Supplementary Information Verification of anthropogenic VOC emission inventory through ambient measurements and satellite retrievals

Jing Li^{1,2}, Yufang Hao¹, Maimaiti Simayi¹, Yuqi Shi¹, Ziyan Xi¹, and Shaodong Xie¹

¹College of Environmental Sciences and Engineering, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Peking University, Beijing, 100871, PR China ²Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, 02215, USA

Correspondence to: Shaodong Xie (xiesd@pku.edu.cn)

Level1	Level 2	Level 3	Level 4	EF	Unit	Reference	
Biomass burning	Biofuel	Crop residue		8.27	g kg ⁻¹	Zhang et al., 2013	
ourning		Firewood		3.13	g kg ⁻¹	Zhang et al., 2013	
	Crop	Crop residue	Maize	6.05	g kg ⁻¹	Zhang et al., 2013	
	residue burning in fields						
			Wheat	7.48	g kg ⁻¹	Li et al., 2007	
			Rice	10.4	g kg ⁻¹	Li et al., 2007	
			Others	8.45	g kg ⁻¹	Li et al., 2016	
Stationa	Industrial	Coal	Manufacturing	0.39	g kg ⁻¹ fuel	PKU,2001	
ry fossil	and .		Catering	0.5	g kg ⁻¹ fuel	PKU,2001	
fuel	commerci	Fuel oil		0.04	g kg ⁻¹ fuel	AP42	
ion	an	Coal gas		0.00044	g m ⁻³ fuel	Bo et al., 2008	
1011	on	Liquefied		108	g m ⁻³ fuel	AP42	
		petroleum gas Natural gas		0.088	g m ⁻³ fuel	AP42	
	Thermal	Coal		0.15	g kg ⁻¹ fuel	PKU.2001	
	power	Liquefied		108	g m ⁻³ fuel	AP42	
	generation	petroleum gas			C		
		Natural gas		0.088	g m ⁻³ fuel	AP42	
		Coal		0.39	g kg-1 fuel	PKU,2001	
		Liquefied petroleum gas		108	g m ⁻³ fuel	AP42	
		Natural gas		0.088	g m ⁻³ fuel	AP42	
	Resident	Coal	Urban/Rural	0.67	g kg ⁻¹ fuel	Zhang et al., 2000	
	consumpti	Coal gas	Urban/Rural	0.00044	g m ⁻³ fuel	Bo et al., 2008	
	on	Liquefied	Urban/Rural	96	g m ⁻³ fuel	AP42	
		petroleum gas Natural gas	Urban/Rural	0.13	g m ⁻³ fuel	Tsai et al.,2003	
Transpo rtation	On-road vehicles		C	OPERT 4			
	Off-road	Aircrafts		1.95	kg LTO ⁻¹	Bo et al., 2008	
	transportat	Trains	Diesel	6.14	g kg ⁻¹	Bo et al., 2008	
	ion	Marine vessels	Diesel	8.0	g kg ⁻¹	EEA,2013	
		Agricultural machinery	Gasoline/Diesel	91.5/18. 3	g kg ⁻¹	EEA,2013	
		Construction	Diesel	18.3	g kg ⁻¹	EEA,2013	
Solvent	Printing	Offset printing	Thermosetting/	100/10	g kg ⁻¹	DB11/1201-2015	
utilizati	U	ink	Cold setting		00		
on		Flexo ink	wheel Solvent-based ink/ Water-	350/100	g kg ⁻¹	DB11/1201-2015	
		Gravure	based ink	300	g kg ⁻¹	DB11/1201-2015	
	Asphalt	/Letterpress ink Asphalt		26	g kg ⁻¹	AP42	
	Surface	Building	Interior wall	100/30	g l ⁻¹	GB18582-2008	

Table S1. Source classification and EFs of anthropogenic VOC sources.

с	coating	painting	coating (solvent- based/water- based) Exterior wall coating (solvent- based/water- based)	430/40	g l ⁻¹	GB18582-2008
		Furniture manufacturing Vehicle coating and		0.4	g piece-1	AP42
			Car	4	kg vehicle ⁻	Local Standard
		maintenance	Truck	10	kg vehicle ⁻	Local Standard
			Buses	60	kg vehicle ⁻	Local Standard
			Motorcycles	1	kg vehicle⁻	AP42
		Vehicle repair	Bicycles	0.3 0.46	kg bike ⁻¹ g yr ⁻ ¹ capita ⁻¹	AP42 EEA,2013
		Machinery coating	Machine tool equipment/ Agricultural machine/Comm ercial machine	0.4	kg piece ⁻¹	AP42
		Cans manufacturing		1	g piece ⁻¹	This study
		electronics	Enameled wire	11	g kg ⁻¹	This study
		manufacturing	Electric cable	15.46	g kg ⁻¹	AP42
		coating	Circuit board	0.1	kg m ³	Oiu et al., 2014
			Mobile phone	0.01	g piece ⁻¹	Taiwan. 2009
		Domestic appliance coating		0.4	kg piece ⁻¹	AP42
		Office Supply coating	Typewriter/ Printer/Others	0.2	kg piece-1	AP42
F	Pesticide atilization	Insecticides	Dichlorvos/Om ethoate/Cyperm ethrin	567	g kg ⁻¹	AP42
		Herbicides	Paraquat/ Glyphosate	316	g kg ⁻¹	AP42
		Fungicides	Carbendazim/ Kitazine	475	g kg ⁻¹	AP42
		Other pesticides		470	g kg ⁻¹	AP42
F 1 c	Residents iving consumpti	Dry cleaning agent	Trichloroethyle ne/ettrachloroet hylene	1000	g kg ⁻¹	AP42
C	on	Cooking	-	0.0035	kg yr ⁻ ¹capita ⁻¹	AP42
		Commercial/Co nsumer Solvent	Aerosol products	0.8	kg yr ⁻ ¹ capita ⁻¹	AP42
		Use	Household products	0.43	kg yr ⁻ ¹ capita ⁻¹	AP42

			Toiletries	0.16	kg yr	AP42
			N	0.07	¹ capita ⁻¹	4.0.42
			adhesiyes	0.07	kg yr	AP42
			Space	0.05	kø vr	AP42
			deodorant	0100	¹ capita ⁻¹	· · · · -
			Moth control	0.04	kg yr	AP42
			Laundry	0.01	kg yr	AP42
			detergent		¹ capita ⁻¹	
Industri	Petroleum	Crude oil and	Crude oil	0.2	g kg ⁻¹	AP42
al processe	& related industry	natural gas extraction	natural gas	0.1	g m ⁻³	EEA,2013
S	2	Raw chemicals	Ethylene	0.6	g kg ⁻¹	EEA,2013
		manufacturing	Propylene	0.45	g kg ⁻¹	EEA,2013
			Benzene	0.55	g kg-1	Taiwan,2009
			Ethylbenzene	0.1	g kg ⁻¹	EEA,2013
			Butadiene	5.03	g kg ⁻¹	AP42
			Styrene	1	g kg ⁻¹	EEA,2013
		Fertilizer	Synthesis	4.72	g kg ⁻¹	AP42
		manufacturing	ammonia		0 0	
			Urea	0.01	g kg ⁻¹	AP42
		Pharmaceuticals p	production	300	g kg ⁻¹	EEA,2013
		Paint & related	Paint	60	g kg ⁻¹	AP42
		manufacturing	Ink	15	g kg ⁻¹	AP42
			Carbon black	52	g kg ⁻¹	AP42
			Dyeing cloth	81.4	g kg ⁻¹	AP42
		Synthetic resin	PVC	0.77	g kg ⁻¹	AP42
		materials	PP	4	g kg ⁻¹	EEA,2013
		manufacturing	PS	3.34	g kg ⁻¹	AP42
			PE	3.75	g kg ⁻¹	AP42
		Synthetic	Synthetic	7.17	g kg ⁻¹	AP42
		rubber manufacturing	rubber			
		Synthetic fiber manufacturing	Cellulosic fiber	112	g kg ⁻¹	AP42
			Viscose	14.5	g kg ⁻¹	AP42
			Acrylonitrile	1	g kg ⁻¹	EEA,2013
			Nvlon	3.3	g kg ⁻¹	AP42
			Dacron	0.7	g kg ⁻¹	AP42
			Acrylon	37	g kg ⁻¹	AP42
			Vinvlon	7.7	9 kg ⁻¹	AP42
			Polypropylene	37	g kg ⁻¹	AP42
		Petroleum	11001	1.78	g kg ⁻¹	AP42
		Petroleum products	Crude oil/ Gasoline/	0.54/1.5/ 1	g kg ⁻¹	GB11085-89
		Petroleum products storage	Crude oil/ Gasoline/Diesel	0.045/0. 295/0.17	g kg ⁻¹	Qiu et al., 2014
		Service station	Gasoline /Diesel	1.78/0.5 4	g kg ⁻¹	AP42
			4			

	Rubber	Tire	0.3	kg piece-1	AP42
	products				
	manufacturing		770	1 1	1.0.10
	PolyIoam	Polytoam	//0	g Kg ⁻¹	AP42
	Artificial	PVC	2 27	σ m ⁻³	AP42
	leather	1.16	2.21	5 111	111 72
	manufacturing				
Other	Cement		0.014	g kg ⁻¹	AP42
industrial	manufacturing		0.010	• 1	
processes	Tile clay		0.012	g kg ⁻¹	AP42
	Glass products	Plate glass	0.1	o ko-1	AP42
	manufacturing	T lute gluss	0.1	5 KG	111 72
	Ceramics		29	g kg ⁻¹	AP42
	manufacturing				
	Non-metal	Asphalt	0.018	g kg ⁻¹	AP42
	mineral product	Charcoal	135	g kg ⁻¹	AP42
	Iron And Steel	Sinter	0.138	g kg ⁻¹	EEA,2013
	Production	production	0.014	- 11	EEA 2012
		Pellet plant	0.014	g Kg ⁻¹	EEA,2013
		Blast furnace	0	g Kg ⁻¹	EEA,2013
		Converter /	0/0.046	g kg ⁻¹	EEA,2013
		steelmaking			
		Cold/hot rolled	0/0.007	g kg ⁻¹	EEA,2013
		steel		0 0	
	Coke	Heap coking	2.96	g kg ⁻¹	AP42
	production		10	- 11	EEA 2012
	Sugar		10	g kg ⁻¹	EEA,2013
	Vegetable oil	Extraction	9	o ko-1	AP42
	processing	process		8 - 8	· · · · -
	Wine	White	40/0.8/0.	g l ⁻¹	AP42
	production	spirit/red/wine/	35		
	A	beer	2	Inc3	AD42
	Artificial panels	Vft	3 2 1	$kg m^3$	AP42
	Puip	Kraft process	3.1	kg m ⁹	AP42
	Coal mining and	Coal washing	0 196	o ko-1	AP42
	dressing	cour wushing	0.170	5 * 5	111 12
	Municipal	Sewage	0.0011	g/kg	EEA, 2013
	services	treatment			
		Solid waste	1.23/1.5	g/kg	EEA, 2013
		incineration/	0		
		Municipal	0.02	g/kg	EEA. 2013
		waste		00	, 2010
		incineration			

		Emissions				Emissions		
Species	ER	ER	EI	Species	ER	ER	EI	
Alkanes				Halocarbon				
Ethane	5.93	1885.20	662.42	Chloromethane	0.51	313.83	17.08	
Propane	3.15	1694.73	398.51	Chloroethylene	0.04	31.60	1.11	
i-Butane	0.81	570.55	355.16	Bromomethane	0.00	5.54	0.38	
n-Butane	1.19	843.33	465.99	Chloroethane	0.01	10.19	0.50	
Cyclopentane	0.08	68.12	89.58	1,1-Dichloroethylene	0.00	3.05	1.11	
i-Pentane	0.67	594.83	703.17	Dichloromethane	0.85	884.58	118.95	
Pentane	0.44	386.99	478.85	1,1-Dichloroethane	0.05	55.37	1.11	
2,2- Dimethylbutane	0.01	15.26	60.41	cis-1,2-dichloroethylene	0.02	22.43	2.90	
2,3- Dimethylbutane	0.09	91.86	86.76	Chloroform	0.31	448.97	5.96	
2- Methylpentane	0.18	185.45	418.12	1,1,1-Trichloroethane	0.00	2.49	0.88	
3- Methylpentane	0.10	101.46	290.88	Carbon tetrachloride	0.06	118.09	17.80	
n-Hexane	0.25	260.52	437.70	1,2- Dichloroethane	0.28	334.18	65.19	
2,4-Dimethyl pentane	0.01	13.36	210.23	Trichloroethylene	0.04	62.77	418.53	
Methylcyclopentane	0.10	104.64	182.83	1,2-Dichloropropane	0.24	330.41	41.10	
2- methylhexane	0.04	51.41	226.73	tran-1,3-Dichloropropene	0.00	4.00	9.44	
2,3- Dimethyl pentane	0.03	37.79	83.55	cis-1,3-Dichloropropene	0.00	1.71	13.52	
3- methylhexane	0.05	60.53	186.69	1,1,2-Trichloroethane	0.02	25.19	3.75	
2,2,4-Trimethylpentane	0.04	58.70	73.67	Tetrachloroethylene	0.04	72.83	604.10	
n-Heptane	0.07	86.74	198.46	Chlorobenzene	0.01	16.63	4.23	
Methylcyclohexane	0.04	49.54	168.08	1,3-Dichlorobenzene	0.00	3.10	4.35	
2,3,4-Trimethylpentane	0.02	25.47	28.94	1,4-Dichlorobenzene	0.05	82.24	5.41	
2- Methylheptane	0.02	30.22	112.59	Benzyl chloride	0.00	1.60	0.58	
3- Methylheptane	0.01	13.71	172.36	1,2-Dichlorobenzene	0.00	4.27	3.85	
Octane	0.04	53.59	179.01	OVOCs				
Nonane	0.03	44.01	158.39	Acrolein	0.12	78.72	7.37	
n-Decane	0.03	55.68	158.59	Propanal	0.12	85.76	37.96	
Undecane	0.02	48.01	101.29	Isobutylene aldehyde	0.02	18.39	10.81	
Alkenes				n-Butanal	0.05	42.57	82.25	
Ethylene	5.38	1839.4	888.05	n-Pentanal	0.03	30.60	3.22	
Propylene	1.24	635.64	517.20	Hexanal	0.10	122.55	25.96	
tran-2-Butene	0.07	44.95	99.02	Acetone	1.61	1139.3 2	356.46	
1-Butene	0.20	135.26	198.21	Methyl vinyl ketone	0.11	91.81	6.47	
cis-2-Butene	0.04	26.43	91.90	2-Butanone	0.62	543.43	103.36	
1,3-Butadiene	0.15	101.44	102.92	2-Pentanone	0.02	22.88	2.24	
1-Pentene	0.03	23.48	82.68	3-Pentanone	0.03	33.78	0.38	

Table S2. VOC emission ratios (ppmv CO-1) and annual emissions (ton yr-1) for individual VOC species determined by the measurements and emission inventory for the PKU site (0.25×0.25 grid).

tran-2-Pentene	0.02	13.65	82.26	Methyl aceta	te	0.24	216.87	1.52
Isoprene	0.03	24.70	24.22	MTBE		0.15	163.95	27.07
cis-2-Pentene	0.01	6.88	91.90	Vinyl acetate	;	0.01	6.24	11.21
1-Hexene	0.02	18.72	43.35	Ethyl acetate		0.65	697.92	531.73
Aromatics				Methyl methacryl ate	0.58	704.38	0.12	
Benzene	0.78	741.09	940.01	Butyl acetate	0.32	452.31	3.04	
Toluene	0.86	968.52	1506.05	Nitriles				
Ethylbenzene	0.22	289.34	1441.41	Acetonitri le	0.21	0.21	16.5	2
m/p-Xylene	0.25	318.34	2289.14	Alkyne				
o-Xylene	0.19	241.11	887.66	Acetylene	3.62	1326.39	390.	19
Styrene	0.08	99.30	313.55					
i-Propylbenzene	0.01	17.47	93.46					
n-Propylbenzene	0.02	27.69	110.55					
3-Ethyl toluene	0.05	75.91	140.27					
4-Ethyl toluene	0.03	40.44	176.27					
1,3,5- Trimethylbenzene	0.02	33.82	8.45					
2-Ethyl toluene	0.02	33.91	140.27					
1,2,4- Trimethylbenzene	0.07	95.59	520.92					
1,2,3- trimethylbenzene	0.02	35.52	185.99					
1,3-Diethyl benzene	0.00	8.07	40.78					
1,4-Diethyl benzene	0.02	25.15	69.66					

Figure S1 The emission grid PKU site loacted in (Black square).

Source identification

The first factor was identified as vehicle-related source. This factor explained 54% of MTBE, which is a widely used gasoline additive, used as an oxygenate to raise the octane number. This source was also dominated by a strong presence of C3-C5 alkane and alkene (propane, 61%; isobutane, 68%; n-butane, 75; isopentane, 76%; n-pentane, 68%; 1,3-butadiene, 64%) which can release from vehicle exhaust and fuel evaporation. Tunnel studies shown the toluene/benzene ratio for vehicular exhaust was about 1.6 (Kuster et al., 2004), and the mean toluene/benzene ratio of this source profile was 1.70. Acetylene, the combustion tracer, was explained 27% by this factor.

Factor two was the only factor with a distinct maximum in winter (January) as shown in figure 7. This factor contained rather short-lived alkenes such as ethylene (contained 62% of ethylene), propene (64%), trans-2-butene (49%), 1-butene (46%), typical for incomplete combustion processes (Leuchner et al., 2015). Large parts of the acetylene (49%) were also explained in this factor, which was major species emitted from combustion process (Liu et al., 2008). This factor could be attributed to residential heating and other combustion processes, and was identified as fuel combustion source.

The third source profile contains 65% of the total Freon113, which has a long lifespan in the atmosphere. This factor was characterized by high values of unreactive species, such as ethane, acetone, and benzene. Thus, this source was concluded as VOCs in aged air masses. The ratio between benzene and toluene is a useful indicator of the age of air masses. The mean benzene/toluene ratio of this source profile is 2.3, which is much higher than the typical values from vehicle exhaust (0.5) and solvent utilization (0.3). In aged air masses, the benzene/toluene ratios are higher than in fresh air (Wu et al., 2016). Moreover, the third factor contains large amount of acetonitrile (41%) and chloromethane (48%), which were regarded as the fingerprint of biomass burning. Therefore, this source was considered to represent aged air mass and biomass burning originating from air mass transport.

The fourth source was distinguished by significant amounts of chlorinated organic compounds, including 1,1dichloroethane (65%), tetrachloroethylene (64%), chloroform (59%), 1,2-dichloropropane (54%), 1,2dichloropropane (54%), which are tracers of industrial processes (Scheff and Wadden, 1993). This source was also characterized by significant percentage of esters (ethylacetate, 60%; n-butylacetate, 60%; methylacetate, 59%). Thus, the fourth source was identified as industrial processes source.

Factor five explained 66% and 75% of the measured α -pinene and β -pinene, respectively, which were indicators of biogenic emissions. Figure 7 reveals that the contribution of the fifth factor were presented higher levels in summer (July), and lower levels in winter (January). Biogenic emissions are strongly influenced by temperature and solar radiation (Guenther et al., 2012). Therefore, this factor was identified as biogenic emissions. The sixth factor shown in fig.6 was rich in aromatic species and C5-C8 substituted/cyclo-alkanes, which are markers for solvent utilization sources, including painting, printing, surface coating, and solvent emissions of household and consumer products (Liao et al., 2015). We therefore concluded it is from solvent utilization source.

References

DB11/1201-2015, Emission standard of volatile organic compounds for printing industry of Beijing. GB11085-89, loss of bulk petroleum liquid products, People's Republic of China emission standards.

- GB18582-2008, Indoor decorating and refurbishing materials—limit of harmful substances of interior architectural coatings.
- Kuster, W. C.; Jobson, B. T.; Karl, T.; Riemer, D.; Apel, E.; Goldan, P. D.; Fehsenfeld, F. C., Intercomparison of volatile organic carbon measurement techniques and data at la porte during the TexAQS2000 Air Quality Study. Environmental Science & Technology 2004, 38, (1), 221-228.
- Leuchner, M.; Gubo, S.; Schunk, C.; Wastl, C.; Kirchner, M.; Menzel, A.; Plass-Dülmer, C., Can positive matrix factorization help to understand patterns of organic trace gases at the continental Global Atmosphere Watch site Hohenpeissenberg? Atmospheric Chemistry and Physics 2015, 15, (3), 1221-1236.
- Liu, Y.; Shao, M.; Fu, L. L.; Lu, S. H.; Zeng, L. M.; Tang, D. G., Source profiles of volatile organic compounds (VOCs) measured in China: Part I. Atmospheric Environment 2008, 42, (25), 6247-6260.
- Wu, R.; Xie, S., Spatial Distribution of Ozone Formation in China Derived from Emissions of Speciated Volatile Organic Compounds. Environ Sci Technol 2017, 51, (5), 2574-2583.
- Scheff, P. A.; Wadden, R. A., RECEPTOR MODELING OF VOLATILE ORGANIC-COMPOUNDS .1. EMISSION INVENTORY AND VALIDATION. Environmental Science & Technology 1993, 27, (4), 617-625.
- Guenther, A. B.; Jiang, X.; Heald, C. L.; Sakulyanontvittaya, T.; Duhl, T.; Emmons, L. K.; Wang, X., The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions. Geoscientific Model Development 2012, 5, (6), 1471-1492.
- Liao, H. T.; Chou, C. C.; Chow, J. C.; Watson, J. G.; Hopke, P. K.; Wu, C. F., Source and risk apportionment of selected VOCs and PM2.5 species using partially constrained receptor models with multiple time resolution data. Environmental pollution 2015, 205, 121-30.
- Li, X. H.; Duan, L.; Wang, S. X.; Duan, J. C.; Guo, X. M.; Yi, H. H.; Hu, J. N.; Li, C.; Hao, J. M., Emission characteristics of particulate matter from rural household biofuel combustion in China. Energ Fuel 2007, 21, (2), 845-851.
- Zhang, J.; Smith, K. R.; Ma, Y.; Ye, S.; Jiang, F.; Qi, W.; Liu, P.; Khalil, M. A. K.; Rasmussen, R. A.; Thorneloe, S. A., Greenhouse gases and other airborne pollutants from household stoves in China: a database for emission factors. Atmospheric Environment 2000, 34, (26), 4537-4549.
- Zhang, Y.; Shao, M.; Lin, Y.; Luan, S.; Mao, N.; Chen, W.; Wang, M., Emission inventory of carbonaceous pollutants from biomass burning in the Pearl River Delta Region, China. Atmospheric Environment 2013, 76, 189-199.
- Li, J.; Li, Y.; Bo, Y.; Xie, S., High-resolution historical emission inventories of crop residue burning in fields in China for the period 1990–2013. Atmospheric Environment 2016, 138, 152-161.
- Taiwan, Industrial process emission factors, operating unit emission factors, control efficiency and other measurement requirements for volatile organic compounds declared as air pollution control fees in public and private places, 2009.
- Tsai, S. M.; Zhang, J. F.; Smith, K. R.; Ma, Y. Q.; Rasmussen, R. A.; Khalil, M. A. K., Characterization of nonmethane hydrocarbons emitted from various cook stoves used in China. Environmental Science & Technology 2003, 37, (13), 2869-2877.
- Peking University. Analysis of the causes and sources of air pollution in Beijing. Specialized by the Ministry of Science and Technology, 2001.

- Qiu, K.; Yang, L.; Lin, J.; Wang, P.; Yang, Y.; Ye, D.; Wang, L., Historical industrial emissions of non-methane volatile organic compounds in China for the period of 1980–2010. Atmospheric Environment 2014, 86, 102-112.
- EEA, Air Pollutant Emission Inventory Guidebook. EEA technical Report No. 12, 2013 EP and CEU, 2013.
- U.S. Environmental Protection Agency (USEPA): Compilation of air pollutant emission factors (AP42), Fifth Edition, Chapter 1–13, 1995.
- Bo, Y.; Cai, H.; Xie, S. D., Spatial and temporal variation of historical anthropogenic NMVOCs emission inventories in China. Atmospheric Chemistry and Physics 2008, 8, (23), 7297-7316.