric intrusions and Asian transport (Figure 3, Figure 7; 

Fiore et al., 2014; Zhang et al., 2011; 2014). 

From 2004-2006 to 2010-2012, MDA8 O3 concentrations on O3_top10obs_JJA days vary from year-to-year, 575 

but show little overall trend (decrease of, decreasing by 3 ppb in both the observations and the model averaged over 

all regions) (Figure 6, Table 5Table 4). With our sensitivity simulations, we interpret this lack of an overall trend as a 

balance between rising U.S. background O3 (by 2 ppb for O3_USB from 2004-2006 to 2010-2012 averaged over all 



22 

 

regions) and declining U.S. anthropogenic emissions (by 6 ppb for O3_USA from 2004-2006 to 2010-2012 averaged 

over all regions). The declining influence of U.S. anthropogenic emissions on O3_top10obs_JJA days is consistent 580 

with earlier work showing high-O3 concentrations decreasing in response to regional precursor emissions controls 

since the late 1990s (e.g. Cooper et al., 2012, 2014b; Frost et al., 2006; Simon et al., 2016). 

In contrast to previous work, including with the GEOS-Chem model (e.g. Fiore et al., 2014 and references 

therein), we find that U.S. background O3 tends to be higher in summer than in spring in most regions. This likely 

reflects differences in the isoprene chemistry, specifically the isoprene nitrates, between our version of GEOS-Chem 585 

(Mao et al., 2013) and older versions that treat isoprene nitrates as greater sinks for NOx and thereby, suppress O3 

production. We find here that soil NOx and isoprene can lead to high U.S. background O3 in summer, though their 

relative importance is likely exaggerated at the coarse resolution we use here (e.g., Yu et al., 2016). Nevertheless, the 

model shows substantial variability in simulated U.S. background O3 concentrations from year-to-year, on the order 

of 10-20 ppb between 2004-2012 in summer (Figure 11). The importance of temperature sensitive sources like 590 

biogenic VOC and NOx emissions to background O3 imply that in a warmer climate, these background influences on 

O3 will play an even more important role in driving up O3The coarse resolution of our model will excessively mix 

isoprene and soil NOx sources (e.g., Yu et al., 2016), and thus may exaggerate the relative importance of enhanced 

background O3 resulting from soil NOx and isoprene. Nevertheless, the model skill at capturing the observed year-to-

year variability in the regionally averaged ten highest days lends some confidence to its attribution of this variability 595 

to natural sources (e.g. Figure 6). Future work with high-resolution models (e.g., at the regional scale, ideally with 

boundary conditions that include source attributions from a global model) is needed, along with observational 

evidence, to quantify the extent to which biogenic VOC and NOx contribute to the highest observed O3 levels in the 

warm season. The importance of temperature sensitive sources like biogenic VOC and NOx emissions to background 

O3 imply that in a warmer climate, these background influences on O3 will play an even more important role in driving 600 

up O3 levels.  
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Figures 

Table 1: Approach for estimatingSensitivity simulations with the GEOS-Chem model and their application to estimate 810 
sources of ground-level O3 with the GEOS-Chem model. 

Ozone Source Definition Notation 

Base Standard simulation O3_Base 

Natural Background 
Simulation with no global anthropogenic emissions + 

preindustrial CH4 levels 
O3_NAT 

North American 

Background 

Simulation with no North American anthropogenic 

emissions 
O3_NAB 

U.S. Background Simulation with no U.S. anthropogenic emissions O3_USB 

U.S. Anthropogenic 

Emissions 
O3_Base – O3_USB O3_USA 

Anthropogenic Emissions 

from Canada and Mexico 
O3_USB – O3_NAB O3_CA+MX 

Intercontinental Transport + 

Preindustrial CH4 Levels 
O3_NAB – O3_NAT O3_ICT+CH4 

North American Lightning 

NOx  
O3_Base – simulation with the lightning NOx source shut off O3_NALNOx 

Soil NOx Emissions O3_Base – simulation with the soil NOx emissions shut off O3_SNOx 

Terrestrial Biogenic VOC 

Emissions 

O3_Base – simulation with the terrestrial biogenic emissions 

shut off 
O3_BVOC 

All Emissions except 

Terrestrial Biogenic VOCs 

NoSimulation with terrestrial biogenic VOC emissions shut 

off 
O3_noBVOC 

Biomass Burning Emissions 
O3_Base – simulation with biomass burning emissions (NOx, 

CO, VOCs, aerosols, and precursors from fires) shut off 
O3_BB 
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Figure 1: Map of the states falling within each EPA region in the continental United States (adapted from U.S. 815 
Environmental Protection Agency, 2012). 

Table 2: The number of observational sites that fall within each EPA region for EPA AQS and CASTNet. (*) We include 

data from the Mount Bachelor Observatory in the Pacific Northwest region. 

Region EPA AQS CASTNet Total 

1. New England 82 7 89 

2. New York + New Jersey (NY+NJ) 61 7 68 

3. Mid-Atlantic 138 14 152 

4. Southeast 309 24 333 

5. Midwest 255 18 273 

6. South Central 202 5 207 

7. Plains 71 2 73 

8. Mountains and Plains 153 12 165 

9. Pacific Southwest 325 14 339 

10. Pacific Northwest 48 6* 54 

Total 1644 109 1753 
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Figure 1: Frequency distribution of MDA8 O3 values across all sites in the United States from Jan-Dec (365 or 366 days per 825 
year) from 2004-2012 in the (a) Schnell dataset (2014) interpolated to 2° by 2.5°, (b) at individual observational sites, and 

c) on the 10 most biased days. Concentrations for each day are obtained by averaging across all sites in a region. The model 

bias is defined as O3_Base minus observed. The total number of points consists of 9 years x 10 days x 10 regions. The 

observations are in shown in blue and GEOS-Chem is in orange. The line drawn at 70 ppb in panels (a) and (b) denotes the 

70 ppb NAAQS standard cut-off for O3.: Frequency distribution of regionally averaged U.S. MDA8 O3 values from 2004-830 
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2012 in the (a) Schnell and Prather (2017) dataset interpolated to 2° by 2.5° and (b) at individual observational sites prior 

to averaging over each of the 10 EPA regions (total number of points is 9 years x 365 or 366 days x 10 regions) in the 

observations (blue) and the GEOS-Chem model (orange). c) As in panel (b) but selecting for the 10 most biased days in each 

region (total number of points is 9 years x 10 days x 10 regions). The line drawn at 70 ppb in panels (a) and (b) is the current 

O3 NAAQS level.  835 

 

Figure 2 

: Average MDA8 O3 model bias (O3_Base – observed) on all days in (a) JJA, (b) MAM, (b) JJA, and (c) SON versus on the 

(d) O3_top10obs_MAM, (e) O3_top10obs_JJA, and (f) O3_top10obs_SON days at each observational site averaged across 

2004-2012. : Monthly average concentrations of daily O3 at Mount Bachelor Observatory (Observations; grey), with 840 

MAM 
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corresponding O3_Base (blue), O3_USB (red), and O3_NAT (green) concentrations at ~2.7 km, the height of the Mount 

Bachelor Observatory. Individual lines of the same color show the spread from 2004-2012. 

Figure 4: 

 

 845 

Figure 3: Monthly 2004-2012 average 24-hour O3 concentrations at Mount Bachelor Observatory. Observations (grey) are 

the same in both panels. Simulations from the GEOS-Chem model are sampled in the grid cell containing Mount Bachelor 

at (a) 2.7 km (the height of the Mount Bachelor Observatory) and at (b) the surface: O3_Base (blue), O3_USB (red), O3_NAT 

(light green), O3_ICT+CH4 (pink), and O3_USA (dark green). The shaded range spans the highest and lowest years. : 

Percent of total top 10 most biased days from Jan-Dec (9 years x 10 days x 10 regions) that fell within each month in the 850 
United States. All the most biased days fell between Mar-Oct. 
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Figure 4: Average influence of each sensitivity simulation on MDA8 O3: Multi-year (2004-2012) Mar-Oct average 

temperature and MDA8 O3 source contributions estimated with the GEOS-Chem model in the (a) Southeast and (b) 

Mountain and Plains regions on the 10 most biased days from Jan-Dec (red(blue) versus averaged across all days (blue). 855 
Red circles show the average model bias (O3_Base – observations) on the 10 most biased days. Blue circles show the model 

bias averaged across all days. The circles do not vary between subplots.yellow). Note that O3_USB and O3_USAthe two 

regions are on a different scale than the other plotsscales. 

 

 860 
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Figure 7: Percent of total top ten days (9 years x 10 days x 10 regions) from Jan-Dec (365 or 366 days) in the observations, 

O3_Base, O3_USB, and O3_noBVOC that fell within each month for all sites across the U.S.A. All the top ten days for each 

simulation fell between Mar-Oct.  865 

 

Figure 8: Correlation between 2004-2012 year-to-year monthly MDA8 O3 averages for May, July, and September in the 

observation and in the model (O3_Base). 

 

 870 

 

 

 

 

 875 
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Table 2: Summary information for each region. The “Model Bias” column shows the model bias in each region on the (1) 

O3_top10obs days in each season (average of 2004-2012), 2) across all days in each season (average of 2004-2012), and (3) 

the difference between these values, rounded to the nearest whole number. The other columns show the concentration for 

the observations, O3_Base, and O3_USA, and daily average temperature (in degrees C) on the (1) O3_top10obs days in each 

season (average of 2004-2012), (2) across all days in each season (average of 2004-2012), and (3) the difference between these 880 
values. 
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Table 3: Summary information for each region. Each column shows the concentration for each background O3 source 

influence on the (1) O3_top10obs days in each season (average of 2004-2012), (2) across all days in each season (average of 

2004-2012), and (3) the difference between these values, rounded to the nearest whole number.  885 

 

 

Figure 5: Average 2004-2012 influence of each sensitivity simulation to O3_Base in the (a) Southeast and (b) Mountains and 

Plains regions on MDA8 O3_top10obs_JJA days (red) versus averaged across all days (blue). Error bars show the 

concentration on the lowest versus highest year for each sensitivity simulation in each region.  890 
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Figure 6: Average yearly MDA8 O3_top10obs_JJA concentrations for observations (divided by 2 to fit on the same axes; 

blue dashed line), O3_Base (divided by 2; blue solid line), O3_USB (red), O3_USA (black), O3_NAT (green) MDA8, and daily 

average temperature (in degrees C; light blue) in the (a) Southeast and (b) Mountains and Plains regions.  895 

 

Table 4: Change in MDA8 O3 concentrations from 2004-2006 to 2010-2012 on O3_top10obs_JJA days in the observations, 

O3_Base, O3_USB, and O3_USA, and temperature. 

 Obs O3_Base O3_USB O3_USA Temperature (C) 

New England -6 -4 6 -10 2 

NY+NJ  -2 -4 3 -7 1 

Mid-Atlantic 0 -3 4 -7 1 

Southeast -4 -5 2 -7 1 

Midwest -2 -4 2 -6 0 

South Central -6 -2 5 -7 1 

Plains -1 -2 4 -5 1 

Mountains + Plains -4 -1 1 -2 -1 

Pacific SW -3 -4 0 -4 -1 

Pacific NW -7 -5 -4 -1 -1 

Average -3 -3 2 -6 0 
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 900 

Figure 7: Monthly average MDA8 O3_USB (a, b), O3_BVOC (c, d), and O3_SNOx (e, f) concentrations in the Southeast (a, 

c, e) and Mountains and Plains (b, d, f) regions.  
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Figure 8: Anomaly on the MDA8 O3_top10obs_JJA days relative to the 2004-2012 average in the Southeast (a, c) and in the 

Mountains and Plains (b, d) regions. Panels (a) and (b) show the observations, O3_Base, O3_USB, O3_USA, and temperature 905 
(in degrees C). Panels (c) and (d) show O3_BVOC, O3_SNOx, O3_NALNOx, O3_BB, O3_ICT+CH4, and O3_CA+MX. 
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Figure 9: Range : The three 4th highest days in magnitude of the MDA8 O3_top10obs for each year shown as vertical 

lines(solid dots) that went into the calculation of the three-year average of the 4th highest MDA8 O3 day (hollow diamond). 910 
Error bars show the range between the highest and lowest O3_top10obs days across each 3-year span (i.e, across 30 total 

points) occurring between March and October in the (a) Southeast and (b) Mountains and Plains regions in the observations 

(black), and the O3_Base (blue), and O3_USB (red) in the (a, c) Southeast and (b, d) Mountains and Plains regions. (a, b) 

show the range on of O3_top10obs days during each year between 2004-2012. (c, d) showsimulations sampled on the same 

days as the top 10 observed values.  915 

 

Table 5: Summary information for each region. The first row next to each region reports the range across 2004-2012 of the 

O3_top10obs days after averaging over three consecutive4th highest values from each of the 9 individual years. The solid 

dots show the 4th highest MDA8 O3 day for each simulation (a, b) and the annual 4th highest MDA8 for the observations, 

O3_Base, and O3_USB. The second row reports the range across 2004-2012 of each of the 3-year averages of the 4th highest 920 
values (7 values) in each region for the observations, O3 day averaged over three consecutive years. 



42 

 

_Base, and O3_USB.  

Region Range Obs O3_Base O3_USB

4th highest day 15 16 10

3-year average 4th highest day 9 10 3

Difference -6 -6 -7

4th highest day 11 10 12

3-year average 4th highest day 6 2 6

Difference -5 -8 -6

4th highest day 13 36 25

3-year average 4th highest day 7 21 10

Difference -6 -15 -15

4th highest day 9 24 10

3-year average 4th highest day 6 9 4

Difference -3 -15 -7

4th highest day 13 22 24

3-year average 4th highest day 8 11 10

Difference -6 -11 -14

4th highest day 11 26 22

3-year average 4th highest day 8 13 13

Difference -3 -13 -9

4th highest day 14 32 24

3-year average 4th highest day 9 18 11

Difference -5 -15 -13

4th highest day 9 23 20

3-year average 4th highest day 6 13 13

Difference -2 -10 -7

4th highest day 5 23 20

3-year average 4th highest day 3 5 5

Difference -2 -18 -15

4th highest day 11 14 15

3-year average 4th highest day 5 9 12

Difference -5 -5 -3

Plains

Mountains + Plains

Pacific SW

Pacific NW

New England

NY+NJ 

Mid-Atlantic

Southeast

Midwest

South Central
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Supplemental Figures 

Supplemental Table 1: The number of observational sites that fall within each EPA region for EPA AQS and CASTNet. 

(*) We include data from the Mount Bachelor Observatory in the Pacific Northwest region. 925 

Region EPA AQS CASTNet Total 

1. New England 82 7 89 

2. New York + New Jersey (NY+NJ) 61 7 68 

3. Mid-Atlantic 138 14 152 

4. Southeast 309 24 333 

5. Midwest 255 18 273 

6. South Central 202 5 207 

7. Plains 71 2 73 

8. Mountains and Plains 153 12 165 

9. Pacific Southwest 325 14 339 

10. Pacific Northwest 48 6* 54 

Total 1644 109 1753 

 

 

Supplemental Figure 1: Map of the states falling within each EPA region in the continental United States (adapted from 

U.S. Environmental Protection Agency, 2012). 

 930 
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Supplemental Table 2: Number of EPA AQS sites collecting MDA8 O3 data during each year from 2004-2012. 

Number of EPA AQS Sites 

2004 1219 

2005 1207 

2006 1211 

2007 1237 

2008 1241 

2009 1251 

2010 1280 

2011 1333 

2012 1315 
 

Supplemental Table 3: Global and US emissions totals for 2004-2012. 

 Emissions 2004 2005 2006 2007 2008 2009 2010 2011 2012 

Global 

Anthropogenic NO with 
biofuels (Tg N) 

30.3 30.2 30.1 29.9 29.5 29.0 28.8 28.8 28.8 

Biomass burning (Tg N) 4.5 4.7 4.6 4.6 3.9 3.5 5.0 3.7 3.7 

Soil (Tg N) 9.0 9.1 8.8 8.5 8.4 8.6 8.4 8.6 9.2 

Lightning (Tg N) 5.5 6.1 6.2 6.4 6.9 7.3 7.2 7.1 7.2 

Isoprene (Tg C) 493.0 499.3 471.5 453.6 435.3 455.4 466.0 453.3 467.3 

US 

Anthropogenic NO with 
biofuels (Tg N) 

6.32 6.04 5.75 5.44 5.13 4.63 4.36 4.36 4.36 

Biomass burning (Tg N) 0.02 0.06 0.06 0.07 0.04 0.04 0.05 0.12 0.12 

Soil (Tg N) 0.78 0.86 1.02 0.92 0.82 0.79 0.77 0.95 1.10 

Lightning (Tg N) 0.86 0.86 0.77 0.75 1.10 1.13 1.13 1.28 1.31 

Isoprene (Tg C) 18.1 21.5 21.9 22.0 19.3 18.3 20.2 22.0 22.4 
 935 
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Supplemental Figure 2: Average model bias (model – observed) on the O3_top10obs days during (a) 2004, (b) 2005, (c) 2006, 

(d) 2007, (e) 2008, (f) 2009, (g) 2010, (h) 2011, and (i) 2012. 940 
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Supplemental Figure 3: Model bias (model – observed) on the 4th highest MDA8 O3 day at each observational site averaged 

for each three-year span. (a) 2004-2006, (b) 2005-2007, (c) 2006-2008, (d) 2007-2009, (e) 2008-2010, (f) 2009-2011, and (g) 

2010-2012.  
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Supplemental Figure 4: Monthly average of observed (a) daily 24-hour and (b) MDA8 O3 concentrations averaged across 

2004-2012 at Mount Bachelor Observatory. Black line shows the average of each month from 2004-2012. Error bars show 

the standard deviation in the interannual variability in each month. Dashed lines show the concentrations for each 960 
individual year. : Average influence of each sensitivity simulation on MDA8 O3 in each region on the 10 most biased days 

from Jan-Dec (red) versus averaged across all days (blue). Red circles show the average model bias (O3_Base – 

observations) on the top 10 model bias days. Blue circles show the model bias averaged across all days. The circles do not 

vary between subplots. Note that O3_USB and O3_USA are on a different scale than the other plots. 
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 965 

Supplemental Figure 5: Percent of total top 10 most biased days from Jan-Dec (9 years x 10 days x 10 regions) that fell 

within each month in the United States. All the most biased days fell between Mar-Oct. 
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Supplemental Figure 6: Average influence of each sensitivity simulation on MDA8 O3 in each region on the 10 most biased 

days from Mar-Oct (red) versus averaged across all days (blue). Red circles show the average model bias (O3_Base – 

observations) on the top 10 model bias days. Blue circles show the model bias averaged across all days. The circles do not 

vary between subplots. 
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 985 

Supplemental Figure 7: Percent of total top ten days (9 years x 10 days x 10 regions) from Jan-Dec (365 or 366 days) in the 

observations, O3_Base, O3_USB, and O3_noBVOC that fell within each month for all sites across the U.S.A. All the top ten 

days for each simulation fell between Mar-Oct. 

 

Supplemental Figure 8: Correlation between 2004-2012 year-to-year monthly averages for MDA8 O3 in the observation 990 
and in the model (O3_Base) for each individual month. 
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Supplemental Figure 9: Average 2004-2012 influence of each sensitivity simulation to O3_Base in (a) New England, (b) 1000 
NY+NJ, (c) Mid-Atlantic, (d) Midwest, (e) South Central, (f) Plains, (g) Pacific SW, and (h) Pacific NW on the MDA8 

O3_top10obs_JJA days (red) versus averaged across all days (blue). Error bars show the average concentration on the 

lowest versus highest year for each sensitivity simulation in each region. 
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Supplemental Figure 10: Average yearly MDA8 O3_top10obs_JJA concentrations for observations (divided by 2 to fit on 

the same axes; blue dashed line), O3_Base (divided by 2; blue solid line), O3_USB (red), O3_USA (black), O3_NAT (green) 

MDA8, and temperature (in degrees C; light blue) sampled on the O3_top10obs days in (a) New England, (b) NY+NJ, (c) 

Mid-Atlantic, (d) Midwest, (e) South Central, (f) Plains, (g) Pacific SW, and (h) Pacific NW.  1010 
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Supplemental Table 4: Monthly average temperature across all days in each season (average of 2004-2012) in (1) GEOS-

Chem, in (2) the Global Historical Climatology Network (GHCN) and the Climate Anomaly Monitoring System (CAMS) 

(in degrees C), and (3) the difference between these values. 

 1015 

Supplemental Table 5: Correlation between (1) O3_Base and O3_USB and (2) O3_Base and O3_USA on the average of 

O3_top10obs_JJA days from 2004-2012 in each region. 

 Correlation 

Region O3_Base and O3_USB O3_Base and O3_USA 

New England 0.28 0.64 

NY+NJ  0.50 0.58 

Mid-Atlantic 0.54 0.70 

Southeast 0.66 0.59 

Midwest 0.75 0.76 

South Central 0.71 0.72 

Plains 0.80 0.75 

Mountains + Plains 0.95 0.64 

Pacific SW 0.72 0.28 

Pacific NW 0.98 0.05 
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Supplemental Figure 11: Monthly average MDA8 O3_USB concentrations in (a) New England, (b) NY+NJ, (c) Mid-Atlantic, 

(d) Midwest, (e) South Central, (f) Plains, (g) Pacific SW, and (h) Pacific NW. Supplemental Figure 8: Monthly average 

MDA8 O3_BVOC 
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Supplemental Figure 12: Monthly average MDA8 O3_BVOC concentrations in (a) New England, (b) NY+NJ, (c) Mid-

Atlantic, (d) Midwest, (e) South Central, (f) Plains, (g) Pacific SW, and (h) Pacific NW. 
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Supplemental Figure 13: Monthly average MDA8 O3_SNOx concentrations in (a) New England, (b) NY+NJ, (c) Mid-

Atlantic, (d) Midwest, (e) South Central, (f) Plains, (g) Pacific SW, and (h) Pacific NW. 
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Supplemental Figure 14: Anomaly on the MDA8 O3_top10obs_JJA days of each sensitivity simulation relative to the 2004-

2012 average in (a) New England, (b) NY+NJ, (c) Mid-Atlantic, (d) Midwest, (e) South Central, (f) Plains, (g) Pacific SW, 

and (h) Pacific NW. Each panel shows the anomaly from observations, O3_Base, O3_USB, O3_USA, and temperature (in 

degrees C).  1050 
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Supplemental Figure 15: Anomaly on the O3_top10obs_JJA days for each sensitivity simulation relative to the 2004-2012 

average in (a) New England, (b) NY+NJ, (c) Mid-Atlantic, (d) Midwest, (e) South Central, (f) Plains, (g) Pacific SW, and 

(h) Pacific NW. Each panel shows the anomaly from O3_BVOC, O3_SNOx, O3_NALNOx, O3_BB, O3_ICT+CH4, and 

O3_CA+MX. 
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Supplemental Figure 16: Summary information for each region showing the three 4th highest days in each year (solid dots) 

that went into the calculation of the three-year average of the 4th highest MDA8 O3 day (hollow diamond). Error bars show 

the range between the highest and lowest O3_top10obs days across each 3-year span (i.e, across 30 total points) occurring 

between March and October in (a) New England, (b) NY+NJ, (c) Mid-Atlantic, (d) Midwest, (e) South Central, (f) Plains, 

(g) Pacific SW, and (h) Pacific NW. Observations are shown in black, O3_Base is in blue, and O3_USB is in red.  regions. 1070 
(c), (d), (e), (f) show the range of the O3_top10obs days after averaging over three consecutive years. The solid dots show 

the 4th highest MDA8 O3 day for each simulation (a, b) and the annual 4th highest MDA8 O3 day averaged over three 

consecutive years.: Range in magnitude of the ten highest MDA8 O3 values for each year shown as vertical lines in the 

observations (black), O3_Base (blue), and O3_USB (red) in (a) New England, (b) NY+NJ, (c) Mid-Atlantic, (d) Midwest, (e) 

South Central, (f) Plains, (g) Pacific SW, and (h) Pacific NW. a), (b), (e), (f) show the range on of O3_top10obs days during 1075 
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each year between 2004-2012. (c), (d), (e), (f) show the range of the O3_top10obs days for each year. The solid dots show the 

4th highest MDA8 O3 day for each simulation (a), (b) and the annual 4th highest MDA8 O3 day.  

Supplemental Figure 13: Range in magnitude of the ten highest MDA8 O3 values after averaging over 3 consecutive years 

in the observations (black), O3_Base (blue), and O3_USB (red) 

 1080 
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