Reply to Ref. #1

First of all we want to thank this reviewer for the positive assessment of our manuscript and the constructive and helpful suggestions.

General comments
Yang Wang et al. presented a comprehensive study of the temporal and spatial distribution of aerosols and trace gases in the central-western North China Plain. The manuscript is well structured and the results show good correlation with results of other instruments. However, many results were filtered based on a cloud classification scheme which performs somehow unreliable to me. Especially low and high aerosol loads seem to be mixed up with clouds. To a certain points, MAX-DOAS profiles should be able to retrieve these differences but do not show larger deviations e.g. on 11/05 and 19/05. Since this classification has a large impact on the complete discussion, I would suggest to add a small estimate of the impact of wrongly classified/scenario scenarios on your results. Furthermore, an additional analysis of NO2 retrieved in a different fitting window might help to clarify if horizontal inhomogeneties were present.

Author reply:
Many thanks for the positive assessment! We modified the manuscript based on the comments from you and the other two reviewers. The one-to-one replies are given in the following.
For your comments on cloud classification results, first of all, we agree on that some cases with clouds in the reality might be identified as “clear sky with high aerosols” or “low aerosols”, due to certain thresholds are used. The problems can occur if the quantities which are used for the cloud identifications are close to these thresholds. Following your suggestion, we discussed the issue in the Sect. 2.2.4 of the revised manuscript as following:
“Since certain thresholds are used for the identification of cloud scenarios, two sky conditions might be interchanged because the derived quantities are close to the chosen thresholds. The problem occurs relatively often between the ‘cloud free and high aerosol load’ and ‘continuous clouds’ categories because they are only distinguished by the absolute value of the color index. The issue can impact the MAX-DOAS results of aerosol profiles and AODs due to the remaining cloud contamination. Fortunately the problem can be easily solved if an additional filter is applied, which is the convergence between measured and modelled O4 dSCD in the profile inversion for aerosols, based on the previous study in Wagner et al. (2016). If the convergence is bad, the corresponding aerosol results are possibly contaminated by clouds. Therefore the filter of convergence is applied to the MAX-DOAS results for the statistical analysis and elaborated in section 2.2.5 and Table 2. In addition the issue can also impact the comparisons of MAX-DOAS results with coincident independent measurements under different sky conditions in section 4.1. However since the cases close to the thresholds do not dominate in each category, the general conclusions on the effects of clouds and aerosols are not significantly impacted.”
Meanwhile we also modified the other part of Sect. 2.2.4 to illustrate the cloud classification scheme more clearly for the readers.
However for the mixing-up of the different sky condition on 11/05 and 19/05 which you pointed out, we think the phenomenon is not certainly due to the wrongly classified scenarios, but probably due to the true temporal variations of the sky conditions. You also pointed out that the
MAX-DOAS (aerosol) profiles do not show large deviations between the different sky conditions. This finding actually indicates the necessity of the cloud classification. The sky classification scheme is mainly based on the color index, which is the ratio of intensities at 330nm against those at 390nm, while aerosol profile retrievals are based on O$_4$ absorptions. Our previous study indicates that usually the color index is more sensitive to sky conditions than the O$_4$ absorptions. This explains why the sky change of the condition changing is hardly seen from the aerosol profile results but is clearly seen from cloud classification results. Therefore the cloud-contaminated aerosol results need to be filtered out based on the cloud classification results.

Regarding horizontal inhomogeneous distributions of NO$_2$ and retrievals of NO$_2$ in the visible range, please see my reply to the specific comment 26.

Specific Comments:
1) P2, L14-19: Please add a reference to Fig 1. in the Introduction.
Author reply: We modified the manuscript by adding a reference to Fig 1 regarding the NCP region.

2) P2, L32: Please add the full name for the abbreviation East-Aire.
Author reply: The full name is East Asian Study of Tropospheric Aerosols: an International Experiment and added in the manuscript.

3) P3, L9: MAX-DOAS algorithms are not only based on OE. Iterative approaches like Newton-Gauß or Levenberg-Marquardt are in use. I would rather call these algorithms "inversion algorithms" or "inversion based algorithms".
Author reply: We modified the manuscript based on the suggestion as follows: “… inversion algorithms based on the optimal estimation (OE) method (and iterative approaches, e.g. the Newton-Gauß or Levenberg-Marquardt, are also used)”

4) P5, L17: Wang et al 2018 seems to be the wrong reference?
Author reply: Sorry for the mistake. The wrong reference is deleted in the revised manuscript.

5) P5, L26: "and for the MAD-CAT campagin" → "e.g. the MAD-CAT campaign"
Author reply: We modified the revised manuscript accordingly.

6) P5, L30: You state detection limits but not how they were calculated. Please add the missing information.
Author reply: Thanks for the suggestion! The detection limits are estimated based on the typical DOAS fit errors of individual species. The information is added in the revised manuscript.

7) Section 2.2.3: The uncertainties of the individual parameters were given as percentages but where do they come from and how were they calculated? From a previous study or from not shown sensitivity tests? Please give some information.

Author reply: Thanks for pointing this out! The uncertainties of the profile retrievals due to a potential bias of the SSA and the Ångström exponent are derived based on sensitivity tests, which are not shown in the manuscript. We modified the manuscript to illustrate the information as the following:
“A systematic bias of the SSA typically contributes to an uncertainty of about 5% to the retrieved aerosol and trace gas profiles from MAX-DOAS measurements. These values were derived from sensitivity tests by varying SSA in the profile inversion.”

“The uncertainty of the Ångström exponent (due to uncertainties of sun-photometer measurements) typically contributes to uncertainties of up to 20% to the retrievals of trace gas profiles. These results are derived from sensitivity tests by varying the Ångström exponent between 0.49 to 2.53 in the profile inversion. For the assumed range of the Ångström exponent see the discussion in section 3.1.1.”

8) P6, L11-12: When there is a sunphotometer measuring routinely. Why not using the exact SSA and asym parameter closest in time rather than averaged values? For which wavelengths are the averaged quantities? How did you convert to the proper wavelengths or did you assumed no wavelength dependency?

Author reply: The reason why we used the averaged values of SSA and the asymmetry parameter is due to the measurement uncertainties of the sun-photometer. Both parameters depend on the aerosol type, which is often similar for larger periods. Also there are many gaps in the measurement time series of the SSA and the asymmetry parameter due to the cloud filtering and quality controlling. In addition, both parameters are not measured in the UV spectral range, but retrieved at 440nm from the sun-photometer measurements. We add the missing information in the revised manuscript as follows:

“A fixed single scattering albedo (SSA) of 0.95 and an aerosol phase function parameterised according to Henyey and Greenstein (1941) with an asymmetry parameter of 0.72 are chosen according to average inversion results at 440nm from the sun-photometer also operated at the measurement station.”

“It needs to be clarified that considering uncertainties of inversions of the SSA and asymmetry parameters of sun-photometer measurements, average values of both parameters are used in the inversion of MAX-DOAS measurements.”

9) P6, L17: How were these wavelengths chosen? 354 for HONO is the mid of the fitting window but what about the other wavelengths? Was there are reason for not choosing the fitting window mid wavelengths?

Author reply: The wavelengths are the effective wavelengths of air mass factors of individual species in individual spectral ranges of the DOAS fits. The effective wavelengths can be calculated by weighting the wavelengths by the differential cross section values as shown in the previous study of Marquard et al. (2000) (Marquard, L. C., Wagner, T., & Platt, U. (2000). Improved air mass factor concepts for scattered radiation differential optical absorption spectroscopy of atmospheric species. Journal of Geophysical Research, 105(D1), 1315–1327. https://doi.org/10.1029/1999JD900340). We clarified this point in the revised manuscript as follows: “The air mass factors simulated by RTM are used for the profile inversion and the simulation wavelengths are calculated by weighting the wavelengths by the differential absorption cross section within the individual spectral ranges of the DOAS fits based on the method elaborated in the previous studies, e.g. Marquard et al. (2000).”

10) P6, L21: Why was the upper grid limit chosen to be at 3km? Typical altitudes from other studies are usually at 4km.
Author reply: Thanks for the asking! This is a mistake. In order to clarify the point, we modified the manuscript in the beginning of section 2.2.3 as the following:

“Tropospheric vertical profiles of aerosol extinction and volume mixing ratios (VMRs) of NO$_2$, SO$_2$, HONO, HCHO, and CHOCHO are retrieved from the elevation-dependent dSCDs by using the PriAM profile inversion algorithm (Wang et al., 2013a, b, 2017a) with a vertical grid of 200 m in an altitude range of up to 4 km. From the derived profiles the vertical column densities (VCD) of the trace gases and AODs are derived by vertical integrations. Due to the fact that no substantial information on the concentrations above 3 km can be derived from the measurements, the retrieved profiles below 3 km are shown in all figures of the study.”

11) P6, L25: Covariances of 100% of the surface value for all altitudes? Is this correct? The commonly used approach is a fixed percentage of the a priori profile of the individual altitudes.
Author reply: Thanks for pointing out this mistake! The manuscript is modified as:

“The diagonal elements of the a-priori covariances (Sa) at different altitudes are set as the square of 100% of the a-priori values at individual altitudes in order to balance the flexibility and stability of the profile inversion.”

12) Table 2: Why is there a different SZA limit for SO$_2$ compared to the other trace gases?
Author reply: The reason is that SO$_2$ is retrieved at a shorter wavelength range compared to the other species. The intensity decreases stronger along increasing of SZA and the interference with the O$_3$ absorption in the DOAS fit of SO$_2$ is much stronger at a high SZA. We clarified this point in the revised manuscript as the following:

“Here it needs to be noted that a lower SZA threshold is set for the filtering of the SO$_2$ results than for the other species, because the intensity at short wavelengths is rather low and spectral interferences with the O$_3$ absorption increases strongly with SZA.”

13) P6, L30: Here, you write R but in the Figure its R^2. Which one was given?
Author reply: Sorry for the mistake. The correlation parameter shown in the figures is R2. In order to be consistent with other figures, we modified the figures and show R instead.

14) Fig 4: Please change the colors for either low or high aerosols in this and similar plots because it is hard to distinguish between both markers.
1. The aerosol retrieval shows similar profile shapes from 6 to 13 but the cloud classification finds different cloudy conditions, sometimes with thick clouds. How is it possible that the aerosol retrieval is not affected by thick clouds?
2. The a priori profiles for aerosols and SO$_2$ are not even close to the the retrieved profiles. How can you be sure that you do not over- or underestimate the retrieved profiles due to inaccurate a priori profile?
3. I do not understand why the degrees of freedom for aerosols are larger than any of the trace gas ds. This is unexpected for me. Could you please explain where these larger differences in ds for the invididual retrievals come from?
Author reply: the “cloud free with low aerosols” conditions do not appear on that day. Therefore we think it should not be a big problem to distinguish the blue and light blue colors on this day.

For your first comment, the maximum value of the color bar of 1 km$^{-1}$ is partly misleading. If the maximum value is enlarged to 2 km$^{-1}$, the effects of clouds can be clearly seen. The updated
For your second comment, we compared the AOD and near-surface values of SO$_2$ with the other co-located near-surface measurements. The comparisons verified the MAX-DOAS retrievals. We also show the comparisons of simulated and measured dSCDs in the supplement. If the profile inversion can well reproduce the dependences of dSCDs on elevation angle, the retrieved profiles are probably close to the truth. Further if MAX-DOAS measurements provide sufficient information on profiles, the retrieved profiles are expected to be different from the a-priori. The dependence of the profile inversion algorithm should on a-priori profile should be small. In the PriAM, we do the inversion in the logarithmic space and using the non-linear Levenberg-Marquardt iterative approach in order to reduce the constraints of a-priori.

For your third comment, since d_s is the sum of the diagonal elements of the averaging kernel (A), and A can be calculated as the following equation:

$$ A = \frac{\partial \chi}{\partial x} = GK = (S_a^{-1} + K^T S_e^{-1} K)^{-1} K^T S_e^{-1} K $$

For aerosol retrievals, K is the response of O$_4$ dSCD to a variation of the aerosol extinction. Therefore A is a function of the aerosol extinction. For trace gas retrievals, K is the response of the trace gas dSCDs to the logarithmic concentration of the trace gas. Therefore A is a function of
the actual aerosols and the trace gas profiles, and A can be expected to be different for individual measurements and species. The reason why a larger ds is found for the aerosol retrieval than for the trace gases for the noon measurement shown in Fig. 4 is probably the fact that aerosols extend to higher altitudes than the trace gases. Actually a large ds can be also seen for the CHOCHO inversion (CHOCHO also extends to high altitudes).

15) P7, L15: Why is the near-surface extinction trusted under partially cloudy conditions but the AOD not? I would also assumed that the near-surface extinction is inaccurate when broken clouds led to a contamination of some elevation angles only. The profile will be smoothed due to the a priori smoothing and the retrieval for all altitudes should be affected.

Author reply: The filtering scheme is based on our previous study of long-term comparisons of MAX-DOAS aerosol results with sunphotometer and visibility meters in Wang et al. (2017a) (Wang, Y., Lampel, J., Xie, P., Beirle, S., Li, A., Wu, D., and Wagner, T.: Ground-based MAX-DOAS observations of tropospheric aerosols, NO2, SO2 and HCHO in Wuxi, China, from 2011 to 2014, Atmos. Chem. Phys., 17, 2189-2215, https://doi.org/10.5194/acp-17-2189-2017, 2017a.). The relevant figure in the paper is given below. It indicates that the systematic differences of the MAX-DOAS results of the near-surface aerosol extinction compared to the visibility-meter under all cloudy sky conditions are similar to those under cloud free sky conditions. We agree with you that broken clouds can impact near-surface aerosol results for individual measurements. Since the effects are different if clouds are observed at different elevation angles, and the impacted elevation angles are random, their contributions to obviously cancel out for the averages of long term measurements. In order to elaborate the point more clearly, we added the following information in the revised manuscript:

“Here it needs to be noted that clouds, especially broken clouds, can impact the MAX-DOAS results of the near-surface aerosol extinction for individual measurements. However since the cloud effects occur for different elevation angles, their overall impact is rather random. Therefore if long term measurements are averaged, cloud effects on the near-surface aerosol mostly cancel out and do not contribute to a systematic bias (Wang et al., 2017a).”
16) P7, L25-28: The numbers are averages over the full time period? Please call it a total average then or specify what these numbers exactly mean.

Author reply: The numbers are averaged over the whole campaign period. Therefore we modified the sentence in the revised manuscript as suggested.

17) P8, L3-5: 5-times the word "also" in three lines. Maybe you can reformulate these two sentences.

Author reply: The sentences are modified in the revised manuscript.

18) P10, L6-7: I am confused of what you wrote in Section 2.2.3 and what you wrote in lines 6-7 (see comment P6, L11-12). Please explain your approach in greater detail.

Author reply: We modified the sentence in the revised manuscript as follows: “The Ångström parameter, single scattering albedo, and asymmetry factor are also retrieved from the sunphotometer measurements and are used as input for the inversion of the aerosol profiles from MAX-DOAS measurements, for details see section 2.2.3.”

In addition, we modified section 2.2.3 in the revised manuscript based on your comment P6, L11-12.

19) P10, L10: A parameter of 1 means an Angström Exponent of 1? Please replace the word "parameter". Furthermore, was the exponent of 1 used for all data or was the sunphotometer's Ångström exponent closest in time applied for the conversion?
Author reply: We changed “parameter” to “Exponent”. As mentioned above (your comment 8), considering the retrieval uncertainty of the sun-photometer measurements, the averaged value during the whole campaign period is used. We modified the sentence in the revised manuscript as follows:
“Aerosol extinction at 360 nm is derived from the visibility at 550 nm using an Ångström exponent of 1, which is the average value derived from the sun photometer measurements during the whole campaign period.”

20) P11, L28-29: In addition to your reason, a general lower sensitivity for higher altitudes might be another reason. Furthermore, the limitation to 3km might also be an issue.
Author reply: We agree on that a general lower sensitivity for higher altitudes can also play a role here. Therefore we added the following sentence to the revised manuscript:
“Low sensitivity of MAX-DOAS measurements on aerosols located at high altitudes can also play a role. This finding is illustrated in Fig. 8b and discussed in section 4.3.”
Concerning the effect of the limitation to 3km (see our reply to your comment 10), this was a wrong information. The inversion is done in the altitude range below 4km.

21) P12, L1-2: Generally, I would not assume that an elevated layer within the lowest kilometre can not be resolved by a MAX-DOAS profiling algorithm. For higher altitudes, this might be an issue. Is it possible to add a brief synthetic test on 3 or 4 elevated layers in different altitudes? Just to see the retrieval response. Because an elevated layer could also be possible when the underlying aerosol profile is box-like due to an oscillation around this box-features.
Author reply: We agree the explanation of the findings in the manuscript was not convincing. Based on this comment (and the comment 22), we modified the explanation as follows:
“The largest underestimation of the MAX-DOAS results compared to the visibility-meter results is found in the morning and when aerosol loads are large. Since the boundary layer height is lower in the morning, larger vertical gradients of aerosols in the layer between 0 and 200m can be expected. The different air mass measured by the MAX-DOAS and the visibility-meter and a large vertical gradient near the surface might be the reason for the large underestimation of the MAX-DOAS results compared to the visibility-meter results.”

22) Fig 6:
1. It would be interesting to know if these outliers for high visibility-meter AE correspond to certain geometries, time or weather conditions?
2. P12, L11: When this behaviour for different cloudy conditions can be attributed to clouds, why is there a different correlation for NO2 and SO2 for high aerosols and cloudy sky? NO2 has a better correlation for cloudy sky while SO2 has a better correlation for high aerosols.
Do you expect large inaccuracies in the classification scheme for clouds and aerosols?
Author reply: For your comment 1, many thanks for the good suggestion to see the dependence on the time of the day! We modified Fig. 6 in the revised manuscript by adding colors to show the time of the day. For the comparison of the near-surface AEs, we can see that the largest underestimation of MAX-DOAS results compared to visibility meter results occurs in the morning and when the aerosol load is large. Since the boundary layer height is lower in the morning, larger vertical gradient of aerosols can be expected. In the lowest vertical layer between 0 and 200 m, since aerosols might accumulate near the surface. The visibility meter measures aerosols near the surface, but the MAX-DOAS inversion results represent averages of the
aerosols extinction in each layer. The different air masses measured by MAX-DOAS and the visibility-meter together with large vertical gradients in the lowest layer between 0 and 200 m might be the reason for the underestimation of the MAX-DOAS results compared to the visibility-meter results. The revised manuscript is modified as the following:

“The comparison of the near-surface aerosol extinction between the MAX-DOAS measurements and the visibility-meter is shown in Fig 6b. While very good agreement is found for the category “clear sky with low aerosols” (R of 0.81 and slope of 1.02), much worse correlation is found for “clear sky with high aerosols” (R of 0.32 and slope of 0.14). Even worse agreement is found for the category “cloudy sky” (R of 0.22 and slope of 0.11). The largest underestimation of the MAX-DOAS results compared to the visibility-meter results is found in the morning and when aerosol loads are large. Since the boundary layer height is lower in the morning, larger vertical gradients of aerosols in the layer between 0 and 200 m can be expected. The different air mass measured by the MAX-DOAS and the visibility-meter together with strong vertical gradients near the surface might be the reason for the large underestimation of the MAX-DOAS results compared to the visibility-meter results. In addition the effect of clouds on the MAX-DOAS aerosol retrievals are probably the reason for the larger scattering under the cloudy sky conditions compared to cloud-free sky conditions. Note that clouds are not included in the RTM which is used for profile retrievals of aerosols and trace gases.”

For your comment 2, the different cloud effects for NO2 and SO2 can be attributed to their different vertical distributions. As shown in Fig. 12, SO2 typically extends to higher altitudes than NO2. Therefore cloud effects, especially for broken clouds, on the near-surface SO2 concentration can be expected to be stronger than for NO2. Moreover, for NO2, the photolysis rate can be expected to be lower under cloudy conditions than under cloud-free conditions. Therefore the vertical distributions of NO2 in the layer between 0 and 200 m might be smoother under cloudy conditions than under cloud-free conditions. The smoother distribution might be the reason for the better agreement of the NO2 results between MAX-DOAS and in-situ measurements. Although clouds can also affect the NO2 profile inversion, since NO2 is close to the surface, the effect of a smoother vertical distribution of NO2 under cloudy conditions might be important for the comparison of MAX-DOAS and in-situ results of NO2. In order to clarify this point, we added the following text in the revised manuscript:

“Further, different cloud effects on NO2 and SO2 comparisons are found. For SO2 worse correlation is found under “cloudy sky” conditions than under “clear sky with high aerosols”, while a better correlation is found for NO2. Effects of clouds in the profile retrievals of SO2 can be expected to be stronger than for NO2 due to the fact that SO2 can extend to higher altitudes than NO2 as shown in Fig. 12. In addition, the photolysis rate of NO2 can be expected to be lower under cloudy conditions than under cloud-free sky conditions. Therefore the vertical distributions of NO2 in the layer between 0 and 200 m might be smoother under cloudy conditions than under cloud-free sky condition. The smoother vertical distribution is probably the reason for the better agreement of the NO2 results between the MAX-DOAS results and in-situ measurements.”

23) P12. L12-14: A limited vertical sensitivity for near-surface trace gas concentrations might also be important when the trace gas is concentrated in a shallow layer much smaller than the grid step width of the profiling algorithm, especially when using a coarse grid steps width of 200m.

Author reply: We agree on the suggestion. We want to say the same thing with the sentence of “This finding is probably related to vertical and horizontal inhomogeneity of the species”. In
order to elaborate it more clearly, we added a further explanation in the bracket as “(especially in the lowest vertical layer between 0 and 200 m)” in the revised manuscript.

24) Section 4.2:
1. What is the vertical resolution of the Lidar?
2. Was AK smoothing applied for the Lidar measurements (with the assumption that the vertical resolution is higher than that for MAX-DOAS)? Please add also the Lidar AOD to the AOD sub-figure.
3. Why are high near-surface values not similarly found by both instruments? The sensitivity for near-surface values should be the highest for both instruments and different air masses and clouds are not expected to be that important for lower altitudes. E.g. MAX-DOAS found larger extinctions at 15:00 (2016/5/16) while the Lidar found larger values in the evening of 2016/5/17.

Author reply: 1) The vertical resolution of the Lidar measurements is 7.5m. The information is added in the revised manuscript.
2) The Lidar results shown in Fig. 7 are the original results without the smoothing by the AK of the MAX-DOAS measurements. Since you asked for it, we plot the Lidar profile smoothed by an AK in the bottom subfigure of the plots below. We also show the lidar profiles interpolated to the grid of MAX-DOAS profile retrievals in the fifth subfigure of the plots below. Since the plots of smoothed profiles do not give more important information compared to the original profiles in the comparisons with MAX-DOAS results, we decide not to show the smoothed profiles. The AODs (green) calculated from the original Lidar aerosol profiles are also given in the plots below. Since there is a blind area of the lidar measurements below 500m, the AODs derived from the Lidar profiles are not suitable for the quantitative comparison with the MAX-DOAS AOD results due to large amount of aerosols located at altitudes below 500m. Therefore we prefer not to show the Lidar AODs in Fig. 7 of the manuscript.
3) First of all, different air masses are measured by the MAX-DOAS and Lidar instruments. MAX-DOAS pointed to the North with a typical horizontal effective light path of about 5 to 10 km. In contrast, the Lidar pointed to the zenith. Horizontal inhomogeneous distributions of aerosols might play a role on the differences between the two techniques. Secondly, as you mentioned in your previous comment, broken clouds can impact some elevation angles of MAX-DOAS measurements. The same broken clouds are probably not be seen by the Lidar in the zenith. The effects of inhomogeneous cloud coverage can also contribute to the differences between the two techniques. The potential reasons for the differences have been given in the manuscript as follows:

“The remaining differences can probably be explained by the fact that different air masses are observed by both techniques, while horizontal inhomogeneities of aerosols and cloud cover could appear. For example, different clouds and aerosols could be observed by both instruments. Note that the MAX-DOAS telescope was pointed towards the North, while the Lidar measured the atmosphere directly above the station. The sun-photometer measured the air masses in the direction of the sun.”

25) P13, L8: How did you calculate these "combined profiles"? Linear interpolation between lowest air-craft and surface value? Please add some information.
Author reply: Your understanding is correct. A linear interpolation is used. We added the information in the revised manuscript as follows:

“Combined profiles” are generated by combining averaged aircraft profiles with averaged surface measurements. Values at altitudes between the lowest aircraft measurements and surface measurements are generated by linear interpolations.”

26) Fig 8:

1. Please add times for MAX-DOAS measurements and the overpasses. It would also be nice to have some color-coding or different grey-scales for the green surface values to identify the surface value changes throughout the measurement period.
2. Why do the SO2 curves always agree better than NO2 even though the degrees of freedom are much lower for SO2? Did you try to retrieve NO2 also in another fitting window (> 400nm)? It would be interesting to see if the results differ strongly. That would support the argument of horizontal inhomogeneities.

Author reply: 1) The times of the comparisons are added in the revised manuscript and figure. Regarding color-coding of the in-situ data, we prefer not to follow this suggestion, because the current plots are already quite busy. The motivation to show the in-situ data over the comparison period is to illustrate the temporal variability of the pollutants near the surface. Thus the time information might be not important here. In addition if the readers want to see the time series of the in-situ measurements, they can find them in Fig. S3 of the supplement.

2) An important reason why the aircraft NO2 results are much larger than the MAX-DOAS results might be the interference of NOy with NOx in the aircraft measurements. The same effect can be seen from the comparison with the surface in-situ measurements of NO2 shown in Fig. 6c. The same technology is applied to the aircraft and ground based measurements. We added this information in the revised manuscript as follows: “For NO2, significantly larger values of the aircraft measurements than the MAX-DOAS measurements can be seen on 21 May. Since the same technique as for the ground based in-situ measurements of NO2 (see section 4.1) was used in the aircraft measurements, the interference of NOy with NOx might also cause an overestimation of the NO2 concentrations derived from the aircraft measurements.”

We tried to retrieve NO2 in the visible range, the general time series are consistent between the UV and visible range. I think it needs a sophisticated inversion algorithm to retrieve horizontal inhomogeneity from NO2 absorptions in the UV and Visible. This is beyond the scope of the study.

27) P13, L24-25: Please add the time when the photos were taken on the individual days.

Author reply: the photos were taken around noon on all the days. The information is given in Fig. 9.

28) Section 5.1: Why does the cloud classification show highly variable results between 6 and 14 BT (11/05) but the aerosol profiles do not differ strongly? This indicates that either the profiles or the classification is inaccurate. In addition, around noon two days later (13/05), thick clouds were found but the aerosol retrieval does not show these clouds. This is surprising.

Author reply: For the question regarding 11/05, the answer has been given in the reply to comment 14. The same reason can explain the findings on 13 May. If the continuous clouds are located at high altitudes, similar absorption paths of O4 in the cloud for the zenith view and off-zenith view of MAX-DOAS measurements can be expected. Therefore with the zenith spectrum as the FRS in the O4 DOAS fits of off-zenith spectra, the partial O4 dSCDs due to the contribution of the cloud will cancel out. Therefore no clouds can be retrieved under such conditions using the O4 dSCDs at off-zenith views. We show the backscattering signal measured by a collocated ceilometers in the figure below. It indicates that the bottom height of clouds on 13 May is around 8km. By comparing the cloud classification results with the ceilometers results, we can conclude that the cloud classification results are correct.
We present the comparisons of measured and modelled O4 dSCDs derived from aerosol profile retrievals of MAX-DOAS in the bottom of the figure below. We can see good agreement of the measured and modelled O4 dSCD. Therefore we conclude that the results of the profile inversion should be realistic.

29) P15, L21-22: Trajectories ending at different altitudes were used, but how? You do not give information about that. Did you just average all maps for Figure 11?

Author reply: Your understanding is correct. We generated the maps with trajectories ending at different altitudes. Then the maps were averaged to generate Fig. 11. In order to clarify this procedure, we added the following text in the revised manuscript:

“In order to consider pollution transport at different altitudes, we generated individual maps using trajectories ending at 100m, 300m, 500m, 1km, and 2km above the measurement site. These maps are then averaged to generate the final map. The individual maps using trajectories ending at different altitudes are presented in Fig. S4 in the supplement. The final maps are shown in Fig. 11.”

30) Section 5.2.1: It would be interesting to see how theses maps change when the individual lifetimes are considered. Are CTM calculations of lifetimes at these days available?

Author reply: We showed the maps with different backward times in Fig. S4 of the supplement. We use different backward times for the generation of the maps to implicitly test the effects of varying lifetime. Note that no information about the lifetime is available from the CTM in this study. In addition, we don’t think that the method could be in general be improved if information on the lifetime would be used to scale the trace gas VCDs for the generations of the maps, because the trace gas columns measured by MAX-DOAS are actually transported from areas in
different distances. It is unknown which fraction of the total trace gas amount was transported from an area in a specific distance. Therefore the scaling of the VCD based on the lifetime can even cause artificially high VCDs in the generated maps if large backward time is used.

31) Fig 12: Please add the data of the validating instruments, when possible.
Author reply: Here we did not follow the reviewer’s suggestion, because we feel that the plots would be too busy, while at the same time no relevant information will be added. Here it should be noted that the comparisons with independent measurements have been already shown in Fig. 6. Moreover, the study of the effects of transports is only based on the MAX-DOAS results.

32) P17, L14-15: How can I differ between the original data and the interpolated data in Fig 13?
Author reply: Sorry for the missing information in the manuscript. The data shown in Fig. 13 are all original data. No interpolated data are shown. Therefore we delete the sentence “Note that the data are interpolated to provide a more consistent overview. The original data are also plotted in Fig. 13 in order to show the representativeness of the interpolated data.” in the revised manuscript.

33) P17, L16: Highest values for southeast winds with southerly trajectories instead of north-westerly?
Author reply: The higher values are found for southeast winds when the long-range trajectories are from the northwest. This finding indicates the effect of short-range transport of pollutants emitted in the downtown area of Xingtai (with an iron factory) about 20km southeast of the station. The effect of short-range transport can only be seen when the air mass over the station is dominated by transport of clean air masses from the northwest. In order to describe it more clearly, we modified the sentence in the revised manuscript as follows:
“In general the higher values of aerosols, NO2, SO2, and HCHO occur for the southeast wind directions than for other wind directions on the days of north-westerly trajectories. This finding possibly indicates the effect of short-range transports of pollutants emitted in the downtown area of Xingtai (with an iron factory) about 20km southeast of the station. The effect of short-range transport can be well identified when the air mass over the station is dominated by transport of clean air mass from the northwest.”

34) P18, L18-19: of on the order of hours --> in the order of hours
Author reply: It is corrected in the revised manuscript.

35) Fig 14c: The red dots are extremely small. Please increase the size of these dots.
Author reply: The images with the red dots are downloaded from https://worldview.earthdata.nasa.gov. Therefore we can’t change the size. We added the website for Fig. 14c in the revised manuscript.

Author reply: It is modified as “2018” in the revised manuscript.
Reply to Ref. #2

First of all we want to thank this reviewer for the positive assessment of our manuscript and the constructive and helpful suggestions.

General comments
Wang et. al presented a MAX-DOAS observation for tropospheric vertical profiles of NO$_2$, SO$_2$, HONO, HCHO, CHOCHO and aerosols in the central-western North China Plain in May and June 2016. The MAX-DOAS results are validated comprehensively by the collocated measurements of ground based lidar, sun-photometer and in situ instrument, as well as overpass aircraft. Besides, characteristics of pollutants distribution and variations were analyzed combined with effects of regional and local transport. As shown in the introduction, there were many studies of the trace gases and air pollutions of NCP in previous, also including the MAX-DOAS measurements. The main concerns is that what is the novelty or unique of this paper compared to the previous. I suggest the authors could highlight these in the manuscript.

Author reply:
Many thanks for the suggestion! We modified the manuscript based on the comments from you and the other two reviewers. The one-to-one replies are given in the following part. For your main concern, we followed your suggestion to highlight the novelty and unique point of the study in the abstract and introduction as follows:
“Note that although several MAX-DOAS measurements of trace gases and aerosols in the NCP area have been reported in previous studies, this study is the first work to derive a comprehensive set of vertical profiles of NO$_2$, SO$_2$, HONO, HCHO, CHOCHO, and aerosols from measurements of one MAX-DOAS instrument. Also, so far the validation of MAX-DOAS profile results by comparison with various surface in-situ measurements as well as profile measurements from Lidar and aircraft is scarce. Moreover, the backward propagation approach to characterize the contributions of regional transport of pollutants from different regions was for the first time applied to the MAX-DOAS results of trace gases and aerosols.”

Specific Comments:
1) MAX-DOAS spectra analysis: It can be concluded from P5, Line27-28 that the authors used a spectrum measured in the zenith direction closest in time to the off-zenith measurements as a Fraunhofer reference spectrum. So if the telescope scanned in the sequence of 1°, 2°, 3°, 4°, 6°, 8°, 10°, 15°, 20°, 30°, 90°, the DSCDs of lower elevation angle (e.g. 1, 2, 3, 4) should use the zenith spectrum in previous scanning, but the DSCDs of higher elevation angle (e.g. 10, 15, 20, 30) use the zenith spectrum of current scanning. It means that the DSCDs of elevation angles in the same scanning were obtained with different reference spectrum. Any explanation or consideration about this treatment, which may bring some unknown effects in the profile retrieval procedure? Fig.3: why the authors show the CHOCHO spectral analysis in another day compared with other species? And the CHOCHO absorption structure can not be well observed.
Author reply: Regarding the Fraunhofer reference spectrum, thanks for pointing out the obscure elaboration! We modified the description in the revised manuscript as follows: “A sequential Fraunhofer reference spectrum, which is derived from interpolation of two zenith spectra measured before and after an elevation sequence to the measurement time of individual off-zenith measurements, is used in the DOAS fits.”. Regarding the HCHO spectral fit shown in Fig. 3, the CHOCHO dSCD around noon on 27 May is the highest during the whole campaign. As you have seen, CHOCHO fit is quite difficult to analyse, its largest optical depth is only ~0.001, two orders smaller than the optical depth of NO$_2$. In order to show the best fit, we showed the results on 27 May in Fig. 3. We clarified the point in the revised manuscript for Fig. 3 as follows: “Note that the CHOCHO fit shown in the figure is for the largest CHOCHO dSCD retrieved around noon during the whole campaign period.”
2) When you evaluated the DOAS data for HONO, did you consider the impurity of HONO in the NO2 reference spectra used? There is always some HONO in NO2 and that is subtracted in the DOAS algorithm. This leads to an underestimation of HONO by ca. 0.5% of the NO2, which can be significant during daytime and impacts the conclusions in your discussion about HONO/NO2.

Author reply: We searched the literature regarding measurements of NO2 cross sections, namely NO2 reference spectra. However we found no publications reporting the effects of the contamination of HONO in the NO2 cell. In addition if there are HONO structures in the NO2 cross section, we can expect an increase of (negative) HONO dSCDs along the increase of NO2 dSCDs during the day. However we don’t see such an increase. Therefore we think the HONO impurity effect on the calculations of the HONO/NO2 ratio in the study is negligible. If the reviewer knows a publication about the HONO impurity issue, please inform us.

3) Aerosol and trace gases retrieval:
How was the vertical grids setting?
How to distinguish the sky condition of high aerosols and clouds?
In section 4.1, since the aerosol retrieval results were poor under the sky conditions of clear sky with high aerosols and cloudy sky (Fig. 6a and b), how to convince the trace gases retrieval are reliable?
All the reliable retrieval are the fundamental of the further analysis about effects of regional and local transport of pollutants.

Author reply: The vertical grid is 200 m. The information is added in the revised manuscript.
Regarding the cloud classification, the difference between “clear sky with high aerosol load” and “continuous clouds” is the spread of the color index at different elevation angles of the MAX-DOAS measurements. The spread is much smaller under “continuous clouds” than under “clear sky with high aerosol load”. The difference between “clear sky with high aerosol load” and “broken clouds” is the temporal variations of the color index measured by MAX-DOAS. Because the cloud coverage can change rapidly under “broken clouds”, the temporal variation is much larger under “broken clouds” than under “clear sky with high aerosol load”. We elaborated the details of the method in our previous publications of “Wagner, T., Beirle, S., Dörner, S., Friess, U., Remmers, J. and Shaiganfar, R.: Cloud detection and classification based on MAX-DOAS observations, Atmos. Meas. Tech., 7, 1289-1320, 2014” and “Wagner, T., Beirle, S., Remmers, J., Shaiganfar, R., and Wang, Y.: Absolute calibration of the colour index and O4 absorption derived from Multi AXis (MAX-)DOAS measurements and their application to a standardised cloud classification algorithm, Atmos. Meas. Tech., 9, 4803-4823, https://doi.org/10.5194/amt-9-4803-2016, 2016.”. Regarding the cloud effect, since clouds typically located at altitudes above the trace gases, clouds have usually a stronger impact on the O4 absorptions than on the trace gases. Therefore they impact the aerosol retrievals stronger than the trace gas retrievals. Under high aerosol load conditions, the discrepancy between the aerosol results from MAX-DOAS and sun-photometer and visiblitymeter measurements are probably mainly due to inhomogeneous horizontal distributions and different air masses measured by the different instruments. In addition, MAX-DOAS might underestimate aerosols at high altitudes due to the low sensitivity of MAX-DOAS measurements there. Since trace gases typically located at low altitudes, it is not probable that the underestimation of aerosols at high altitudes by MAX-DOAS significantly impacts the trace gas profile retrievals.

Technical corrections:
1) P4, Line 28, “10:00 BT” change to “10:00 LT”
Author reply: Thanks for pointing it out. BT is Beijing time. In order to clarify the point, we added a sentence in the revised manuscript as follows: “Since the longitude difference of the station and Beijing is only 2º, the Beijing time is almost the local time.”.
2) P5, Line 3-7, the results in Fig. 2 d were obtained from NASA website, however, the data in Fig. 2a, b and c? And the spatial resolution of the satellite products? Did the authors do any treatment or filter with the data? Please specify more clearly.

Author reply: Thanks for pointing out the missing information. We modified the paragraph regarding the satellite data in section 2.1 to add the information in the revised manuscript. The modified paragraph is the following:

“\textcolor{red}{\textbf{Averaged maps of NO}_2 (from DOMINO v2, Boersma et al., 2007 and 2011), SO}_2 (from BIRA-IASB, Theys et al., 2015), and HCHO (from BIRA-IASB, De Smedt et al., 2008, 2012 and 2015) derived from satellite observations of the Ozone Monitoring instrument (OMI) (Levelt et al., 2006a and b) for May and June during the period 2012 to 2016 for the same area as shown in Fig. 1a are shown in Fig. 2a, b, and c, respectively. The spatial resolution of the OMI data is 13×24 km² in nadir. Note that the OMI data of the outermost pixels (i.e. pixel numbers 1–5 and 56–60) and pixels affected by the so-called “row anomaly” (see http://www.temis.nl/airpollution/no2col/warning.html) were removed. In Fig. 2d a map of the averaged aerosol optical depths (AODs) at 550 nm derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) (Kaufman et al., 2002) for the same period is shown (provided by NASA on http://ladsweb.nascom.nasa.gov/data/search.html). The spatial resolution of the MODIS AOD data is 5×5 km². In order to exclude cloud contaminated data, for both OMI and MODIS data, only the data with cloud fractions smaller than 30% are included for the generation of the maps. A grid interval of 0.02º is used to generate the averaged maps of the OMI and MODIS data by binning the satellite data of pixels around each grid with distance weightings.”

3) Fig. 2a, c, d, poor resolution. Please correct.

Author reply: Since the pixels of OMI satellite instruments cover an area of 13×24 km², the map resolution can not be further improved.

4) Fig. 7, I suggest the author present a panel plot of the differences of AE between MAX-DOAS and Lidar for more clearly and apparent comparison results.

Author reply: We followed the idea and added the panel in the new Fig. 7 in the revised manuscript.

5) Acknowledgements:
 MAX-DOAS, LP-DOAS and etc. in Wuxi station? But the measurements was in NCP area.
 WINDOAS software? But you used QDOAS

Author reply: Thanks for pointing out the mistakes! The mistakes are corrected in the revised manuscript.
Reply to Ref. #3

First of all we want to thank this reviewer for the positive assessment of our manuscript and the constructive and helpful suggestions.

General comments
The paper presents a comprehensive study of vertical distributions of NO2, SO2, HONO, HCHO, CHOCHO and aerosols by MAX-DOAS measurements during a spring/summer period (from 8 May to 10 June 2016) at a suburban site of the North China Plain. The profiles of these gases (volume mixing ratio) and aerosols (extinction coefficient) retrieved by MAX-DOAS are compared with the independent data, including in-situ measurements, Sun photometer, visibility meter, lidar and aircraft measurements. The effects of emissions and transport on the observed results are also analyzed using the backward trajectories and various satellite data. The study is interesting, providing important information to the scientific community on air quality issue in eastern China. The paper is well written and organized, I would recommend the paper to be published subject minor revisions. My major concern is on the comparison of the vertical profiles between ground-based MAX-DOAS and in situ aircraft measurements. While Sect. 5 devotes too much for a discussion about the regional and local transport of pollutants, more detailed analyses and discussions should have be added in Sect. 4.3 for the comparison of MAX-DOAS with aircraft measurements.

Author reply:
Many thanks for the positive assessment! We modified the paper based on the comments from you and the other two reviewers. Please see the replies and modifications regarding your specific comments below.

Specific Comments:
1) - Aerosol extinction and SO2 mixing ratio are underestimated significantly by MAX-DOAS with comparison to the aircraft measurements on 21 May 2016 (black dots in Fig. 8b). Why are the aircraft profiles, instead of MAX-DOAS profiles, converted (or “corrected”) for better comparison? Since the airplane flew in a spiral route, were the chemical instruments stable enough to get reliable data with increasing air pressure? What is the vertical resolution (or precision) of the profile inversion by MAX-DOAS? The concept of the smoothing effect of the MAX-DOAS profile inversion should be discussed more in detail. I cannot find sufficient evidences in Sect. 4.2 to support the conclusion “The smoothing effect can cause MAX-DOAS retrievals to underestimate pollutants above 2 km and overestimate below” stated in Page 21, Line 31-32.

Author reply: Thanks for the comment! We give the answers to your individual questions below:
Question 1: “Why are the aircraft profiles, instead of MAX-DOAS profiles, converted (or “corrected”) for better comparison?”
Answer: The question might be related to the unclear explanation in the manuscript. We modified the sentence in the revised manuscript as follows:
“Since the limited response of MAX-DOAS profile retrievals to the true profiles, the retrieved profile x’ can be represented as the true profile x, smoothed by the AK according to the equation: x’ = xa + AK(x – xa), where xa is a-priori profile used in the profile retrieval of MAX-DOAS. To account for the smoothing effect of the MAX-DOAS profile inversion in the comparisons, the AKs of the MAX-DOAS profile retrievals are applied to the averaged aircraft profiles, which are treated as the true atmospheric profile x to generate the “smoothed profiles” x’ . Additionally the combined profiles, derived from the averaged aircraft profile and surface data, are considered as the true atmospheric profile x and converted to “smoothed combined profiles” using the AK of the MAX-DOAS profile retrievals. The “smoothed profiles” and “smoothed combined profiles” are shown in Fig. 8. By comparing the smoothed profiles with the original profiles derived from the aircraft measurements, the smoothing effect of MAX-DOAS retrievals can be evaluated.”
Question 2: Since the airplane flew in a spiral route, were the chemical instruments stable enough to get reliable data with increasing air pressure?

Answer: The NO₂ analyzer have internal pressure controllers that maintain the pressure constant at 128 torr, well below the pressure altitudes we flew. So their measurements are not affected by the ambient pressure changes at all. All other trace gas analyzers like ozone, SO₂, NO, and NOy are corrected for pressure and temperature when they reported the final concentrations. So our instruments are stable enough to make reliable measurements during the spiral profiles. All the aircraft instruments have been used for airborne measurements in the United States and China (e.g., Taubman et al., 2006; Dickerson et al., 2007; Hains et al., 2008; He et al., 2012; He et al., 2014; Ren et al., 2018; Salmon et al., 2018).

Question 3: What is the vertical resolution (or precision) of the profile inversion by MAX-DOAS?

Answer: the vertical resolution can be represented by the averaging kernel. The resolution is shown in the last paragraph of section 2.2.3 and Fig. 4c. In order to introduce the meaning of the averaging kernel more clearly, we modified the sentence in the revised manuscript as follows:

“The vertical resolution and sensitivities of the retrievals at different altitudes can be quantified by the so-called averaging kernel matrix AK = 〈δx^ / δx〉, which represents the sensitivity of the retrieved profile x^ as a function of the true atmospheric profile x. The typical AK of the profile inversions shown in Fig. 4c indicate that the sensitivity of the profile retrievals of trace gases and aerosols systematically decreases with altitude.”

Question 4: The concept of the smoothing effect of the MAX-DOAS profile inversion should be discussed more in detail. I cannot find sufficient evidences in Sect. 4.2 to support the conclusion “The smoothing effect can cause MAX-DOAS retrievals to underestimate pollutants above 2 km and overestimate below” stated in Page 21, Line 31-32.

Answer: In order to discuss the smoothing effect better, we added a sentence in Section 4.3 in the revised manuscript as follows: “Generally, pollutants above 1km are significantly underestimated due to the
smoothing effect of MAX-DOAS profile retrievals.” And the sentence in the conclusion section is modified as “The smoothing effect of MAX-DOAS profile retrievals can cause a reshaping of box-profiles below 2km towards exponentially decreasing profiles. This effect can cause MAX-DOAS measurements significantly underestimate pollutants located at altitudes above 1km.”.

2) - It is stated that “the deviations between the MAX-DOAS and aircraft measurements can probably also be attributed to inhomogeneous horizontal distributions of pollutants and their temporal variation during a period of aircraft measurements” in Sect. 4.3 (Page 13, Line 14-16). Did you find any regular horizontal distribution patterns of aerosols and gases from aircraft measurements? Will the comparison improve if only the aircraft measurements in the area that the MAX-DOAS instrument was pointed to are selected?

Author reply: A large variability of the original data from the aircraft measurements at individual altitudes can be seen in Fig. 8. This finding indicates inhomogeneous horizontal distributions of the pollutants. In order to show the phenomenon more clearly, we plotted 3D distribution of aircraft data on 21 May in the following figures. In the figure, the colors indicate aerosol extinctions or VMRs of NO$_2$ and SO$_2$. The black dots on the surface represent the location of the MAX-DOAS instrument, and the arrows point to the direction of the MAX-DOAS telescope. The figures clearly indicate strong horizontal gradients of the pollutants. The new figures given below are not included in the manuscript because its information can be well shown with the variability of original aircraft data in Fig. 8. Since in the pointing direction of the MAX-DOAS telescope only a few aircraft measurements are available, we didn’t do the comparisons only for these data. Another important aspect is that the aircraft results are from in-situ measurements, whereas MAX-DOAS measurements represent averages of the pollutants along an effective light path of ~5 to 10 km. Therefore the different air masses measured by the two techniques can be seen as one important reason for the differences of the results. The effect of different probed air masses was not clearly pointed out in the previous manuscript. Therefore we added the following sentences in the revised manuscript: “In addition, aircraft results represent in-situ measurements along the spiral route, whereas MAX-DOAS results represent averages of pollutants over an effective light path of ~5 to 10 km. The different air masses measured by the two techniques can be seen as one important reason for the observed differences of the measured results.”

3) - In addition to co-author’s research group, other aircraft measurement work in the NCP region should be credited, e.g., Ma et al. (2012) and Zhang et al. (2014); so did the MAX-DOAS measurement, e.g., Jin et al. (2016).

Author reply: Thanks for reminding these references! We cited them in appropriate positions in the introduction section of the revised manuscript.

Technical corrections:
1) Page 2, Line 32. What does “East-Aire” mean?
Author reply: It is the abbreviation of “East Asian Study of Tropospheric Aerosols: an International Experiment”. The full name is given in the revised manuscript.

2) Page 4, Line 23: What is the terrain height of the station?
Author reply: The terrain height of the station is ~200 m asl. The information is given in the revised manuscript.

3) Page 5, Line 15-20: The direction for the measurement should be mentioned.
Author reply: The telescope was pointed to an azimuth angle of 25º northeast. The information is given in section 2.2.1 in the revised manuscript.

4) Page 7, Line 12. Please check the punctuation here as well as elsewhere in the manuscript.
Author reply: The punctuations are checked.

5) Page 8, Line 7-8. There are two references of Zhang et al., 2018. Please distinguish them when citing.
Author reply: One of the two references was wrongly cited. Therefore we deleted this one in the revised manuscript.

6) Page 9, Line 15-17. Please delete the repeating word of “be”.
Author reply: It is corrected in the revised manuscript.

7) Page 12, Line 25-26. The agreement of the aerosol profiles from MAX-DOAS and lidar above 500m is not obvious, especially on 16 May, 2016. It is better to alter the color bar to show this point more clearly.
Author reply: Since aerosol extinction at high altitudes is much lower than those at ~500m, we think it is not necessary to highlight these differences. We prefer to use the current color bar, which can balance the requirement to show structures of high concentrations and low concentrations at different altitudes.

8) Page 12, Line 30. The content should move to the section 4.1.
Author reply: We added the following clarification in the section 4.1: “In addition, the sun-photometer measured the air masses in the direction of the sun. The different air mass measured by the two techniques can contribute to the differences of the AOD results.”
We also clarified the same statements for the other instruments in section 4.1 as follows: “Note that the visibilitymeter and the in-situ measurements of NO2, SO2 and HCHO represent air masses close to the instruments, whereas the MAX-DOAS measurements represent averages of pollutants along the effective horizontal light path of ~5 to 10 km in the vertical grid from the surface up to 0.2 km. Therefore different probed air masses can be seen as one important reason for the differences of results.”

9) Page 13, Line 20-22. This paragraph seems to be redundant.
Author reply: We prefer to keep the paragraph to give readers an impression on the contents of section 5 before they go to the details.

10) Page 14, Line 4. The language expression needs to be improved.
Author reply: The sentence was modified in the revised manuscript as follows: The mountain-plain topography causes a daily cycle with downslope (northeast winds) and upslope (southeast winds) winds.

Author reply: They are corrected in the revised manuscript.
12) Page 16: Sect. 5.2.2. It is known that the MAX-DOAS measurements are performed during the daytime. However, the sorting here is mainly based on the nighttime trajectories. In addition, there are large differences between nighttime and daytime in Fig. S5, especially for the southerly trajectories.

Author reply: We clarified the reason why we use the nighttime trajectories to separate the results in section 5.1 as follows: "Therefore we can expect that the gas pollutants, e.g. NOx, SO2 and HONO, can be transported to a farther distance during nighttime than daytime. Thus nighttime regional transport of pollutants from the Wuan area could significantly pollute the entire measurement area." and in section 5.2.2: "Considering that the life times of the observed trace gases are typically longer during night time than day time (because of lower OH radical concentrations), the measurement data are sorted mainly based on the nighttime trajectories". Note that generally the difference between the nighttime and daytime trajectories in Fig. S5 is not big. But the difference is also the reason why we only use night time trajectories to sort the data.

13) Page 17, Line 34. Please change “Fig.12i” to “Fig.12I”.

Author reply: It is changed in the revised manuscript.

14) Page 22, Line 23, 26. Please check the names of the station “Wuxi” and software “WINDOAS”.

Author reply: They are all corrected in the “Acknowledgements” of the revised manuscript.

15) Figure 6: Please clarify the temporal resolution of the data used in Fig.6.

Author reply: we added the information for the figure in the revised manuscript as follows: “All independent data are averaged over the individual time intervals of the MAX-DOAS measurements.”

16) Table 2: “outliers”?

Author reply: We used the filters given in the table to get rid of “outliers”. We do not apply any other filters to delete specific “outliers”.

17) References

Author reply: Thanks for reminding these references. We cited them at appropriate positions in the introduction section of the revised manuscript.
Vertical profiles of NO$_2$, SO$_2$, HONO, HCHO, CHOCHO, and aerosols derived from MAX-DOAS measurements at a rural site in the central-western North China Plain and their relation to emission sources and effects of regional transport

Yang Wang1, Steffen Dörner1, Sebastian Donner1, Sebastian Böhnke1, Isabelle De Smedt2, Russell R. Dickerson3, Zipeng Dong4, Hao He3, Zhanqing Li3,4, Zhengqiang Li5, Donghui Li5, Dong Liu6, Xinrong Ren3,7, Nicolas Theys2, Yuying Wang4, Yang Wang4, Zhenzhu Wang6, Hua Xu5, Jiwei Xu6, Thomas Wagner1

1 Max Planck Institute for Chemistry, Mainz, Germany
2 Belgian Institute for Space Aeronomy (BIRA-IASB), Brussels, Belgium
3 Department of Atmospheric and Oceanic Science and ESSIC, University of Maryland, College Park, Maryland, USA
4 College of Global Change and Earth System Sciences, Beijing Normal University, Beijing, China
5 Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences
6 Key Laboratory of Atmospheric Composition and Optical Radiation, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei, China
7 Air Resources Laboratory, National Oceanic and Atmospheric Administration, College Park, Maryland, USA

Correspondence to: Yang Wang (y.wang@mpic.de)

Abstract

A Multi Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) instrument was deployed in May and June 2016 at a monitoring station (37.18° N, 114.36° E) in the suburban area of Xingtai, which is one of the most polluted cities in the North China Plain (NCP), during the Atmosphere-Aerosol-Boundary Layer-Cloud (A2BC) and Air chemistry Research In Asia (ARIAs) joint experiments to derive tropospheric vertical profiles of NO$_2$, SO$_2$, HONO, HCHO, CHOCHO and aerosols. Aerosol optical depths derived from MAX-DOAS were found to be consistent with collocated sun-photometer measurements. Also the derived near-surface aerosol extinction and HCHO mixing ratio agree well with coincident visibility meter and in situ HCHO measurements, with mean HCHO near-surface mixing ratios of ~3.5 ppb. Underestimates of MAX-DOAS results compared to in situ measurements of NO$_2$ (~60%), SO$_2$ (~20%) are found expectedly due to vertical and horizontal inhomogeneity of trace gases. Vertical profiles of aerosols and NO$_2$, SO$_2$ are reasonably consistent with those measured by a collocated Raman Lidar and aircraft spirals over the station. The deviations can be attributed to differences in...
sensitivity as a function of altitude and substantial horizontal gradients of pollutants. Aerosols, HCHO, and CHOCHO profiles typically extended to higher altitudes (with 75% integrated column located below ~1.4km) than did NO$_2$, SO$_2$, and HONO (with 75% integrated column below ~0.5 km) under polluted condition. Lifted layers were systematically observed for all species, (except HONO), indicating accumulation, secondary formation, or long-range transport of the pollutants at higher altitudes. Maximum values routinely occurred in the morning for NO$_2$, SO$_2$, and HONO, but around noon for aerosols, HCHO, and CHOCHO, mainly dominated by photochemistry, characteristic upslope/downslope circulation and PBL dynamics. Significant day-to-day variations are found for all species due to the effect of regional transport and changes in synoptic pattern analysed with the backward propagation approach based on HYSPLIT trajectories. Low pollution was often observed for air masses from the north-west (behind cold fronts), and high pollution from the southern areas such as industrialized Wuan. The contribution of regional transport for the pollutants measured at the site during the observation period was estimated to be about 20% to 30% for trace gases, and about 50% for aerosols. In addition, agricultural burning events impacted the day-to-day variations of HCHO, CHOCHO and aerosols. It needs to be noted that although several MAX-DOAS measurements of trace gases and aerosols in the NCP area have been reported in previous studies, this study is the first work to derive a comprehensive set of vertical profiles of NO$_2$, SO$_2$, HONO, HCHO, CHOCHO, and aerosols from measurements of one MAX-DOAS instrument. Also, so far the validation of MAX-DOAS profile results by comparison with various surface in-situ measurements as well as profile measurements from Lidar and aircraft is scarce. Moreover, the backward propagation approach to characterize the contributions of regional transport of pollutants from different regions was for the first time applied to the MAX-DOAS results of trace gases and aerosols.

1 Introduction

The North China Plain (NCP) is one of the most populated, industrialized, and economically developed regions in China. The NCP region is located in the northern part of eastern China with an area of about 3% of the total area of China and with about 20% of the Chinese population, covering major parts of the provinces Hebei, Henan, Shandong, the northern parts of Anhui and Jiangsu, and the megacities of Beijing and Tianjing. The NCP region is between the Bohai and Huanghai Seas to the east and the Taihang Mountains to the west. The Yan Mountains and the Dabie Mountains and Yangzi River delineate northern and southern boarders. The most part of the NCP region is shown in Fig. 1. With rapid economic growth and urbanisation, air pollution in the NCP region has become severe. The NCP has suffers from the most frequent and severe haze events in China based on the reports from the Ministry of Environmental Protection (MEP, 2017). Previous studies characterized the composition of aerosol particles (e.g. Huang et al., 2014, Wang et al., 2012 and 2015b) and their gaseous precursors (e.g. Ma et al., 2012, Hendrick et al., 2014, Zhu et al., 2016, Jin et al., 2016) to better understand haze events (e.g. Fu et al., 2014). The role of regional transport (e.g. Ding et al., 2009) in haze events has been studied with chemical transport modelling (e.g. Wang L. et al., 2012 and 2015) and observations such as ground-based stations, mobile platforms (e.g. Zhu et al., 2016), aircraft (e.g., Ding et al., 2009), and satellites (e.g. Tao et al., 2012). Previous studies demonstrated that
secondary aerosols formed through photochemical reactions from trace gas precursors, e.g. nitrogen dioxide (NO₂), sulphur dioxide (SO₂), and volatile organic compounds (VOCs) contribute significantly to aerosols (e.g. Huang et al., 2014). Meteorology (e.g. transport patterns and mixing processes) is also critical for the formation of haze events (e.g. Miao et al., 2015, Wang L. et al., 2012, Li et al., 2007). Previous studies were usually based on surface measurements of trace gases and and/or column densities derived from satellite observations. Observations of the vertical distribution of trace gases are also important to understand effects of chemical reactions, their sources and sinks, the influence of regional transport, and to validate results from chemical models and satellite observations. East-Aire (East Asian Study of Tropospheric Aerosols: an International Experiment) and associated campaigns generated a number of profiles from aircraft measurements and studied the vertical distribution to help understand the budgets of trace species and to aid in retrievals for remote sensing (Chaudhry et al., 2007; Dickerson et al., 2007; He et al., 2012; Krotkov et al., 2008; C Li et al., 2010; Z Q Li et al., 2007a; Z Q Li et al., 2007b). In addition Airborne measurements were applied to characterize gas and particle pollutants during CAREBeijing-2008 campaign (Zhang et al., 2014). To date, profile measurements remain scarce.

The multi-axis differential optical absorption spectroscopy (MAX-DOAS) technique, invented about 15 years ago, allows one to derive vertical profiles of trace gases and aerosols in the troposphere from the observation of scattered sunlight at multiple elevation angles (Hönninger and Platt, 2002; Bobrowski et al., 2003; Van Roozendael et al., 2003; Hönninger et al., 2004; Wagner et al., 2004; Wittrock et al., 2004). The existing profile inversion approaches for MAX-DOAS can be sorted into two groups: inversion algorithms based on the optimal estimation (OE) method (and iterative approaches, e.g. the Newton-Gauß or Levenberg-Marquardt, are also used) (Rodgers, 2000; Frieß et al., 2006, 2011; Wittrock, 2006; Irie et al., 2008, 2011; Clémer et al., 2010; Yilmaz, 2012; Hartl and Wenig, 2013; Wang Y. et al., 2013a, b) and the so-called parameterized approaches using look-up tables (Li et al., 2010, 2013; Vlemmix et al., 2010, 2011; Wagner et al., 2011; Irie et al., 2008, 2011). The MAX-DOAS technique is suitable for long-term observations of trace gases and aerosols with a relative high time resolution, several minutes, due to its simple instrument concept, low-cost, and automatic operation. Several networks of MAX-DOAS instruments have been built to record long-term measurements (e.g. Kanaya et al., 2014). Such measurements and also data from short-term measurement campaigns have been used for environmental studies, as well as for the validation of satellite observations and model simulations (e.g. Irie et al., 2008; Roscoe et al., 2010; Ma et al., 2013; Kanaya et al., 2014; Vlemmix et al., 2015a; Wang T. et al., 2014; Wang Y. et al., 2017a, 2017b; Hendrick et al., 2014).

Previous studies have reported MAX-DOAS measurements of NO₂, SO₂, nitrous acid (HONO), formaldehyde (HCHO), and glyoxal (CHOCHO) in polluted regions in China (e.g. Wang T. et al., 2014; Hendrick et al., 2014; Wang Y. et al., 2017a; Li et al., 2013; Ma et al., 2013; Schreier et al., 2015). NO₂ and SO₂ can be converted to nitrate and sulfate, and NO₂ contributes to ozone formation. HONO is an important precursor of OH. Recent field measurements (e.g. Su et al., 2008, 2011 and Li et al., 2014, and references therein) suggest that the observed daytime HONO concentrations cannot be explained by the gas-phase reaction of NO with OH (Stuhl and Niki, 1972; Pagsberg et al., 1997); primary emissions of HCHO could be important in industrial regions (Chen et al., 2014). HCHO and CHOCHO are mainly produced through the oxidation of VOCs, thus their high concentrations indicate photochemical activity. VOCs impact the formation of ozone and
organic aerosols. CHOCHO and HCHO have different VOC precursors and different formation pathways (e.g., Vrekoussis et al., 2010 and Li et al., 2013).

The “Atmosphere-Aerosol-Boundary-Cloud Interactions (A²BC)” campaign took place in the heavily polluted southern area of Hebei province from 25 April to 15 June 2016. The aim of the campaign was the investigation of the interaction of gas precursors, aerosols, and clouds from ground based and aircraft measurements. At the Xingtai measurement station in a rural area near Xingtai City, we operated a MAX-DOAS instrument developed by the Max-Planck-Institute for Chemistry (MPIC) to measure vertical profiles of aerosols, NO₂, SO₂, HONO, HCHO, and CHOCHO. The southern area of the Hebei province around the Xingtai station is in the central-west part of the NCP and contains several cities ranked among the most polluted in China (based on reports from the Ministry of Environmental Protection), such as Xingtai, Shijiazhuang, Baoding, Tangshan, and Handan. Xingtai City with a population of about 7 million is frequently ranked as China’s most polluted city (MEP, 2017). The Taihang Mountains at the west edge of the NCP are 30 km away from the Xingtai station. Previous studies demonstrated the effects of the Taihang Mountain on the accumulation and dispersion of aerosols (e.g. Wei et al., 2010; Miao et al., 2015; Wang L. et al., 2015). MAX-DOAS measurements at the Xingtai station characterize the vertical distribution and temporal variation of aerosols and trace gases to better understand emission sources and effects of regional transport. The availability of other measurements of air pollutants during the campaign enhances the MAX-DOAS results. Spiral up-down aircraft measurements of trace gases and aerosols over the Xingtai station can be used to evaluate the vertical profiles retrieved from the MAX-DOAS measurements. MAX-DOAS results can also be compared with surface concentrations derived from in situ measurements, aerosol optical depths (AODs) measured by a sun-photometer, and vertical profiles of aerosol extinction measured by a Raman Lidar. In parallel to A²BC, the ARIAS campaign (Air chemistry Research In Asia) investigated trace gases, aerosols and cloud interactions over Hebei (Wang et al., 2018; Benish et al., 2018). These and satellite monitoring (Li et al., 2017) indicate a distinct downward trend in SO₂ over China recently. Note that although several MAX-DOAS measurements of trace gases and aerosols in the NCP area have been reported in previous studies, this study is the first work to derive a comprehensive set of vertical profiles of NO₂, SO₂, HONO, HCHO, CHOCHO, and aerosols from measurements of one MAX-DOAS instrument. Also, so far the validation of MAX-DOAS profile results by comparison with various surface in-situ measurements as well as profile measurements from Lidar and aircraft is scarce. Moreover, the backward propagation approach to characterize the contributions of regional transport of pollutants from different regions was for the first time applied to the MAX-DOAS results of trace gases and aerosols.

This paper is structured as follows. Section 2 gives an overview on the topography and pollution conditions in the area around the measurement station and the MAX-DOAS measurements. Section 3 introduces other independent measurements and the trajectory simulations. Section 4 presents comparisons of MAX-DOAS results with independent measurements. Effects of regional and local transport of pollutants are discussed in section 5. The conclusions are presented in section 6.
2 MAX-DOAS measurements

2.1 Overview of the measurement station

MAX-DOAS measurements were performed during the A²BC campaign at a station on the central-west edge of the NCP area (37.18° N, 114.37° E). Fig. 1a indicates the station in the southern area of the Hebei province surrounded by the provinces Shandong, Henan, and Shanxi. The Taihang Mountains are ~30 km west of the station. The terrain height increases from ~10 m asl to ~1 km asl in the foothills of the Taihang Mountains. The terrain height of the station is ~200 m asl. Winds from the mountains occurred frequently near the station during the measurement period. Information on wind speed and direction derived from a local weather station is shown in the Fig. S1 in the supplement. Surface winds reflect midday upslope (southeast) and nighttime downslope (northwest) circulation. Minimum wind speeds occur usually in a period between about of ~8:00 to 10:00 Beijing Time (BT) (GMT +8hr). Since the longitude difference of the station and Beijing is only 2°, the Beijing time is almost the local time.

Fig. 1b indicates the downtown area of Xingtai, with about 7 million inhabitants, located ~20 km southeast of the station. A steel mill is located south-west of the Xingtai downtown area. A large industrial area with several steel and coal coking facilities is located near Wuan City, ~50 km south and southeast of the measurement station. A satellite image of the industrial area derived from the ‘Google Maps’ service (https://www.google.de/maps) is shown in Fig. 1c, and a zoomed image of one of the factories (Fig. 1d) shows many stacks.

Averaged maps of NO₂ (from DOMINO v2, Boersma et al., 2007 and 2011), SO₂ (from BIRA-IASB, Theys et al., 2015), and HCHO (from BIRA-IASB, De Smedt et al., 2008, 2012 and 2015) derived from satellite observations of the Ozone Monitoring instrument (OMI) (Levelt et al., 2006a and b) for May and June during the period 2012 to 2016 for the same area as shown in Fig. 1a are shown in Fig. 2a, b, and c, respectively. The spatial resolution of the OMI data is 13×24 km² in nadir. Note that the OMI data of the outermost pixels (i.e. pixel numbers 1–5 and 56–60) and pixels affected by the so-called “row anomaly” (see http://www.temis.nl/airpollution/no2col/warning.html) were removed. In Fig. 2d a map of the averaged aerosol optical depths (AODs) at 550 nm derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) (Kaufman et al., 2002) for the same period is shown (provided by NASA on http://ladsweb.nascom.nasa.gov/data/search.html). The spatial resolution of the MODIS AOD data is 5×5 km². In order to exclude cloud contaminated data for both OMI and MODIS data, only the data with cloud fractions smaller than 30% are included for the generation of the maps. A grid interval of 0.02° is used to generate the averaged maps of the OMI and MODIS data by binning the satellite data of pixels around each grid with distance weightings. Figure 2 indicates strong decreases of all four pollutants along the Taihang Mountains at a line from northwest to southeast is obvious. The measurement station is located in the polluted region, but close to its edge. The patterns of HCHO and AOD are more homogenous than NO₂ and SO₂. Large values of NO₂, SO₂ and AOD can especially be found in the heavily industrial Wuan area. High amounts of NO₂ and AOD, but not SO₂, can be seen in the north of the station at a distance of about 100 km around Shijiazhuang, the capital of the Hebei province with about 11 million habitants.

5
2.2 Operation and processing of MAX-DOAS measurements

2.2.1 Measurement operation

A “Tube MAX-DOAS” instrument (Donner, 2016) developed by MPIC, Mainz, Germany, was operated at the measurement station during the period from 8 May to 10 June 2016. More details about the instrument can be found in Donner et al. (2016). Spectra of scattered sunlight were routinely recorded by the MAX-DOAS instrument at 11 elevation angles (1°, 2°, 3°, 4°, 6°, 8°, 10°, 15°, 20°, 30°, 90°) in the wavelength range of 300 to 466 nm with a spectral resolution of about 0.6 nm. The telescope was pointed to the azimuth angle of 25° northeast. The exposure time of each individual spectrum was ~1 minute. Electric offset and dark current are corrected using background measurements taken at night.

2.2.2 DOAS retrievals of slant column densities

Differential slant column densities (dSCDs) (the integrated trace gas number density along the effective light path) of NO₂, SO₂, HCHO, HONO, and CHOCHO, and the oxygen dimer (O₂), are retrieved from the recorded spectra using the DOAS technique (Platt and Stutz, 2008). The analysis is implemented using the QDOAS software (http://uv-vis.aeronomie.be/software/QDOAS/) (Danckaert et al., 2017). The DOAS retrievals are configured based on previous studies, e.g. Wang et al. (2017a, c), and the MAD-CAT campaign (http://joseba.mpch-mainz.mpg.de/mad_analysis.htm). The settings are listed in Table 1. A sequential Fraunhofer reference spectrum, which is derived from interpolation of two zenith spectra measured before and after an elevation sequence to the measurement time of individual off-zenith measurements, is used in the DOAS fits. A spectrum measured in the zenith direction closest in time to the off-zenith measurements is used as a Fraunhofer reference spectrum. Typical examples of DOAS fits of the six species are given in Fig. 3. The root mean square (RMS) of the optical depth of the fit residuals are typically around 6×10⁻⁴ for O₃, NO₂, HCHO and HONO, 2×10⁻⁴ for CHOCHO, and 1×10⁻³ for SO₂. The detection limits for the dSCDs are estimated based on the typical DOAS fit errors of individual species, and are about 2×10⁻¹⁵, 6×10⁻¹⁵, 3×10⁻¹⁵, 1×10⁻¹⁵, 4×10⁻¹⁴ molecules cm⁻² for NO₂, SO₂, HCHO, HONO, and CHOCHO, respectively, and 6×10⁻¹⁴ molecules cm⁻² for O₃ under typical measurement conditions.

2.2.3 Retrieval of vertical profiles, near-surface values, and vertical column densities

Tropospheric vertical profiles of aerosol extinction and volume mixing ratios (VMRs) of NO₂, SO₂, HONO, HCHO, and CHOCHO are retrieved from the elevation-dependent dSCDs by using the PriAM profile inversion algorithm (Wang et al., 2013a, b, 2017a) with a vertical grid of 200 m in an altitude range of up to 4 km. From the derived profiles the vertical column densities (VCD) of the trace gases and AODs are derived by vertical integrations. Due to the fact that no substantial information on the concentrations above 3 km can be derived from the measurements, the retrieved profiles below 3 km are shown in all figures of the study. The PriAM algorithm is based on the optimal estimation method (Rodgers, 2000) using the radiative transfer model (RTM) of SCIATRAN version 2.2 (Rozanov et al., 2005). The inversion consists of two steps: first, vertical profiles of aerosol extinctions are retrieved from the measured O₃ dSCDs; second, the retrieved aerosol profiles are
used for the inversion of the trace gas profiles. For the radiative transfer simulations the surface height and surface albedo are set as 150 m a.s.l. and 0.05, respectively. A fixed single scattering albedo (SSA) of 0.95 and an aerosol phase function parameterised according to Henyey and Greenstein (1941) with an asymmetry parameter of 0.72 are chosen according to averaged inversion results at 440 nm from the sun-photometer also operated at the measurement station. While Wang et al., (2018) reported an averaged SSA of 0.85 at 550 nm based on aircraft observations, the differences between aircraft and the sun-photometer measurements is not currently understood. A systematic bias of the SSA typically contributes to an uncertainty of about 5% to the retrieved aerosol and trace gas profiles from MAX-DOAS measurements. These values were derived from sensitivity tests by varying SSA in the profile inversion. It needs to be clarified that considering uncertainties of inversions of the SSA and asymmetry parameters of sun-photometer measurements, average values of both parameters are used in the inversion of MAX-DOAS measurements.

Retrieved aerosol extinction profiles at 360 nm are converted to those at 313 nm, 339 nm, and 354 nm for RTM simulations of air mass factors of SO$_2$, HCHO, and HONO, respectively, using an Ångström exponent of 1, which is average value derived from all the measurements of a collocated sun-photometer during the whole campaign. Details of the collocated sun-photometer are given in section 3.1.1. The air mass factors simulated by RTM are used for the profile inversion and the simulation wavelengths are calculated by weighting the wavelengths by the differential absorption cross section within the individual spectral ranges of the DOAS fits based on the method elaborated in the previous studies, e.g., Marquard et al. (2000). In addition the uncertainty of the Ångström exponent (due to uncertainties of sun-photometer measurements) typically contributes to uncertainties of up to 20% to the retrievals of trace gas profiles. These results are derived from sensitivity tests by varying the Ångström exponent between 0.49 to 2.53 in the profile inversion. For the assumed range of the Ångström exponent see the discussion in section 3.1.1. Temperature and pressure profiles are derived from the MPIC climatological data base. Different a priori profiles are used for the individual species according to previous studies (Wang et al, 2017a and Hendrick et al, 2014) and/or sensitivity tests using different a-priori profiles. The a-priori profiles are shown as the grey curves in Fig. 4d. The diagonal elements of the a-priori covariances (S_{ij}) at different altitudes are set as the square of 100% of the a-priori values at individual altitudes in order to balance the flexibility and stability of the profile inversion.

One indicator for the confidence of the profile inversion is the consistency of the measured and modelled dSCDs (dSCDs simulated with the RTM SCIATRAN for the retrieved profiles). For a systematic analysis, we screened the suspicious profile results with larger differences of measured and modelled dSCDs than the thresholds listed in Table 2. After the filtering, the scatter plots, correlation coefficients (R), and slopes derived from linear regressions of the measured against the modelled dSCDs for the different species during the entire measurement period are given in Fig. S2 in the supplement. The correlation coefficients R are higher than 0.95 and the slopes deviate from unity by less than 2% for all species.

11 May 2016, a typical day with high pollution was selected to show MAX-DOAS results for polluted conditions. Time series of retrieved profiles from the MAX-DOAS measurements on 11 May 2016 are shown in Fig. 4b, and selected profiles around noon are plotted in Fig. 4d. Note that profiles shown in Fig. 4b are not screened based on the differences of
modelled and measured dSCDs. However, the black dots in the top of each panel of Fig. 4b indicate the confident results that remain after filtering). In Fig. 4b a largevariability of profile shapes and absolute values can be seen, especially at altitudes below 1km. The vertical resolution and sensitivities of the retrievals at different altitudes can be quantified by the so-called averaging kernel matrix \(AK = \partial \hat{\mathbf{x}} / \partial \mathbf{x} \), which represents the sensitivity of the retrieved profile \(\hat{\mathbf{x}} \) as a function of the true atmospheric profile \(\mathbf{x} \). The typical AK of the profile inversions shown in Fig. 4c indicate the sensitivity of the profile retrievals of trace gases and aerosols systematically decreases with altitude.

2.2.4 Cloud classifications from MAX-DOAS measurements

Since clouds can strongly impact the MAX-DOAS results, different sky conditions are identified from the MAX-DOAS observations of color index, which is ratio of intensities of sunlight at 330nm against those at 390nm, and its temporal variations and elevation angle dependences using the cloud classification scheme with certain thresholds. The scheme is developed in Wagner et al. (2014 and 2016) and verified in Wang et al. (2015) by comparing with coincident independent ground-based and satellite measurements of clouds and aerosols. The scheme assigns individual MAX-DOAS measurements to one of the five dominant sky condition categories: 'cloud free and low aerosol load', 'cloud free and high aerosol load', 'cloud holes', 'broken clouds', 'continuous clouds', based on measurements of the color index. Additionally, some of measurements are assigned to a secondary category of 'optically thick clouds', based on MAX-DOAS measurements of O₃ absorptions. The derived sky conditions are indicated by the colour dots in the Fig. 4a. Based on the study by Wang et al. (2017a), cloud contaminated results of aerosol profiles and AODs are not included in the further analysis; but for all other MAX-DOAS results (including all trace gas results and near-surface aerosol extinctions), only the data under the ‘optically thick clouds’ condition are skipped. Here it needs to be noted that clouds, especially broken clouds, can impact the MAX-DOAS results of the near-surface aerosol extinction for individual measurements. However since the cloud effects occur for different elevation angles, their overall impact is rather random. Therefore if long term measurements are averaged, cloud effects on the near-surface aerosol mostly cancel out and do not contribute to a systematic bias (Wang et al., 2017a).

Since certain thresholds are used for the identification of cloud scenarios, two sky conditions might be interchanged because the derived quantities are close to the chosen thresholds. The problem occurs relatively often between the ‘cloud free and high aerosol load’ and ‘continuous clouds’ categories because they are only distinguished by the absolute value of the color index. The issue can impact the MAX-DOAS results of aerosol profiles and AODs due to the remaining cloud contamination. Fortunately the problem can be easily solved if an additional filter is applied, which is the convergence between measured and modelled O₃ dSCDs in the profile inversion for aerosols, based on the previous study in Wagner et al. (2016). If the convergence is bad, the corresponding aerosol results are possibly contaminated by clouds. Therefore the filter of convergence is applied to the MAX-DOAS results for the statistical analysis and elaborated in section 2.2.5 and Table 2.

In addition the issue can also impact the comparisons of MAX-DOAS results with coincident independent measurements under different sky conditions in section 4.1. However since the cases close to the thresholds do not dominate in each category, the general conclusions on the effects of clouds and aerosols are not significantly impacted.
2.2.5 MAX-DOAS results during the entire measurement period

Figure 5 presents an overview of the near-surface values and column densities derived from the MAX-DOAS measurements during the campaign from 8 May to 10 June. To provide some information about the diurnal variation, daily averages for three-time intervals of 6-10h (morning), 10-14h (noon), and 14-18h (afternoon) are shown. The corresponding full time series of the MAX-DOAS results for individual days are shown in Fig. S3 in the supplement. To remove measurements of reduced quality, filters for SZA, relative intensity offset, RMS of the residuals of the DOAS fits, differences of modelled and measured dSCDs, and sky conditions are applied to the results. The details of the filtering process and thresholds for different species are shown in Table 2. Here it needs to be noted that a lower SZA threshold is set for the filtering of the SO₂ results than for the other species, because the intensity at short wavelengths is rather low and spectral interferences with the O₃ absorption increases strongly with SZA.

Total averaged near-surface aerosol extinctions (0.43 km⁻¹), and VMRs of NO₂ (7.8 ppb), SO₂ (17.1ppb), HONO (0.22 ppb), HCHO (3.33 ppb), and CHOCHO (0.08 ppb), are shown in Fig. 5 as are AOD (0.65) and VCDs of NO₂, (15.6 × 10¹⁵ molecules cm⁻²), SO₂ (31.7 × 10¹⁵ molecules cm⁻²), HONO (0.21 × 10¹⁵ molecules cm⁻²), HCHO (13.7 × 10¹⁵ molecules cm⁻²), and CHOCHO (0.32 × 10¹⁵ molecules cm⁻²). Rather large day-to-day fluctuations are found for NO₂, SO₂, and HONO, especially in the morning, while the variations for aerosols, HCHO, and CHOCHO are smaller. This finding can probably be attributed to transport and the regional nature of secondary pollutants and will be further discussed in section 5. Maximum values for NO₂, SO₂, and HONO frequently occurred in the morning, but around noon for aerosols, HCHO, and CHOCHO. Again, this finding can probably be attributed to the different sources and deposition pathways of the different species. NO₂ and SO₂ are removed through reactions with the OH radical, which is more abundant during daytime than during nighttime. HONO is rapidly photolysed after sunrise. Therefore maximum concentrations of NO₂, SO₂, and HONO can be expected in the morning when depth of planetary boundary layer (PBL) is low and emissions could be high. While CHOCHO and HCHO are also removed via reaction with OH, they can be produced by the reaction of OH with different organic compounds (HCHO can be directly emitted). Because of the high correlation of HCHO and CHOCHO (with R of about 0.94), secondary formation of HCHO is probably the dominant source during the campaign. Typically HCHO and CHOCHO peak around noon indicating that the production rate is higher than the loss rate around noon. For particles, Zhang et al. (2018) also showed that secondary aerosols were dominant in the measurement area based on measurements of an Aerosol Chemical Speciation Monitor and a Scanning Mobility Particle Sizer located in the measurement station. Since also the secondary formation of aerosols depends on OH radicals the maximum aerosol formation can be expected around noon. However, besides the effects of photochemistry, variations of anthropogenic emission rates, effects of local and regional transport, and dispersion can also impact the diurnal variations. These effects will be discussed in more detail in section 5.2. Consistent day-to-day variations can be found between NO₂, SO₂, and HONO, especially in the morning. We calculate the correlation coefficients (R) between the species because good correlations could imply similar sources and
sinks of the species, R in the morning (in the afternoon) between NO₂ and SO₂, NO₃ and HONO, and SO₂ and HONO are about 0.95 (0.7), 0.73 (0.25), and 0.73 (0.15), respectively. Those between HCHO and CHOCHO are about 0.87, 0.89, and 0.94 in the morning, around noon, and in the afternoon, respectively. Moderate correlations of the day-to-day variations can be found between all the species and aerosols in the morning with R of 0.6 to 0.7 probably indicating similar sources. In the afternoon, the correlation between aerosols and with HCHO is up to 0.75, but those with NO₂, SO₂ are below 0.5, again reflecting the difference between primary and secondary pollutants. A recent study (Zhang et al., 2018) demonstrated that 78% of PM₁ aerosol particles are secondary aerosols based on the collocated measurements of aerosol composition. They also demonstrated that organic aerosols contribute to about 40% of total, consistent with the high correlation between aerosols and HCHO. Sources of the species will be further discussed in section 5.

The correlation between the near-surface and column values is also investigated for the different species. Higher correlations (R) are found for HCHO (0.9) and HONO (0.93) than for aerosols (0.76), NO₂ (0.83), and SO₂ (0.78). The moderate correlations of aerosols, NO₂ and SO₂ could be attributed to the frequent occurrence of lifted layers (see Fig. 12a, b and c) probably related to transport of pollutants. Remaining cloud effects in the profile inversion after cloud screenings applied could also partly contribute to the lifted aerosol layers retrieved from MAX-DOAS measurements. The characteristics of the vertical profiles of all species under different situations with different importance of pollution transport will be discussed in section 5.

Ratios of HONO and NO₂ have been often used to characterize possible sources of HONO (e.g. Sörgel et al., 2011a; Wojtal et al., 2011; Li et al., 2012). The day to day variations of the HONO/NO₂ ratios (VCDs and VMRs) in the morning, around noon, and in the afternoon are shown in Fig. 5. The ratios are between 1.9% to 2.9% on average, with higher ratios in the morning, and slightly larger than those (0.9% to 2.4%) found in spring and summer in Xianghe (a suburban area of Beijing) between 2008 to 2013 (Hendrick et al., 2014). The frequent occurrence of the peak ratio HONO/NO₂ in the morning is consistent with the observation in Xianghe (Hendrick et al., 2014) and could be explained by the faster removal of HONO than of NO₂. Note that Yu et al. (2009) reported HONO/NO₂ ratios of up to 30% during night time based on long-path DOAS measurements in Kathmandu, Nepal. Another interesting finding of our study is that on several days (e.g. on 15 May and 6 June), the noon HONO/NO₂ ratios are even up to 10%. This finding is coincident with low NO₂ values, indicating that the known typical daytime HONO source (gas phase reaction of NO and OH) cannot explain the observed relatively high HONO values.

Ratios of CHOCHO and HCHO have been used in a number of previous studies to identify sources of VOCs since CHOCHO and HCHO have different precursors or different formation pathways (e.g., Vrekoussis et al., 2010 and Li et al., 2013). The day to day variations of the ratios CHOCHO/HCHO (VCDs and VMRs) in the morning, around noon, and in the afternoon are shown in Fig. 5. They are between 2% to 2.5% on average. Similar ratios have been observed at rural sites, e.g. 1.7% in Nashville, USA (Lee et al., 1998), 3.6% in Cabauw, The Netherlands (Irie et al., 2011) and at urban sites, e.g. 3.6% in Mexico City, Mexico (Lei et al., 2009). However, considerably higher ratios of up to 10% were also reported in previous studies. For instance, averaged ratios of 6% to 8% were derived from the MAX-DOAS measurements in July 2006 in the
suburban area of Guangzhou city in Southern China (Li et al., 2013). The lower ratios derived from our measurements could be (at least partly) related to anthropogenic primary emissions of HCHO. Measurements shown in Benish et al. (2018) also indicate isoprene, a dominant nature source of secondary HCHO, is not high in the measurement area.

3 Independent data

The MAX-DOAS results are compared to several independent ground-based measurements at the measurement station as well as aircraft measurements over the station. The independent measurements are introduced in section 3.1. For the interpretation of the MAX-DOAS results with respect to transport, we performed backward trajectory simulations and also used the meteorology data from a local weather station. Both data sets are introduced in section 3.2.

3.1 Independent measurements for comparisons with MAXDOAS results

3.1.1 In-situ measurements of NO$_x$, SO$_2$, HCHO, Sun photometer and visibility meter

An in-situ gas analyser system manufactured ECOTECH measured VMRs of CO, NO, NO$_x$, SO$_2$, and O$_3$ with a time resolution of ~3 s during the whole measurement period. NO$_2$ VMRs are derived by subtracting NO VMRs from NO$_x$ VMRs. For comparisons with MAX-DOAS results, the in-situ measurements are averaged over the individual time intervals of the MAX-DOAS measurements.

Surface HCHO VMRs were monitored during the period from 18 to 23 May, 2016, using the Formaldehyde Analyzer (AERO LASER, Germany, Model 4021) based on fluorometric Hantzsche reactions [Gilpin et al., 1997; Rappenglück et al., 2010] with a time resolution of about 1 min. For the comparison with the MAX-DOAS HCHO results, the in-situ measurements are averaged over the individual time intervals of the MAX-DOAS measurements.

A sun photometer operated by the institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, measures the AODs at eight wavelengths between 340 nm and 1634 nm. The AODs at 340 nm and 380 nm are averaged for the comparison with the AODs retrieved from MAX-DOAS measurements at ~360 nm. The Ångström parameter, single scattering albedo, and asymmetry factor are also retrieved from the sun-photometer measurements and are used as input for the inversion of the aerosol profiles from MAX-DOAS measurements, for details see section 2.2.3.

A forward-scattering visibility meter (550 nm) was also operated at the measurement station during the entire measurement period. Aerosol extinction at 360 nm is derived from the visibility at 550 nm using an Ångström exponent of 1, which is the average value derived from the sun photometer measurements during the whole campaign period. The conversion could contribute a typical uncertainty of up to 20% due to variability and uncertainties of the Ångström exponent. Wang et al. (2018) reported a much higher value for the Ångström exponent: from 0.49 to 2.53 (median 1.53) for the same campaign. These values are based on observations made from the aircraft equipped with an aerosol inlet with a reported 50% cutoff at 5 μm. The decreased sensitivity for large aerosol particles together with unobserved aerosol below the lowest
altitude of the aircraft spirals (~300m agl) could contribute to the difference between the aircraft and ground-based sun photometer measurements. Sun photometers measure AOD directly, and the Ångström exponent is derived from AODs at different wavelengths.

3.1.2 Lidar

A three-wavelength Raman Polarization Lidar system (Tao et al., 2012 and Liu et al., 2013) developed by the Key Laboratory of Atmospheric Composition and Optical Radiation, Hefei Institute of Physical Science, CAS, was operated on several days during the campaign. Profiles of aerosol extinction at 355 nm above 500 m are retrieved from the Lidar measurements with a vertical resolution of 7.5 m. There are two mainly cloud-free days (16 and 17 May), on which the Lidar measurements overlapped with the MAX-DOAS measurements. Therefore comparisons between MAX-DOAS and Lidar are done for these days (section 4.2).

3.1.3 Aircraft measurements

On several days during the measurement period, a Y-12 airplane (twin engine multi-purpose transport aircraft, Harbin Aircraft Manufacturing Corporation) from the Weather Modification Office of the Hebei Meteorological Bureau flew spirals down to about 200 m above the measurement station and other sites to obtain atmospheric profiles of aerosol optical properties and trace gases concentrations (Wang et al., 2018 and Benish et al., 2018). The diameters of the spiraling circles were about 10 km. The aircraft measurements overlapped with the MAX-DOAS measurements on 8 and 21 May 2016. On the Y-12 airplane, SO2 was monitored by a commercially available trace level pulsed fluorescence analyzer (TEI Model 43C) (Luke, 1997). NO2 was measured using a modified commercially available cavity ring-down spectroscopy (CRDS) detector (Brent et al., 2013; Castellanos et al., 2009). Aerosol scatterings were measured at 550 nm using an integrating nephelometer (Trust Science Innovation, TSI Model 3563) and aerosol absorptions were measured at 565nm and converted to that at 550 nm using a Particle Soot Absorption Photometer (PSAP) (e.g. Anderson et al., 1996; Taubman et al., 2006). All instruments were routinely calibrated during the measurements (Brent et al., 2013; He, 2012; He et al., 2014; Taubman et al., 2006). For the comparison with the MAX-DOAS profiles, the aerosol extinction at 550 nm (the sum of aerosol scattering and absorption) is converted to that at 360 nm using averaged Ångström parameters of 0.8 on 8 May and 1.5 on 21 May derived from the sun photometer measurements.

3.2 Meteorological data and air mass trajectories

To interpret the measurement results, we derived meteorological parameters including ambient temperature (T), relative humidity (RH), wind speed (WS), wind direction (WD), and precipitation from the weather station at the measurement station of the MAX-DOAS instrument. The weather station was conducted by the Xingtai Meteorological Administration. For the discussion of the effect of regional transport of pollutants in section 5, we performed 12 h backward trajectory simulations starting at each hour throughout the day and ending at 100 m, 300 m and 1km above the measurement
station using the HYSPLIT model (Stein et al., 2015) developed by Air Resources Laboratory, NOAA (https://ready.arl.noaa.gov/HYSPLIT.php). The meteorological data used for the backward trajectory calculation was from the NCEP Global Data Assimilation System (http://www.emc.ncep.noaa.gov/gmdb/gdas/) with a spatial resolution of 0.5 degrees and a time resolution of 6 h.

4 Comparison of MAX-DOAS results with independent measurements

4.1 Comparison with a sun-photometer, visibility-meter, and in-situ measurements

Comparisons of MAX-DOAS aerosol results with co-located independent measurements are done under three different sky condition categories, including “clear sky with low aerosol load”, “clear sky with high aerosol load”, “cloudy sky” (optically thick clouds are excluded). The sky conditions are characterised based on MAX-DOAS measurements (see section 2.2.4). The comparison results are shown in Fig. 6 with colors to indicate a time of a day.

AODs retrieved by MAX-DOAS measurements are compared with those retrieved from the sun-photometer measurements in Fig. 6a. Because for MAX-DOAS measurements AOD results are skipped for cloudy conditions (and also sun photometer measurements are only available for clear sky), no comparison results for cloudy situations are shown in Fig. 6a. For clear sky observations, better agreement is found for the category “low aerosol” (R of 0.84 and slope of 1.13) than for “high aerosol” (R of 0.71 and slope of 0.65). Probably, the a-priori constraint in the MAX-DOAS profile inversion is the main reason for the underestimation of the AOD under “high aerosol” conditions. Low sensitivity of MAX-DOAS measurements on aerosols located at high altitudes can also play a role. This finding is illustrated in Fig. 8b and discussed in section 4.3. In addition, the sun-photometer measured the air masses in the direction of the sun. The different air mass measured by the two techniques can contribute to the differences of the AOD results. The comparison of the near-surface aerosol extinction between the MAX-DOAS measurements and the visibility-meter is shown in Fig 6b. While very good agreement is found for the category “clear sky with low aerosols” (R of 0.81 and slope of 1.02), much worse correlation is found for “clear sky with high aerosols” (R of 0.32 and slope of 0.14). Even worse agreement is found for the category “cloudy sky” (R of 0.22 and slope of 0.11). The largest underestimation of the MAX-DOAS results compared to the visibility-meter results is found in the morning and when aerosol loads are large. Since the boundary layer height is lower in the morning, larger vertical gradients of aerosols in the layer between 0 and 200m can be expected. The different air mass measured by the MAX-DOAS and the visibility-meter together with strong vertical gradients near the surface might be the reason for the large underestimation of the MAX-DOAS results compared to the visibility-meter results. In addition the effect of clouds on the MAX-DOAS aerosol retrievals are probably the reason for the larger scattering under the cloudy sky conditions compared to cloud-free sky conditions. Note that clouds are not included in the RTM which is used for profile retrievals of aerosols and trace gases.

The near-surface NO$_2$ and SO$_2$ VMRs retrieved from the MAX-DOAS measurements are compared to the in-situ measurements (see Sect 3.1.1) in Fig. 6c and d, respectively. Rather high correlation coefficients are found for both NO$_2$ (R
of 0.9) and \(\text{SO}_2 \) (R of 0.95) for the category “clear sky with low aerosol”. Larger scatter is found for the other two sky conditions partly due to cloud effects on the MAX-DOAS profile inversion. Further, different cloud effects on \text{NO}_2 and \text{SO}_2 comparisons are found. For \text{SO}_2 worse correlation is found under “cloudy sky” conditions than under “clear sky with high aerosols”, while a better correlation is found for \text{NO}_2. Effects of clouds in the profile retrievals of \text{SO}_2 can be expected to be stronger than for \text{NO}_2 due to the fact that \text{SO}_2 can extend to higher altitudes than \text{NO}_2 as shown in Fig. 12. In addition, the photolysis rate of \text{NO}_2 can be expected to be lower under cloudy conditions than under cloud-free sky conditions. Therefore the vertical distributions of \text{NO}_2 in the layer between 0 and 200 m might be smoother under cloudy conditions than under cloud-free sky condition. The smoother vertical distribution is probably the reason for the better agreement of the \text{NO}_2 results between the MAX-DOAS results and in-situ measurements. It is in general also found that the MAX-DOAS results are systematically lower than the in-situ results for \text{NO}_2 and \text{SO}_2 (slopes below unity). This finding is probably related to vertical (especially in the lowest vertical layer between 0 and 200 m) and horizontal inhomogeneity of the species, different air measured by the two techniques, some artefacts of spectral analysis and profile inversion of MAX-DOAS measurements. In addition interference of \text{NO}_3 with \text{NO}_2 in the in-situ measurements could cause overestimation of \text{NO}_2. This might explain the smaller slope of \text{NO}_2 than of \text{SO}_2 in Fig. 6.

The correlation plot of the near-surface HCHO VMRs retrieved from the MAX-DOAS measurements versus those from the in-situ HCHO analyser is shown in Fig. 6e. Note that only one week of in situ data is available for this comparison. And the category “clear sky with low aerosols” did not occur in this week. The averaging values are comparable between the two measurements. However, the slopes of ~0.3 strongly deviate from unity similar with other species.

Note that the visibilitymeter and the in-situ measurements of \text{NO}_2, \text{SO}_2 and HCHO represent air masses close to the instruments, whereas the MAX-DOAS measurements represent averages of pollutants along the effective horizontal light path of ~5 to 10 km in the vertical grid from the surface up to 0.2 km. Therefore different probed air masses can be seen as one important reason for the differences of results.

4.2 Comparisons with Lidar measurements

In this section profiles of aerosol extinction retrieved from the MAX-DOAS measurements are compared with those derived from the Lidar measurements on two mostly cloud-free days. Aerosol loads on 16 May are lower than those on 17 May. The comparison of the time series of both selected days is shown in Fig. 7, also including the AODs derived from the MAX-DOAS and the sun-photometer measurements. Note that no aerosol profiles below 500 m are derived from the Lidar measurements due to missing overlap between the outgoing beam and the FOV of the telescope. In general reasonable agreement of the aerosol profiles from both techniques is found above 500 m. The remaining differences can probably be explained by the fact that different air masses are observed by both techniques, while horizontal inhomogeneities of aerosols and cloud cover could appear. For example, different clouds and aerosols could be observed by both instruments. Note that
the MAX-DOAS telescope was pointed towards the North, while the Lidar measured the atmosphere directly above the station. The sun-photometer measured the air masses in the direction of the sun.

4.3 Comparisons with aircraft measurements

The MAX-DOAS results of vertical profiles of aerosol extinction and NO$_2$ and SO$_2$ VMRs are compared to the aircraft measurements over the station at the time interval of 13:30 to 14:00 BT on 8 and 12:45 to 13:45 BT on 21 May 2016. The individual and averaged values of the aircraft measurements as well as the averaged, minimum, and maximum profiles derived from the MAX-DOAS measurements during the overpass times of the aircraft are shown in Fig. 8 (also including the surface values measured by co-located independent measurements). “Combined profiles” are generated by combining averaged aircraft profiles with averaged surface measurements. Values at altitudes between the lowest aircraft measurements and surface measurements are generated by linear interpolations. Since the limited response of MAX-DOAS profile retrievals to the true profiles, the retrieved profile x' can be represented as the true profile x, smoothed by the \(\text{AK} \) according to the equation: $x' = x_a + \text{AK}(x - x_a)$, where x_a is a-priori profile used in the profile retrievals of MAX-DOAS. To account for the smoothing effect of the MAX-DOAS profile inversion in the comparisons, the \(\text{AKs} \) of the MAX-DOAS profile retrievals are applied to the averaged aircraft profiles, which are treated as the true atmospheric profile x to generate the “smoothed profiles” x'. Additionally, the combined profiles, derived from the averaged aircraft profile and surface data, are considered as the true atmospheric profile x and converted to “smoothed combined profiles” using the \(\text{AK} \) of the MAX-DOAS profile retrievals. The “smoothed profiles” and “smoothed combined profiles” are shown in Fig. 8. In general the “smoothed profiles” of all the species agree better with the MAX-DOAS results than the original aircraft profiles. And the values at the height of 300 m in the “smoothed combined profiles” are often higher than those in the “smoothed profiles” due to contributions of surface values to high altitudes by the smoothing of the \(\text{AKs} \). By comparing the smoothed profiles with the original profiles derived from the aircraft measurements, the smoothing effect of MAX-DOAS retrievals can be evaluated. The smoothing effect is especially strong on 21 May. On that day, the box-shape profiles of aerosols and SO$_2$ below 2 km are ‘reshaped’ to exponentially decreasing profiles with maxima at about 500 m altitude. Generally, pollutants above 1 km are significantly underestimated due to the smoothing effect of MAX-DOAS profile retrievals. Besides errors of the MAX-DOAS profile inversion, the deviations between the MAX-DOAS and aircraft measurements can probably also be attributed to inhomogeneous horizontal distributions of pollutants and their temporal variation during a period of aircraft measurements. The differences between the maximum and minimum profiles from the MAX-DOAS measurements in Fig. 8 indicate the range; the scatter of the original aircraft measurements indicates considerable horizontal gradients within the ~10 km diameter of the spirals. In addition, aircraft results represent in-situ measurements along the spiral route, whereas MAX-DOAS results represent averages of pollutants over an effective light path of ~5 to 10 km. The different air masses measured by the two techniques can be seen as one important reason for the observed differences of the measured results. For NO$_2$, significantly larger values of the aircraft measurements than the MAX-DOAS measurements can be seen on 21 May. Since the same technique as for the ground based in-situ measurements of NO$_2$ (see section 4.1) was used in the aircraft
5 Regional and local transport of pollutants

In this section, effects of regional and local transport of pollutants in the measurement area are discussed based on a case study in section 5.1 and a systematic analysis in section 5.2. Possible cleaning effects of pollutants caused by precipitation are also discussed in Sect 5.1.

5.1 A typical case period

Photos taken by a camera along the line of sight of the MAX-DOAS instrument around noon on the days from 11 to 16 May, 2016 are shown in Fig. 9, indicating different pollution conditions. What happened on these days to bring either blue skies or low visibility (high pollution)? The question will be answered based on regional and local meteorological data and the temporal evolution of the pollutants. The regional transports related to weather system of cold and warm front from the northwest and south could be the dominant driver for the air quality in the region.

All available data on pollutants and meteorological parameters during the period from 11 to 16 May 2016 are shown in Fig. 10. The corresponding plots for the other days of the campaign are shown in Fig. S3 in the supplement. 12 h backward trajectories ending at 100 m and 1 km over the measurement site in intervals of 1 h are also shown in Fig. 10. The trajectories indicate the regions from which regional transport of air mass will originate at the measurement site. Also surface wind directions and wind speeds are provided in Fig. 10, indicating the origin of local (short-range) transport of air.

The mountain-plain topography causes a daily cycle with downslope (northeast winds) and upslope (southeast winds) winds. Hourly accumulated precipitation rates, ambient humidity and temperatures are also shown in Fig. 10. Note that trajectories, local winds, precipitation, humidity and temperatures are shown for the full 24 hours of each day, while visibility, AOD at 360 nm, surface trace gas VMRs and MAX-DOAS results are only shown for daytime (6:00 to 18:00 BT). The results derived from the MAX-DOAS measurements in Fig. 10 include cloud classification results and vertical profiles of aerosols and trace gases (including cloud contaminated results). Note that the profiles shown in Fig. 10 are not screened based on the differences of modelled and measured dSCDs (see Table 2) and clouds, but the black dots in the top of each panel of profiles indicate the confident results which have passed the filters described in Table 2. In addition, daily total numbers of fire points derived from the MODIS satellite observations in the NCP area are shown in Fig. 10, in order to show the potential influence of biomass burning.

The results shown in Fig. 10 indicate that aerosols and trace gases steeply decrease from 11 to 12 May. Figure 9 indicates that also the visibility significantly increased from 11 to 12 May. The backward trajectories in Fig. 10 indicate that the origin of air masses arriving at the measurement site changes from south and south-west to north-west during the night from 11 to 12 May. As shown in Fig. 1 and 2, the area around Wuan about 50 km southwest of the measurement site is...
significantly polluted due to emissions from many iron and coal coking factories. The high amounts of pollutants observed in the morning on 11 May can be attributed to night-time transport of pollutants from the Wuan area based on the dominant south-westerly trajectories before sunrise. In contrast the areas in the other directions, especially in the north-west, are relatively clean. Therefore the cleaning event can be attributed to regional transport of clean air from north-west.

The 14th was a day of steady, stratiform rain associated with a warm front followed by cold front passage from the northwest. Frontal passage on the 14th with southeast (SE) winds ahead of the front with northwest (NW) winds and high pressure behind it. The dominant NW and SE trajectories control the measurement area on the day before and after the weather event on 14 May. Therefore a slightly higher pollution level was observed on 13 May than that on 12 May due to the transports of pollutants from south-east. A clean sky appeared on 15 May due to the transports of clean air mass from north-west. In addition, it should be noted that the heavy rain happened on 14 May could remove the SO$_2$ which is highly soluble in water, but not NO$_2$ which is less soluble. Considering wet deposition could have considerably impacted the pollution conditions. Therefore rainy days (14 May and 4, 5 June) are not considered in the discussion and in the following analysis about the effects of regional transport.

On 16 May transport of pollutants from the south-west direction can be seen after 14:00 BT. However the concentrations of NO$_2$ and SO$_2$ during the transport event on 16 May are much lower than those in the morning of 11 May. The difference might be attributed to the shorter life time of NO$_2$ and SO$_2$ during daytime than nighttime. Therefore we can expect that the gas pollutants, e.g. NO$_2$, SO$_2$ and HONO, can be transported to a farther distance during nighttime than daytime. Thus nighttime regional transport of pollutants from the Wuan area could significantly pollute the entire measurement area.

In summary we conclude that high pollution levels at the measurement site typically occur if air is transported from south. Low pollution is associated with other wind directions, especially if air is transported from the northwest briskly behind a cold front. In addition, Wang et al. (2018) demonstrated that particle formations from gas precursors and growths significantly contribute to aerosols and impact the visibility during the campaign. This effect is combined with transports of air mass because activities of particle formations depend on amounts of gas pollutants.

5.2 Systematic analysis of the origin of pollution during the campaign

5.2.1 Source areas of pollutants contributing via regional transport

In order to reveal the effects of transports from different areas on the variations of pollutants observed by MAX-DOAS, we applied a novel procedure based on the backward trajectories. In the procedure, first a grid map of the region around the measurement site within the latitude and longitude ranges of 4º (~360km) is created with a spatial resolution of 0.1º (~10 km). Then we assign the observed column densities of pollutants at the measurement site to individual map pixels, from which are connected to the measurement site by backward trajectories. This procedure is performed for individual MAX-DOAS measurements throughout the entire campaign, and all values in the individual pixels are averaged to generate
averaged pollution maps. In the reproduced maps, areas with high values of pollution imply the pollution emissions in the areas could be the dominant source of the high pollution observed at the measurement site via transports. The reproduced maps can be compared with satellite images. The consistencies between the reproduced maps and satellite maps imply transports could be the dominant source of pollutants and the dominant cause of the day-to-day variations of pollutants observed at the measurement site. The inconsistencies imply local emissions and local chemical reactions dominate the variability of pollutants. **In order to consider pollution transport at different altitudes, we generated individual maps using trajectories ending at 100m, 300m, 500m, 1km, and 2km above the measurement site. These maps are then averaged to generate the final map. The individual maps using trajectories ending at different altitudes are presented in Fig. S4 in the supplement. The final maps are shown in Fig. 11.** It needs to be noted that similar approaches have been developed and applied to derive regional and global emissions of long-lived atmospheric trace gases and particles (e.g., halocarbons, hydrofluorocarbons, carbon monoxide, and black carbon) from in-situ measurements, e.g., Stohl et al., 2009, Brunner et al., 2012, and Xu et al., 2013. Emissions of the short-life trace gases are hard to determine using the approach due to variability of their lifetime. Therefore the approach is adapted in the study to only qualitatively analyse effects of pollution transports. The lifetime is only implicitly considered in the approach by using different backward time of trajectories for generating maps.

For NO$_2$ and SO$_2$, high values are found in the southwest (near Wuan city), and low values in the northwest of the measurement site. For HCHO and AOD, significantly higher values can be seen in the south and east compared to the northwest of the measurement site. The patterns in the created maps are generally consistent with the satellite maps indicating that air parcels transported from clean or polluted areas considerably contribute to the pollutant levels near the measurement site. Interestingly, the patterns in the reproduced maps change by using different times of the backward trajectories. **Correlation coefficients of the values in the reproduced maps against the satellite maps are also shown in Fig. 11 for the maps created for different times of the backward trajectories. Better agreement between the reproduce maps and the satellite maps is found for shorter backward times (1h) for NO$_2$, SO$_2$, AOD and longer backward times (8 h) for HCHO. This finding is probably related to the typically shorter life times of NO$_2$ and SO$_2$ than some VOCs, a source of secondary HCHO.**

It also indicates that the transport from closer sources is probably more important for NO$_2$ and SO$_2$ than the transport from a farther distance, vice versa for HCHO. For aerosols the dependence is much weaker than for the trace gases indicating comparable contributions of short-range and long-range transport to aerosols. In addition, in order to test effects of transport at different altitudes. The resulting maps for different altitudes, Fig. S4 in the supplement, indicate pollutants at different altitudes are mainly from the same source directions, but those at higher altitudes could be transported from farther areas.

5.2.2 Characteristics of the pollutants under different dominant trajectories

In order to quantify the differences of pollutants under different dominant transport conditions, we sort the measurement days of the whole campaign into three groups based on synoptic situation and the dominant directions of the nighttime trajectories, including southerly, north-westerly, and easterly trajectories. The sorting is also related to synoptic
situations. The southerly and north-westerly trajectories are related to the warm sectors ahead of the front and cold sectors behind the front, respectively. The easterly trajectories are for the site controlled by a maritime tropical air mass. Considering that the life times of the observed trace gases are typically longer during night time than day time (because of lower OH radical concentrations), the measurement data are sorted mainly based on the nighttime trajectories. Nine days (09, 11, 18, 19, 23, 30, 31 May and 7, 9 June), eight days (12, 13, 15, 16, 17, 24, 25, 26 May), and eight days (20, 21, 22, 27 May and 1, 2, 6, 8 June) fall in these three categories with dominant southerly, north-westerly, and easterly trajectories, respectively. Figure S5 in the supplement presents contributions (percentages) of air mass from different locations in the area (± 2° Lat. and ± 2° Lon. about 180 × 180 km²) around the measurement station based on daytime and nighttime trajectories for the three groups of days. Figure S5 indicates that most of the trajectories come from the chosen dominant trajectory directions, but a few of them also come from other directions because of the changes of the wind fields during the day. In general, the dominant directions of the daytime trajectories are similar to those of the corresponding nighttime trajectories.

Averaged diurnal variations of tropospheric columns and near-surface values of aerosols, NO₂, SO₂, HONO, HCHO, and CHOCHO for the three groups of days are shown in Fig. 12 with the corresponding averaged profiles during the morning (6:00-10:00 BT), around noon (11:00-14:00 BT), and in the afternoon (15:00-18:00 BT). At the bottom of Fig. 12 the averaged diurnal variations of the HONO to NO₂ ratio (for both VCDs and near-surface VMRs) and the CHOCHO to HCHO ratio as well as the averaged diurnal variation of the local winds are shown. In order to concisely characterize profile shape, following the procedure in Vlemmix et al. (2015b), the averaged diurnal variations of “characteristic profile heights” H₇5, which is defined as the height below which 75% of the integrated profile resides (75% of the tropospheric column density), is given in Fig. 12. The filters applied to the profile inversion results (see Table 2) could systematically impact results. To avoid drawing a wrong conclusion, the results with and without the filters shown in Fig. 12: in general the effects of the filters are rather small. The results in Fig. 12 indicate that the values of all gas pollutants are the highest for the southerly trajectories, while the aerosol levels are similar for southerly and easterly trajectories. These findings will be discussed in the following in more detail. The lowest values (except for NO₂) are found for north-westerly trajectories. These results are consistent with the findings shown in section 5.1 and 5.2.1. Another interesting finding is the existence of lifted layers of NO₂, SO₂, and aerosols in the morning for the southerly trajectories indicating the accumulation of pollutants at the top of the boundary layer. This might be caused by the combined effects of higher wind speeds and longer lifetimes at higher altitudes. The averaged H₇5 are ~1.2 km for NO₂ and SO₂ and ~1.4 km for aerosols, HONO, HCHO and CHOCHO. Systematically lower values of H₇5 for southerly trajectories (high pollution) than for north-westerly trajectories (low pollution) are found, especially for NO₂, SO₂ and HONO of down to ~0.5 km in the morning for southerly trajectories. This phenomenon is related to accumulations of anthropogenic pollutants in PBL and PBL dynamics.

In order to analyse the influence of local winds, bivariate plots of AOD, and the VCDs of NO₂, SO₂, HONO, HCHO, and CHOCHO VCDs as functions of wind speed and directions are shown in Fig. 13 for the three groups of days, respectively. In general the higher values of aerosols, NO₂, SO₂, and HCHO occur for the southeast wind directions than for other wind directions on the days of north-westerly trajectories. This finding possibly indicates the effect of short-range transport of pollutants emitted in the downtown area of Xingtai (with an iron factory) about 20km southeast of the station.
transports of pollutants emitted in the downtown area of Xingtai (with an iron factory) about 20 km southeast of the station. The effect of short-range transport can be well identified when the air mass over the station is dominated by transport of clean air mass from the northwest. But of course, also the long range transport might have transported the pollutants via the southeast-local winds to the measurement site (although in general low pollution levels are found for the north-westerly trajectories, see Fig. 12). The dependences of the pollutants on local winds are not distinct under the two other groups of dominant trajectories. This finding implies two aspects: 1) the Xingtai emissions are not comparable to those from other industrial areas, e.g. near Wuan city; 2) in case that regional transport of pollutants from the south leads to a large-scale pollution in the measurement area, high values of pollutants can be observed no matter where local winds come from.

Different characteristics are found for the different species in Fig. 12 and 13 and are discussed in the following:

(1) NO₂ and SO₂

Similar patterns of diurnal variations of NO₂ and SO₂ are found in Fig. 12 and 13 and indicate that both species have similar sources and sinks. The increase of NO₂ and SO₂ before 10:00 BT for days with southerly trajectories (Fig. 12b and c) can probably be attributed to the systematic change of westerly local winds (from the mountain area) to south-easterly winds between 6:00 to 10:00 BT (see Fig. 12I). The same effect could cause the observed high NO₂ and SO₂ values under east-southerly wind conditions with a wind speed smaller than 5 m/s, because this wind field frequently occurred around 9:00 BT (see Fig. 12I) when NO₂ and SO₂ levels are high. The decrease of NO₂ and SO₂ after around 10:00 BT on the days with the southerly and easterly trajectories (Fig. 12b and c) can be probably attributed to photochemical deposition and dispersion. Dispersion is expected to become more effective when the local wind speeds increase in the afternoon (see Fig. 12I).

(2) HONO

For days with dominant southerly trajectories, high values of HONO were observed, especially in the morning (Fig. 12d). These enhancements are consistent with high levels of NO₂ and SO₂, indicating that HONO could have been transported during the night because of the absence of photolysis. Under the southerly trajectories, HONO sharply decrease in the morning and reach the detection limit of about 0.1 ppb near the surface around noon due to its fast photolysis. The photolysis-controlled diurnal variations of HONO also impact the plot of the dependence of HONO on local winds (Fig. 13d). There we can see peak values for light westerly winds. This finding can probably be attributed to the systematically dominant westerly wind in the early morning when HONO values are high. The diurnal variations of the ratios of HONO and NO₂ for the three groups of dominant trajectories are also shown in Fig. 12g. Higher HONO / NO₂ ratios of up to 6% were observed in the early morning, especially for southerly trajectories. This finding is consistent with the results shown in Fig. 5 and could be attributed to the faster deposit of HONO than NO₂. In addition, for the easterly trajectories, HONO values are higher than for the north-westerly trajectories. This finding is due to high daytime HONO values observed between 6 to 8 June, which are sorted into the group of easterly trajectories. The phenomenon is probably related to a special daytime source of HONO.

(3) HCHO and CHOCHO
Significantly higher HCHO and CHOCHO values for southerly trajectories than for the other trajectories are found in Fig. 12e and f indicating that large proportions of HCHO and CHOCHO sources are related to the transport of anthropogenic emissions from the southwest industrial area. Because of the short life time of HCHO and CHOCHO, expected to be transported and oxidised to HCHO and CHOCHO in the measurement area. In addition, regional transport of HCHO and CHOCHO during night-time could still be possible and explain the high values of HCHO and CHOCHO in the morning. The oxidation of VOCs to HCHO and CHOCHO is probably the dominant source, because the peak values of HCHO and CHOCHO are observed in the late morning and around noon. Correlation coefficients of the near-surface HCHO and CHOCHO VMR with the O₃ VMR (measured by an in-situ O₃ analyser) are about 0.6 around noon, also indicating a significant contribution of photo-chemical destruction of VOCs to HCHO and CHOCHO abundances. Moderately high values of HCHO and CHOCHO are found for easterly trajectories indicating that VOC levels in the east area should be considerably higher than in the northwest area. Consistently, the HCHO map derived from the OMI observations in Fig. 2 shows low HCHO values only in the northwest area and comparably high values in all the other areas. Biogenic emissions of VOCs, e.g. isoprene, could also impact the observed HCHO and CHOCHO in May and June. However, the contributions are not comparable to the anthropogenic sources, because of the low HCHO and CHOCHO observed for north-westerly trajectories. A large forest area is located in the northwest of the measurement area with a distance of about 30 km. The averaged diurnal variations of the ratio CHOCHO/HCHO in Fig. 12h show larger values for southerly trajectories than for other trajectories, especially in the morning. This could be due to different precursor VOCs and different reaction rates regarding the formation of CHOCHO and HCHO. Higher CHOCHO/HCHO ratios are also observed in a rural area near Guangzhou city in Southern China (Li et al., 2013). Moreover, burning events of residual farm plants could also have contributed to the observed high HCHO and CHOCHO values for southerly and easterly trajectories. This finding will be discussed in more detail in sect 5.3.

(3) Aerosols

Low values of aerosols were observed only for north-westerly trajectories in Fig. 12a. The phenomenon is similar for HCHO and CHOCHO and also consistent with the similar patterns in the satellite maps of AOD and HCHO shown in Fig. 2. Peak values of aerosols at around 10:00 BT for southerly trajectories are probably due to photochemical formations of secondary aerosols and effects of systematic variations of local winds (as for NO₂ and SO₂). The profiles of aerosol extinction shown in Fig. 12a indicate that the lifted layers were frequently observed for southerly and easterly trajectories. The lifted layers could indicate the accumulation and transport of aerosols at high altitudes. In addition burning events of residuals of farm plants could also contribute to aerosols in the measurement area through regional transports. The sources include primary aerosols and secondary aerosols formed in the plume during transports. The effects of burning events will be discussed in more detail in Sect 5.3.

In general regional transport, especially during night time, is the dominant factor which determines the amounts of all pollutants in the measurement area. Local winds and photo-chemistries play considerable roles for the corresponding
diurnal variations. Wang et al., 2018 demonstrated the same conclusion about aerosols on the significant effect of regional transport based on aircraft measurements operated in the same campaign region and period.

5.3 Effect of agricultural burning

There are extensive farmlands in the NCP region, and farmers normally burn residuals of plants after harvest, especially wheat straw in May and June. Burning events during the measurement period are identified from the Fire Information for Resource Management System (FIRMS) based on MODIS satellite observations (https://earthdata.nasa.gov/earth-observation-data/near-real-time/citation#ed-firms-citation). The daily total numbers of fire points in the NCP region during the campaign, Fig. 14a shows frequent burning events occurred on 10, 15, 19, 24, 29 May and 4, 9 June. A Map of all observed fires during the entire measurement period (Fig. 14b) indicates that burning events mostly appeared in the east and south of the measurement site. Burning impacts air quality on days with southerly and easterly trajectories.

Indeed, high values of HCHO, CHOCHO, and aerosols can be seen in Fig. 5 on most days with high numbers of burning events and also one or two days after the events. In contrast, on 15 and 24 May, when the trajectories originated mainly from north-westerly directions, no enhanced levels of HCHO, CHOCHO and aerosols are found. Therefore we can expect that VOCs and aerosols emitted from the burning plants were transported to the measurement area and considerably impacted the abundances of HCHO, CHOCHO, and aerosols (aerosols might also be additionally formed from the photochemical degradation of the VOCs) for southerly and easterly trajectories. VOCs and aerosols emitted from burning events could still impact the measurement area in two days after the events because of their long atmospheric lifetimes. Here it is important to note that although NOx is probably also emitted from the biomass burning events, it might be mostly destroyed during the transport to the measurement site because of its short life time.

One interesting example is found on 6 June for dominant south-easterly trajectories. Peak values of HCHO, CHOCHO, aerosols, and ozone are found in the afternoon on 6 June (see Fig. 5 and Fig. S3 in the supplement). However the NO2 and SO2 values are quite low. The true colour images of the area observed by MODIS from 4 to 6 June are shown in Fig. 14c indicating that the whole NCP region is partially cloudy and covered by dense haze with an AOD of up to 2 at 550 nm, but almost no fire points are identified on 6 June. The AOD is derived from the MODIS aerosol product supplied by NASA (http://ladsweb. nascom. nasa.gov/data/search.html). Many fire points are observed on 4 June, when the aerosol load is low. Although no fire points can be seen on 5 June, this doesn’t necessarily indicate there are no fires below the clouds because clouds shield satellite observations. Therefore VOCs emitted from the burning events on 4 June (probably also on 5 June) could strongly contribute to the peak values of HCHO, CHOCHO, aerosols on 6 June through photo-chemical reactions. Effective photo-chemical reactions are expected on 6 June due to the cloud free conditions and are also implied by the high ozone values in the afternoon. Also primary aerosols and secondary nitrate might contribute to the observed high aerosols on 6 June. Consistently, the collocated measurements of the aerosol composition reported in Zhang et al. (2018) demonstrated that the high amounts of aerosols are dominated by organic aerosols (about 40 µg cm⁻³ on 6 June), and also have high
sulphate and nitrate fractions (about 20 and 15 \(\mu \text{g cm}^{-3} \)). The observed phenomenon of relatively high values of HCHO, CHOCHO and aerosols, but low values of NO\(_2\) and SO\(_2\) for easterly trajectories could thus at least partly be due to effects of burning events.

5.4 Rough estimates of contributions of regional transports

The local emissions (including the contributions of local transport from the downtown area of Xingtai city) can be treated as the dominant sources of pollutants for situations with transport from the north-west (the group of days with north-westerly trajectories). The contributions of regional transport to the observed pollutants for the two other groups of days can be roughly estimated based on the relative differences of the pollutant values compared to those for north-westerly trajectories. Tropospheric columns are used for the estimation because regional transport often occurs not directly above the surface. According to this simple calculation, for the days with mainly southerly trajectories, about 47\%, 45\%, 47\%, 34\%, 46\% and 65\% of the observed amounts of NO\(_2\), SO\(_2\), HONO, HCHO, CHOCHO, and aerosols, can be assigned to the effect of regional transport, respectively. In summary, we find that the total contribution of regional transport to the total amounts of pollutants in the measurement area during the entire measurement period is about 29\%, 25\%, 27\%, 22\%, 28\%, and 54\% for NO\(_2\), SO\(_2\), HONO, HCHO, CHOCHO, and aerosols, respectively. It needs to be clarified that these results are only rough estimates. The uncertainties largely depend on the uncertainties of the trajectories, variations of the local emissions and chemical reactions. The error budget cannot be well constrained at this stage.

6. Conclusions

Vertical profiles, near-surface, and column densities of aerosol extinction, NO\(_2\), SO\(_2\), HONO, HCHO, and CHOCHO were retrieved from MAX-DOAS measurements during the period from 8 May to 10 June 2016, at a rural site located on the central-west edge of the NCP. The mean value of near-surface aerosol extinction was \(~0.43\ \text{km}^{-1}\), with high levels of gaseous pollutants NO\(_2\) (7.8 ppb), SO\(_2\) (17.1 ppb), HONO (0.22 ppb), HCHO (3.3 ppb), and CHOCHO (0.08 ppb). The mean value of AOD at 360 nm was \(~0.65\), with high VCDs of gaseous pollutants NO\(_2\) (15.6 \(\times 10^{15} \) molecules cm\(^{-2}\)), SO\(_2\) (31.8 \(\times 10^{15} \) molecules cm\(^{-2}\)), HONO (0.22 \(\times 10^{15} \) molecules cm\(^{-2}\)), and HCHO (13.8 \(\times 10^{15} \) molecules cm\(^{-2}\)). The HONO/NO\(_2\) ratios averaged 1.9\% to 2.9\% with a peak of about 5\% in the morning on days with transport of air from polluted south or southwest areas. CHOCHO/HCHO ratios averaged between 2\% to 2.5\% with a peak of about 3.5\% in the morning on days with transport of air from the polluted areas. Significant day-to-day variations were found for all species mainly due to regional transport of pollutants and changes in synoptic patterns. Agricultural burning events impacted considerably the day-to-day variations of HCHO, CHOCHO, and aerosols. Maximum values systematically occurred in the morning for NO\(_2\), SO\(_2\), and HONO, but around noon for aerosols, HCHO, and CHOCHO. The diurnal variations were dominated by characteristic photochemistry, upslope/downslope circulation, and PBL dynamics. Aerosols, HCHO, and CHOCHO profiles with H\(_2\) of \(~1.4\ \text{km}\) typically extended to higher altitudes than NO\(_2\), SO\(_2\), and HONO with H\(_2\) as low as
0.5 km under polluted condition, probably due to secondary formation. Lifted layers were systematically observed for all species (except HONO), indicating accumulation, secondary formation, or long-range transport of the pollutants at high altitudes. At high altitudes, pollutants have longer lifetimes and winds are stronger, leading to large-scale adverse impacts.

AOD (R of 0.84, slope of 1.13) and near-surface aerosol extinction (R of 0.81, slope of 1.02) derived from MAX-DOAS measurements were consistent with sun-photometer measurements and visibility-meter measurements under cloud free conditions with low aerosol loads. Near-surface VMRs of NO₂, SO₂, and HCHO were well correlated with in-situ measurements with R of 0.9, 0.95, and 0.6, respectively. However, MAX-DOAS results are considerably smaller than the in-situ results mainly due to vertical and horizontal inhomogeneities of trace gases. In general, the agreement of all species between MAX-DOAS and other measurements weakens under cloudy and high aerosol conditions. We further compare profiles of aerosol extinction retrieved from the MAX-DOAS with the Lidar measurements on two days of simultaneous measurements. Reasonable consistency, but also systematic differences are found, which were mainly caused by differences in sensitivity as a function of altitude and substantial horizontal gradients of aerosols. Also cloud contamination of MAX-DOAS results is probable for some measurements. Vertical profiles of aerosol extinction, NO₂ and SO₂ VMRs retrieved from MAX-DOAS measurements are also compared with the aircraft measurements on two days, and generally indicate reasonable consistency, after the MAX-DOAS averaging kernels are applied to the aircraft data and vertical profiles are extrapolated to observed surface values. The smoothing effect of MAX-DOAS profile retrievals can cause a reshaping of box-profiles below 2 km towards exponentially decreasing profiles. This effect can cause MAX-DOAS measurements significantly underestimate pollutants located at altitudes above 1 km.

We analysed the effects of regional and local transport of pollutants based on case studies and a systematic analysis using the MAX-DOAS measurements, backward trajectories, synoptic situations, and local winds. In general, the regional transport, especially during nighttime, is found to be the dominant factor in local air quality. For surface values, local winds, photochemistry, and PBL dynamics all exert a strong influence on the diurnal variation of the pollutants. The regional transport of gas pollutants plays a more significant role during night time than daytime due to longer life times at night. We document regular episodes of regional transport of clean air masses from the north-west (often associated with a cold front), and polluted air masses from the southern industrialized areas around Wuan city with many steel and coal coking facilities. Burning events of crop residuals in the NCP region can considerably impact HCHO, CHOCHO, and aerosols. Contributions of regional transport to the total amounts of pollutants in the measurement area during the entire measurement period were 20% to 30% for trace gases, and about 50% for aerosols.

Author contribution: Yang Wang¹ analysed vertical profiles and regional transports of pollutants by combing different data sets and trajectory simulations, and prepared the manuscript with contributions from all co-authors. Yang Wang¹, Steffen Dörner, Sebastian Donner, and Thomas Wagner designed, operated and analysed the MAX-DOAS measurements. Sebastian Böhneke contributed to the analysis of regional transports in Sect 5.2.1. Yang Wang¹ contributed to the operation of MAX-DOAS measurements. Hao He, Xinrong Ren, and Russell R. Dickerson operated and analysed the aircraft measurements.
Zipeng Dong, Dong Liu, Zhenzhu Wang, and Jiwei Xu operated and analysed Lidar measurements. Zhengqiang Li, Donghui Li, and Hua Xu operated and analysed sun-photometer measurements. Yuying Wang operated in-situ measurements. Isabelle De Smedt and Nicolas Theys contributed the OMI satellite data of HCHO and SO$_2$. Zhanqing Li designed and organized the A2BC campaign.

Acknowledgements: We thank the Institute of Remote Sensing / Institute of Environmental Physics, University of Bremen, Bremen, Germany for their freely accessible radiative transfer model SCIATRAN. We thank Belgian Institute for Space Aeronomy (BIRA-IASB), Brussels, Belgium for their freely accessible ODOAS software and generating the mean map of SO$_2$ and HCHO tropospheric VCDs derived from OMI observations over eastern China. We thank Royal Netherlands Meteorological Institute for their freely accessible archive of OMI tropospheric NO$_2$ data. We thank Steffen Beirle in MAX Planck institute for Chemistry for his help on review the paper innerly. We thank Prof. Tong Zhu and his group in Peking University for their sharing an ECOTECH instrument for the campaign. The US National Science Foundation (Grant #1558259) supported ARIAs.

References

10 Wang, F., Li, Z., Ren, X., Jiang, Q., He, H., Dickerson, R.R., Dong, X. and Lv, F.: Vertical distributions of aerosol optical properties during the spring 2016 ARIAs airborne campaign in the North China Plain. Atmospheric Chemistry and Physics, 18(12), 8995-9010, 2018

Figures

Figure 1: Topography maps (http://en-au.topographic-map.com/places/China-8955742/) and satellite images (Google Map) of the region around the measurement station (37.18° N, 114.37° E), marked in subplots (a) and (b) by black dots. (a) Topography map in longitude and latitude ranges of ±4° (about ±360 km) around the measurement station; colours indicate the terrain height; a map indicating the location of the selected region in China is shown in the top-left corner. (b) Topography map of the area marked by the red square in (a); the blue and red squares indicate the areas of Xingtai and Wuan; the blue (NW wind) and red (SE wind) arrows represent the dominant wind directions before and after 10:00 BT (GMT +8), respectively. (c) Satellite image of the area around Wuan marked by the red square in (b); an industrial area (with many stacks of several iron and coal coking facilities) and the downtown area of Wuan are located in the northwest and southeast parts of the image. (d) Zoomed satellite image of one iron and coal coking units marked by the red square in (c).
Figure 2: Maps of average tropospheric VCDs of (a) NO$_2$ from DOMINO v2 (Boersma et al., 2007 and 2011), (b) SO$_2$ (Theys et al., 2015) and (c) HCHO (De Smedt et al., 2008, 2012 and 2015) from BIRA, derived from OMI observations. Average AODs derived from the MODIS AQUA instrument is shown in (d). The maps show the same area over Eastern China as shown in Fig. 1a. Data are averaged for
May and June of all years from 2012 to 2016. The black dots indicate the measurement station. The grey squares mark the same area as shown in Fig. 1b.

Figure 3: Examples of typical DOAS fits of NO$_2$, O$_4$, SO$_2$, HCHO, and HONO around noon on 17 May, and CHOCHO on 27 May 2016. The black and red curves indicate the fitted absorption structures and the derived absorption structures from the measured spectra, respectively. The fitted dSCDs (and fit errors in brackets) are given in the individual subfigures. Note that the CHOCHO fit shown in the figure is for the largest CHOCHO dSCD retrieved around noon during the whole campaign period.
Figure 4: Examples of results derived from MAX-DOAS measurements on 11 May 2016 (with high pollution levels). (a) Cloud classification results. (b) Time series of vertical profiles of aerosol extinction (including cloud contaminated results), NO\textsubscript{2}, SO\textsubscript{2}, HONO, HCHO, and CHOCHO VMRs. The black rhombuses (diamonds) plotted above individual subfigures mark ‘high confidence profiles’ (results with deviations between measured and simulated dSCDs smaller than the individual thresholds, see Table 2). (c) Averaging Kernels (AK) of profile retrievals around noon with information on the degree of freedom (ds). (d) a-priori profiles and retrieved profiles (with corresponding VCDs) around noon.
Figure 5: Daily averaged (for three different periods of the day) near-surface aerosol extinction and trace gas VMRs (left), and AODs and trace gas VCDs (right) for the whole campaign. The blue, red, and green colours indicate results for the time periods of 6h-10h, 10h-14h, and 14h-18h, respectively. The ratios of HONO versus NO2 and CHOCHO versus HCHO are also given for the near-surface VMRs (left) and VCDs (right). The colour coded numbers in the brackets on the top of each subfigure give the averaged values for the different daily periods.
Figure 6: Correlation plots of AODs (a), near-surface aerosol extinction (b), and VMRs of NO$_2$ (c), SO$_2$ (d), and HCHO (e) derived from MAX-DOAS measurements versus results from other techniques. Mean values and standard deviations of the compared values are marked by the blue colour and given before and after ‘±’ in individual subfigures. AODs are taken from the Level 1.5 product (cloud-screened and quality controlled) derived from sun photometer measurements. Note that the Level 2.0 (quality-assured) AOD product is not (yet) available. Near-surface aerosol extinction is derived from visibility meter measurements. Surface VMRs of NO$_2$, SO$_2$, and HCHO are derived from the in-situ instrument (see section 3). The data of the sunphotometer, visibility meter, and in-situ measurements of NO$_2$ and SO$_2$ during the whole campaign period from 8 May to 10 June 2016 are included in the comparisons. The data of in-situ measurements of HCHO during the period from 18 to 23 May are included in the comparisons due to the short-time operations of the in-situ instrument. All independent data are averaged over the individual time intervals of the MAX-DOAS measurements.
Figure 7: Vertical profiles of aerosol extinction derived from MAX-DOAS and Lidar measurements on 16 (a) and 17 (b) May 2016. Differences of aerosol extinction results between from MAX-DOAS and Lidar measurements are also given in the bottom of both subfigures. Note that color bar in the plots of differences is different from that in the plots of vertical profiles. Cloud classification results are shown at the top of both subfigures. AODs (black) are derived from the MAX-DOAS measurements and from the sun photometer. The red and blue lines shown in the second row are the level 1 (unscreened) and level 1.5 (cloud-screened and quality controlled) products, respectively. The black line in the third panel marks the lower limit (500m) of the LIDAR profiles.

(a) 8 May, 2016

(b) 21 May, 2016

Figure 8: Vertical profiles of aerosol extinction, and VMRs of NO$_2$ and SO$_2$ derived from the MAX-DOAS measurements compared with corresponding aircraft measurements on 8 (a) and 21 (b) May 2016. The black dots represent the original aircraft measurements. The light and dark blue curves show the averaged and smoothed (with the averaging kernels) aircraft data. The red, pink and brown lines indicate the averaged, maximum, and minimum profiles derived from the MAX-DOAS measurements during the overpass time of the aircraft measurements. The near-surface values from the visibility meter and in situ trace gas measurements are indicated by the green dots. The yellow curves show the averaged and smoothed combined profiles from aircraft and surface measurements.
Figure 9: Photos taken by a camera along the line of sight of the MAX-DOAS instrument in the period from 11 to 16 May (right), 2016.
Figure 10: Results from MAX-DOAS measurements, trajectories, meteorological data, and independent measurements of pollutants during the period from 11-16 May 2016. The figures surrounded by the red and blue dashed boxes show the values for 24-hr periods (red) or 12-hr (blue) daylight periods (6h-18h). The total fire points in the NCP area are derived from MODIS observations and the hourly accumulated precipitation was measured at the station (third row). In the fifth row hourly averaged local winds are given by arrows moving with the wind. The colour bars of the MAX-DOAS profiles are given in the bottom. The black rhombuses plotted above the individual subfigures of the time series of MAX-DOAS profiles mark most reliable (thresholds are given in Table 2).
Figure 11: Average reproduced maps (inside the red dashed square) of column densities of NO\textsubscript{2} (a), SO\textsubscript{2} (b), HCHO (c), and AOD (d) based on MAX-DOAS measurements and back-trajectories with different backward times (for details see text), and comparison with maps of the pollutants derived from OMI and MODIS satellite observations. Different times of the backward trajectories are used for the generation of the maps. The correlation coefficients of the pollutants in the reproduced maps against the satellite map are given in individual subfigures. Note that 1° latitude and longitude are about 90 km.
Figure 12: Averaged MAX-DOAS results for the three groups of days with different dominant directions of nighttime trajectories (different colors). In the left two columns of subfigures (a) to (f), the diurnal variation of AOD, trace gas VCDs, near-surface aerosol extinction, and near-surface trace gas VMRs are shown (circles and stars indicate the filtered and unfiltered results based on the deviations of measured and modelled dSCD in the profile inversion). In the middle column of subfigures, the diurnal variations of H_{75} of retrieved profiles are shown. In the right two columns of subfigures the corresponding averaged profiles for three periods (different line styles) are shown. The subfigures (g, h, i) show the averaged ratios of HONO to NO$_2$ VCD and near-surface VMRs, the averaged ratios of CHOCHO to HCHO VCDs and near-surface VMRs, and the averaged diurnal variation of the local wind fields, respectively. In general, pollutant levels are the highest with winds out of the south and east where major sources reside and lowest with winds out of the north or northwest generally behind cold fronts. HONO/NO$_2$ ratios are the highest for winds from the east, where the agricultural activity is and CHOCHO/HCHO ratios are the highest for back trajectories out of the south, indicating the dominance of petrochemical activity there.
Figure 13: Bivariate figures of AOD (a) and VCD of NO$_2$ (b), SO$_2$ (c), HONO (d), HCHO (e), and CHOCHO (f) as function of wind speed and direction for the three groups of days with the different dominant directions of nighttime trajectories. The colours show values of AOD and VCD.

(a) daily total numbers of fire counts in the NCP region. (b) Distributions of fire points in the 2° × 2° (180 km2) area around the measurement site. (c) Images of the NCP region derived from MODIS observations; blue circles and red dots represent the measurement station and fire points, respectively.
Table 1 Settings used for the O$_3$, NO$_2$, SO$_2$, HCHO, and CHOCHO DOAS analyses. Note that the settings for O$_3$, NO$_2$, SO$_2$, HCHO follow the suggestion in Wang et al., 2017a. The settings for HONO and CHOCHO follow the suggestions in Wang et al., 2017c and the MAD-CAT campaign (Ortega et al., 2015), respectively.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Source</th>
<th>O$_3$</th>
<th>NO$_2$</th>
<th>SO$_2$</th>
<th>HCHO</th>
<th>HONO</th>
<th>CHOCHO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fitting spectral</td>
<td>Source</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>range</td>
<td>NO$_2$; Vandaele et al. (1998), 220 K, 298 K</td>
<td>×</td>
<td>×</td>
<td>(only 298 K)</td>
<td>×</td>
<td>(1017 molecules/cm2); Taylor terms with respect to σ_{NO_2} at 298 K: $\lambda \sigma_{NO_2} \sigma_{NO_2}^2$</td>
<td>× I0-corrected (1017 molecules cm$^{-2}$); Taylor terms with respect to σ_{NO_2} at 298 K: $\lambda \sigma_{NO_2} \sigma_{NO_2}^2$</td>
</tr>
<tr>
<td>Cross section</td>
<td>NO$_2$; Bogumil et al., (2003), 223 K and 243 K</td>
<td>×(only 223 K)</td>
<td>×(only 223 K)</td>
<td>×</td>
<td>×(only 223 K)</td>
<td>× I0-corrected (1018 molecules cm$^{-2}$)</td>
<td>×(only 223 K)</td>
</tr>
<tr>
<td></td>
<td>O$_3$; Thalman and Volkamer (2013), 293 K</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td></td>
<td>SO$_2$; Bogumil et al. (2003), 293 K</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td></td>
<td>HCHO; Meller and Moortgat (2000), 293 K</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td></td>
<td>HONO; Stutz et al. (2000), 296 K</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td></td>
<td>H$_2$O (vapor); Polyansky et al. (2018)</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>Ring</td>
<td>Ring spectrum calculated from DOAS (Kraus, 2006) and additional Ring multiplied by λ^{-4} (Wagner et al., 2009)</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>Polynomial degree</td>
<td>3</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Intensity offset</td>
<td>constant</td>
<td>constant</td>
<td>constant</td>
<td>polynomial of order 1 (corresponding to 2 coefficients)</td>
<td>polynomial of order 1 (corresponding to 2 coefficients)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>--</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>* solar I_0 correction, Aliwell et al., 2002.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Pukšte et al. 2010.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2 Different filters and corresponding thresholds applied to the MAX-DOAS results. The thresholds are experientially determined to exclude most of outliers. Also the corresponding fractions of remaining data are indicated. (SZA: solar zenith angle; RIO: relative intensity offset in the DOAS fit; RMS: root mean square of the residual in the DOAS fit)

<table>
<thead>
<tr>
<th>Sky condition</th>
<th>Aerosols (O_3)</th>
<th>NO$_2$</th>
<th>SO$_2$</th>
<th>HCHO</th>
<th>HONO</th>
<th>CHOCHO</th>
</tr>
</thead>
<tbody>
<tr>
<td>excluding all cloudy conditions</td>
<td></td>
<td>< 85°</td>
<td>< 70°</td>
<td>< 85°</td>
<td>< 85°</td>
<td>< 85°</td>
</tr>
<tr>
<td>excluding data under thick cloudy conditions</td>
<td></td>
<td>< ±1%</td>
<td>< ±1%</td>
<td>< ±1%</td>
<td>< ±1%</td>
<td>< ±1%</td>
</tr>
<tr>
<td>Remaining percentage</td>
<td>remaining</td>
<td>0.002</td>
<td>0.002</td>
<td>0.01</td>
<td>0.002</td>
<td>0.0012</td>
</tr>
<tr>
<td>AOD and profiles: 33%</td>
<td>62%</td>
<td>58%</td>
<td>68%</td>
<td>57%</td>
<td>56%</td>
<td></td>
</tr>
</tbody>
</table>