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Abstract. Extensive fossil fuel combustion in rapidly-developing cities severely affects air quality and 
public health. We report observational evidence of decadal changes in the efficiency, and cleanness of 
bulk combustion over large cities in mainland China. In order to estimate the trends in enhancement ratios 
of CO and SO2 to NO2 (ΔCO/ΔNO2 and ΔSO2/ΔNO2) and infer emergent bulk combustion properties 
over these cities, we combine air quality retrievals from widely used satellite instruments across 2005-15 
2014. We present results for four Chinese cities (Shenyang, Beijing, Shanghai, and Shenzhen) 
representing four levels of urban development. Our results show a robust coherent progression of 
declining-to-growing ΔCO/ΔNO2 relative to 2005 (-5.4±0.7%/year to +8.3±3.1%/year), and slowly-
declining ΔSO2/ΔNO2 (-6.0±1.0%/year to -3.4±1.0%/year) across the four cities. The coherent 
progression we found is not evident in the trends of emission ratios reported in Representative 20 
Concentration Pathway (RCP8.5) inventory. This progression is likely due to a shift towards cleaner 
combustion from industrial and residential sectors in Shanghai and Shenzhen that is not yet seen in 
Shenyang and Beijing. This overall trend is presently obfuscated by China’s still relatively higher 
dependence on coal. Such progression is well-correlated with economic development, and traces a 
common emission pathway that resembles evolution of air pollution in more developed cities. Our results 25 
highlight the utility of augmenting observing and modeling capabilities by exploiting enhancement ratios 
in constraining the time variation of emission ratios in current inventories. As cities and/or countries 
continue to socioeconomically develop, the ability to monitor combustion efficiency and effectiveness of 
pollution control becomes increasingly important in assessing sustainable control strategies. 

1 Introduction 30 

Urban agglomeration, particularly megacities (i.e., cities with >10 million inhabitants), are 
expected to continue growing (in size and number) over the coming decades (Jalkanen, 2012; World Bank, 
2015). Anthropogenic activities are most intense in megacities, accompanied by immense energy 
consumption mainly in the form of fossil fuel combustion (Mage et al., 1996; Kennedy et al., 2015). These 
lead to enhanced emissions of air pollutants, greenhouse gases, and waste energy, largely impacting air 35 
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quality (AQ), climate, and ecosystems (Baklanov et al., 2016, Lelieveld et al., 2015). At present, estimates 
of city-to-national-scale emissions from fossil fuel combustion remain uncertain, especially in rapidly-
developing regions where combustion is still poorly characterized due to the lack of detailed information 
on energy use, combustion practices, and pollution control strategies (Streets et al., 2013; Creutzig et al., 
2015). This is also confounded by larger uncertainties on other sources of pollution that may be associated 5 
with urbanization (e.g., deforestation, agriculture, and fires). These alone preclude us to accurately assess 
the changes in atmospheric composition due to anthropogenic activities at scales that are relevant to AQ, 
energy, and environmental policy (National Academies of Sciences, Engineering, and Medicine, 2016).  

Such is the case for cities in China even with the scientific attention the country has received in 
the past decades. As China grew into the world’s second largest economy, its rapid development resulted 10 
to substantial emissions (Richter et al., 2005), and more frequent occurrences of most severe pollution 
events in many of its megacities, most notably Beijing (Guo et al., 2014). These affect not only local AQ 
and public health but are reported to impact hemispheric-to-global atmospheric environment (Lin et al., 
2014; Verstraeten et al., 2015). Along with the growth of these cities is a growing body of evidence of 
decreasing emissions and associated pollution levels in some cities in China. This points to important 15 
changes in AQ as a result of development, AQ management, and regional-to-national socioeconomic 
initiatives embodied within its Five-Year Plans (FYP) (Reuter et al., 2014; Krotkov et al., 2016; van der 
A et al., 2017; Sun et al., 2018; Koukouli et al., 2018). However, these changes in AQ as a result of efforts 
to control air pollution are still obfuscated at present by the increase in combustion activities, along with 
uncertainties in bottom-up emission inventories, and diversity in economic structure and growth across 20 
cities (Wang and Hao, 2012; Mi et al., 2017). Monitoring these reductions at city scale remains to be a 
challenge especially when narrowly viewed within the context of a single pollutant, and more so when 
attributing them to a particular emission sector. 

Fossil fuel emissions from an evolving megacity follow a pattern that can be potentially monitored 
and refined, by combining observational constraints on combustion activity (abundance of combustion 25 
products) with efficiency and effectiveness of pollution control strategies or ‘cleanness’ (enhancement 
ratios of these products) (Silva et al., 2013; Hassler et al., 2016; Silva and Arellano, 2017; Tang et al., 
2018, 2019), alongside information on the state of socio-economic development (e.g., gross domestic 
product (GDP) or income) and a priori estimates from bottom-up emission inventories. In particular, the 
‘cleanness’ of combustion of a known fossil fuel type can be determined stoichiometrically by measuring 30 
the relative abundance of intermediate products such as carbon monoxide (CO), nitrogen oxides (NOX), 
sulfur dioxides (SO2), and soot particles with final products like carbon dioxide (CO2). Please see Methods 
section for more details. Most of these products are currently monitored as criteria pollutants by surface 
measurement networks and as tracers of pollution by satellite remote sensing (Streets et al., 2013; Duncan 
et al., 2014). In fact, these combustion products are revealed in space as very distinct bulk enhancements 35 
over a megacity metropolitan location in marked spatial contrast with the city’s surroundings (Bechle et 
al., 2011; Lamsal et al., 2013). At a scale of a megacity being monitored from space, these enhancements 
are analogous to smoke plumes coming from a stationary smokestack. And so, observations of these 
megacity plumes enable us to monitor bulk anthropogenic activity and transboundary pollution. They 
have also been used in recent years to refine the spatiotemporal distribution of emissions (Lamsal et al., 40 
2013; Hakkarainen et al., 2016; Ding et al., 2017), to indicate bulk combustion efficiency, inter-megacity 
differences and fire phase (Silva et al., 2013; Silva and Arellano, 2017; Tang and Arellano, 2017), and to 
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infer fossil fuel CO2 emissions (Konovalov et al., 2016) among others. From an annual to decadal 
standpoint, it is reasonable to interpret the long-term changes in spatial covariations between these 
observed pollutant enhancements within the megacity to reflect dominant shifts in bulk combustion 
characteristics (e.g., changes in fuel mixture and technology practice), which can then be indicative of an 
emission pathway for a given megacity (e.g., Parrish et al., 2002; Parrish, 2006; Russell et al., 2012; Silva 5 
et al., 2013; Hassler et al., 2016; Silva and Arellano, 2017). Data sampling and collocation issues, as well 
as retrieval information content and chemical nonlinearities between these pollutants, do not quite 
manifest at decadal scales more than emission changes, especially when treated as a smokestack in the 
analysis. 

In this study, our goal is to uncover space-based evidence of dominant shifts in the cleanness of 10 
bulk combustion of large cities across the recent decade (through these ratios), associate these shifts to 
particular sectors, and identify a common emission pathway across these cities. Along the same line to 
studies on environmental Kuznets curves (EKC, Stern, 2004) and human development (Lamb et al., 2014), 
we attempt to connect this pathway to economic growth by finding a power law relationship between the 
ratios observed for each major city in China and the city’s GDP per capita. As cities in China grow, 15 
emissions from fossil fuel combustion evolve accordingly depending on the rate and type of 
socioeconomic development, technological innovation, and environmental policies (Chan and Yao, 2008; 
Bechle et al., 2011; Zhang et al., 2012; Wang et al., 2012; He and Wang, 2012; Luo et al., 2014; Koukouli 
et al., 2018; Sun et al., 2018). This evolution however cannot be reflected at shorter time scales. As a 
basis for comparison, pollution controls adopted in developed countries like United States and Europe, 20 
which followed a progression from first controlling SO2, CO, and then NOX (Crippa et al., 2016), reflect 
some aspects of decadal-scale sustainable development that can be brought to light in the case of China. 

We analyze the emergent patterns of the ‘cleanness’ of bulk combustion in the past decade (2005-
2014), based on enhancement ratios between intermediate products of combustion (∆CO/∆NO&  and 
∆SO&/∆NO& ) observed within each megacity and urban agglomeration in China.  We use gridded 25 
monthly-averaged satellite retrievals of total columns of CO from Measurement of Pollution In The 
Troposphere (MOPITT), tropospheric columns of NO2 from Ozone Monitoring Instrument (OMI), and 
planetary boundary layer (PBL) columns of SO2 from OMI to derive monthly estimates of these ratios. 
We conduct spatial regression analysis and subsequently derive estimates of the decadal trends of these 
ratios using time series analysis. We then compare these trend estimates to inferred trends from a couple 30 
of model-derived abundance ratios and several emission ratios from current bottom-up emission 
inventories, including estimates based on the Representative Concentration Pathways scenario (RCP8.5) 
(Riahi et al., 2011). We also conducted a simple inverse analysis to update the contribution of major 
emission sectors in RCP8.5 to fit our estimates of decadal changes in enhancement ratios. Section 2 
describes data and methods used in this study. Results and discussions are presented in Section 3. Section 35 
4 is summary and implication of this study. 
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2 Data and Methods 

2.1 Study Region 

We considered all 31 provincial capitals and five special cities (Beijing, Shanghai, Shenzhen, 
Tianjin, and Chongqing) in mainland China for our analysis. These cities comprise the main urban 
agglomerations in the country (see Figure 1 for coverage). For purposes of finding long-term emergent 5 
patterns on its emission characteristics, we focused our analysis to 12 representative urban agglomerations. 
These 12 cities cover the four economic regions of China (i.e., East Coast: Beijing, Tianjin, Shanghai, 
Guangzhou, Shenzhen; Central China: Wuhan, Northeast China: Harbin, Shenyang; and Western China: 
Chengdu, Chongqing, Xian, Hohhot). Based on prior information from RCP8.5 and National Bureau of 
Statistics of China (http://data.stats.gov.cn), these cities already exhibit largely diverse pollution and 10 
economic development attributes illustrated in Figure 1 as differences in magnitude, sectoral, and 
temporal distribution of emissions and GDP per capita for 2005 to 2014 between these cities. Our goal is 
to assess whether the long-term patterns that are seen in these a priori emission estimates are consistent 
with observations. We also considered Los Angeles and other large cities in the United States (New York 
City, Chicago, Houston, Phoenix, Boston, Seattle, and Miami) for comparison. 15 

2.2 Data  

The main datasets used in this study are summarized in Table 1. This includes multiple satellite 
retrievals, representative emission inventories, and a couple of model simulations and chemical reanalysis. 

2.2.1 Satellite Retrievals and Data Processing 

 We use the NASA Terra Measurement of Pollution In The Tropophere (MOPITT) version 6, Level 20 
2, multispectral (Thermal Infrared/Near Infrared) retrievals of carbon monoxide (CO) total columns for 
CO (Deeter et al., 2014), tropospheric column retrievals from NASA Aura/ Dutch Ozone Monitoring 
Instrument NO&  (DOMINO) v2.0 for NO&  (Boersma et al., 2011), and Ozone Monitoring Instrument 
(OMI) Planetary Boundary Layer (PBL) SO&, version 3, Level 2 (Krotkov et al., 2006). We collected 
daily MOPITT CO, OMI NO2, and OMI SO2 retrievals that are available within a 2˚´2˚ area around each 25 
city center. This radius was selected to cover the extent of each city based on NO2 footprints (Bechle et 
al., 2011; Lamsal et al., 2013) and geopolitical maps of city boundaries. We grid each set of retrievals 
into 0.1˚´0.1˚ grids that commensurate to the finest retrieval resolution among MOPITT and OMI. We 
then average them across each month to minimize spatiotemporal collocation issues (see Table 1 for 
differences in sampling of MOPITT and OMI). As a result, there are 400 points for each species (CO, 30 
SO2, NO2) per city and month. We note that these retrievals have been used in the past to study decadal 
changes for individual (or a pair of) pollutants but not to derive enhancement ratios (e.g., Krotkov et al., 
2016). While CO retrieved from thermal infrared (TIR) radiances are mostly sensitive to free tropospheric 
CO, it has also been reported to be capable of observing lower tropospheric CO, especially when retrieved 
jointly from TIR and near infrared (NIR) radiances (Worden et al., 2010; Deeter et al., 2014). We 35 
recognize however that retrievals of SO2 from OMI have been reported to exhibit low sensitivity to weak 
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SO2 signals, in particular to less than 30 to 70 kTon per year of point source emissions (Krotkov et al., 
2016). While our spatial and temporal smoothing, along with anchoring our SO2 analysis with NO2 data 
(please see later description of our regression analysis), should help in enhancing the SO2 signal from 
cities with low SO2 emissions, these SO2 retrievals are useful as large SO2 abundances are still observed 
across the majority of cities in China (Krotkov et al., 2016). We also used CO retrievals from the Infrared 5 
Atmospheric Sounding Interferometer (IASI), Level 2 (De Wachter et al., 2012), and tropospheric column 
NO2 from FP7 QA4ECV OMI, v1 (Boersma et al., 2017) to verify consistency in our trend estimates.    

We note that using 2˚´2˚ area to represent cities does lead to slight overlap over Guangzhou and 
Shenzhen, Beijing and Tianjin. This does not affect our analyses of emission inventories because we 
apply geopolitical maps of city boundaries to calculate emissions for each city (see Section 2.2.2). This 10 
does have an impact on our analyses of satellite observations because we use all the grids in the 2˚´2˚ 
area to conduct the spatial regression. However, we do not expect the overlap to significantly change our 
results because (1) the overlapped area is relatively small; (2) the overlapped cities are sometimes 
considered together as a whole region because of their similarities and connections (for example, the Jing-
Jin-Ji megalopolis and the Pearl River Delta), and (3) the overlapped cities are in the same classes with 15 
similar patterns based on our analyses (i.e., Beijing and Tianjin are both in class 2, while Guangzhou and 
Shenzhen are both in class 4; Table 2). 

2.2.2 Emission Inventories and Model Simulations 

Multiple bottom-up emission inventories for CO, NO2 and SO2 are analyzed, namely Emission 
Database for Global Atmospheric Research (EDGAR, Crippa et al., 2016), Representative Concentration 20 
Pathways (RCP8.5, Riahi et al., 2011), Regional Emission inventory in ASia (REAS) version 2.1 
(Kurokawa et al., 2013), and Hemispheric Transport of Air Pollution (HTAP, Janssens-Maenhout et al., 
2015). We also use top-down emission estimates of CO and NO2 from the Tropospheric Chemical 
Reanalysis (TCR) based on CHASER-LETKF assimilation system (Miyazaki et al., 2017). Since these 
emission inventories have different spatial resolutions (see details in Table 1) and are available in the 25 
form of fluxes (units in kg/m2/s), we upscale/downscale them by simply regridding into 0.1˚ by 0.1˚ cells 
similar to our approach for satellite data to facilitate comparison. We then consider all cells within the 2˚ 
by 2˚ area around the city center. For annual emissions, we only take the sum of all cells within the 
geopolitical boundary of the city (see Figure 2). All of the cities extend to less than the 2˚ by 2˚ area that 
we set as our city domain.  30 

We also use model data for CO and NO2 from the Community Atmosphere Model with Chemistry 
(CAM-chem; Gaubert et al., 2016) and TCR to derive CO and NO2 abundance ratios associated with the 
bottom-up emissions used in these models (i.e., RCP in CAM-Chem and EDGAR in CHASER). The 
associated retrieval averaging kernels and prior information are applied to the daily-averaged model CO 
and NO2 vertical profiles of mixing ratios from CAM-chem and CHASER, along with appropriate spatial 35 
interpolation and/or partial column integrations. Since the spatial resolution (about 2˚~3˚) of CAM-chem 
and CHASER outputs that we analyzed are far coarser than 0.1˚, we only considered the associated 
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abundance ratio rather than deriving enhancement ratio across the month where non-stationarity and non-
linearity issues are more likely to exist.  

2.3 Deriving Enhancement Ratios using Spatial Regression Analysis 

For each city, we regress the gridded monthly-average CO and SO2 to NO2 to calculate monthly 
enhancement ratios (∆CO/∆NO& and ∆SO&/∆NO&).  We use NO2 as our control variable as NO2 has the 5 
shortest lifetime (hours) among these products. Except for lightning, NOX is mostly produced from high-
temperature anthropogenic combustion processes. And because of its short lifetime, it is observed as 
distinctly and spatiotemporally local surface enhancements, with relatively very low background 
concentrations. Along with the availability of NO2 retrievals from satellites at fine spatial scale and over 
long period, NO2 allows us to effectively identify intra-megacity combustion activities and define the 10 
urban extent (Bechle et al., 2011; Lamsal et al., 2013; Hakkarainen et al., 2016). In other words, NO& is 
a good proxy for combustion activity. We use a reduce major axis regression (Smith, 2009) to estimate 
the slopes (∆𝑦 ∆𝑥) representing enhancement ratio across the spatial extent of the megacity, and intercept 
(𝑦*+ ) for CO and SO2 representing the background levels when there is no combustion (within the 
megacity and free-tropospheric contribution). This follows the approach introduced by (Fujita et al. (1992) 15 
and Parrish et al. (2002). However, we note that we use the spatial covariations of these species relative 
to NO2 rather than their temporal covariations as in previous studies. Please see Section 3 for implications 
of this approach. We only consider statistically significant and positive slopes as we are focusing on 
sources and not sinks of these combustion products. These monthly ratios are then averaged across the 
year for analysis and archived for time series (decadal) analysis (see Section 3). Note that they can be 20 
considered to be comparable to emission ratios when observations are taken at or near the source and if 
they are normalized to account for air mass variations (Fujita et al., 1992; Parrish et al., 2002; Parrish, 
2006; Hassler et al., 2016). Here, we normalize all ratios to year 2005 values.  

It is important to note that we view each large city as a big smokestack that emits an aggregate of 
combustion products that can then be observed by satellite remote sensing as column-integrated quantities. 25 
The spatial (0.1˚) covariation of these aggregate within the 2˚ radius is interpreted as bulk characteristic 
of spatially heterogeneous combustion sources within the megacity. Monthly enhancement ratios are 
hence interpreted as the linear sensitivity in CO or SO2 to intra-megacity spatial variations in combustion 
activity as defined by NO2. We emphasize that these enhancement ratios are not derived using time 
covariations but spatial covariations to minimize potential non-stationarities (e.g., differences in lifetimes 30 
between species), and influence of free-tropospheric signatures in MOPITT CO, which should be 
reflected as part of a larger scale contribution to CO*+ in this analysis given that we anchor the regression 
on OMI NO2. Possible confounding factors such as biogenic sources of CO in a megacity is also 
minimized in our analysis by treating CO data only when NO2 is observed since NO2 is not largely co-
emitted from CO biogenic sources. Although spatial and temporal smoothing can minimize the effect of 35 
lightning (NOX) and fires (NOX and CO) since they are emitted intermittently relative to anthropogenic 
combustion, our findings must be interpreted to represent changes in bulk combustion cleanness over a 
megacity rather than specific combustion cleanness. 



7 
 

2.4 Time Series Analysis and Curve Fitting 

The focus of this work is to study the long-term changes in the spatial covariations of these 
monthly-averaged CO and SO2 to NO2, as expressed in terms of enhancement ratios. We hypothesized 
that at decadal scale the changes in covariations reflect the dominant changes in megacity emission 
characteristics. We use two approaches to calculate the decadal trend in our normalized estimates of these 5 
ratios. For linear trend analyses, we use the Robust Regression Using Iteratively Reweighted Least-
Squares (Holland and Welsch, 1977). This minimizes the influence of outliers relative to traditional least-
squares fit especially when the relationship is not fully linear. We also use another trend analysis 
algorithm in our subsequent inverse analysis. Instead of using the annual mean values and estimate the 
linear trend across 2005-2014, we estimate the associated decadal trends in ∆CO/∆NO& and ∆SO&/∆NO& 10 
using the seasonal trend decomposition with LOESS (locally weighted scatterplot smoothing) or STL 
algorithm (Cleveland et al., 1990). This algorithm separates the seasonal, inter-annual, and decadal 
contributions of monthly ratios. We use the smoothing windows for the decadal, inter-annual, and 
seasonal trends of 121 months, 25 months, and 5 months, respectively based on analysis of CO decadal 
trends in Jiang et al. (2018). As in Gaubert et al. (2017), we tested several other windows and found 15 
consistent temporal patterns across cities. For non-linear curve fitting, we use robust least square 
regressions with Least Absolute Residuals (LAR) method (within the cftool function in MATLAB) to fit 
a power law function to the annual-mean ratios and GDP per capita. This method also minimizes the 
influence of extreme values on the fit.  

2.5 Inverse Analysis 20 

We conduct an inverse analysis of the long-term trends in monthly enhancement ratios to further 
expound our findings by associating the overall changes to sectoral changes. In this case, we are interested 
in finding the decadal contribution of the time series (2005-2014) of monthly statistically-significant 
enhancement ratios that are derived from our previous regression and time series analysis. We 
decomposed the a priori estimate of monthly emission ratio of CO to NOX (and SO2 to NOX) from RCP8.5 25 
as a product of: a) ratio of effective emission factors for each of the four sectors (namely energy, industry, 
transport, and others); and b) fractional contribution of NO2 emissions from each sector to the total NO2 
emissions for all four sectors. We then use a two-step Monte-Carlo-based Bayesian inversion method, to 
estimate effective emission factors and fractional contribution of NO2 emissions from each sector. Please 
refer to Appendix A for a short derivation of this decomposition, and Appendix B for details in the inverse 30 
analysis. 

3 Results and Discussions 

3.1 Observed Patterns of Enhancement Ratios in Chinese and U.S. Cities 

In this sub-section, we present observed patterns of enhancement ratios in Chinese and U.S. Cities. 
We firstly show spatial regression analysis of satellite retrievals of CO and SO2 to NO2 by season (taking 35 
Beijing and Los Angeles for demonstration) in Figure 2. Although naturally-produced CO and NO2 like 
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biogenic CO and lightning NOX introduce a strong seasonality on these ratios even within the megacity, 
we find that when we average the monthly ratios using only the months corresponding to a particular 
season (i.e., more fires and lightning during the summer), we still find a similar temporal pattern (albeit 
different in magnitude) in derived ∆CO/∆NO& and ∆SO&/∆NO& (see Figure 2). This is reasonable as these 
CO as well as SO2 enhancements are dominantly from combustion-related processes that co-emit NO2 by 5 
our study design, pointing to the robustness of analyzing annual-mean ∆CO/∆NO& and ∆SO&/∆NO&. 

Shown in Figure 3 are linear trends of annual-mean ∆CO/∆NO& and ∆SO&/∆NO& relative to year 
2005 values in four Chinese cities. These cities are representative of a certain level of urban development 
across mainland China. The four levels in this study are defined using broad clustering between the 
average GDP per capita per year and the rate of change in ∆CO/∆NO& that are derived from satellite 10 
observations. This is shown in Table 2, where a general rule resulting from this analysis would be a 
classification mainly based on GDP per capita per year, except Harbin and Wuhan. Combustion-related 
activities in Shenyang, Beijing, Shanghai, and Shenzhen can be characterized to follow a progression 
from heavy to light manufacturing, export processing, and service industries (Chan and Yao, 2008). For 
this analysis, Shenyang, Beijing, Shanghai, and Shenzhen represent the progression across the 12 select 15 
cities of increasing GDP per capita along with decreasing to increasing ∆CO/∆NO& (-5.4±0.7%/year to 
+8.3±3.1%/year) and decreasing rate of ∆SO&/∆NO&  reductions (-6.0±1.0%/year to -3.4±1.0%/year) 
relative to 2005 (Figure 3 and Table 2). This pattern in enhancement ratios is not evident in the rate of 
change of CO, SO2, and NO2 column abundance, for which we find increasing rate of decrease in CO (-
0.1±0.3%/year to -1.0±0.2%/year) and SO2 (-1.9±0.9%/year to -5.5±1.1%/year) abundance, along with 20 
decreasing rate of increase in NO2 abundance from Shenyang (+5.2±1.4%/year) to Shenzhen 
(1.8±0.7%/year) (Table 2). This is consistent with previous studies of these species. In fact, we find a 
decreasing-to-increasing pattern in the derived enhancements of CO due to combustion (i.e., ∆𝐶𝑂./0* =
CO − CO*+ ), across these four levels of development.  

We have minimized the influence of inter-annual variations due to meteorology (e.g., changes in 25 
air mass) by analyzing molar ratios (e.g., mole CO/mole NO2) rather than absolute molar concentrations 
(e.g., mole CO/mole air; Parrish et al., 2002, 2006). As the co-emitted species (i.e., CO, SO2, and NO2) 
are subject to the same meteorological conditions (affecting transport, dilution, and lifetime), their 
enhancement ratios are expected to be less sensitive to meteorology compared to the absolute molar 
concentrations. This is supported by the fact that decadal ∆CO/∆NO& as well as ∆SO&/∆NO& for different 30 
seasons have similar trends (Figure 2). Previous studies have also proven that the ratios compared to the 
concentrations themselves are relatively immune to changing meteorological conditions, and can provide 
insights into the magnitude and temporal trends of the emissions (Parrish et al, 2002, 2006, 2009, Silva 
et al., 2013, Hassler et al. 2016). In addition, they can be directly compared to the corresponding emission 
ratios under certain circumstances. However, we note that even though the ratios derived from satellite 35 
observations are relatively less sensitive to meteorology, the methodology cannot eliminate all the impacts 
from meteorology. The enhancement ratios may be impacted by the meteorological conditions because 
lifetimes of different air pollutants may respond to meteorological conditions differently. Nevertheless, 
we believe such impact should not influence our main conclusions for the following two reasons: (1) Our 
analysis focuses on decadal trends instead of short-term trends. As shown by previous study, meteorology 40 
also plays an important role on relatively short time scales, but meteorology probably plays a lesser role 
in the longer-term trends (Krotkov et al. 2016); (2) The satellite retrieval samples are taken over the 
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megacities (right above strong emission sources) instead of downwind of the pollution sources, making 
them more representative of megacity sources. 

Normalizing these ratios to 2005 values should have also minimized the impact of the differences 
in the magnitude of these ratios between these cities. The impact of meteorology on inferred decadal 
trends through variations in columnar abundance is more evident when absolute magnitudes of single 5 
species are analyzed. In addition, potential drifts of biases in time (caused by systematic errors in the 
instrument and/or retrieval algorithm) cannot account for the differences in the temporal pattern that we 
find across these cities. Such biases should be commonly reflected in all cities, yet we see differences 
between cities. In fact, we find very similar progression pattern when we use the Infrared Atmospheric 
Sounding Interferometer (IASI) CO retrievals (De Wachter et al., 2012) instead of MOPITT, or OMI 10 
QA4ECV (Boersma et al., 2017) instead of OMI DOMINO. Interestingly, we find that the increasing 
enhancement ratio of CO to NO2 in Shenzhen (and to a lesser extent in Shanghai) remarkably resembles 
the relative changes in CO to NO2 ratios in more developed megacities (Los Angeles and New York) and 
several urban agglomerations in the United States (see Figure 3e for Los Angeles and Table 2 and Figure 
S1 for all other select cities). More importantly, the increasing pattern that we see in Los Angeles (~ 15 
+7±1%/year) relative to 2005 is generally consistent to the increasing trend (~ +4%/year) after 2007 of 
ground-based CO to NOX enhancement ratio in Los Angeles as reported by Hassler et al. (2016). It is a 
common understanding that modernization brings about larger energy use coupled with higher economic 
productivity, but poorer environmental quality (i.e., increasing abundance of pollutants). However, the 
changes in lifestyle concomitant with human development results in a shift to fewer activities (including 20 
increase use of renewable energy), along with more efficient and cleaner combustion and changes in fuel 
types (coal to natural gas) (Mazur and Rosa, 1974). This eventually leads to increases in relative 
sensitivities of CO and SO2 to NO2. Along the same line as previous studies suggesting emissions of CO, 
SO2, NO2, and their ratios can be indicators of modernization to some extent (Krotkov et al., 2006; Russell 
et al., 2012; Luo et al., 2014; Hassler et al., 2016), our finding on this progression in ∆CO/∆NO& serves 25 
as a satellite-based evidence of a dominant shift in the cleanness of bulk combustion in more economically 
developed city within a developing country like China. 

On the other hand, there is no clear difference in the observed enhancement ratios (∆SO&/∆NO&) 
and derived enhancements of SO2 due to combustion (∆𝑆𝑂&./0*) between cities. The sensitivity of SO2 
to NO2 relative to 2005 in Shenzhen does not follow the increasing pattern in Los Angeles (Figure 3b). 30 
Unlike ∆𝐶𝑂./0*, ∆𝑆𝑂&./0* in all four Chinese cities still show a decreasing trend relative to 2005 while 
∆𝑆𝑂&./0* in Los Angeles show an increasing pattern consistent with its ∆𝐶𝑂./0*. On one hand, there is 
a striking difference in absolute magnitudes in SO2 abundance between these cities (as has been reported), 
reflecting large-scale differences in combustion practice. Yet, the low SO2 abundance in Los Angeles 
makes it also difficult to detect possibly large SO2 point sources (Krotkov et al., 2016). Enhanced SO2 35 
signal can still be detected as the spatial first-order derivatives of SO2 with NO2 at megacity-scale should 
not be largely (non-linearly) influenced by its absolute magnitude. We find that there is a tighter 
correspondence between SO2 and NO2 abundance in Chinese cities than in U.S. cities. This might suggest 
differences in fuel use as SO2 is mainly produced within a megacity from burning of sulfur-containing 
fossil fuel (mostly coal, oil, and natural gas) and to a smaller extent from industrial processes (e.g., 40 
smelting). Here, we postulate that the absence of an apparent shift in ∆SO&/∆NO& across the four Chinese 
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cities is due to continuing heavier reliance of these cities (and China) on coal burning relative to United 
States (Wang and Hao, 2012; Bhattacharya et al., 2015; Qi et al., 2016; Yang et al., 2016; Sun et al., 2018; 
Zheng et al., 2018). In terms of the sectoral share, the majority of NOx emissions over Los Angeles basin 
is from transport according to a recent fuel-based inventory (Hassler et al., 2016), whereas fossil fuel 
combustion (from power generation and industry) is the most dominant NOx source in China (Sun et al., 5 
2018). In terms of the energy share, it was estimated that coal accounts for about 69% and 23% of the 
total primary energy consumption in China and U.S. in 2005, respectively. Actions including usage of 
low-sulfur coals, installation of flue gas desulfurization (FGD) facilities, and closing of small units, have 
been taken to reduce coal-related emissions in China. The aforementioned de-SO2 procedure in China is 
most likely to be the dominant driving factor of the declining ∆SO&/∆NO& (Li et al., 2018; Zheng et al., 10 
2018). While there are on-going activities regulating coal-related emissions, coal consumption in China 
remains to increase in the past decade (Qi et al., 2016; Yang et al., 2016). In terms of mass, it has increased 
by 70% from 2005 to 2014 (Korsbakken et al., 2016). On the other hand, the use of coal in U.S. has been 
found to be slightly decreasing along with previous adoption of SO2 control technologies (Taylor et al., 
2005). In addition, previous studies have reported recent reduction in NOx emissions over China since 15 
2011 based on satellite observations and emission inventories (Liu et al., 2016; van der A., et al, 2017). 
The installation of selective catalytic reduction (SCR) equipment at power plants and new emissions 
standards for vehicles both contribute to the NOx emission reduction (Liu et al., 2016; van der A., et al, 
2017; Wu et al., 2017). On the other hand, based on our analysis of decadal trends (2005-2014), only NO2 
over Shenzhen overall decreased in the decade, while 10-year average changes of NO2 over Shenyang, 20 
Beijing, and Shanghai were overall positive (Table 2). Intradecadal changes as reported in Liu et al. 2016 
(from increasing to decreasing NOx emissions around 2011) do not contradict the derived 10-year trend 
in this work, especially over Shenyang, and Beijing where NOx emissions are still rapidly increasing 
during the first half of the decade (2005-2011). The changes in SO2 emissions and NO2 emissions together 
contribute to the trends of ∆SO&/∆NO&  that we found. Positive ∆NO&  and negative ∆SO&  produce 25 
negative ∆SO&/∆NO&	over the three cities; while negative ∆SO& and negative ∆NO& (albeit smaller in 
magnitude) still produce negative ∆SO&/∆NO& but smaller magnitude over Shenzhen than ∆SO&/∆NO& 
over the other cities (Table 2). This indicates a stronger influence of the changes in SO2 emissions (as 
reflected in ∆SO&) in the decreasing trends of these ratios. 

3.2 Inconsistencies with A Priori Estimates 30 

The satellite-based ∆CO/∆NO& patterns are inconsistent with emission- and model-based ratios 
(Figures 3 and S1, Table 2). As previously introduced, estimates of the ratios of emissions can be related 
to observed ratios of enhancements when these observations are taken at or near the source. In this case, 
we assume that a megacity is a big smokestack emitting mostly combustion-related pollutants (i.e., CO, 
NO2, and SO2) that can be observed from space with MOPITT and OMI. In addition, NO2 is considered 35 
to be the dominant form of NOX that can be observed at this scale. From a global atmospheric chemistry 
modeling (CTMs) perspective, the associated abundance over megacities is represented as one to four 
discrete vertical column(s) assuming spatial resolution of these CTMs of one to two degrees. While 
recognizing the associated month-to-month variability in ∆CO/∆NO& and expected differences on how 
these ratios should be compared, the trends in emission ratios relative to 2005 of CO to NOX from bottom-40 
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up emission inventories (EDGAR4.2 and RCP8.5) and top-down emission estimates (CHASER, 
Miyazaki et al., 2017) do not appear to follow the progression (i.e., decreasing to increasing ∆CO/∆NO& 
relative to 2005 from Shenyang to Shenzhen; Figure 3). This is also true for the ratios of CO to NO2 
abundance from CAM-Chem and CHASER CTMs, which are mostly consistent (except in Los Angeles) 
with the trends of their associated emission ratios (i.e., CAM-Chem and CHASER emissions are based 5 
on RCP8.5 and EDGARv4.2 inventories, respectively). The a posteriori emission ratios in Beijing from 
Miyazaki et al. (2017), which uses CHASER-LETKF to assimilate MOPITT CO and OMI NO2 retrievals 
among other retrievals, also appear to initially follow the emission ratios from EDGAR. Furthermore, the 
ratios of SO2 to NOX emissions from RCP8.5 follow the trend of ∆SO&/∆NO& in Chinese cities but tend 
to diverge in Los Angeles, whereas the emission ratios from EDGAR exhibit a lack of trend in China and 10 
Los Angeles. A closer look at linear trends of the ratios for each sector in RCP8.5 (Figure S2) reveals 
inconsistencies in the trends, which cannot be addressed by simple scaling of activity levels in bottom-up 
inventories (Zheng et al., 2018). All these differences underscore the need to reduce uncertainties in 
representing time-varying emission activity and emission factors in CTM inputs. There is also a need to 
quantify errors in model physics and dynamics in transforming emissions to abundance, as well as in data 15 
assimilation and inverse methods in integrating observations into models including representativeness of 
these retrievals. We highlight here the need to improve not only the accuracy but also the consistency of 
AQ predictions across pollutants in megacities. Initial results from an improved set of multi-species data 
assimilation runs using CHASER-LETKF show better agreements with the trends in ∆CO/∆NO& 
(Miyazaki et al., 2017). Such improvements highlight an under-explored utility of available observational 20 
constraints on the changes in emission ratios. We emphasize here that while these differences are expected 
and have been previously reported, our findings highlight the need to focus on improving model 
treatments of the dynamic nature of emission factors in these megacities.    

3.3 Combustion Emission Pathway for Chinese Cities 

We define combustion emission pathway as a trajectory in time of the overall changes in emissions  25 
due to combustion  with respect to socioeconomic development (e.g., Riahi et al., 2011; Steinberger et 
al., 2012; Li et al., 2016; Marangoni et al., 2017). In this section, we identify a common combustion 
emission pathway across these four levels of development and associate them to sectoral changes through 
inverse analysis. We will briefly describe the inverse analysis of the ratios in section 3.3.1, present our 
findings on combustion emission pathway in section 3.3.2, and elucidate the driving factors by means of 30 
time traces in sectoral emission ratios in section 3.3.3. 

3.3.1 Inverse Analysis of the Ratios 

We conduct an inverse analysis of the ratios shown in Figure 3 to further expound on these patterns, 
by associating them to sectoral changes. Please see details of the matrix-vector product and inversion 
methodology in Section 2.5 and Appendix B. The result of this inversion is a set of a posteriori time 35 
series estimates of sectoral CO to NOX and SO2 to NOX ratios, such that the corresponding time series 
estimates of the total CO to NOX and SO2 to NOX ratios match the decadal trends of ∆𝐫𝐚/∆𝐫𝐚𝟐 and 
∆𝐚𝐧𝟐/∆𝐚𝐧𝟐 inferred from these satellite retrievals. Again, we note that we use the STL-inferred decadal 
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trend as the data to fit (not the monthly-mean ratios nor the linear trend in Figure 3), as this is the most 
appropriate data for analyzing long-term changes in emission sectors. 

3.3.2 Combustion Emission Pathway 

The results of our inverse analysis are presented in Figure 4. This figure consists of five 2-D line 
plots of a posteriori (solid) and a priori (dashed) time series of SO2 to NOX emission ratios (ESO2/ENOX) 5 
in y-axis versus corresponding values of CO to NOX emission ratios (ECO/ENOX) in x-axis. The five 
plots correspond to the annual total (center panel, Figure 4a) and sectoral emission ratios (four side panels, 
Figures 4b to 4e) of each of the four cities selected in Figure 3. The time series, which is normalized to 
2005 values, starts at the origin (1,1) and ends at the arrow tip of the line. Each 2-D plot also contains an 
inset showing the corresponding emission trajectory for Los Angeles. The center panel of Figure 4 is 10 
similar to Figure 3 but plotted jointly and with the a posteriori time series of emission ratios now 
corresponding to the time series of enhancement ratios (i.e., STL-inferred decadal trend). We find that 
the progression in combustion characteristics across these four cities is clearly evident from this diagram 
and very consistent with the linear trends in Figure 3. In Shenyang, both ESO2/ENOX and ECO/ENOX 
are decreasing relative to 2005 at a faster rate (as represented by the length of the line) than in Beijing. 15 
On the other hand, we see a clear shift in Shanghai and most notably in Shenzhen to a slightly decreasing 
ESO2/ENOX and increasing ECO/ENOX leading their emission trajectories toward a different state of 
‘combustion cleanness’. The combustion emission ratios in Los Angeles (and other cities in U.S.) lies 
however at a different state than Shanghai and Shenzhen. In particular, we find ESO2/ENOX and 
ECO/ENOX in Los Angeles to be both linearly increasing relative to 2005 values. And so, there exists a 20 
progression of decreasing-to-increasing sensitivities of CO and SO2 to NO2 from Shenyang to Shenzhen 
to Los Angeles (gray semi-circular trace in Figure 4a) relative to 2005, that appears to be related to 
socioeconomic development consistent with the current understanding of human development pathways 
(Lamb et al., 2014). In this case, it may be a consequence of air quality management practice and improved 
efficiency in China (Sun et al., 2018; van der A et al., 2017) and U.S. (Hassler et al., 2016; Russell et al., 25 
2012). Altogether, this leads us to suggest a common combustion emission pathway for the megacities in 
mainland China, that begins with a reduction in SO2, followed by CO, and continues with a reduction in 
NOX and potentially on volatile organic compounds (VOCs) later on. To illustrate, we still see increases 
in NOX abundance in Shenyang although CO and SO2 are already decreasing, whereas in Shenzhen, we 
see NOX starting to decrease (at a faster rate) along with decreasing CO and SO2 abundance. The rate at 30 
which SO2, CO, and NO2 are decreasing is not at a level that is observed in Los Angeles. And so, while 
the satellite data reveals a combustion emission pathway in these Chinese megacities, these cities are yet 
to reach conditions that is at par with megacities in more developed cities in U.S. and Europe. It is worth 
noting that the a priori estimates from RCP8.5 do not follow this pathway, even for Los Angeles, 
suggesting inconsistencies and necessary updates on temporal changes in emission factors, effectiveness 35 
in pollution control technologies, and/or more information on fuel use mixtures in this emission inventory. 
It also appears that the pathway represented in RCP is similar to all cities and more resembling the 
emission pathway for Beijing. 
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3.3.2 Traces in Sectoral Emission Ratios 

Furthermore, the traces in sectoral emission ratios from RCP8.5 all point to decreasing ratios 
relative to 2005 and are primarily driven by the energy (transportation) sector, which constitute more than 
one-third of NOX emissions in Chinese (U.S.) cities (Figure 4b to 4e). Our inversion results to slight 
adjustments in Chinese energy emission pathway towards little to no changes in CO to NOX emission 5 
ratios (Figure 4b). Adjustments from the transportation sector are also small in terms of direction and 
slower in terms of its rate of change relative to 2005 RCP values (Figure 4c). This is certainly not the case 
in Los Angeles where CO to NOX and SO2 to NOX ratios follow quite the opposite pathway of increasing 
ratios from the energy sector and increasing CO to NOX, with no change in SO2 to NOX from the 
transportation sector. This is expected in United States because of cleaner fuel standards (Shindell et al., 10 
2011; Zhang et al., 2012; Kheirbek et al., 2014; Yang et al., 2016; Paulot et al., 2017). Significant shifts 
on these ratios relative to 2005 are clearly evident from the industry and other (i.e., agriculture, residential, 
and waste) sectors in the cities in China (Figure 4d and 4e). Shanghai and most notably Shenzhen show 
a shift to increasing CO to NOX with slightly decreasing SO2 to NOX that are not reflected in RCP8.5. 
The emission ratios from industry and other (mostly residential) sectors need to be adjusted significantly 15 
in our inversion to match the shifts in observed ∆CO/∆NO&  and ∆SO&/∆NO&  in these two cities. As 
earlier mentioned, tertiary (service) industries including export processing activities are dominant in 
Shanghai and Shenzhen than in Shenyang. The shift in recent years to increasing CO to NOX reflects a 
larger rate of decrease in NOX levels than CO from the industrial and residential sectors of these cities. 
While a more detailed investigation is warranted to narrowly identify the activities and/or policies driving 20 
this shift (van der A et al., 2017), it is clear that changes in combustion activity alone cannot account for 
these shifts, and that updates on emission factors for these sectors in RCP8.5 are needed. We find that 
these findings are robust across a suite of error assumptions in the inverse analysis. This update applies 
all the more to all sectors in RCP emissions for Los Angeles. Again, this is well supported by studies like 
Hassler et al. (2016). where they reported increasing CO to NOX enhancement ratio after 2007 in Los 25 
Angeles along with a 45% decline of NOX emissions based on their fuel-based inventory. This is in 
contrast to decreasing RCP8.5-based MACCity emission ratios that they also reported for Los Angeles. 
This increase in enhancement ratios (similar to this work) is attributed to a combination of factors such 
as the decrease in NOX from freight traffic activity during U.S. recession and implementation of new NOX 
emission control technologies and regulations to meet Tier two emission standards on U.S. light-duty 30 
vehicles. They also noted that differences in the trends of ∆CO/∆NO& are still observed even between 
cities from developed countries like U.S. and Europe, as these cities differ in terms of transportation 
practices and lifestyles (e.g., increase in light duty diesel vehicles). It is also now conceivable that 
∆CO/∆NO& can be further influenced by shifts in relative importance of emission sectors (e.g., VOCs in 
petrochemical and pharmaceutical industries) as activity decreases with efficiency, pollution is controlled, 35 
and lifestyle changes whenever cities evolve (McDonald et al., 2018). A recent study (Jiang et al., 2018) 
revealing an over-estimation in the decrease of USEPA NOX emissions based on OMI NO2 and MOPITT 
CO retrievals with USEPA ground station measurements of NO2, also suggests potential changes in ‘bulk’ 
combustion characteristics in urban regions of the United States. Along with these studies, our results 
suggest that regional to global emission inventories, which are used as input to predictive models of 40 
atmospheric composition, have to reflect: a) the evolution of air pollution for a given city (sectoral shifts) 
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and b) the differences in combustion practices from city to city, in order to capture these observed 
magnitudes and variations in enhancement ratios. 

3.4 Socioeconomic Dependence of Urban Enhancement Ratios in China 

Here, we attempt to connect these emission pathways to the larger pattern of economic growth 
across the 31 capital cities and five special cities in mainland China. We find in particular a power law 5 
relationship between the observed annual-mean ∆CO/∆NO& (and ∆SO&/∆NO&) and GDP per capita. This 
is not to derive an overall EKC for China, as this in fact requires a very long record of environmental 
quality, but specifically to investigate how economic development shapes how ‘clean’ the bulk 
combustion in Chinese cities would be. These enhancement ratios complement abundance and/or 
emissions of pollutants as traditional measures of air pollution. Unlike Figure 3 and 4, our focus is to 10 
illustrate the larger dependence of enhancement ratios on GDP per capita. As discussed in the Methods 
section, we relate the enhancement ratio of a megacity to the ratio of the product of emission factor 
(𝐸𝐹;<=.>=;) and effectiveness of control technology (1 − 𝐶𝐸;<=.>=;) for CO and NOX species in the case 
of ∆CO/∆NO& for example. We use a robust least-squares regression with least absolute residuals method 
to fit a curve of the form: 𝑦 = 𝑎𝑥A, where 𝑦 is ∆CO/∆NO&	or ∆SO&/∆NO& and 𝑥	is GDP per capita. Our 15 
results are presented in Figure 5a and 5b for ∆CO/∆NO&	and ∆SO&/∆NO&, respectively. The 12 cities 
considered in our analysis of emission pathways are marked with colors corresponding to its level of 
urban development described in previous section. Note that the magnitudes of enhancement ratios derived 
from this work is a factor of 10 higher than ratios derived from ground-based networks. We attribute this 
discrepancy to differences in air mass and volume, representativeness, and vertical sensitivity between 20 
abundance retrieved as total or tropospheric columns and in-situ and point samples in units of mixing 
ratios. Nevertheless, we find a strong power law relationship with GDP per capita having 𝑘 coefficients 
(R2=0.98) of negative two-thirds and negative one-half for ∆CO/∆NO& and ∆SO&/∆NO&, respectively. 
Likely, the coefficients in ∆SO&/∆NO& will converge to that in ∆CO/∆NO& as changes in fuel type and 
SO2 controls should decrease SO2 abundance. While each city is unique and that the evolution of air 25 
pollution may be different from city to city, there also exist a clear signature of urbanization at national 
level that reflects the influence of economic growth on the cleanness of bulk combustion. Similar power 
law relationships (albeit different coefficients) have been reported in studies of urban growth and 
development (Bechle et al., 2011; Lamsal et al., 2013; Bettencourt et al., 2013), energy flows (Creutzig 
et al., 2015) and carbon emissions (Fragkias et al., 2013). Our results suggest that enhancement ratios 30 
scale with GDP per capita, with lower GDP per capita like Shenyang and other cities (gray dots) having 
higher enhancement ratios, while Shenzhen and other cities (yellow dots) with highest GDP per capita in 
China lie among cities with the lowest enhancement ratios. As we have shown in Figure 4 (and Table 2), 
the ratios in Shenzhen tend to increase with time (and GDP) but this increase has its limits and appears to 
be dwarfed by cities with highest enhancement ratios. We note, however, that identifying a mechanistic 35 
rationale of these negative scaling coefficients is beyond the scope of this work and hence is not proposed. 
A unified relationship cannot also be established across countries as there are obvious differences in 
socioeconomic and air pollution conditions in China and U.S. that cannot be accounted for (Figure 6). 
Nevertheless, we suggest incorporating this observable along with estimates of emissions to future scaling 
studies, especially as we move past RCPs and toward recent developments in building more realistic 40 
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emission scenarios that integrate socioeconomic and environmental development pathways like the 
Shared Socioeconomic Pathways (SSPs; O’Neil et al., 2014). 

4 Summary and Implications 

The main goal of this work is to provide observational evidence from Earth observing satellites of 
emission pathways of combustion-related air pollutants, as a result of urban growth in economically 5 
developing countries like China. A new observational perspective on monitoring one of the major 
consequences of urbanization is introduced, not to replace existing observing capabilities but to further 
exploit the information that is already available. Following the pioneering work by Parrish et al. (2002), 
the sensitivities of intermediate products of combustion can be derived from existing satellite retrievals 
of air quality (AQ), to inform changes in bulk combustion characteristics (and consequently emissions) 10 
of a megacity. This is especially relevant as the number of megacities continue to grow in the coming 
decades, mostly at locations that lack sufficient AQ monitoring capabilities. Enhancement ratios of CO 
to NO2 and SO2 to NO2 over megacities in mainland China that are derived from MOPITT and OMI 
satellite instruments show a coherent long-term progression in recent years of decreasing to increasing 
ratios relative to 2005. This is well correlated with economic development. These trace a common 15 
emission pathway that resembles the evolution of air pollution in more developed cities in the United 
States which is characterized by transitions in energy use and subsequent implementation of pollution 
control and regulation. Although we find cleaner combustion as cities in China develop consistent with 
their Five Year Plans, this is presently obfuscated by increasing fuel use particularly its heavy reliance on 
coal. We propose the use of these enhancement ratios derived from existing satellite retrievals to 20 
complement existing surface AQ networks, including carbon-related satellite observing systems in further 
constraining combustion efficiency and effectiveness of control technologies and policies. Augmenting 
existing capabilities (Saeki et al., 2017) is particularly relevant, especially with the aid of big data 
informatics and machine learning as well as the advent of activities focusing specifically on tracking fossil 
fuel emissions (like the CO2 Human Emissions project; https://www.che-project.eu). While we recognize 25 
the current limitations of these retrievals (e.g., collocation, sensitivity), our findings appear to be robust 
across retrievals and methods, and are supported by previous studies using these retrievals in a different 
way (Krotkov et al., 2016; Jiang et al., 2018) or ground measurements (Hassler et al., 2016). We strongly 
suggest that the capability to monitor relatively long-term changes in atmospheric composition has to be 
supported and continued with complementary new satellite and field missions and deployments (Streets 30 
et al., 2013; National Academies of Sciences, Engineering, and Medicine, 2016).  

The relative importance of monitoring combustion efficiency and effectiveness of pollution 
control increases as a city and country continue to socioeconomically develop and become sustainable. 
Despite past and present studies (Mazur and Rosa, 1974; Lamb et al., 2014), it is only in most recent years 
that we have developed comprehensive and integrated monitoring and prediction systems, which paved 35 
new measures of air pollution and new developments in emission scenarios like SSPs. For China, more 
detailed information on energy use and improved emission inventories are increasingly becoming 
available for assessment (Li et al., 2017; Zhong et al., 2017). As we also recognize some of the challenges 
to quantify socioeconomic variables such as the impact of international trade on air pollution (Lin et al., 
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2014), economic structural upgrading (Mi et al., 2017), greater utilization of renewable energy, and even 
metrics of performance (Ramaswami et al., 2013), from a physical science perspective, our results 
strongly support these new developments. We find inconsistencies between the long-term spatiotemporal 
patterns of emission ratios from RCP8.5 and model predictions of abundance ratios, and the 
corresponding patterns derived from observed enhancement ratios. Scientific improvements in 5 
representing the evolution of air pollution (Lewis, 2018) and emission pathways (Mitchell et al., 2017) 
can be made by (1) considering observationally-constrained time-varying emission factors, and (2) 
confronting emissions and physical models with available data not only for their accuracy, but also for 
their consistency in representing both carbon and AQ-related combustion products.  
 10 
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Appendix A. Combustion Emission Ratios and their Decomposition 

 
In a combustion process using a hydrocarbon fuel, CO and elemental carbon (e.g., soot or BC) are 30 

produced when combustion is incomplete; otherwise carbon in the fuel is oxidized to CO2 (Eq. 1). In 
addition, NO and NO2 are produced from the oxidation of nitrogen from the fuel itself and from 
decomposition of N2 in air at high temperatures (Flagan and Seinfeld, 2012). Sulfur dioxide (SO2) is also 
produced when the fuel used in the combustion process contains sulfur (such is the case for low-grade 
fuels).  35 
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Emissions of these intermediate product are typically expressed as: 
 40 
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𝐸C = 𝐴; ∙ 𝐸𝐹C,; ∙ 1 − 𝐶𝐸C,;
;

= 𝐴; ∙ 𝐸𝐸𝐹C,;
;

																																																																																																											Eq. (A2) 

 
where 𝐸C is the total mass of emissions for species 𝑥, 𝐸𝐹C,; is its associated emission factor for a specific 
source/sector 𝑠 , 𝐴;  is the activity level of the source. 𝐶𝐸C,;  corresponds to effectiveness of control 5 
measure and 𝐸𝐸𝐹C,; = 𝐸𝐹C,; ∙ 1 − 𝐶𝐸C,;  is the effective emission factor. When we take the ratio of 
emissions (Eq. 2) of co-emitted species 𝑥 and 𝑦,  
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																																																																																				Eq. (A3) 

 10 
this ratio can be expressed as the sum of the products of the ratio of effective emission factors (𝑅C,O,;UUV ) and 
the fractional contribution of emission sector f for species x (𝑓C,;) (Eq. A3). 
 
Appendix B.  Inverse Analysis 
 15 

We decomposed the a priori estimate of monthly emission ratio of CO to NOX (and SO2 to NOX) 
from RCP8.5 as a product of: a) ratio of effective emission factors for each of the four sectors namely 
energy, industry, transport, and others (𝑅C,O,;UUV ); and b) fractional contribution of NO2 emissions from each 
sector to the total NO2 emissions (𝑓C,; ) for all four sectors s (𝑠X : energy, 𝑠& :industry, 𝑠Y :transport, 
𝑠Z:others). In matrix-vector form, this can be expressed as: 20 
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𝐸𝑆𝑂&/𝐸𝑁𝑂\
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							Eq. (B1)	 

or 
𝐲 = 𝐇𝐱																																																																																																																																																Eq. (B2)	 
 

We use a two-step Monte-Carlo-based Bayesian inversion method to estimate both 𝐇 and 𝐱 of the 25 
following cities: Shenyang, Beijing, Shanghai, Shenzhen, and Los Angeles. We focus our analysis on the 
decadal trends of the RCP8.5 CO to NOX and SO2 to NOX emission ratios using the decadal trends of 
∆CO/∆NO& and ∆SO&/∆NO& as observational data (𝐲). We use the decadal trend of enhancement ratios 
of CO to NO2 and SO2 to NO2 (derived using STL), calculate their annual averages and normalized to 
2005 values, and then take these as our observational (fitting) data. Our goal is to estimate 𝐇 and 𝐱 given 30 
𝐲 subject to the following constraints: a) errors in 𝐇 and 𝐱 are 10% and 25% of their values, b) errors in 
𝐲 is 5% of its value, c) error covariances of 𝐲 and 𝐱 are uncorrelated and diagonal (𝐒𝐞,	𝐒𝐚) and d) sum of 
𝐱 is unity. Since this is an under-determined inverse problem, we apply prior information on 𝐇 and 𝐱 
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using the RCP emissions (𝐇𝐚, 𝐱𝐚). We conduct our inverse analysis into two-step: 1) estimate the most 
likely 𝐇 that results to estimates of 𝐱 best fitting the decadal trend, 2) estimate 𝐱 using the new estimate 
of 𝐇. For Step 1, first, we draw n=10,000 samples of 𝐇 assuming its errors are normally distributed with 
mean to be its prior and covariance to be the diagonal of its squared errors. Second, we use the maximum 
a posteriori (MAP) solution to the Bayesian problem to estimate 𝐱 for every sample. i.e., 5 

𝐱 = 𝐱𝐚 +	 𝐇𝒂o𝐒𝐞pX𝐇𝐚 + 𝐒𝐚pX
pX
𝐇𝐚o𝐒𝐞pX 𝐲 − 𝐇𝐚𝐱𝐚 	,    	𝐒 = 𝐇𝐚o𝐒𝐞pX𝐇𝐚 + 𝐒𝐚pX

pX
														Eq. (B3)	 

 

We draw a new sample if any of the elements in 𝐱 is negative. Third, we take the mean of 100 𝐇 
samples resulting to the lowest root-mean-square errors relative to the data. We use this mean as our new 
estimate of 𝐇 (𝐇). For Step 2, we apply the same MAP solution using 𝐱𝐚 and 𝐇𝐚 = 𝐇 to estimate 𝐱 and 10 
𝐒. Similar to a Kalman filter, we cycle this procedure for each year starting from 2006 to 2014. We use 
the new estimates of 𝐱, 𝐇, and 𝐒 for a given year as priors for the succeeding cycle with fix inflation on 
the covariance of 1.25 to minimize filter divergence. We note that the additional constraints (positive 𝐱, 
sum of 𝐱 is unity) minimizes the underdeterminacy of the problem. This is supported by post-inverse 
analysis diagnostics (i.e., averaging kernels) showing that elements of 𝐱 are resolved by the trend data. 15 
Since 𝐇  is drawn based on Monte-Carlo sampling, we do not have a diagnostic for the relative 
contributions of the prior and the data on 𝐇. We chose the mean across 100 𝐇 values resulting to estimates 
of 𝐇𝐱 with the lowest RMSEs relative to the data. The changes in 𝐇 relative to the 𝐇𝐚 can be  explored 
in the sectoral changes shown in Figure 4. This is especially the case for Shanghai and Shenzhen where 
the change in 𝐇 is larger than the change in 𝐱. 20 
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Figure 1: Time series (2005-2014) of RCP8.5 combustion-related emissions of NOX (1st quad), CO (2nd quad) and SO2 (3rd quad) all 5 
in units of g/year/m2 and GDP per capita (4th quad) in units of 105RMB/capita/year for each of the 12 select major cities (red dots) 
in mainland China. The scales of each quadrant are indicated in the legend (lower-left of the map). The total emissions for each 
combustion product is broken down into 4 major sectors: energy, industry, land transport, and others which is the sum of 
agriculture, residential and commercial, and waste treatment and disposal). The GDP per capita is also broken down into primary 
(direct use of natural resources), secondary (industry and manufacturing), and tertiary (service) sectors. Each blue dot corresponds 10 
to one of the 36 designated provincial capital and special cities in mainland China. 

 
  



24 
 

 

 
 
Figure 2: Spatial regression analysis of satellite retrievals of CO and SO2 to NO2 by season (blue: March-May (MAM); red: June-
August (JJA); green: September-November (SON); orange: December-February (DJF)). The left column shows an example of 5 
scatter plots and linear regression for Beijing (top) and Los Angeles (bottom). The center column corresponds to the changes across 
2005 to 2014 on the ratios calculated for a given season. The rightmost column panels show the city domain (2deg x 2deg) with the 
geopolitical extent of the city of Beijing and Los Angeles. 
 
  10 
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Figure 3: Changes in annual-mean enhancement ratios (black) from MOPITT and OMI retrievals of CO to NO2 (top) and SO2 to 
NO2 (bottom) for select cities in China and U.S. relative to year 2005. Its associated emission ratios ((𝐄𝐂𝐎/𝐄𝐍𝐎𝐗 and 𝐄𝐒𝐎𝟐/𝐄𝐍𝐎𝐗) 5 
from RCP8.5 (red), EDGAR4.2 (blue) and top-down estimate from CHASER (orange) and model-simulated abundance ratios from 
CHASER (purple) and CAM-Chem (green) chemistry transport models are superimposed. Grey areas are 90% confidence intervals 
of the linear fit (black lines). The four Chinese cities represent the four classes/levels of urban development across 12 selected cities 
in China. 
 10 
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Figure 4: Joint traces of the annual changes in a priori (dotted line) and a posteriori (solid line) estimates of 𝐄𝑪𝑶/𝐄𝑵𝑶𝑿 (x-axis) and 
𝐄𝑺𝑶𝟐/𝐄𝑵𝑶𝑿 (y-axis) relative to year 2005 for four select Chinese cities (Shenyang: green, Beijing: blue, Shanghai: orange, and 
Shenzhen: purple) representing four levels of urban development. These traces are presented as line arrows (with origin at x=1, y=1 5 
and endpoint corresponding to year 2005 and 2014, respectively) for total emission ratios (panel a) and four sectoral ratios (panels 
b to e). Other sector is the sum of mostly residential/commercial along with agriculture, and waste treatment and disposal. The inset 
for each panel represents the associated traces for Los Angeles, which is added as basis for comparison. The lower-left, lower-right, 
and upper-right quadrants correspond to decreasing 𝐄𝑪𝑶/𝐄𝑵𝑶𝑿  and 𝐄𝑺𝑶𝟐/𝐄𝑵𝑶𝑿 , increasing 𝐄𝑪𝑶/𝐄𝑵𝑶𝑿  but decreasing 
𝐄𝑺𝑶𝟐/𝐄𝑵𝑶𝑿, and increasing 𝐄𝑪𝑶/𝐄𝑵𝑶𝑿 and 𝐄𝑺𝑶𝟐/𝐄𝑵𝑶𝑿 relative to year 2005, respectively. The gray semi-circular arrow in panel 10 
a) represents our suggested common combustion emission pathway for Chinese cities. 
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Figure 5: Annual-mean enhancement ratios (in units of mole/mole) of CO to NO2 (panel a) and SO2 to NO2 (panel b) for all 36 
provincial capitals and cities (2005 to 2014) as a function of its corresponding annual GDP/capita (in units of RMB/year/capita). The 
12 select cities analyzed in this study are plotted in color, where each color represents four increasing levels or classes of urban 5 
development (e.g., Shenyang: Class 1, Beijing: Class 2, Shanghai: Class 3 and Shenzhen: Class 4). The rest of the 36 cities are plotted 
in gray. Superimposed on panel a) and b) is a fitted curve (black dashed line) based on power-law relationship of the data which is 
indicated in the plot by its corresponding equation. 
 
  10 
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Figure 6: Weekly (top) and seasonal cycle (bottom) of the satellite-based enhancement ratios averaged for the 12 cities in China (red) 
and for 8 cities in U.S. (blue). The error bars stand for standard deviation across cities. 
 5 
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Table 1. List of satellite products and emission inventories used in this study. All these datasets are re-gridded into 0.1˚ × 0.1˚ if the 
original resolutions are not. This version of CHASER-LETKF does not provide emissions of SO2. 
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Dataset and Data Availability Spatial and Temporal 
Resolution 

Relevance to Study & 
Main Reference 

NASA Terra MOPITT CO version6, L2, TIR/NIR                                        
https://www2.acom.ucar.edu/mopitt                                                   

2000 to present 

22 km × 22 km                                                        
10:30 AM                                                                  

daily 

CO total column                             
(Deeter et al., 2014) 

Aura/OMI SO2 Total Column 1-orbit L2 v003 NRT                              
https://aura.gsfc.nasa.gov/omi.html                                                        

2004 - present  

13km × 25 km                                                            
1:45 PM                                                                                         

daily 

PBL Column Amount 
SO2                                 

(Krotkov et al., 2006) 
Dutch OMI NO2 (DOMINO) data product v2.0               

http://www.temis.nl/airpollution/no2.html                                         
2004 to present 

13km × 25 km                                                            
1:45 PM                                                                                         

daily 

NO2 trop. column                                      
(Boersma et al., 2011) 

QA4ECV OMI  NO2 data product version 1 
http://temis.nl/qa4ecv/no2col/no2regioomimonth_v2.php                                                                            

2004 to present 

13km × 25 km                                                            
1:45 PM                                                                                         

daily 

NO2 trop. column                                      
(Boersma et al., 2017) 

IASI Level 2 FORLI XCO 
https://navigator.eumetsat.int/product/ 

EO:EUM:DAT:METOP:IASSND02                                 2007 
to present 

12km × 12 km                                                            
9:30 AM                                                                                      

daily 

CO total column                           
(De Wachter et al., 2012) 

European Commission EDGAR version 4.3.1 
http://edgar.jrc.ec.europa.eu/overview.php?v=431                             

1970 to 2010 

0.1˚ × 0.1˚                                           
sectorial                                                   
annual 

CO, SO2, NOX emissions                              
(Crippa et al., 2016) 

IIASA  RCPs                                                                
http://accmip-emis.iek.fz-

juelich.de/data/accmip/gridded_netcdf/                       1850 to 
2100 

0.5˚ × 0.5˚                                           
sectorial                                                   
monthly 

CO, SO2, NOX emissions                
(Riahi et al., 2011)            

REAS v2.1                          https://www.nies.go.jp/REAS/                                    
2000 to 2008 

0.25˚ × 0.25˚                                           
sectorial                                                   
monthly 

CO, SO2, NOX emissions                  
(Kurokawa et al., 2013)     

HTAP v2                         http://edgar.jrc.ec.europa.eu/htap_v2/                                  
2008 and 2010 

0.1˚ × 0.1˚                                           
sectorial                                                   
monthly 

CO, SO2, NOX emissions                
(Janssens-Maenhout et 

al., 2015) 

CHASER-LETKF                       
https://ebcrpa.jamstec.go.jp/~miyazaki/tcr/                                        

2005 to 2014 

2.8˚ for longitude and the T42 
Gaussian grid for latitude                                                                                          

daily 

CO and NOX emissions              
(Miyazaki et al., 2017) 
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Table 2: Summary of Percent Rate of Change for Select Cities in China and United States. Numbers that follow the ± sign are 
standard errors. 

 5 
 

 
         Satellite Observations 

  

Average GDP 
(RMB/cap/yr 
for China and 

USD/cap/yr for  
United States) 

Annual Rate of 
Change 

(RMB/cap/yr 
for China and 

USD/cap/yr for  
United States) 

Annual Rate of Change (%/year) 

city class 
 

  CO  NO2  SO2  ∆CO/∆NO2  ∆SO2/∆NO2  

Shenyang 1 66293 8279 -0.13±0.25 5.16±1.40 -1.92±0.93 -5.35±0.74 -6.03±1.02 
Xian 1 39594 5854 -0.61±0.22 7.45±2.21 -4.68±1.78 -4.73±1.44 -7.55±1.06 

Chengdu 1 48722 7221 -1.18±0.52 6.93±1.33 -4.45±1.99 -4.44±2.25 -9.58±3.67 
Hohhot 1 77744 10315 -0.21±0.23 7.49±3.71 -2.41±1.29 -3.47±1.78 -5.68±1.12 

Chongqing 1 23706 3848 -0.58±0.41 5.65±1.20 -7.79±2.18 -3.11±1.49 -7.67±1.40 
Tianjin 2 91503 13723 -0.18±0.28 6.09±1.43 -2.91±1.44 -3.36±1.61 -5.46±2.08 
Beijing 2 106474 11820 -0.37±0.28 3.15±1.70 -2.04±1.16 -2.86±1.07 -5.49±1.42 
Harbin 2 35578 4079 0.07±0.25 2.82±1.73 -0.35±1.13 -2.69±2.05 -6.51±1.75 
Wuhan 2 67785 10940 -0.70±0.16 6.87±1.90 -4.19±1.53 -1.83±2.14 -7.23±1.19 

Shanghai 3 115027 10809 -0.34±0.22 2.58±1.50 -4.32±1.23 1.40±2.03 -3.99±1.44 
Guangzhou 4 129455 14741 -1.26±0.31 -3.07±0.76 -7.00±1.01 7.61±6.30 -4.80±1.24 
Shenzhen 4 352018 25958 -1.01±0.20 -1.77±0.72 -5.50±1.09 8.26±3.08 -3.40±0.98 

Los Angeles / 59943 215 -0.47±0.18 -4.00±0.60 0.23±0.29 7.34±1.31 13.3±1.69 
New York / 60760 516 -0.44±0.19 -3.67±0.72 -1.42±0.54 4.98±1.64 7.97±1.39 
Chicago / 57078 -137 -0.28±0.18 -3.30±0.55 -0.67±0.51 7.88±1.84 1.48±2.63 

        RCP8.5 Emissions 

    Annual Rate of Change (%/year) 

city class 
  

ECO  ENOX  ESO2  ECO/ENOX  ESO2/ENOX  

Shenyang 1   1.28±0.17 5.85±0.39 -0.40±0.15 -2.90±0.24 -3.94±0.49 
Xian 1   0.75±0.11 4.54±0.31 -0.47±0.16 -2.63±0.21 -3.45±0.43 

Chengdu 1   0.33±0.07 4.10±0.28 -0.58±0.17 -2.69±0.22 -3.32±0.42 
Hohhot 1   1.14±0.14 1.72±0.12 -0.69±0.14 -0.50±0.03 -2.06±0.25 

Chongqing 1   0.65±0.10 3.99±0.27 -1.21±0.25 -2.41±0.18 -3.73±0.49 
Tianjin 2   1.22±0.17 5.38±0.34 -1.54±0.31 -2.73±0.20 -4.49±0.60 
Beijing 2   1.23±0.18 5.83±0.38 -1.30±0.28 -2.93±0.22 -4.50±0.59 
Harbin 2   0.89±0.11 4.07±0.29 -0.72±0.18 -2.28±0.18 -3.41±0.43 
Wuhan 2   0.74±0.11 3.96±0.27 -1.21±0.25 -2.33±0.17 -3.71±0.48 

Shanghai 3   -0.87±0.04 2.63±0.19 -2.73±0.46 -2.79±0.22 -4.25±0.60 
Guangzhou 4   -0.06±0.04 3.44±0.23 -0.87±0.20 -2.63±0.21 -3.22±0.41 
Shenzhen 4 

  
0.20±0.06 2.54±0.19 -0.69±0.17 -1.89±0.14 -2.58±0.33 

Los Angeles /   -5.56±0.30 -4.91±0.19 -5.96±0.54   -1.17±0.10 -1.95±0.41 
New York /   -6.00±0.29 -5.77±0.25 -6.60±0.52 -0.50±0.05 -1.80±0.33 
Chicago /   -5.50±0.32 -4.99±0.27 -6.53±0.66 -0.94±0.05 -2.89±0.46 


