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Abstract. Fitting a line on a scatterplot of two measured variables is considered as one of the simplest statistical procedures 10 

researchers can do. However, this simplicity is deceptive as the line fitting procedure is actually quite a complex problem. 

Atmospheric measurement data never comes without some measurement error. Too often, these errors are neglected when 

researchers are making inferences from their data.  

To demonstrate the problem, we simulated datasets with different amounts of data and error, mimicking the dependence of 

atmospheric new particle formation rate (J1.7) on sulphuric acid concentration (H2SO4). Both variables have substantial 15 

measurement error and thus they are good test variables for our study. We show that ordinary least squares (OLS) regression 

results in strongly biased slope values compared with six error-in-variables (EIV) regression methods (Deming, Principal 

component analysis, orthogonal, Bayesian EIV, and two different bivariate regression methods) known to take into account 

errors in the variables. 

1 Introduction 20 

Atmospheric measurement data never come without some measurement error. Too often, these errors are neglected when 

researchers are making inferences based on their data. Describing the relationship between two variables typically involves 

making deductions in some more general context than was directly studied. If the relationship is ill formulated, the inference 

is not valid either. In some cases, the bias in analysis method is even given a physical meaning. 

When analysing dependencies of two or more measured variables, regression models are usually applied.  A regression model 25 

can be linear or nonlinear, depending on the data. Standard regression models assume that the independent variables of the 

models have been measured without error and the models account only for errors in the dependent variables or responses. In 

cases where the measurements of the predictors contain error, estimating with standard methods, usually Ordinary Least 

Squares (OLS), do not tend to the true parameter values, not even asymptotically. In linear models, the coefficients are 

underestimated (e.g. Carroll et al., 2006) but in nonlinear models, the bias is likely to be more complicated (e.g. Schennach 30 
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2004). Measurement error needs to be taken into account, particularly when errors are large. Thus, we chose such parameters 

as our test variables in this study. Sulphuric acid (H2SO4) is known to strongly affect the formation rates (J) of aerosol particles 

(Kirkby et al., 2016; Kuang et al., 2008; Kulmala et al., 2006; Kürten et al., 2016; Metzger et al., 2010; Riccobono et al., 2014; 

Riipinen et al., 2007; Sihto et al., 2006; Spracklen et al., 2006). The relationship between J and H2SO4 is typically as assumed 

to be in form log10(J) = β*log10(H2SO4)+α  (Seinfeld and Pandis, 2016). In addition, parameterizations based on the results 5 

from these fits have been implemented in global models, e.g. in (Dunne et al., 2016; Metzger et al., 2010; Spracklen et al., 

2006), to estimate the effect of new particle formation on global aerosol amounts and characteristics. Theoretically in 

homogeneous nucleation, the slope of this relationship is related to the number of sulphuric acid molecules in the nucleating 

critical cluster, based on the first nucleation theorem (Vehkamäki, 2006)..  

Some published results have shown discrepancies in the expected J vs H2SO4 dependence. Analysing data from Hyytiälä in 10 

2003, Kuang et al. (2008) used an unconstrained least squares method and obtained β=1.99 for the slope, wheras Sihto et al. 

(2006) reported a value of β=1.16 using OLS from the same field campaign. They had some differences in pre-treatment of 

data and used different time windows, but a significant proportion of this inconsistency is very likely due to different methods 

for making the fit. The problem in the relationship of H2SO4 and J has been acknowledged already in Paasonen et al. (2010) 

who noted that bivariate fitting method as presented in York et al. (2004) should be applied but  could not be used due to the 15 

lack of proper error estimates for each quantity. They were not aware of the methods that do not need to know the errors in 

advance, but instead made use of estimated variances. Here, we present appropriate tools for using that approach.  

Multiple attempts have been made to present methods accounting for errors in predictor variables for regression-type analysis, 

going back to Deming (1943). However, the traditional least squares fitting still holds the position as the de facto line fitting 

method due to its simplicity and common availability in frequently used software. In atmospheric sciences, Cantrell (2008) 20 

drew attention to the method introduced by York (1966) and York et al. (2004) and listed multiple other methodological papers 

utilizing similar methodology. Pitkänen et al. (2016) raised the awareness of the problem in remote sensing community and 

this study partly follows their approach and introduces multiple methods to take account the errors in predictors. Cheng and 

Riu (2006) studied methods with heteroscedastic errors whereas Wu and Yu (2018) approached the problem with measurement 

errors via weighted regression and applied some techniques also used in our study. 25 

Measurement errors in each variable must be taken into account using approaches called errors-in-variables (EIV) regression. 

In this study, we compared OLS regression results to six different regression methods (Deming regression, Principal 

component analysis regression, orthogonal regression, Bayesian EIV regression and two different bivariate regression 

methods) known to be able to take into account errors in variables and provide (at least asymptotically) unbiased estimates. In 

this study, we will focus only on linear EIV methods but it is important to acknowledge that there also exist nonlinear methods 30 

e.g. ORDPACK introduced in Boggs, Byrd, and Schnabel (1987) and implemented in Python SciPy and R (Boggs et al., 1989; 

Spiess, 2015). ORDPACK is a somewhat improved version of orthogonal regression, so that arbitrary covariance structures 

are acceptable and is specifically set up so that a user can specify measurement error variances and covariance point by point.  
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2 Materials and Methods 

2.1 Data illustrating the phenomenon 

Measurement data contains different types of errors. Usually, the errors are divided to two main class: random and systematic 

error. Systematic errors, commonly referred as bias, in experimental observations usually come from the measuring 5 

instruments. They may occur because there is something wrong with the instrument or its data handling system, or because the 

instrument is not used correctly by the operator. In line fitting, bias cannot be taken account but the random error may have 

different components, of which two are discussed here: natural error and measurement error. In addition, one should note the 

existence of equation error, discussed in Carroll and Ruppert (1996), which refers to using an inappropriate form of a fitting 

equation. Measurement error is more generally understood, it is where measured values do not fully represent the true values 10 

of variable being measured. This also contains sampling error, e.g. in the case of H2SO4 measurement the sampled air in the 

measurement instrument is not representative sample of outside air (e.g. due to losses of H2SO4 occurring in the sampling 

lines). Natural error is that the true connection between the two variables is has stochastic variation by some natural or physical 

cause e.g. certain amount of H2SO4 does not cause same number of new particles formed. In the analysis of measurement data, 

some amount of these errors are known or can be estimated, but some of it will usually remain unknown, which should be kept 15 

in mind when interpreting data. Even though the measurement error is taken into account, the regression fit may be biased due 

to unknown natural error. In this study, we assume that the errors of the different variables are uncorrelated, but in some cases 

it has to be taken into account, as noted e.g. in Trefall and Nordö (1959) and Mandel (1984). The correlation between the errors 

of two variables, measured with separate instruments, independent on each other, like formation rate and H2SO4, may come 

e.g. from environmental variables affecting both of them at the same time. Factors affecting formation of sulphuric acid have 20 

been studied in various papers, e.g. in Weber et al. (1997) and Mikkonen et al. (2011). New particle formation rates, in turn, 

have been studied e.g. in Boy et al.( 2008) and in Hamed et al. (2011) and similarities between affecting factors can be seen. 

In addition, factors like room temperature in measurement space and atmospheric pressure may affect to measurement 

instruments, thus causing additional error.  

The data used in this study consist of simulated new particle formation rates at 1.7 nanometre size  (J1.7) and sulphuric acid 25 

(H2SO4) concentrations mimicking observations of pure sulphuric acid in nucleation experiments from the CLOUD chamber 

in CERN (Kürten et al. 2016; https://home.cern/about/experiments/cloud) with corresponding expected values, their variances 

and covariance structures. The chamber data at CERN are the best characterized and controlled set of new particle formation 

(NPF) experiments in the history of aerosol science so far. The Proton Synchrotron provides an artificial source of “cosmic 

rays” that simulates natural conditions of ionization between ground level and the stratosphere. The core is a large (volume 30 

26m3) electro-polished stainless steel chamber with temperature control (temperature stability better than 0.1 K) at any 

tropospheric temperature, precise delivery of selected gases (SO2, O3, NH3, various organic compounds) and ultrapure 

https://home.cern/about/experiments/cloud
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humidified synthetic air, and very low gas-phase contaminant levels. Existing data include the most suspected candidates for 

atmospheric NPF, including sulphuric acid – ammonia – water (Kirkby et al., 2011), sulphuric acid – amine (Almeida et al., 

2013) and ion induced organic nucleation (Kirkby et al., 2016).The actual nucleation of new particles occurs at slightly smaller 

size. After formation, they grow by condensation to reach the detection limit (1.7 nm) of the instrument and J1.7 thus refers to 

the formation rate of particles as the instrument detects them, taking into account the known particle losses due to coagulation 5 

and deposition on the chamber walls. These variables were chosen because they are both known to have considerable 

measurement errors and their relationship is studied frequently using regression-based analyses (Kirkby et al., 2016; Kürten et 

al., 2016; Riccobono et al., 2014; Tröstl et al., 2016) which makes them good illustrative variables for this study. Additionally, 

many of the published papers on this topic do not describe how they are taking account the uncertainties in the analysis, which 

leaves a doubt that they are not treated properly. However, it should be kept in mind that the data could be any set of numbers 10 

assumed to have linear relationship but to raise the awareness in the research community we related the simulations to well-

known datatype. 

2.2 Regression methods 

We made fits for the linear dependency of logarithms of the two study variables, such that the equation for the fit was given 

by 15 

𝒚 = 𝜷𝟎 + 𝜷𝟏𝒙 + 𝜺       (1) 

where y represents log10(J1.7), x is log10(H2SO4), β’s are the coefficients estimated from the data and ε is the error term. In order 

to demonstrate the importance of taking into account the measurement errors in the regression analysis, we tested seven 

different line-fitting methods. Ordinary Least Squares (OLS), not taking account the uncertainty in x-variable, and orthogonal 

regression (ODR, Boggs, Byrd, and Schnabel 1987), Deming regression (DR, Deming, 1943), Principal component analysis 20 

(PCA, Hotelling, 1957) regression, Bayesian EIV regression (Kaipio and Somersalo, 2005) and two different bivariate least 

squares methods by York et al., (2004), and Francq and Govaerts (BLS, 2014), known to be able to take account errors in 

variables and provide (at least asymptotically) unbiased estimates. The differences between the methods come from the 

criterion they minimize when calculating the coefficients and how they take account the measurement errors. The minimizing 

criteria for all methods are given in the supplement S1but we give here the principles of the methods. OLS minimizes the 25 

squared distance of the observation and the fit line either in y or x direction, but not both at the same time, whereas ODR 

minimizes the sum of squared weighted orthogonal distances between each point and the line. DR was originally an improved 

version of orthogonal regression, taking account the ratio of the error variances λxy of the variables, (in classical non-weighted 

ODR λxy =1) and it is the maximum likelihood estimate (MLE) for the model (1) when λxy is known. Idea of PCA is the same 

as in ODR but the estimation procedure is somewhat different as can be seen in S1. The bivariate algorithm by York et al 2004 30 

provides a simple set of equations for iterating MLE of slope and intercept with weighted variables, which makes it similar to 

ODR in this case. However, ODR can consider linear scale uncertainties in logarithmic scale regression, unlike the York (2004) 

solution. In Bayes EIV, statistical models for the uncertainties in observed quantities are used and probability distributions for 
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the line slope and intercept are computed according to the Bayes' theorem. In this study, we computed Bayesian maximum a 

posteriori (MAP) estimates for the slope and intercept values. BLS takes into account errors and heteroscedasticity in both 

axes and thus is more advanced method than DR (under normality and homoscedasticity, BLS is exactly equivalent to DR). 

PCA accounts only for the measurement variance, whereas ODR, Bayes EIV and York bivariate regression require known 

estimates for measurement errors. Thought for Bayes EIV the error can be approximated with a distribution. DR and BLS can 5 

be applied with both, errors given by the user and measurement variance based errors. In this study, we applied measurement 

variance based errors for them. The analysis for OLS and PCA were calculated with R-functions “lm” and “prcomp”, 

respectively (R Core Team, 2018) DR was calculated with package deming (Therneau, 2018) and BLS with package 

BivRegBLS (Francq and Berger, 2017) in R. The ODR based estimates were obtained using scipy.odr python package (Jones 

et al., 2001), while the python package pystan (Stan Development Team, 2018) was used for calculating the Bayesian 10 

regression estimates. Finally, the York bivariate estimates were produced with a custom python implementation of the 

algorithm presented by York et al. (2004).   

3 Data simulation 

In measured data, the variables that are observed are not X and Y, but (X+ex) and (Y+ey), where ex and ey are the uncertainty in 

the measurements, and the true X and Y cannot be exactly known. Thus, we used simulated data, where we know the true X 15 

and Y, to illustrate how the different line fitting methods perform in different situations. 

We simulated a dataset mimicking new particle formation rates (J1.7) and sulphuric acid concentrations (H2SO4) reported from 

CLOUD-chamber measurements in CERN. Both variables are known to have substantial measurement error and thus they are 

good test variables for our study. Additionally, the relationship of logarithms of these variables is quite often described with 

linear OLS regression and thus the inference may be flawed.  20 

We generated one thousand random “true” H2SO4 concentration values assuming log-normal distribution with median 2.0*106 

(molecules cm-3) and standard deviation 2.4*106 (molecules cm-3). The corresponding true J1.7 was calculated using model 

log10(J1.7) = β*log10(H2SO4)+α with the true slope β=3.3 and α=-23, both are realistic values presented by Kürten et al. (2016,  

Table 2 for the no added ammonia cases). The resulting J1.7  mean was 0.11 and standard deviation was 0.50, similar to J1.7 

statistics in Kürten et al. (2016). 25 

Simulated observations of the true H2SO4 were obtained by adding random errors ex = erel,xx + σabs,x that have a random absolute 

component eabs,x ~ normal(0,σabs,x) and a random component relative to the observation x itself erel,xx, where erel,x ~ 

normal(0,σrel,x). Similar definitions apply for the true J1.7, ey, σabs,y and σabs,y. The standard deviations of the measurement error 

components were chosen σabs,x = 4*105, σrel,x = 0.3, σabs,y = 3*10-3, σrel,y = 0.5, which are subjective estimates based on 

measurement data. 30 

Simulating the observations tends to generate infrequent extreme outlier observations from the infinite tails of the normal 

distribution. We discarded these outliers with an error larger than three times the combined standard uncertainty of the 
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observation in order to remove the effect of outliers from the regression analysis. This represents the quality control procedure 

in data analysis and it also improved the stability of our results between different simulations. 

4 Results  

Differences between the regression methods are illustrated with four different ways. First, by showing line fits on scatterplot 

of simulated data. Secondly, illustrating how the slopes change when the uncertainty in the measured variables increase, thirdly 5 

by showing the sensitivity of the fits on number of observations and finally showing how the fits are affected by adding outliers 

in the data. 

Regression fits with all methods in use are shown in Figure 1. As we know that the “true slope” βtrue=3.30 we can easily see 

how the methods perform. The worst performing method was OLS, with βols=1.55, which is roughly half of the βtrue. The best 

performing methods with equal accuracy, i.e. within 2% range, were ODR (βODR=3.27), Bayes EIV (βBEIV=3.24) and BLS 10 

(βBLS=3.22), whereas York (βYork=3.15) was within 5% range, but Deming (βDR=2.95) and PCA (βPCA=2.92) slightly 

underestimated the slope. 

The sensitivity of the methods was first tested by varying the uncertainty in H2SO4 observations. We simulated six datasets 

with 1000 observations and with varying absolute and relative uncertainties, listed in Table 1, and made fits with each method 

on all datasets separately. The performance of the methods is shown in Figure 2, with the results corresponding to Figure 1 are 15 

marked with black colour. It shows that when the uncertainty is smaller, the bias in OLS fit is smaller but the bias increases 

significantly as more uncertainty is added to data. Decrease in performance can also be seen with ODR, which is overestimating 

the slope, and PCA, DR and Bayes EIV, which all underestimate the slope. Bivariate methods, BLS and York, seem to be 

quite robust with increasing uncertainty, as the slopes are not changing considerably. 

The sensitivity of methods to decreasing number of observations was tested by picking 100 random samples from the 1000 20 

simulation dataset with n of 3, 5, 10, 20, 30, 50, 70, 100, 300 and 500 and making fits for all samples with all methods. The 

average slopes and their standard errors are shown in Figure 3. It is clear that when the number of observations is 10 or less, 

the variation in estimated slopes can be considerably high. When n≥30 the average slopes stabilized close to their characteristic 

level (within 5%), except for Bayes EIV and York bivariate, which needed more than 100 observations. The most sensitive 

methods for small n are Bayes EIV, ODR and PCA and thus they should not be applied for data with small n. Though, it should 25 

be remembered that number of points needed for a good fit depends on the uncertainties in the data. 

The sensitivity for outliers in predictor variable H2SO4 was tested with two different scenarios. First, the outliers were let to 

be randomly either high or low end of the distribution. In the second scenario, outliers were allowed to be only large numbers, 

which is often the case in H2SO4 and aerosol concentration measurements as the smallest numbers are cleaned out from the 

data when they are smaller than the detection limit of the measurement instrument. Five cases with n=1000 were simulated 30 

with increasing number of outliers (0, 5, 10, 20, 100) and 10 repetitions of H2SO4 values with different set of outliers. Outliers 

were defined such that xobs-xtrue>3*combined standard uncertainty. The most sensitive methods for outliers in both scenarios 
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were OLS and Bayes EIV. High number of outliers caused underestimation to PCA and DR, especially in high outlier case, 

and slight overestimation to BLS in random outlier case. York Bivariate and ODR were not affected in either case and BLS 

had only small variation between the 10 replicates in the estimated slope. We did not explore how large a number of outliers 

would be needed to seriously disrupt the fits for the various methods. We felt that it is likely not realistic to have situations 

with more than 10% outliers. 5 

5 Conclusions 

Ordinary least squares regression can be used to answer some simple questions on data, such as is Y related to X. However, if 

we are interested in the strength of the relationship and the predictor variable X contains some error, then error-in-variables 

methods should be applied. There is no single correct method to make the fit, because the methods measure slightly different 

things about the data. The choice of method should be based on the properties of data and the specific research question. There 10 

are usually two types of error in the data: natural and measurement error, where natural error refers to stochastic variation in 

the environment. Even if the natural error in the data is not known, taking into account the measurement error improves the fit 

significantly. In addition, no matter how small the measurement error would be, it should be taken account because taking it 

into account will never lead to more biased estimator. 

As a case study, we simulated a dataset mimicking the dependence of atmospheric new particle formation rate on sulphuric 15 

acid concentration. We introduced three major sources of uncertainty when doing inference from scatterplot data: increasing 

measurement error, number of data points and number of outliers. In Fig 1, we showed that in case of simulations where errors 

are taken from real measurements of J1.7 and H2SO4 four of the methods gave slopes within 5% of the “true” known value: 

BLS, York bivariate, Bayes EIV and ODR. Estimates from BLS and York bivariate remained stable even when the uncertainty 

in simulated H2SO4 was increased drastically in Fig 2. The main message to learn in Fig 3 is that with small numbers of 20 

observations all fit methods are highly uncertain. BLS was the most accurate with smallest sample sizes of 10 and less, ODR 

stabilized with 20 observations and York bivariate and Bayes EIV needed 100 or more data points to become accurate. After 

that, they approach the true value asymptotically, while the OLS slope, in contrast, converges towards an incorrect value. With 

the increasing number of outliers (Figure 4) ODR and York bivariate were the most stable ones, even with 10% of observations 

classified as outliers in both test cases. BLS remained stable in the case with only high outliers. Bayes EIV was the most 25 

sensitive to outliers after OLS. 

From this, we can give a recommendation that if the uncertainty in predictor is known, York bivariate, or other method able 

to use known variances, should be applied. If the errors are not known, and they are estimated from data, BLS and ODR 

showed out to be the most robust in cases of increasing uncertainty (relative error rE > 30% in Fig 2) and with high number of 

outliers. In our test data, BLS and ODR stayed stable up to rE >80% in Fig. 2 whereas DR and PCA started to be more uncertain 30 

when rE > 30% and Bayes EIV when  rE>50%.  If the number of observations is less than 10, and the uncertainties are high, 

we recommend considering if a regression fit is appropriate at all. However, with our simulation tests BLS showed out to be 
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the most robust with small numbers of data points. Bayes EIV has significant advantages if the number of observations is high 

enough and there are not too many outliers, as it is able to estimate the errors in data with distributions. 
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Figure 1. Regression lines fitted to the simulated data with all methods in comparison. Whiskers in data points refer to the 

measurement error used for simulation 
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Figure 2. Sensitivity test for increasing uncertainty in simulated data. Black markers show the initial data set described in Section 

3. Dashed line indicates the “true slope”. 
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Figure 3. Effect of sample size on the uncertainty of different fits. Lines show the median and shading illustrates one standard 

deviation range of slope estimates for 40 repeated random samples. Dashed line indicates the “true slope”. 
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Figure 4. Effect of outliers in the data. Random outliers case on left panel and only high positives on right panel. Lines show the 

median and shading shows one standard deviation of slope estimates in ten repeated studies. Dashed line indicates the “true slope”. 
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Table 1. The uncertainties used in simulation for sensitivity test for increasing uncertainty 

dataset σabs  σrel Ratio (= (σrel * 𝑥𝑜𝑏𝑠̅̅ ̅̅ ̅) / σabs ) 

1 103 0.05 315.0 

2 104 0.18 113.4 

3 7*104 0.3 27.0 

4 4*105 0.3 4.7 

5 6.5*105 0.45 4.4 

6 106 0.55 3.5 
 


