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Abstract. Fitting a line on a scatterplot of two measured variables is considered as one of the simplest statistical procedures 

researchers can do. However, this simplicity is deceptive as the line fitting procedure is actually quite a complex problem. 10 

Atmospheric measurement data never comes without some measurement error. Too often, these errors are neglected when 

researchers are making inferences from their data.  

To demonstrate the problem, we simulated datasets with different amounts of data and error, mimicking the dependence of 

atmospheric new particle formation rate (J1.7) on sulphuric acid concentration (H2SO4). Both variables have substantial 

measurement error and thus they are good test variables for our study. We show that ordinary least squares (OLS) regression 15 

results in strongly biased slope values compared with six error-in-variables (EIV) regression methods (Deming, Principal 

component analysis, orthogonal, Bayesian EIV, and two different bivariate regression methods) known to take into account 

errors in the variables. 

1 Introduction 

Atmospheric measurement data never comes without some measurement error. Too often, these errors are neglected when 20 

researchers are making inferences based on their data. Describing the relationship between two variables typically involves 

making inferences in some more general context than was directly studied and if the relationship is ill formulated, the inference 

is not valid either. In some cases, the bias in analysis method is even given a physical meaning 

When analysing dependencies of two or more measured variables, regression models are usually applied.  A regression model 

can be linear or nonlinear, depending on the data. Standard regression models assume that the independent variables of the 25 

models have been measured without error and the models account only for errors in the dependent variables or responses. In 

cases where the measurements of the predictors contain error, estimating with standard methods, usually Ordinary Least 

Squares (OLS), do not tend to the true parameter values, not even asymptotically. In linear models, the coefficients are 

underestimated but in nonlinear models, the bias is likely to be more complicated (e.g. Schennach 2004). Measurement error 

needs to be taken into account especially when dealing with parameters with large errors. Thus, we chose such parameters as 30 
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our test variables in this study. Sulphuric acid (H2SO4) is known to affect strongly the formation rates (J) of aerosol particles 

(Kirkby et al., 2016; Kuang et al., 2008; Kulmala et al., 2006; Kürten et al., 2016; Metzger et al., 2010; Riccobono et al., 2014; 

Riipinen et al., 2007; Sihto et al., 2006; Spracklen et al., 2006). The relationship between J and H2SO4 is typically written as 

log10(J) = β*log10(H2SO4)+α  (Seinfeld and Pandis, 2016). In addition, parameterizations based on the results from these fits 

have been implemented in global models, e.g. in (Dunne et al., 2016; Metzger et al., 2010; Spracklen et al., 2006), to estimate 5 

the effect of new particle formation on the global aerosol. Theoretically, the slope of this relationship is related to the amount 

of sulphuric acid molecules in the nucleating critical cluster in homogeneous nucleation, based on the first nucleation theorem 

(Vehkamäki, 2006)..  

Some published results already show discrepancies regarding the J vs H2SO4 dependence. Kuang et al. (2008) used the 

unconstrained least squares method and obtained β=1.99 for the slope whereas Sihto et al. (2006) ended up with β=1.16 by 10 

using OLS from the same measurement campaign when analysing data from Hyytiälä in 2003. They had some differences in 

pre-treatment of data and used different time window but a notable proportion of this inconsistency is very likely due to 

different methods for making the fit. The problem in the relationship of H2SO4 and J has been acknowledged already in 

Paasonen et al. (2010) who noted that bivariate fitting method like presented in York et al. (2004) should be applied but  could 

not be used due to the lack of proper error estimates for each quantity. They were not aware of the methods, which do not need 15 

to know the errors beforehand, but are using the estimated variances. We will here introduce appropriate tools for that.  

Multiple attempts have been made to introduce methods using errors in predictor variables for the scientists applying 

regression-type analysis for their data; starting from Deming (1943). However, the traditional lest squares fitting still holds the 

position as the de facto line fitting method due to its simplicity. In atmospheric sciences, Cantrell (2008) drew attention to the 

method introduced by York (1966) and York et al. (2004) and listed multiple other methodological papers introducing similar 20 

methodology. Pitkänen et al. (2016) raised the problem into knowledge in remote sensing community and this study partly 

follows them and introduces multiple methods to take account the errors in predictors. Cheng and Riu (2006) studied methods 

with heteroscedastic errors whereas Wu and Yu (2018) approached the problem with measurement errors via weighted 

regression and applied some methods also used in our study. 

Measurement errors in each variable of the model must be taken into account in the regression analysis by applying some 25 

errors-in-variables (EIV) regression. In this study, we compared OLS regression results to six different regression methods 

(Deming regression, Principal component analysis regression, orthogonal regression, Bayesian EIV regression and two 

different bivariate regression methods) known to be able to take into account errors in variables and provide (at least 

asymptotically) unbiased estimates. In this study, we will focus only on linear EIV methods but it is important to acknowledge 

that there also exist nonlinear methods described e.g. ORDPACK introduced in Boggs, Byrd, and Schnabel (1987) and 30 

implemented in Python SciPy and R (Boggs et al., 1989; Spiess, 2015). ORDPACK is somewhat improved version of 

orthogonal regression, as it minimizes the Mahalanobis distance from the data points to the regression line, instead of 

minimizing the sum of squares of the perpendicular distances, so that arbitrary covariance structures are acceptable and is 

specifically set up so that a user can specify measurement error variances and covariance point by point.  
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2 Materials and Methods 

2.1 Data illustrating the phenomenon 

In line fitting, data usually contain two types of error: natural error and measurement error. Measurement error is more 

generally understood, it is where measured values do not fully represent the true values of variable being measured. This also 5 

contains sampling error, e.g. in the case of H2SO4 measurement the sampled air in the measurement instrument is not 

representative sample of outside air. Natural error is that the true connection between the two variables is varying by some 

natural or physical cause e.g. certain amount of H2SO4 does not cause same number of new particles formed. In the analysis of 

measurement data, some amount of these errors are known or can be estimated, but some of it will usually remain unknown, 

which should be kept in mind when interpreting data. Even though the measurement error is taken into account, the regression 10 

fit may be biased due to natural error (Carroll and Ruppert, 1996). 

The data used in this study consist of new particle formation rate at 1.7 nanometre size  (J1.7) and sulphuric acid (H2SO4) 

concentration simulated to mimic observations of pure sulphuric acid nucleation from CLOUD chamber in CERN (Kürten et 

al. 2016; https://home.cern/about/experiments/cloud) with matching expected value, variance and covariance structure. The 

chamber data at CERN is the best characterized and controlled set of new particle formation (NPF) experiments in the history 15 

of aerosol science so far. The Proton Synchrotron provides an artificial source of “cosmic rays” that simulates natural 

conditions of ionization between ground level and the stratosphere. The core is a large (volume 26m3) electro-polished 

stainless steel chamber with precise temperature control at any tropospheric temperature, precise delivery of selected gases 

and vapours and ultrapure humidified synthetic air. Existing data includes the most suspected candidates for atmospheric NPF, 

including sulphuric acid – ammonia – water (Kirkby et al., 2011), sulphuric acid – amine (Almeida et al., 2013) and ion induced 20 

organic nucleation (Kirkby et al., 2016).The actual nucleation of new particles occurs at slightly smaller size. After formation, 

they grow by condensation to reach the detection limit (1.7 nm) of the instrument and J1.7 thus refers to the formation rate of 

particles as the instrument detects them. These variables were chosen because they are both known to have considerable 

measurement errors and their relationship is frequently under inference (Kirkby et al., 2016; Kürten et al., 2016; Riccobono et 

al., 2014; Tröstl et al., 2016) which makes them good illustrative variables for this study. 25 

2.2 Regression methods 

We made fits for the linear dependency of logarithms of the two study variables, such that the equation for the fit was given 

by 

𝒚 = 𝜷𝟎 +𝜷𝟏𝒙 + 𝜺       (1) 

where y represents log10(J1.7), x is log10(H2SO4), β:s are the coefficients estimated from the data and ε is the error term. In order 30 

to demonstrate the importance of taking into account the measurement errors in the regression analysis, we tested seven 
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different line-fitting methods. Ordinary Least Squares (OLS), not taking account the uncertainty in x-variable, and Deming 

regression (DR, Deming, 1943), Principal component analysis (PCA, Hotelling, 1957) regression, orthogonal regression 

(ODR, Boggs, Byrd, and Schnabel 1987), Bayesian EIV regression (Kaipio and Somersalo, 2005) and two different bivariate 

least squares methods by York et al., (2004), and Francq and Govaerts (BLS, 2014), known to be able to take account errors 

in variables and provide (at least asymptotically) unbiased estimates. The differences between the methods comes from the 5 

criterion they minimize when calculating the coefficients and how they take account the measurement errors. The minimizing 

criteria for all methods are given in the supplement S1. Two of the methods, PCA and ODR, account only for the measurement 

variance, whereas Bayes EIV and York bivariate regression require known estimates for measurement errors. Though for 

Bayes EIV the error can be approximated with a distribution. DR and BLS can be applied with both, errors given by the user 

and measurement variance based errors. In this study, we applied measurement variance based errors for them. 10 

3 Data simulation 

In measured data the variables that are observed are not X and Y, but (X+ex) and (Y+ey), where ex and ey are the uncertainty in 

the measurements and the true X and Y cannot be exactly known. Thus, we chose to use simulated data, where we know the 

true X and Y, to illustrate how the different line fitting methods perform in different situations. 

We simulated a dataset mimicking new particle formation rate (J1.7) and sulphuric acid concentration (H2SO4) reported from 15 

CLOUD-chamber measurements in CERN. Both variables are known to have substantial measurement error and thus they are 

good test variables for our study. Additionally, the relationship of logarithms of these variables is quite often described with 

linear OLS regression and thus the inference may be flawed.  

We generated one thousand random “true” H2SO4 concentration values assuming log-normal distribution with median 2.0*106 

and standard deviation 2.4*106. The corresponding true J1.7  was calculated using model log10(J1.7) = β*log10(H2SO4)+α with 20 

the true slope β=3.3 and α=-23, both are realistic values presented by Kürten et al. (2016,  Table 2 for the no added ammonia 

cases). The resulting J1.7  mean was 0.11 and standard deviation was 0.50, similar to J1.7 statistics in Kürten et al. (2016). 

Simulated observations of the true H2SO4 were obtained by adding random errors ex = erel,xx + σabs,x that have a random absolute 

component eabs,x ~ normal(0,σabs,x) and a random component relative to the observation x itself erel,xx, where erel,x ~ 

normal(0,σrel,x). Similar definitions apply for the true J1.7, ey, σabs,y and σabs,y. The standard deviations of the measurement error 25 

components were chosen σabs,x = 4*105, σrel,x = 0.3, σabs,y = 3*10-3, σrel,y = 0.5, which are subjective estimates based on 

measurement data. 

Simulating the observations tends to generate infrequent extreme outlier observations from the infinite tails of the normal 

distribution. We discarded these outliers with an error larger than three times the combined standard uncertainty of the 

observation in order to remove the effect of outliers from the regression analysis. This signifies the quality control procedure 30 

in data analysis and it also improved the stability of our results between different simulations. 
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4 Results  

Differences between the regression methods are illustrated with four different ways. First, by showing line fits on scatterplot 

of simulated data. Secondly, illustrating how the slopes change when the uncertainty in the measured variables increase, thirdly 

by showing the sensitivity of the fits on number of observations and finally showing how the fits are affected by adding outliers 

in the data. 5 

Regression fits with all methods in use are shown in Figure 1. As we know that the “true slope” βtrue=3.30 we can easily see 

how the methods perform. The worst performing method was OLS, with βols=1.55, which is roughly half of the βtrue. The best 

performing methods with equal accuracy were ODR (βODR=3.27), Bayes EIV (βBEIV=3.24) and BLS (βBLS=3.22) whereas York 

(βYork=3.15), Deming (βDR=2.95) and PCA (βPCA=2.92) slightly underestimated the slope. 

The sensitivity of the methods was first tested by varying the uncertainty in H2SO4 observations. We simulated six datasets 10 

with 1000 observations and with variating absolute and relative errors, listed in Table 1, and made fits with each method on 

all datasets separately. The performance of the methods is shown in Figure 2, with the results corresponding to Figure 1 are 

marked with black colour. It shows that when the uncertainty is smaller, the bias in OLS fit is smaller but the bias increases 

significantly when more uncertainty is added to data. Decrease in performance can also be seen with ODR, which is 

overestimating the slope, and PCA, DR and Bayes EIV, which all underestimate the slope. Bivariate methods, BLS and York, 15 

seem to be quite robust for increasing uncertainty, as the slopes are not changing considerably. 

The sensitivity of methods on decreasing number of observations was tested by picking 100 random samples from the 1000 

simulation dataset with n of 3, 5, 10, 20, 30, 50, 70, 100, 300 and 500 and making fits for all samples with all methods. The 

average slopes and their standard errors are shown in Figure 3. It is clear that when the number of observations is 10 or less, 

the variation in estimated slopes is considerably high. When n≥20 the average slopes stabilize close to their characteristic level, 20 

except for Bayes EIV, which needs more than 100 observations for that. The most sensitive methods for small n are Bayes 

EIV, ODR and PCA and thus they should not be applied for data with small n.  

The sensitivity for outliers in predictor variable H2SO4 was tested with two different scenarios. First, the outliers were let to 

be randomly either high or low numbers. In the second scenario, outliers were allowed to be only high numbers, which is often 

the case in H2SO4 and aerosol concentration measurements as the lowest numbers are cleaned out from the data when they are 25 

smaller than the detection limit of the measurement instrument. Five cases with n=1000 were simulated with increasing number 

of outliers (0, 5, 10, 20, 100) and 10 repetitions of H2SO4 values with different set of outliers. Outliers were defined such that 

xobs-xtrue>3*combined standard uncertainty. The most sensitive methods for outliers in both scenarios were OLS and Bayes 

EIV. High number of outliers caused underestimation to PCA and DR, especially in high outlier case, and slight overestimation 

to BLS in random outlier case. York Bivariate and ODR were not affected at all in either case and BLS had only small variation 30 

between the 10 replicates in the estimated slope.  We did not test how big number of outliers would break all of the methods 

as it might not be meaningful to interpret anymore data with more than 10% of outliers. 
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5 Conclusions 

Simple linear regression can be used to answer some common questions, such as is Y related to X but if we are interested on 

the strength of the relationship then error-in-variance methods should be applied. There is no single correct method to make 

the fit, because the methods measure slightly different things about the data. The choice of method has to base on the properties 

of data and the specific research question. There are usually two types of error in the data: natural and measurement error. 5 

Even if the natural error in the data is not known, taking into account the measurement error improves the fit significantly. In 

addition, no matter how small the measurement error would be, it should be taken account because taking it into account will 

never lead to more biased estimator. 

As a case study, we simulated a dataset mimicking the dependence of atmospheric new particle formation rate on sulphuric 

acid concentration. We introduced three major sources of uncertainty when doing inference from scatterplot data: increasing 10 

measurement error, number of data points and number of outliers. In Fig 1, we showed that in case of errors from real 

measurements of J1.7 and H2SO4 four of the methods gave slopes close to “true” known value: BLS, York bivariate, Bayes EIV 

and ODR. Estimates from BLS and York bivariate remained stable even when the uncertainty in simulated H2SO4 was 

increased drastically in Fig 2. The main message to learn in Fig 3 is that with small numbers of observations all fit methods 

are highly uncertain. BLS showed out to be the most accurate with smallest sample sizes of 10 and less, ODR stabilized with 15 

20 observations and York bivariate and Bayes EIV needed 100 or more data points to become accurate. After that, they 

approach the true value asymptotically, while the OLS slope, in contrast, converges towards an incorrect value. With the 

increasing number of outliers in Fig 4 ODR and York bivariate showed out to be the most stable ones, even with 10% of 

observations classified as outliers in both test cases. BLS remained stable in the case with only high outliers. Bayes EIV was 

the most sensitive to outliers with OLS. 20 

From this, we can give a recommendation that if the uncertainty in predictor is known, York bivariate, or other method able 

to use known variances, should be applied. If the errors are not known, and they are estimated from data, BLS and ODR 

showed out to be the most robust in cases of increasing uncertainty and with high number of outliers. If the number of 

observations is less than 10, and the uncertainties are high, we recommend considering twice if a regression fit is appropriate 

at all. However, with our simulation tests BLS showed out to be the most robust with small data. Bayes EIV has significant 25 

advantages if the number of observations is high enough and there are not too many outliers, as it is able to estimate the errors 

in data with distributions. 
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Figure 1. Regression lines fitted to the simulated data with all methods in comparison. Whiskers in data points refer to the 

measurement error used for simulation 
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Figure 2. Sensitivity test for increasing uncertainty in simulated data. Black markers show the initial data set described in Section 

3. Dashed line indicates the “true slope”. 
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Figure 3. Effect of sample size on the uncertainty of different fits. Lines show the median and shading illustrates one standard 

deviation range of slope estimates for 40 repeated random samples. Dashed line indicates the “true slope”. 

Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-1125
Manuscript under review for journal Atmos. Chem. Phys.
Discussion started: 11 December 2018
c© Author(s) 2018. CC BY 4.0 License.



14 
 

 
Figure 4. Effect of outliers in the data. Random outliers case on left panel and only high positives on right panel. Lines show the 

median and shading shows one standard deviation of slope estimates in ten repeated studies. Dashed line indicates the “true slope”. 
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Table 1. The errors used in simulation for sensitivity test for increasing uncertainty 

dataset σabs  σrel Ratio (= (σrel * 𝑥𝑜𝑏𝑠̅̅ ̅̅ ̅) / σabs ) 

1 103 0.05 315.0 

2 104 0.18 113.4 

3 7*104 0.3 27.0 

4 4*105 0.3 4.7 

5 6.5*105 0.45 4.4 

6 106 0.55 3.5 
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