
Dominant role of emission reduction in PM2.5 air quality improvement in Beijing 

during 2013-2017: a model-based decomposition analysis by Jing Cheng et al.   

  

Reply to referee #1:  

 

Anonymous Referee #1 

General Comments  

  

The main purpose of this paper is the discussion of the reasons of recent rapid PM2.5 

decrease of Beijing, mainly by using the meteorological and emission sensitivities by 

chemical transport model. Based on several sensitivity simulations, this paper made a 

decomposition analysis framework to evaluate the impacts of local control policies, 

surrounding emission reductions and the meteorological changes on PM2.5 abatement in 

Beijing during 2013-2017 and 2016-2017. This paper made the most of important 

sensitivity analysis and explains the relative contribution of meteorology (12%), local 

emission (65%) and regional emission (23%) for the reduction of PM2.5 between 2017 

and 2013. The results of detailed sensitivity analyses are useful for the understanding of 

PM2.5 reduction and environmental policy. Their results are very much reasonable and 

important. However it is difficult to find scientific uniqueness of this paper. The current 

version of manuscript could be published as the Technical Note. It is necessary to add the 

more scientific discussion in order to be accepted as a research paper.  

  

Response: 

We thank the reviewer #1 for the constructive comments and address them as below. 

 

Specific Comments  

  

1) The paper mainly discussed the decreases of annual average PM2.5 concentration. 

However as shown in Figure 4, the authors are specifying the decrease of chemical 

compositions (i.e., SO2, NOx), it is necessary to compare the aerosol chemical 

composition changes too. The under estimation of sulfate in winter are reported in 



many previous papers, the comparison of sulfate between observation and model 

results are very much necessary.    

 

Response: we add the validation of PM2.5 compositions simulations in Sect.2.4.2 

(the validation is conducted in terms of the absolute concentration values 

comparison and the temporal change comparison); the detailed comparison of 

the simulation and observations of PM2.5 compositions are listed in SI, Table S4; 

the data source of observational PM2.5 compositions is introduced in Sect.2.1 

(SPARTAN observational PM2.5 compositions data was the most complete public 

data we could found, however with certain temporal discontinuities. This may 

not be able to support the trend analysis, but can used for period validation. 

Besides this observational data set, we also collected some trends observational 

analysis in reported research (Shao et al., 2018) to verify the temporal changes 

of simulated PM2.5 compositions).   

As Table S4 showed, the simulation of sulfate basically agrees with the 

observation, even with slight overestimation in winter. On the one hand, a 

missing heterogeneous chemistry mechanism is revised in our model based on 

our previous work (Zheng et al., 2015), which can improve the sulfate simulation 

in pollution events. On the other hand, along with the effective SO2 emission 

control measures in Beijing in recent years, the SO4
2-

 was basically no longer the 

key contributor leading to heavy pollution, while the nitrate-driven haze 

pollution has become more dominate, especially in the summertime (Li et al., 

2018). Additionally, the estimation of SO2 emission might be overestimated, for 

the obvious overestimation of SO2 simulation (SI, Table S3). 

 We also add an analysis about the aerosol chemical composition changes in 

Sect.3.4.1 as follows, and the variation trends of simulated PM2.5 compositions 

can be found in SI, Figure S6.  

Added/rewritten part in Sect.2.1: To evaluate the accuracy of PM2.5 components simulation, 

we collected the PM2.5 components data from the Surface PARTiculate mAtter Network 

(SPARTAN, www.spartan-network.org). SPARTAN is a global, long-term project that 

observed and analyzed the particulate matter mass, water-soluble ions, black carbon and 



metals since 2013 (Snider et al., 2015). Major SPARTN measurements include the Air Photon 

3-wavelength integrating nephelometer and the Air Photon SS4i automated air sampler. 

SPARTAN monitors are located in nearly 20 highly populated regions in the world, such as 

Beijing, Hanoi, Singapore, Dhaka, Pretoria, Toronto, Bondville. Detailed measurements and 

sites information can be found in Snider’s research (Snider et al., 2015; Snider et al., 2016). 

In this research, we used the reconstructed PM2.5 speciation data in Beijing Site (located in 

the Department of Earth System Science, Tsinghua University) (https://www.spartan-

network.org/beijing-china) to validate the model simulation results of PM2.5 compositions, 

and to verify the variation of PM2.5 compositions in Beijing during 2013-2017. Additionally, 

we collected the observational PM2.5 compositions form the reported research (Shao et al., 

2018), to verify the simulated variations of PM2.5 compositions in CMAQ model. In Shao’s 

research, they observed and analyzed the multi-size PM samples at an urban site on Beijing 

Normal University, and compared the chemical compositions changes from January 2013 to 

2016-2017 winter in Beijing. 

Added/rewritten part in Sect.2.4.2: Besides PM2.5 concentrations, we also evaluated the 

simulated PM2.5 compositions. We compared the PM2.5 compositions of the observations 

from Beijing Site, SPARTAN and the simulations from the same grid, which can be found in 

SI (Table S4). Generally speaking, secondary inorganic aerosol (SIA) was overestimated in 

most periods (0.1%-56.6%), especially for the nitrate (NO3
- ) simulation, which overestimated 

6.56%-89.9%. Organic matter (OM) was under estimated in most periods, with the 

underestimation range of (-3.0%) - (-41.8%). This might be caused by the missing mechanism 

and insufficient simulation of secondary organic aerosols (SOA) formulations in CMAQ 

model. The NMB of simulated and observed black carbon (BC) varied from (-52.9%) – 

(38.2%). Similar evaluation results can be found in Weagle’s research, that he compared the 

GEOS-Chem simulation with SPARTAN observation data, with an average 45.7% 

overestimation of SIA, -58.9% underestimation of BC, and -19.2% underestimation of OM. 

However, the variation trends of simulated PM2.5 compositions were basically consistent with 

the SPARTAN data, both have the remarkable decrement in OM and increment in NO3
- . In 

Shao’s observational results, that SO4
2- proportion in 2016-2017 winter in Beijing reduced by 

11% compared with January,2013; while NO3
-  and NH4

+ proportions increased by 77.9% and 

47.3% (Shao et al., 2018). And in our research, the relative change ratio of SO4
2-, NO3

-   and 

NH4
+  proportions in Beijing from January, 2013 to 2016-2017 winter were -29.1%, 89.2% 

and 11.7% respectively. In general. The simulated compositions basically captured the 



variations in observation results, which can support the reasonable analyses of the chemical 

composition changes. 

Added/rewritten part in Sect.3.4.1: Although there was a steady decline in PM2.5 

concentrations of Beijing during 2013-2017, the trends of PM2.5 compositions varied 

differently. The simulation results of base cases (which adopted the real meteorology and 

emissions of each year) showed that the sulfate (SO4
2- ) and organic matter (OM) were 

dominate species for the decline in PM2.5 concentrations during 2013-2017, with the 

decrement of 7.5 μg  m-3 (56.6%) and 9.6 μg  m-3 (40.5%) respectively. The contribution of 

SO4
2- to the total PM2.5 also decreased obviously, from 15.3% in 2013 to 10.7% in 2017; and 

OM proportion decreased from 27.5% in 2013 to 26.5% in 2017. The rapid decrement of 

SO4
2- was consistent with the remarkable SO2 emission reductions in Beijing during 2013-

2017. Along with the effective SO2 emission control measures, the SO4
2- was basically no 

longer the key contributor leading to heavy pollution in Beijing while the nitrate-driven haze 

pollution has become more dominate in Beijing in recent years, especially in the summertime 

(Li et al., 2018). The decrement of OM was mainly caused by the prominent emission 

reductions of primary organic carbon (mainly come from the residential burning and other 

coal combustion sources). VOCs emission reductions also contributed to the OM decreasing, 

however, due to the missing mechanism and insufficient simulation of secondary organic 

aerosols (SOA) formulations in CMAQ model, the contributions of VOCs emission control 

might be underestimated. In contrast, nitrate (NO3
-  ) increased in 2014-2016, and kept 

basically the same concentration level in 2017 (10.4 μg m-3) as 2013 (10.9 μg m-3). However, 

the contribution of NO3
-  to the total PM2.5 increased a lot, from 12.7% in 2013 to 19.4% in 

2017.  The specific concentration and proportion trends of PM2.5 concentrations can be found 

in SI, Table S6. 

 

2) Another important point is the OC (we found that model result are usually under 

estimated), so the detailed examinations of model reproductively of OC are 

necessary in order to discuss the emission change in VOC.  

 

Response: please refer to the response for Specific Comments (1). 

 

3) The authors show the very good agreement of PM2.5 reduction between observation 

and model results. It is usually difficult to have such good agreement. It is necessary 



to discuss the detailed reasons why model results are so good agreement from the 

view point of emission inventory, WRF model, model horizontal resolution, and 

CMAQ itself performance.  

 

Response: In our simulation, a better emission inventory of Beijing (described 

in Sect.2.2), with more accurate e spatial distribution and emission source 

allocation, was adopted in our simulation, which can largely improve the air 

quality modelling, especially when modelling with finer resolutions (Zheng et al., 

2017). Meanwhile, analysis nudging, observational nudging and soil nudging 

were adopted in WRF simulation, which improved the meteorology modelling 

(SI, Table S2 (a)-(f)). The statistic of WRF simulation results showed a better 

performance. Additionally, three nested domains were designed and the 

horizontal resolution of the third domain was 4km × 4km. The higher resolution 

enhanced the advantage and accuracy of BJ-EI; meanwhile the simulation of 

finer grids would create higher spatial accuracy and better agree with the 

observational data. However, the model was not entirely perfect. On the one 

hand, certain biases existed in the simulated and observational concentrations 

(such as the underestimation of PM2.5, O3 and the overestimation of SO2 (SI, 

Table S3(b)), especially in some heavy pollution episodes. And the biases became 

even larger in the PM2.5 compositions comparisons (SI, Table S4). On the other 

hand, the presented validation analysis was the average results from 12 

observation stations in Beijing. The simulation (both the reductions and absolute 

concentrations) of different grids (where different observation stations located) 

also presented different performance, which can be seen from the certain ME 

and NME statistics (SI, Table S3, Table S4).  Generally speaking, the better 

emission inventory and higher resolutions in this study led to a better model 

performance, however certain biases and uncertainties existed due to the 

missing mechanism in the model itself and some other limitations. 

 

4) Zero-out emission sensitivity is used in this study by assuming the linearity. PM2.5 

formation is usually nonlinear, so it is necessary why the authors are using zero-out 

method.  



 

Response: we add a discussion part (Sect.3.5.1) to quantify the extra non-

linearity effects of the zero-out approach in our study; meanwhile, we also 

explained the reason why we used zero-out approach in Sect.3.5.1 as follows. 

Added/rewritten part in Sect.3.5.1: Although various methods have been developed to 

quantify the source of PM2.5 and evaluate their contributions, such as receptor-based methods 

(like CMB and PMF), trajectory-based methods (like PSCF and EEI)), source-oriented 

methods (like CAMx-PSAT and CMAQ-ISAM)) (Li et al, 2015), they can hardly consider 

the meteorology and emission changes simultaneously. Therefore, the zero-out approach 

might be a better choice to attribute the contribution of local and regional emission control 

as well as meteorology changes under one complete decomposition framework. The zero-out 

method is also widely used in estimating the contribution of air pollution sources (Lelieveld 

et al., 2015; Han et al., 2016; Baker et al., 2016; Zhang et al., 2017; Zhang et al., 2017; Ni et 

al., 2018). 

However, the response of PM2.5 formulation is not linear to the meteorology and emission 

changes; thus, the zero-out approach would introduce extra bias in research. The non-linear 

effects of the analyse period of 2013-2017 could be evaluated by the following equation 

(Zhang et al., 2017). 

Bias = (SCon(M) + SCon(S) + ∑ SCon(pi)
7

𝑖=1
) − (SPM2.5(E𝐿13𝑆13M13) − SPM2.5(E𝐿17𝑆17M17)) (7) 

Where SPM2.5(EL13S13M13)  and SPM2.5(EL17S17M17)  represent the direct simulated PM2.5 

concentration of base case in 2013 and 2017. The balance of their values is the actual PM2.5 

decrement during 2013-2017 under the mixed impacts of meteorology change, regional and 

local emission reductions. The sum of SCon(M) , SCon(S)  and ∑ SCon(pi)7
i=1   represents a 

linear result of all contributors during this period. The extra bias can be estimated as the 

difference between the linear addition and the actual decrement. According to equation (7), 

we estimated biases in the analyse of 2013-2017 were 1.4 μg  m-3, accounting for 4.3%. 

Similarly, the absolute and relative biases in the analysis of 2016-2017 were estimated as -

0.6 μg m-3 and -3.6%. Both indicated the non-linear effects are relatively small and acceptable.  

 

5) Section 2.3: Although we can follow by Zheng et al. (2018) to understand the 

emission inventory, it should be noted what is the major “updated”. Especially, the 



inventory is named as “MEIC”; however, we noticed the emission amounts described 

in Zheng et al. (2018) and Li, M. (2017) are different. Does this mean “updated”? 

Taking into account the importance of emission inventory, more careful explanations 

and descriptions are needed here for the traceability of this kind of study.  

 

Response: The MEIC model is developed by Tsinghua University, and keeps 

continuous updating. Li, M. (2017) focused on the year of 2008, 2010 and 2012; 

while Zheng et al. (2018) focused on the periods of 2010-2017, discussing the 

temporal emission changes in China form 2010-2017. We add some detailed 

information about Zheng’s work to explain the major updated specifics in MEIC 

model in Sect.2.3 as follows; and a brief introduction of MEIC is also added.    

Added/rewritten part in Sect.2.3: The air pollutant emission inventory of Beijing’s 

surrounding regions (including Tianjin, Hebei, Henan, Shandong, Shanxi, Inner Mongolia) 

for the period of 2013-2017 was obtained from the MEIC model. MEIC is a bottom-up 

emission inventory model developed for China by Tsinghua University, covering 31 

provinces in China and the year range of 1990 up to now. More than 700 emission sources 

were developed in MEIC model. The methodologies and data on which the MEIC is based,  

as well as the continues updating process of  pollutants emission factors, have been 

introduced in our previous studies (Zhang et al 2007; Liu et al., 2010; Lei et al., 2011; Li et 

al., 2014; Shen et al., 2014; Hong et al., 2017; Qi et al., 2017; Zheng et al., 2017; Li et al., 

2017a; Li et al., 2017b). For the updated emission inventory and emission reductions of the 

surrounding regions, we referee to our previous work (Zheng et al., 2018). In their work, 

Zheng et al collected the latest Chinese Energy Statistics data from National Bureau of 

Statistics, the industrial production and technology penetration data, and the unpublished 

data from the Ministry of Ecology and Environment. Then they estimated and updated 

China’s anthropogenic emissions from 2010 to 2017 under the framework of MEIC model. 

Particularly, they calibrated the emission calculation parameters (such as technology 

penetrations and removal efficiencies) in major sectors, such as power, cement, steel, iron, 

of each province based on emission control policies. Based on their updated China 

anthropogenic emission inventory, we collected and analyzed the detailed sectoral emission 

reductions and trends of Beijing’s surrounding regions during 2013-2017. 

  



6) Section 2.4.1: Model descriptions are insufficient. Model calculation was conducted 

after only 10 days spin-up. How does the 3 years WRF simulation perform?  i.e., 

with or without FDDA? Need more detailed descriptions.  

 

Response: we rewrite and add some detailed descriptions about the WRF-

CMAQ model configurations in Sect.2.4.1 (as follows). In our study, we made a 

complete base simulation of 2013-2017 and obtained a consecutive five-year 

WRF and CMAQ simulation results.  The 10 days spin-up was adopted to 18 

sensitivity experiments. Analysis nudging, observational nudging and soil 

nudging were adopted, and FDDA data was from the U.S. National Centers for 

Environmental Prediction (NCEP, http://rda.ucar.edu/datasets/), Automated 

Data Processing surface (ds461.0) and upper (ds351.0) air data. The nudging-

related configurations in WRF model were referred to our previous work (Zheng 

et al., 2015) and presented a good performance in meteorology modelling of 

North China. 

Aadded/rewritten part in Sect.2.4.1: For the WRF model configuration, we chose the New 

Goddard scheme (Chou et al., 1998) and RRTM (Mlawer et al., 1997) for shortwave and 

longwave radiation options, the Kain-Fritsch cloud parameterization (version 2, Kain, 2004), 

the ACM2 PBL  scheme (Pleim, 2007), the Pleim-Xiu land-surface scheme (Xiu and Pleim, 

2000) and WSM6 cloud microphysics (Hong and Lim, 2006). Analysis nudging, 

observational nudging and soil nudging were adopted, and FDDA data was from the U.S. 

National Centers for Environmental Prediction (NCEP, http://rda.ucar.edu/datasets/), 

Automated Data Processing surface (ds461.0) and upper (ds351.0) air data. The 

meteorological initial and boundary conditions were derived from the final analysis data 

(FNL). We made a continuous meteorology simulation during 2013-2017, with a ten-days 

spin-up before this period. 

 

7) Does CMAQ study include the Asian dust? If yes, need discussion of model accuracy 

and problems.   

 



Response: Asian dust was included in this study. We add the dust emission 

descriptions in Sect.2.4.1 as follows; and we also add a discussion about the 

relevant simulation results in Sect.2.4.2. 

Added/rewritten part in Sect.2.4.1: For the dust emission, bare lands dust was calculated 

by the in-line windblown dust in CMAQ model. As 2.2 section described, other dust source, 

such as road dust and construction dust were added in BJ-EI, while missed in MEIC model. 

It brought uncertainty of air quality simulation, especially for the PM10 simulation in other 

regions. 

 

Added/rewritten part in Sect.2.4.2: The added fugitive dust emission (road and 

construction dust) in BJ-EI has improved the PM10 simulation of Beijing, with an 

overestimation range of 4% - 12% (Table S3 (b)).  However, the PM10 simulation of other 

cities in the third domain were underestimated (-8%) - (34%), especially in some heavy 

industry cities as Tangshan (-34%), Baoding (-25%), and Handan (-29%). This might be 

attributed to lack of construction dust emissions in these regions, as well as the uncertainty 

of the dust model (Todd et al., 2008; Foroutan et al., 2018). Similar methods and phenomenon 

were also applied and reported in previous researches (Wang et al., 2010). Although it might 

introduce the uncertainty of simulation; given that our research was focused on the attribution 

analyses of anthropogenic emission changes in Beijing, this uncertainty was relatively small. 

 

8) Emission sensitivity study was conducted by each emission sector base. It is 

necessary to include the discussion of the accuracy (or error bars) of emission 

estimate for each sector base.   

 

Response: we add a discussion part to describe the uncertainty of emission 

estimations in Sect.3.5.2 (as follows). We first represent the quantified error bars 

of MEIC model (Zhang et al., 2009) and the uncertainty of regional emission 

estimations (Zheng et al., 2018) referred to our previous work. Then based on 

Zheng’s method, we discussed the uncertainty of BJ-EI (the local emission 

inventory of Beijing) (Sect.3.5.2; SI, Figure S5). Finally, we discussed the 

uncertainty in the estimation of measure-based emission reductions. 



Added/rewritten part in Sect.3.5.2: The incomplete research and investigation of activity 

rates, emission factors, and removal efficiencies would introduce uncertainties in estimating 

the emission trends and magnitudes, as well as the measure-based emission reductions.    

Based on our previous work, the uncertainty of MEIC was estimated to be  ± 12% for SO2, 

± 31% for NOx, ± 70% for CO, ± 68% for VOCs, ± 130% for PM2.5, ±  208% for BC and  

± 258% for OC (Zhang et al., 2009). The larger uncertainty of BC and OC are mostly because 

their major emitters are much more scattered and harder to investigate or quantify, such as 

heavy diesel vehicle and residential burning. The uncertainty of updated emission inventory 

of China during 2010-2017 was evaluated in Zheng’s work by comparing the emissions with 

observations (Zheng et al., 2018), and reported a good agreement.  

Similarly, we discussed the uncertainty of emission trends and relative change ratios in BJ-

EI. Ground-based, satellite-based observational data and the estimated emissions form BJ-EI 

were all normalized to the base year, 2013. We compared the observational concentration 

trends of major pollutants with their precursor emissions (SI, Figure S5). A good agreement 

was found in the trends of SO2 emission, OMI SO2 column and surface observational SO2 

concentration, with a decreasing ratio of 83.6%, 77.6%, 69.8% respectively (SI, Figure S5(a)), 

indicating a relatively small uncertainty in SO2 emission estimation. Surface concentration 

trend during 2016-2017 became flatter than OMI SO2 columns trend, which might be partly 

owing to the relatively less surface SO2 emission reductions while a more significant high-

stack emission reductions in local and surrounding areas. The NOx emission trend was 

basically consistent with the variation in NO2 tropospheric vertical column, decreasing 43.2% 

and 40.3% respectively, but both lower than the surface NO2 concentration trend (SI, Figure 

S5(b)). This phenomenon might be caused by the meteorology impacts (Uno et al., 2007), 

chemical reactions of nitrous oxides (Valin et al., 2011), and the overestimation of surface 

NO2 observations (Lamsal et al., 2010). Satellite-derived and surface observational PM2.5 

concentrations decreased 36.0% and 35.2% respectively during 2013-2017 in Beijing, both 

agreed with the trends of primary PM2.5 and precursor emissions (SI, Figure S5(c)). Among 

all precursors, the decreasing rate of SO2 was more significant and rapid than that of NOx and 

HN3, which was consistent with the simulation results that the proportion of sulfate in PM2.5 

decreased obviously while the contributions of nitrate and ammonium increased (SI, Figure 

S4). The decrement of VOCs emissions contributed to PM2.5 abatements by decreasing OM. 

Similar phenomenon was also reported in previous researches (Shao et al., 2018). In general, 

the relatively good coherence of emission and observation variations indicated that the BJ-



EI basically well quantified the actual emission trends and variations in Beijing during 2013-

2017. 

Estimation of measure-based emission reductions is another major aspect of introducing 

uncertainty. However, the uncertainty of this aspect is hard to quantify. Emission control 

measures can have independent or integrated impacts on activity rate, emission factor, 

technology evolution, and end-of-pipe removal efficiency, which are all sensitive to emission 

calculation and remaining large uncertainty. Coal-fired boilers control was the most explicit 

control policy to quantify, for the detailed and accurate information of unit-based power 

plants and facility-based boilers. The amount of eliminated coal, newly increased other clean 

energy, the evolutions of emission factor and removal efficiency of each boiler were collected 

sufficiently, which can largely lower the uncertainty of the reduction estimation. Similar to 

Coal-fired boilers control, Improve end-of-pipe control mainly focused on the heavy-polluted 

manufacturing factories and gas/oil-fired boilers. The facility-based information and the 

accurate eliminated capacities make the uncertainty relatively small.  As for the policy of 

Clean fuels in residential sector, the reduced residential coal use, the eliminated traditional 

biofuels were collected at a county-level, thus the uncertainty of activity rate estimation was 

relatively small. However, along with the promotion of coal quality (such as the lower surfer 

and ash content) and the evolution of domestic burning equipment, the improvement of 

emission factors was hard to estimate, especially in the rural areas, which would introduce 

large uncertainty. Major limitations of estimating Optimize industrial structure reductions 

came from the elimination of small, clustered and polluting factories. Different from high-

polluted enterprises, the specific information of these scattered factories was hard to 

investigate. Although we knew a total of 11,000 such factories were phased out during 2013-

2017, the activity rate, emission factor or end-of-pipe control information were ambiguous, 

which would easily lead to the underestimation or overestimation of reductions from this sub-

measure. Integrated treatment of VOCs included the VOCs control of chemical industry and 

solvent use sectors. Yan Shan company is the only chemical factory in Beijing, and the 

specific information of this factory made the estimation more reasonable. However, 

investigations for the amounts of solvent used were limited; meanwhile, the lack of emission 

factor measurements for various solvent-use-related sources also introduced large uncertainty 

(Li et al., 2017a). Reductions from fugitive dust control might be the most difficult one to 

estimate, with the larger uncertainty. This policy type contained the control of road dust and 

construction dust. Due to the lack of measurements for the real-time traffic flow, threshold 

friction velocities, the efficiency of road cleaning process and other key parameters for 



emission calculation, we estimated the emission reductions from this sub-measure by the 

improvements of cleaning process adopted ratio and the various road areas, which might not 

totally reflect the actual emission change of road dust. For the construction dust estimation, 

although we collected the information of each construction site and stock yard in Beijing, the 

indefinite emission process and factors would also create uncertainties for estimation.  In 

general, emission reductions from the policies which focused on non-point and scattered 

emission sources, such as road dust, small and clustered factories, various solvent use sources, 

are more difficult to quantify, and would cause larger uncertainties. Additional detailed 

information and real-world measurements might help to lower these uncertainties. 

 

9) Section 2.5 is unclear. The description of model sensitivity has to be rewrite. 

Equations of (1) – (3) are unclear. I think Equations of (2) and  

(3) are not NORMALIZED RESUTS.   

  

Response: we rewrite the Sect.2.5 (Scenario design and decomposition analysis) 

as follows:  

Added/rewritten part in Sect.2.5: All scenario cases were labelled as 𝐸𝐿𝑖𝑆𝑗𝑀𝑘 . 𝑀𝑘 k)  

represents the metalogical period the case adopted and 𝐸𝐿𝑖𝑆𝑗ki, j  represents the emission period. 

Total emission inventories of China consisted of two parts, that the BJ-EI from BMEMC and 

the regional (all parts of China except for Beijing) emission inventories from MEIC model. The 

adopted emission period of these two parts were labelled as 𝐿𝑖ki  and 𝑆𝑗kj  respectively. 

𝐸𝐿13𝑆13𝑀13 , 𝐸𝐿16𝑆16𝑀16 , and  𝐸𝐿17𝑆17𝑀17  were three base cases and driven by the actual 

emission inventories and meteorology of 2013, 2016 and 2017, respectively, to reproduce the 

air quality of the corresponding year. 𝐸𝐿17𝑆17𝑀13 and 𝐸𝐿17𝑆17𝑀16 were designed to investigate 

the impact of meteorology. These two cases were driven by varying meteorological conditions 

(meteorology of 2013 and 2016, respectively) and the same emission inventory (for the year 

2017). 𝐸𝐿17𝑆13𝑀17  and 𝐸𝐿17𝑆16𝑀17  were designed to quantify the impact of surrounding 

emission reduction during 2013-2017 and 2016-2017. In these two cases, the emission inventory 

of Beijing was set to the 2017 level, while the regional emission inventory was set to the 2013 

and 2016 levels, respectively.  

Another fourteen simulations were designed to quantify the air quality improvements 

contributed by seven types of local control policies during two periods. Cases for 2013-2017 

and 2016-2017 were labelled as ELp1S17M17 and ELq1S17M17 respectively, where 𝑖 represents the 



number of each policy (described and listed in Table 1). The meteorological conditions and 

regional emission inventories of these fourteen cases were set to 2017. For each simulation, 

emission reduction introduced by the corresponding policy type and adopting period was added 

to the 2017 baseline, equivalent of “turning off” this type of policy during this period. And then 

the derived emission inventory was applied to drive the corresponding air quality modelling. 

A linear additive relationship was assumed among all contributors to perform a decomposition 

analysis, and the simulated contributions of all sensitivity cases were then normalized by the 

difference in observed PM2.5 concentrations from 2013-2017 and 2016-2017. The normalization 

process of 2013-2017 period were calculated by the following equations, while the simulated 

results for period of 2016-2017 can be normalized with the similar process. 

SCon(M) = SPM2.5(E𝐿17𝑆17M13) −  SPM2.5(E𝐿17𝑆17M17) (1) 

SCon(S) = SPM2.5(E𝐿17𝑆13M17) − SPM2.5(E𝐿17𝑆17M17) (2) 

SCon(pi) = SPM2.5(E𝐿𝑝𝑖𝑆17M17) − SPM2.5(E𝐿17𝑆17M17) (3) 

NCon(M) =  (PM2.5𝑂𝐵𝑆2013  − PM2.5𝑂𝐵𝑆2017) ×
SCon(M)

SCon(M) + SCon(S) + ∑ SCon(pi)7
𝑖=1

 (4) 

NCon(S) =  (PM2.5𝑂𝐵𝑆2013  − PM2.5𝑂𝐵𝑆2017) ×
SCon(S)

SCon(M) + SCon(S) + ∑ SCon(pi)7
𝑖=1

 (5) 

NCon(pi) =  (PM2.5𝑂𝐵𝑆2013  − PM2.5𝑂𝐵𝑆2017) ×
SCon(pi)

SCon(M) + SCon(S) + ∑ SCon(pi)7
𝑖=1

 (6) 

where 𝑆𝐶𝑜𝑛(𝑀) represents the simulated contribution of meteorology change during 2013-2017, 

which equals the balance of simulated PM2.5 (μg m-3) from case 𝐸𝐿17𝑆17𝑀13 and case 𝐸𝐿17𝑆17𝑀17. 

Similarly, 𝑆𝐶𝑜𝑛(𝑀)  and 𝑆𝐶𝑜𝑛(𝑝𝑖)  represent the simulated contribution of regional emission 

reductions and each local control policy type. 𝑁𝐶𝑜𝑛(𝑀) represents the normalized contribution 

of meteorology change during 2013-2017, which equals the product of the observational PM2.5 

balance (from 2013-2017) and the proportion of simulated meteorology contribution (in the 

simulated contributions of all factors).  Similarly, 𝑁𝐶𝑜𝑛(𝑀)  and 𝑁𝐶𝑜𝑛(𝑝𝑖)  represent the 

normalized contribution of regional emission reductions and each local control policy type. 

10) Section 3.2 Without the model evaluation from 2013 to 2017, it is hard to discuss the 

source attribution results by model. From the current manuscript, we can only find 

time-series on 2013, 2016, and 2017 for PM2.5 and statistic evaluation only on 2017. 

The model evaluation is inadequate at the current manuscript. For example, Figure 



3 and Figure S3 can be presented in the same form for model. See also my minor 

comments 4) for O3 performance.   

 

Response: we add the consecutive evaluation (2013-2017) of WRF and CMAQ 

simulation results in SI (Table S2 (a)-(f) for WRF validation; Table S3 (a) for 

monthly descriptive statistic of PM2.5 simulation; Table S4 for validation of PM2.5 

compositions; and Table S3 (b) for annually statistic of six major pollutants). 

Relative analysis is also added in Sect.2.4.2 (as follows).  

Added/rewritten part in Sect.2.4.2: The time series and evaluation results indicated that the 

CMAQ model and simulation results in this work can relatively well reproduce the temporal 

and spatial distribution of air pollutants in Beijing and its surroundings. As for the simulated 

PM2.5 of 2017, the monthly Corr of PM2.5 concentrations varied from 0.53 (in May) to 0.89 

(in October), and the annual Corr of PM2.5 concentrations varied from 0.65 (in 2016) to 0.81 

(in 2014). The NMB and NME of monthly PM2.5 simulations were within ± 45% and ± 55%, 

respectively. According to the observation data, the annual average PM2.5 concentrations in 

Beijing decreased by 31.5 μg m-3 from 2013 to 2017, while the simulated PM2.5 decreased by 

32.8 μg m-3 (Table 2). Compared with 2016, the observed and simulated PM2.5 decreased by 

14.9 and 16.6 μg m-3, respectively (Table 2). The evaluation results suggested that the 

modelling system in this work can be used to quantify and analyses the attribution of PM2.5 

mitigations in Beijing. As for the simulation results of other pollutants in Beijing, the Corr 

varied from 0.61-0.74 for SO2, 0.59-0.68 for NO2, 0.62-0.78 for CO, 0.64-0.74 for O3, 0.62-

0.74 for PM10 (Table S3 (b)), which was acceptable for the research. The SO2 simulation was 

overestimated in the five years, especially during 2013-2015, which indicated the SO2 

emission in BJ-EI might be higher than the reality. The added fugitive dust emission (road 

and construction dust) in BJ-EI has improved the PM10 simulation of Beijing obviously, with 

an overestimation range of 4% - 12% (Table S3 (b)).  However, the PM10 simulation of other 

cities in the third domain were underestimated (-8%) - (34%), especially in some heavy 

industry cities as Tangshan (-34%), Baoding (-25%), and Handan (-29%). This might be 

attributed to lack of construction and road dust emissions in these regions, as well as the 

uncertainty of the dust model (Todd et al., 2008; Foroutan et al., 2018).  It might introduce 

the uncertainty of simulation, but given that our research was focused on the attribution 

analyses of anthropogenic emission changes in Beijing, this uncertainty was relatively small. 

The O3 was underestimated in this WRF-CMAQ model system, with the range of (-8.3%) - 

(-22.6%). The rough vertical layers, the underestimation of nature source emissions, the 



defect of upper boundary simulation in regional model and the uncertainties of VOCs 

emission inventories might all lead this underestimation. 

 

11) The results shown here should be interpreted in depth. On 2013, especially the peak 

on January, model sometimes overestimated observed PM2.5. However, model 

simulated same level or sometimes underestimated high concentrations during 

winter on 2016 and 2017. Actually, the model negative-bias is larger in 2017 

compared to 2013 (Table 2). Therefore, the source attribution results based on 

scenario analysis adopted in this study can be strongly reflected by emission 

variation rather than the observed facts.  

 

Response: more detailed validation analysis is added in Sect.2.4.2, SI, Table S2-

Table S4 (please refer to the response for Specific Comments (1), (3), (10), and 

Minor Comments (4)). The instability of high concentrations simulation might 

largely attribute to the variation of emission during 2013-2017. In 2013, all 

pollutants basically emitted at a high level, while decreased remarkably in 2017. 

The emission change and the relevant response in CMAQ model, as well as the 

impacts of meteorology, might lead to this instability.  

As this comment pointed out, the source attribution results based on scenario 

analysis adopted in this study can be strongly reflected by emission variation. 

Therefore, we add a discussion part in Sect.3.5.3 to analysis the uncertainty of 

emission estimation. 

 

12) Figures 5 and 9 are unfriendly. It need more detailed explanations or improve the 

presentation of figures. The basic information is same as Figure 10, so it might be 

better to modify Figures 5 and 9 into Figure 10 format.   

 

Response: we updated the Figure 5 and 9 based on Figure 10 format, and add 

some extra explanation.  

 

13) Section 3.3: The discussion in this section needs relevant references.   



  

 Response: We add some relevant references in this part. Additionally, the 

discussion of this section is developed based on Zheng’s work (Zheng et al., 2018). 

In their work, Zheng et al updated China’s emission during 2010-2017 based on 

latest national statistics and relevant control policies. The mainly updates are 

briefly introduced in Sect. 2.3, and the relevant uncertainty is added in Sect.3.5.2. 

Based on this China emission inventory, we extract the emissions of Beijing’s 

regional areas, including Tianjin, Hebei, Henan, Shandong, Shanxi and Inner 

Mongolia, and then analyze the emission variation of these areas during 2013-

2017. The emission results are consistent with Zheng’s work, while the relevant 

policy and attribution analysis is based on national clean air action plan.   

 

Minor Comments  

  

1) It have been reported that WRF should be updated version 3.9.0.1 or later for the 

upgraded NCEP dataset after 12 UTC, 19 July 2017.  

http://www2.mmm.ucar.edu/wrf/users/wpsv3.9/known-prob-3.9.html The used 

version is 3.8, but how did the authors solve this problem?  

 

Response: we used the WRF version of 3.8 and the WPS version of 3.9.1. Given 

that the forward compatibility, the results of WPS 3.9.1 can be used to drive 

WRF3.8 simulations. 

 

2) What is the horizontal grid resolution in second domain?  

 

Response: the horizontal grid resolution in second domain is 12km × 12km, we 

also add this description in Sect.2.4.1. 

 

3) What is the lateral boundary condition for first domain? It will be taken from global 

chemical transport model, but did the global model consider year-to-year emission 



variation? If not, how can we conclude the importance of global-scale impacts on the 

air quality in China?  

 

Response: the chemical initial and boundary conditions (ICBCs) of the first 

domain were interpolated from the output of GEOS-Chem model (Bay et al., 

2001; Geng et al., 2015).  The year-to-year global emission variation was 

provided by the emission inventories and scale factors from GEOS-Chem 

Shared Data Directories (http://acmg.seas.harvard.edu/geos/doc/man/). 

However, given that our research is focused more on Beijing, the nation-scale 

impacts, especially the impacts of emission reductions of the surrounding 

provinces, are much larger than global-scale impacts.  

 

4) Considering the current modeling application over East Asia, the vertical 14 layers 

from surface to 10 km is too rough. First, the first layer is approximately 50m, but it 

will be usual to set 20-30m. The current model configuration is doubled thickness on 

first layer, and the representativeness as surface layer is ambiguous. Second, the upper 

model height is only 10 km. In my best knowledge, CMAQ does not support the top 

boundary condition. Therefore, this modeling system might have some problem to the 

treatment of stratospheric O3, and subsequently, to the model performance on surface 

level. The statistic analysis for O3 (Table S2) seems to be out of range compared to 

the suggested model performance (Emery et al. 2017). Furthermore, this 

reproducibility for O3 might lead to inaccuracy of other air pollutants.  Reference) 

Emery et al. (2017, JA&WMA)  

https://www.tandfonline.com/doi/full/10.1080/10962247.2016.1265027  

  

Response: In previous manuscript, 14 layers refer to the vertical resolution of 

CMAQ model, while for WRF was 23 layers. We rewrite this part in Sect.2.4.1 

and add some detailed information as follows. Similar vertical configurations 

for WRF and CMAQ model were applied in a lot of reported studies, and 

exhibited good agreement of PM2.5 simulation with observations (Wang et al., 

2010; Xing et al., 2011; Wang et al., 2012; Zhao et al., 2013; Zheng et al., 2015; 

Cai et al., 2017; Zheng et al., 2017; Campbell et al., 2018). 



Added/rewritten part in Sect.2.4.1: The vertical resolution was designed as 23 sigma levels 

from surface to tropopause (about 100mb) for WRF simulation (with 10 layers below 3-km), 

while collapsed into 14 CTM layers by Meteorology-Chemistry Interface Processor (MCIP). 

The 14 sigma levels for CMAQ model vertical resolution were 1.000, 0.995, 0.988, 0.980, 

0.970, 0.956, 0.938, 0.893, 0.839, 0.777, 0.702, 0.582, 0.400, 0.200 and 0.000. 

As this comment pointed out, O3 was underestimated in this WRF-CMAQ model 

system, with the range of (-8.3%) - (-22.6%). The rough vertical layers, the 

underestimation of nature source emissions, the defect of upper boundary 

simulation in regional model and the uncertainties of VOCs emission inventories 

might all lead this underestimation. Given that the PM2.5 concentration is the 

most important target in APPCAP, as well as the major pollutants this research 

focused on, the uncertainty introduced by O3 simulation is relatively small, but 

further studies and efforts should made to improve the O3 simulation. We also 

add a discussion in Sect.3.5.3 for this uncertainty. 

 

5) The emission inventory for Beijing is not taken from MEIC, but there is no reference 

and needs elevant information here. What was the difference between two inventories? 

Did the authors have specific reason to replace the emissions only for Beijing instead 

of MEIC?  

 

Response: the emission inventory for Beijing (BJ-EI) in this study is from the 

Beijing Municipal Environmental Monitoring Center (BMEMC). We add a 

detailed description of BJ-EI in Sect.2.2; compare the major difference on 

activity rate and spatial distribution of BJ-EI and MEIC in SI, Table S1; and 

explained why we replace the BJ-EI of MEIC in Sect.2.2 as follows. Mainly 

because the spatial distribution and emission source allocation of BJ-EI were 

more accurate than those of the MEIC model, which can significantly improve 

the air quality modelling, especially when modelling with finer resolutions 

(Zheng et al., 2017). Meanwhile, more detailed and objective activity rate, 

technology distribution and removal efficacy data at the county-level were 

collected from BJ-EI, which can largely reduce the uncertainty in estimating the 

emission reductions of each local control policy. However, similar local emission 



inventory as BJ-EI in other regions are not available, thus only BJ-EI can be 

replaced in MEIC. 

Added/rewritten part in Sect.2.2: In this study, the anthropogenic emission inventory of 

Beijing was provided by the Beijing Municipal Environmental Monitoring Center (BMEMC). 

Based on the bottom-up method, the BMEMC developed a high-resolution emission 

inventory for Beijing (BJ-EI) of 2013 and 2017. BJ-EI basically had the same source 

classification as the MEIC model (described in Sect.2.3), however, the investigation and 

calculation process of BJ-EI were conducted at the county level, which of MEIC were 

conducted at the provincial level. The power, heating, industry (such as cement, iron, steel, 

chemical industry, manufacturing industry) and most solvent use (such as vehicle paint, ink, 

paint and coating) sectors  were treated as point sources, with a higher accuracy of emission 

facility locations. In addition, fugitive dust emissions, including bare soil dust, road dust and 

construction dust, were added in BJ-EI, which were missing in MEIC model because of the 

lack of activity rates data. More detailed comparisons of BJ-EI and MEIC model can be found 

in SI, Table S1. Therefore, the spatial distribution and emission source allocation of BJ-EI 

were more accurate than those of the MEIC model, which can significantly improve the air 

quality modelling, especially when modelling with finer resolutions (Zheng et al., 2017). 

Meanwhile, more detailed and objective activity rate, technology distribution and removal 

efficacy data at the county-level were collected from BJ-EI, which can largely reduce the 

uncertainty in estimating the emission reductions of each local control policy. 

 

6) What was the biomass burning inventory used in this study? I did not find the 

description.  

 

Response: The open biomass burning inventory was not included in this study. 

On the one hand, the yearly emission changes are important in this study, 

however, current open biomass burning products (such as the Global Fire 

Emissions Database (van et al., 2017; http://www.globalfiredata.org/), the 

emission inventory of crop burning in China (Huang et al., 2012)) could not 

provide year-to-year emission variations, and the open biomass burning 

emission inventory for recent years was not available. On the other hand, 

although the lack of open biomass burning might introduce some uncertainties 

http://www.globalfiredata.org/


for the research, given that we mainly focused on the attribution of 

anthropogenic emission changes and meteorology impacts, the uncertainty 

introduced by this lack might be relatively small. We also add a discussion in 

Sect.3.5.3 for this uncertainty. 

7) Section 2.4.2: In Table S2, I can only find the statistic for the year of 2017. Why did 

other years not shown? This section should be clearly separated into the description 

and discussion. Most of this section should be moved to subsection 3.2 or 3.1.   

 

Response: please refer to the response for Specific Comments (10). We add the 

consecutive monthly descriptive statistic of PM2.5 simulation during 2013-2017 

in TableS3 (a), PM2.5 compositions validation in Table S4 and other pollutants 

validations in Table S3 (b).  We also add the analysis of these descriptive statistics 

in Sect.2.4.2. 

 

8) Table 2: Does the parenthesis on rightmost column indicate observation? It should be 

clearly described.  

 

Response: thanks for the kind remind. The parenthesis on rightmost column 

indicate the annual mean observational PM2.5 concentrations of 2013, 2016 and 

2017.  

 

9) Typo: Section 3.4.2 should be 3.4.3  

 

Thanks for the kind remind; and the error is corrected in the new version. 
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Reply to referee #2:  

 

Anonymous Referee #2 

General Comments 

This paper systematically quantifies the relative importance of local control measures, 

surrounding emission reductions and meteorological changes in PM2.5 air quality 

improvement in Beijing during 2013-2017. A number of sensitivity simulations are 

performed, which are huge load of work. The paper is generally well written and the 

conclusions have strong policy implications. I would suggest publishing it after addressing 

the following issues. 
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Response: 

We thank the reviewer #2 for the constructive comments and address them as below. 

Specific Comments 

1 The authors provide comprehensive validation of meteorological variables and 

concentrations of criteria pollutants. It would be nice to include also validation of PM2.5 

compositions and draw conclusions on which species are more important for the declines 

in PM2.5. 

 

Response: to better analysis the validation of PM2.5 compositions, we firstly add the validation of 

PM2.5 compositions simulations in Sect.2.4.2; the detailed comparison of the simulation and 

observations of PM2.5 compositions are listed in SI, Table S4; the data source of observational 

PM2.5 compositions is introduced in Sect.2.1. Then the analysis about the aerosol chemical 

composition changes is added in Sect.3.4.1 as follows, and the variation trends of simulated PM2.5 

compositions can be found in SI, Figure S6. 

 

Although there was a steady decline in PM2.5 concentrations of Beijing during 2013-2017, the trends 

of PM2.5 compositions varied differently. The simulation results of base cases (which adopted the real 

meteorology and emissions of each year) showed that the sulfate (SO4
2-

) and organic matter (OM) were 

dominate species for the decline in PM2.5 concentrations during 2013-2017, with the decrement of 

7.5 μg m-3 (56.6%) and 9.6 μg m-3 (40.5%) respectively. The contribution of SO4
2-

 to the total PM2.5 also 

decreased obviously, from 15.3% in 2013 to 10.7% in 2017; and OM proportion decreased from 27.5% 

in 2013 to 26.5% in 2017. The rapid decrement of SO4
2-

  was consistent with the remarkable SO2 

emission reductions in Beijing during 2013-2017. Along with the effective SO2 emission control 

measures, the SO4
2-

 was basically no longer the key contributor leading to heavy pollution in Beijing 

while the nitrate-driven haze pollution has become more dominate in Beijing in recent years, especially 

in the summertime (Li et al., 2018). The decrement of OM was mainly caused by the prominent 

emission reductions of primary organic carbon (mainly come from the residential burning and other 

coal combustion sources). VOCs emission reductions also contributed to the OM decreasing, however, 

due to the insufficient simulation of secondary organic aerosols (SOA) formulations in CMAQ model, 

the contributions of VOCs emission control might be underestimated. In contrast, nitrate (NO3
-
 ) 

increased in 2014-2016, and kept basically the same concentration level in 2017 (10.4 μg m-3) as 2013 

(10.9 μg m-3). However, the contribution of NO3
-
 to the total PM2.5 increased a lot, from 12.7% in 2013 

to 19.4% in 2017.  The specific concentration and proportion trends of PM2.5 concentrations can be 



found in SI, Table S6. 

 

2 The description of scenario design and decomposition analysis is very confusing. In 

equations (2) and (3), i=1...9, but in Table 2, i=1…7. I understand the other two cases are 

impact of meteorology and emission reduction of surroundings, but it would be better to 

improve the descriptions here. Additionally, the response of PM2.5 is not linear to emission 

changes in the inventory, so it might be questionable to sum them up directly in equations 

(2) and (3). 

 

Response: 1) we rewrite the Sect.2.5 (Scenario design and decomposition analysis) as follows: 

All scenario cases were labelled as 𝐸𝐿𝑖𝑆𝑗𝑀𝑘. 𝑀𝑘k)  represents the metalogical period the case adopted and 

𝐸𝐿𝑖𝑆𝑗ki, j  represents the emission period. Total emission inventories of China consisted of two parts, that 

the BJ-EI from BMEMC and the regional (all parts of China except for Beijing) emission inventories 

from MEIC model. The adopted emission period of these two parts were labelled as 𝐿𝑖 ki  and 𝑆𝑗 kj  

respectively.  

𝐸𝐿13𝑆13𝑀13, 𝐸𝐿16𝑆16𝑀16, and 𝐸𝐿17𝑆17𝑀17 were three base cases and driven by the actual emission 

inventories and meteorology of 2013, 2016 and 2017, respectively, to reproduce the air quality of 

the corresponding year. 𝐸𝐿17𝑆17𝑀13 and 𝐸𝐿17𝑆17𝑀16 were designed to investigate the impact of 

meteorology. These two cases were driven by varying meteorological conditions (meteorology of 

2013 and 2016, respectively) and the same emission inventory (for the year 2017). 𝐸𝐿17𝑆13𝑀17 and 

𝐸𝐿17𝑆16𝑀17 were designed to quantify the impact of surrounding emission reduction during 2013-

2017 and 2016-2017. In these two cases, the emission inventory of Beijing was set to the 2017 level, 

while the regional emission inventory was set to the 2013 and 2016 levels, respectively.  

Another fourteen simulations were designed to quantify the air quality improvements contributed by 

seven types of local control policies during two periods. Cases for 2013-2017 and 2016-2017 were 

labelled as ELp1S17M17 and ELq1S17M17 respectively, where 𝑖 represents the number of each policy 

(described and listed in Table 1). The meteorological conditions and regional emission inventories 

of these fourteen cases were set to 2017. For each simulation, emission reduction introduced by the 

corresponding policy type and adopting period was added to the 2017 baseline, equivalent of 

“turning off” this type of policy during this period. And then the derived emission inventory was 

applied to drive the corresponding air quality modelling. 

A linear additive relationship was assumed among all contributors to perform a decomposition 

analysis, and the simulated contributions of all sensitivity cases were then normalized by the 

difference in observed PM2.5 concentrations from 2013-2017 and 2016-2017. The normalization 



process of 2013-2017 period were calculated by the following equations, while the simulated results 

for period of 2016-2017 can be normalized with the similar process. 

SCon(M) = SPM2.5(E𝐿17𝑆17M13) −  SPM2.5(E𝐿17𝑆17M17) (1) 

SCon(S) = SPM2.5(E𝐿17𝑆13M17) − SPM2.5(E𝐿17𝑆17M17) (2) 

SCon(pi) = SPM2.5(E𝐿𝑝𝑖𝑆17M17) − SPM2.5(E𝐿17𝑆17M17) (3) 

NCon(M) =  (PM2.5𝑂𝐵𝑆2013  − PM2.5𝑂𝐵𝑆2017) ×
SCon(M)

SCon(M) + SCon(S) + ∑ SCon(pi)7
𝑖=1

 (4) 

NCon(S) =  (PM2.5𝑂𝐵𝑆2013  − PM2.5𝑂𝐵𝑆2017) ×
SCon(S)

SCon(M) + SCon(S) + ∑ SCon(pi)7
𝑖=1

 (5) 

NCon(pi) =  (PM2.5𝑂𝐵𝑆2013  − PM2.5𝑂𝐵𝑆2017) ×
SCon(pi)

SCon(M) + SCon(S) + ∑ SCon(pi)7
𝑖=1

 (6) 

where 𝑆𝐶𝑜𝑛(𝑀)  represents the simulated contribution of meteorology change during 2013-2017, 

which equals the balance of simulated PM2.5 (μg m-3) from case 𝐸𝐿17𝑆17𝑀13 and case 𝐸𝐿17𝑆17𝑀17. 

Similarly, 𝑆𝐶𝑜𝑛(𝑀)  and 𝑆𝐶𝑜𝑛(𝑝𝑖)  represent the simulated contribution of regional emission 

reductions and each local control policy type. 𝑁𝐶𝑜𝑛(𝑀) represents the normalized contribution of 

meteorology change during 2013-2017, which equals the product of the observational PM2.5 balance 

(from 2013-2017) and the proportion of simulated meteorology contribution (in the simulated 

contributions of all factors).  Similarly, 𝑁𝐶𝑜𝑛(𝑀)  and 𝑁𝐶𝑜𝑛(𝑝𝑖)  represent the normalized 

contribution of regional emission reductions and each local control policy type. 

2) we add a discussion part in Sect.3.5.1 to quantify the extra non-linearity effects of the zero-out 

approach in our study; meanwhile, we also explained the reason why we used zero-out approach 

in Sect.3.5.1 (as follows). 

Although various methods have been developed to quantify the source of PM2.5 and evaluate their 

contributions, such as receptor-based methods (like CMB and PMF), trajectory-based methods (like 

PSCF and EEI)), source-oriented methods (like CAMx-PSAT and CMAQ-ISAM)) (Li et al, 2015), 

they can hardly consider the meteorology and emission changes simultaneously. Therefore, the zero-

out approach might be a better choice to attribute the contribution of local and regional emission control 

as well as meteorology changes under one complete decomposition framework. The zero-out method 

is also widely used in estimating the contribution of air pollution sources (Lelieveld et al., 2015; Han 

et al., 2016; Baker et al., 2016; Zhang et al., 2017; Zhang et al., 2017; Ni et al., 2018). 



However, the response of PM2.5 formulation is not linear to the meteorology and emission changes; 

thus, the zero-out approach would introduce extra bias in research. The non-linear effects of the analyse 

period of 2013-2017 could be evaluated by the following equation (Zhang et al., 2017). 

Bias = (SCon(M) + SCon(S) + ∑ SCon(pi)
7

𝑖=1
) − (SPM2.5(E𝐿13𝑆13M13) − SPM2.5(E𝐿17𝑆17M17)) (7) 

Where SPM2.5(EL13S13M13) and SPM2.5(EL17S17M17)  represent the direct simulated PM2.5 

concentration of base case in 2013 and 2017. The balance of their values is the actual PM2.5 decrement 

during 2013-2017 under the mixed impacts of meteorology change, regional and local emission 

reductions. The sum of SCon(M) , SCon(S)  and ∑ SCon(pi)7
i=1  represents a linear result of all 

contributors during this period. The extra bias can be estimated as the difference between the linear 

addition and the actual decrement. According to equation (7), we estimated biases in the analyse of 

2013-2017 were 1.4 μg m-3, accounting for 4.3%. Similarly, the absolute and relative biases in the 

analysis of 2016-2017 were estimated as -0.6 μg m-3 and -3.6%. Both indicated the non-linear effects 

are relatively small and acceptable.    

 

Minor comments:  

1) Page 7 line 11: SIME17S13M17 and SIME17S13M17 typo? 

Response: SIME17S13M17 represents the simulation that adopted the meteorology of 2017, 

Beijing local emission of 2017, Beijing surrounding emission of 2013. In the previous version 

manuscript, “Page 7 line 11: SIME17S13M17 and SIME17S13M17”, the second 

SIME17S13M17 was wrong and should be SIME17S13M17, which represents the 

simulation that adopted the meteorology of 2017, Beijing local emission of 2017, Beijing 

surrounding emission of 2016. This section is rewritten now, and please refer to the 

response of comment 1.   

 

2) Page 7 line 12: change “In both of these cases” to “in both cases” 

Thanks for the kind remind; and the error is corrected in the new version. 

 


