

1 Characterization of urban amine-containing particles in Southwestern China: seasonal
2 variation, source, and processing

3 Yang Chen^{1,2*}, Mi Tian¹, Rujin Huang², Guangming Shi⁴, Huanbo Wang¹, Chao Peng¹,
4 Junji Cao², Qiyuan Wang², Shumin Zhang³, Dongmei Guo³, Leiming Zhang⁵, and
5 Fumo Yang^{1,4,*}

6 ¹Research Center for Atmospheric Environment, Chongqing Institute of Green and
7 Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China.

8 ²Key Lab of Aerosol Chemistry & Physics, State Key Laboratory of Loess and
9 Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences,
10 Xi'an 710061, China.

11 ³School of Basic Medical Sciences, North Sichuan Medical College, Nanchong 637000,
12 Sichuan, China.

13 ⁴College of Architecture and Environment, Sichuan University, Chengdu 610065,
14 China

15 ⁵Air Quality Research Division, Science and Technology Branch, Environment and
16 Climate Change Canada, Toronto M3H 5T4, Canada

17 Correspondence to: Yang Chen (chenyang@cigit.ac.cn); Fumo Yang
18 (fmyang@cigit.ac.cn)

19 Keyword: single particle; amine; urban environment, processing

20

21 **Abstract**

22 Amine-containing particles were characterized in an urban area of Chongqing during
23 both summer and winter using a single particle aerosol mass spectrometer (SPAMS).
24 Among the collected particles, 12.7% were amine-containing in winter and 8.3% in
25 summer. Amines were internally mixed with elemental carbon (EC), organic carbon
26 (OC), sulfate, and nitrate. Diethylamine (DEA) was the most abundant among amine-
27 containing particles. Wintertime amine-containing particles were mainly from the
28 northwest direction where a forest park was located; in summer, they were from the
29 northwest and southwest (traffic hub) directions. These origins suggest that vegetation
30 and traffic were the primary sources of particulate amines. The average relative peak
31 area of DEA depended strongly on humidity, indicating that the enhancement of DEA
32 was possibly due to increasing aerosol water content and aerosol acidity. Using an
33 adaptive resonance theory neural network (ART-2a) algorithm, four major types of
34 amine-containing particles were clustered including amine-organic-carbon (A-OC), A-
35 OCEC, DEA-OC, and A-OCEC-aged. The identified particle types implied that amines
36 were undergone uptak by particles produced from traffic and biomass burning.
37 Knowledge gained in this study is useful to understand the atmospheric processing,
38 origin, and sources of amine-containing particles in the urban area of Chongqing.

39

40 **1. Introduction**

41 Amines are ubiquitous in the atmosphere and have both natural (ocean, biomass burning,
42 and vegetation) and anthropogenic (animal husbandry, industry, combustion, and traffic)
43 emission sources (Ge et al., 2011a). Trimethylamine (TMA) is one of the most abundant
44 amines with an estimated global emission flux of 170Gg year⁻¹ (Ge et al., 2011a).
45 Gaseous amines compete with ammonia in acid-base reactions, participate in gas-
46 particle partitioning, and contribute to wet and dry deposition (Angelino et al., 2001;
47 Monks, 2005; Gómez Alvarez et al., 2007; De Haan et al., 2011; Huang et al., 2012;
48 You et al., 2014). Gaseous amines also play an essential role in new particle formation
49 via enhancing the ternary nucleation of H₂SO₄-H₂O clusters in remote areas (Bzdek et
50 al., 2012; Kirkby et al., 2011). In polluted areas, H₂SO₄-diethylamine (DMA)-water
51 clusters were important during the new particle formation events (Yao et al., 2018).
52 Amines are also essential in the growth of ambient particles. For example, particulate
53 aminium salts, which were produced via amine-acid neutralization, tended to prevent
54 the coagulation between pre-existing particles leading to increased particle number
55 concentrations (Wang et al., 2010; Smith et al., 2010). Moreover, the enrichment of
56 TMA had been observed in cloud and fog processing (Zhang et al., 2012; Rehbein et
57 al., 2011). Characterization of amine-containing particles is important to evaluate their
58 processing and impact.

59 Single particle mass spectrometers (SPMS), such as aerosol time-of-flight mass
60 spectrometer (ATOFMS) and Single Particle Aerosol Mass Spectrometer (SPAMS),
61 have been widely used in real-time measurements of amine-containing particles for
62 chemical composition and mixing state (Li et al., 2017). SPAMS is different from the
63 Aerodyne soot-particle aerosol mass spectrometer (SP-AMS), which is a type of aerosol

64 mass spectrometer (AMS) for detecting black carbon, sulfate, nitrate, ammonium,
65 chloride, and organics (Onasch et al., 2012; Wang et al., 2016). The chemical
66 composition and mixing state of TMA-containing particles have been reported
67 worldwide, such as in California, USA (Denkenberger et al., 2007; Qin et al., 2012));
68 Ontario, Canada (Tan et al., 2002; Rehbein et al., 2011); Mexico City (Moffet et al.,
69 2008)); European cities (Barcelona, Cork, Zurich, Paris, Dunkirk and Corsica (Healy
70 et al., 2015; Dall'Osto et al., 2016)), and Chinese cities such as Guangzhou, Shanghai
71 and Xi'an (Zhang et al., 2012; Chen et al., 2016; Huang et al., 2012). Characterization
72 of amine-containing particles varied in these locations. In the five European cities such
73 as Cork, Paris, Dunkirk, Corsica, and Zurich, amines were found internally mixed with
74 sulfate and nitrate; but in Corsica, amines were internally mixed with methanesulfonate
75 (Healy et al., 2015). In Barcelona, five unique types of amine-containing particles were
76 observed (Dall'Osto et al., 2016). In a rural area site in the Pearl River Delta (China),
77 the marker ion, $(C_2H_5)_2NH_2^+$, was the most abundant (90% and 86% of amine-
78 containing particles in summer and winter)(Cheng et al., 2018). In Guangzhou, TMA-
79 containing particles were important (Zhang et al., 2012). In previous studies, reported
80 high RH conditions and fog processing were favorable for the enhancement of
81 trimethylamine in the particle phase. Zhang et al. (2012) reported a similar scenario in
82 Guangzhou, China. Thus the location-specific studies in the varied environments are
83 still necessary.

84 The knowledge of amine-containing particles is limited in southwestern China. In this
85 region, Chongqing is a megacity with a population of 8.23 million. The city is
86 subtropical, industrial, and polluted (Chen et al., 2017; Tao et al., 2017). Fog events
87 frequently occurred in this area, and hence, it is known as the “fog city” in China. The
88 effect of high relative humidity (RH) on the processing of amine-containing particles

89 needs investigation. This study aims to characterize the amine-containing particles,
90 including chemical composition, mixing state, atmospheric processing, and source in
91 Chongqing during winter and summer.

92 **2. Methods**

93 **2.1 Sampling site**

94 Ambient single particles were collected at an urban air quality supersite from
95 07/05/2016 to 08/14/2016 (referred to as a summer season) and from 01/21/2016 to
96 02/25/2016 (referred to as a winter season). The supersite has been described in our
97 previous studies (Chen et al., 2017). Briefly, the supersite is located on the rooftop of a
98 commercial office building (106.51°E, 29.62°N) at a height of 30 m above the ground
99 ([Figure S1](#)). The building is surrounded by business and residential communities and is
100 15 km from the city center. A 3 km² forest park is located northwest of the sampling
101 site and a traffic hub in the southwest.

102 **2.2 Instrumentation**

103 A SPAMS ([Hexin Inc. Guangzhou, China, model 0515](#)) was deployed for single
104 particle sampling, and the technical description of SPAMS is available in the literature
105 (Li et al., 2011; Chen et al., 2017). Briefly, after passing through a diffusive dryer,
106 particles in a size range of 0.1–2.0 μm are sampled via an aerodynamic lens and form
107 a particle beam. Particles in the beam come across two pre-positioned laser beams (Nd:
108 YAG, 532 nm) one-by-one, and the vacuum aerodynamic diameter (D_{va}) of each
109 particle is determined via its time-of-flight. Particles are ionized using an Nd: YAG
110 laser operating at a wavelength of 266 nm. The yielded ions are analyzed using a bipolar

111 time-of-flight mass spectrometer. Due to the limitation of SPAMS, quantification of
112 particulate amines was not attempted.

113 **2.3 Data analysis**

114 The SPAMS data were imported into the YAADA toolkit (Software Toolkit to Analyze
115 Single-Particle Mass Spectral Data, v 2.11) to form a single particle dataset. The
116 analysis was conducted using the marker ions of amines.: m/z 59 $[(\text{CH}_3)_3\text{N}]^+$ (TMA),
117 $74 [(\text{C}_2\text{H}_5)_2\text{NH}_2]^+$ (diethylamine, DEA), $86 [(\text{C}_2\text{H}_5)_2\text{NCH}_2]^+$ or $[\text{C}_3\text{H}_7\text{NHC}_2\text{H}_4]^+$ (DEA
118 or DPA), $101 [(\text{C}_2\text{H}_5)_3\text{N}]^+$ (TEA), $102 [(\text{C}_3\text{H}_7)_2\text{NH}_2]^+$ (DPA), $114 [(\text{C}_3\text{H}_7)_2\text{NCH}_2]^+$
119 (DPA), and $143 [(\text{C}_3\text{H}_7)_3\text{N}]^+$ (TPA) (Healy et al., 2015). Firstly, m/z 59 was used for
120 querying the TMA-containing particles; m/z 74 for the DEA-containing particles and
121 m/z 86 for TEA-containing particles, and so on. [After the duplicate particles were](#)
122 [removed from the query results, all amine-containing particles were combined into an](#)
123 [amine-containing particle cluster.](#) Various amines could be both internally and
124 externally mixed in these particle clusters.

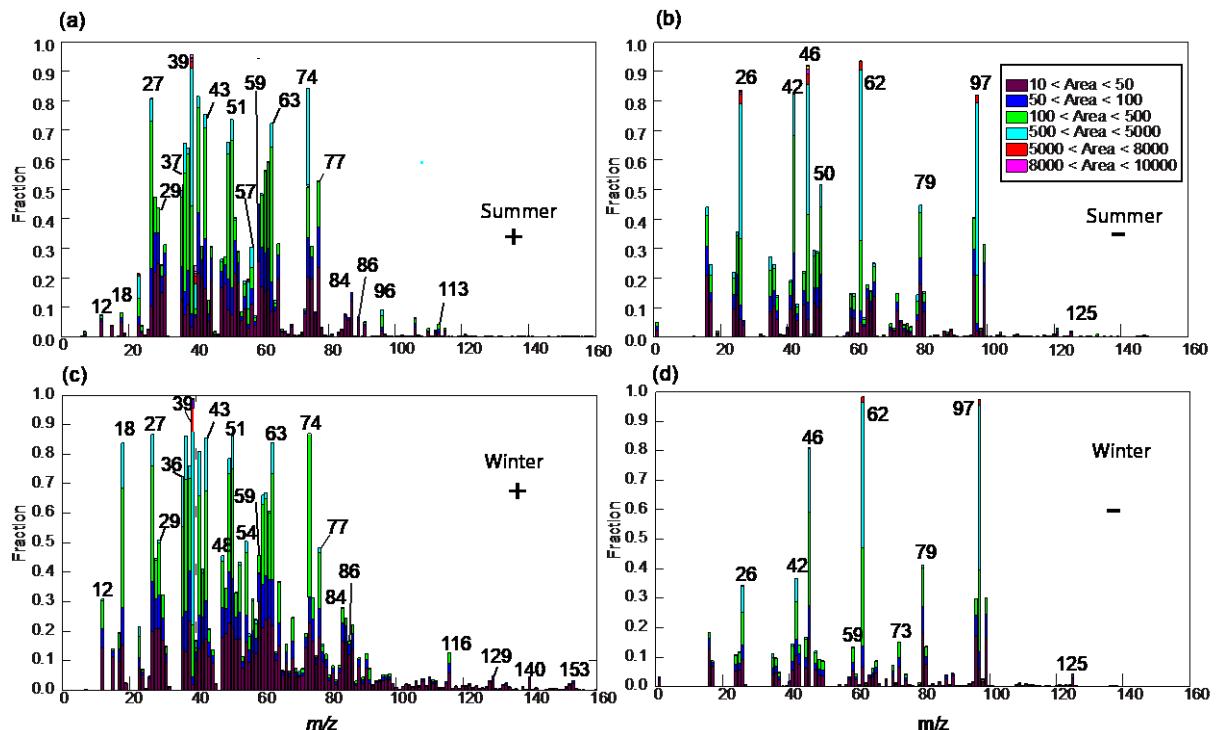
125 An adaptive resonance theory based neural network algorithm (ART-2a) was applied
126 to cluster the amine-containing particle types using a vigilance factor of 0.70, a learning
127 rate of 0.05, and 20 iterations (Song et al., 1999). This procedure produced 67 clusters
128 in summer and 75 clusters in winter; many of these clusters exhibited identical mass
129 spectra with slight differences in specific ion intensities. A well-established combining
130 strategy, on the basis of similar mass spectra, temporal trends, and size distribution, was
131 adopted to merge these particle clusters into the finalized particle types (Dallosto and
132 Harrison, 2006). [In addition, the relative peak area \(RPA\) is defined as the peak area of](#)
133 [each \$m/z\$ divided by the total dual-ion mass spectral peak areas of each particle \(Healy](#)

134 et al., 2013). The RPA of DEA among the particle type was first calculated from each
135 DEA-containing particle, and then summed up for detailed analysis.

136 **3. Results and discussion**

137 **3.1 Single particle chemical composition and seasonal variation**

138 The percentage of amine-containing particles was 12.7% in the winter SPAMS dataset
139 and 8.3% in the summer dataset. The DEA-containing particles were dominant,
140 accounting for 70% and 78% in winter and summer, respectively, while TMA-
141 containing particles were minor, accounting for up to 7% in winter and 3% in summer.
142 The average mass spectra of DEA-, DPA, and TMA-containing particles are provided
143 in Figure S2, and these spectra showed strong homogeneity. The determination
144 coefficient (R^2) between DEA- and DPA- containing particles was 0.98, and R^2 between
145 DEA- and TMA- containing particles was 0.83.


146 Figure 1 shows the digital mass spectra of amine-containing particles in two seasons.
147 In each spectrum, the ion height indicates its mixing fraction in the amine-containing
148 particle dataset, and the stacked color map shows the corresponding ion intensity ranges.
149 The assignment of ions is shown in Table S1. In both seasons, the dominant ions were
150 K^+ (m/z 39 and 41), amines (m/z 59, 74, and 86), and organics (m/z 43, 51, 63, and 77).
151 The mixing ratios of ammonium (NH_4^+ , m/z 18) and polycyclic aromatic hydrocarbons
152 (e.g., m/z 116 ($[C_9H_8]^+$), 129 ($[C_{10}H_9]^+$), 140 ($[C_{11}H_8]^+$), and 153 ($[C_{12}H_9]^+$)) were
153 higher in winter than in summer. The strong signal of NH_4^+ was possibly due to the
154 lower temperature (8°C) in winter than in summer (31°C). The mixing ratios of m/z 59
155 were 45% and 44% during summer and winter, respectively.

156 In the negative mass spectra of two seasons (Figures 1(b) and 1(d)), the dominant ions
157 were CN^- (m/z 26), CNO^- (m/z 42), nitrate (m/z 46 and 62), phosphate (79), and
158 sulfate (m/z 80 and 97). Primary species, such as CN^- and CNO^- were commonly
159 from biomass burning (BB) and organonitrogen (Pratt et al., 2011). Levoglucosan
160 markers from BB, such as 45, 59, and 71 were also detected. Dust markers, such as
161 $[\text{SiO}_2]^-$ (m/z 60), $^{28}\text{SiO}_3^-$ or $[\text{AlO}_2(\text{OH})]^-$ (76), and $[\text{PO}_3]^-$, were also detected during
162 summertime, suggesting the influence of dust particles.

163 Seasonal variations of chemical composition and unscaled size distribution are
164 available in supporting information. Prior to comparison, the ion peak was normalized
165 using the method developed by Qin et al. (2012). Briefly, the peak area of each m/z was
166 divided by the total mass spectral peak area matrix. The normalized ion intensity of the
167 wintertime particles was subtracted from that of the summertime particles. A positive
168 value indicates the normalized ion intensity was greater in the summer, whereas a
169 negative value indicates that the normalized ion intensity was greater in the winter. As
170 shown in Figure S3, Ca^+ (m/z 40) and Fe^+ (m/z 56) were more prevalent during summer.
171 Organic species, such as C_2H_3^+ (m/z 27), C_4H_3^+ (m/z 51), C_5H_3^+ (m/z 63), and C_6H_5^+
172 (m/z 77) typically from aromatic hydrocarbons, were also more abundant in summer.
173 During wintertime, signals of sulfate (m/z 97), NO_3^- (m/z 62), NH_4^+ (m/z 18), and K^+
174 (m/z 39) were more prominent than in summer, suggesting that the wintertime particles
175 contained more secondary species than those in summer.

176 The unscaled size distribution of amine-containing particles also showed strong
177 seasonal variations (Figure S4). Generally, amine-containing particles had monomodal
178 size distributions in the droplet mode; and the distributions peaked at a larger D_{va} in
179 summer than winter. For example, DEA-containing particles peaked at 0.6 μm in winter

180 and 0.8 μm in summer, and DPA-containing particles at 0.7 μm in winter and 0.9 μm
 181 in summer. The size distributions of the major amine-containing particles suggested
 182 that these particles had undergone substantial aging processes.

183

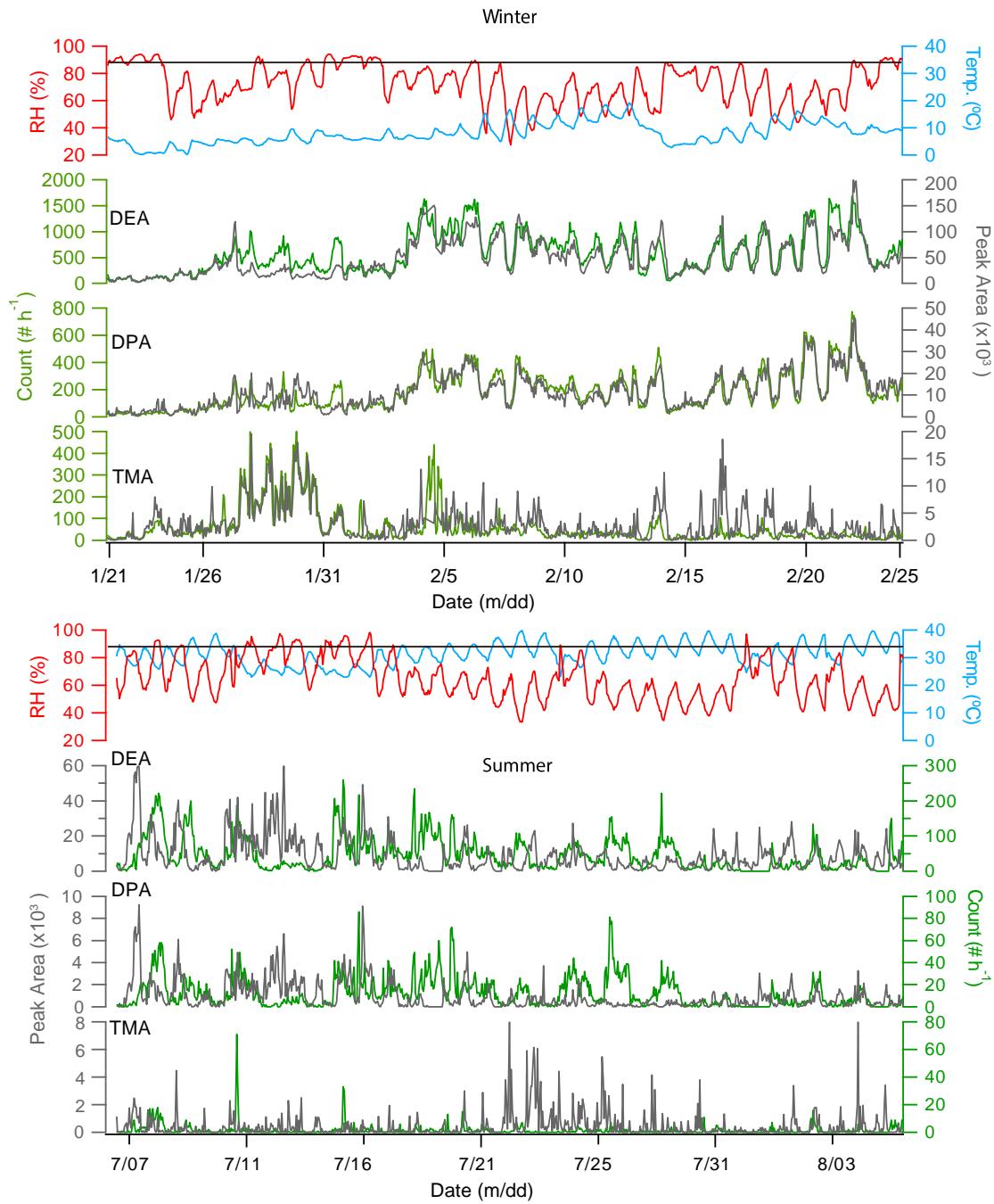
184 Figure 1. (a) and (c): the positive digital mass spectrum of amine-containing particles
 185 during summer and wintertime, respectively; (b) and (d): the negative digital mass
 186 spectrum during summer and wintertime, respectively. The ion height indicates its
 187 fraction in the amine-containing particle dataset, and the stacked color map [indicates](#)
 188 the ion peak area range.

189 **3.2 Temporal trend, diurnal pattern, and origin of amine-containing particles**

190 Figure 2 shows the temporal tends of RH, temperature, number count, and the peak area
 191 of amine-containing particles. The winter temperature was lower ($8.0\pm4.0^\circ\text{C}$) than
 192 summer ($31\pm4^\circ\text{C}$), and RH in the winter was slightly higher ($70\pm14\%$ versus $64\pm16\%$)
 193 (Table 2). Stagnant air conditions occurred in both seasons due to the low wind speeds

194 (Huang et al., 2017), and the winter wind speed was lower than in summer. The hourly
195 count of amine-containing particles was [typically](#) ten times higher in winter than
196 summer.

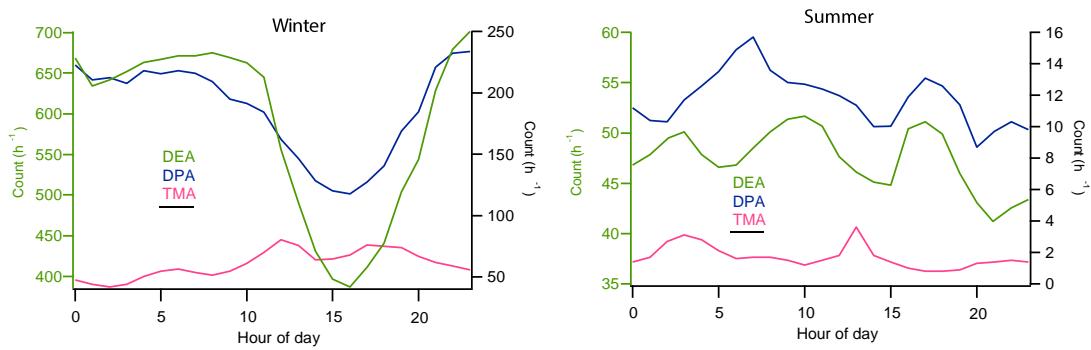
197 In winter, a good correlation existed between the temporal trends of hourly number
198 count and peak area of DEA-containing particles ($R^2 = 0.86$). The corresponding R^2 in
199 wintertime DPA-containing particles was 0.88. No such correlation for TMA-
200 containing particles was observed in winter ($R^2 = 0.22$) or summer (Figure 2). The
201 hourly counts of DEA- and DPA-containing particles were well correlated in both
202 summer ($R^2 = 0.63$) and winter ($R^2 = 0.87$), but a weak correlation ($R^2 = 0.25$) existed
203 between DEA- and TMA-containing particles. These results suggest DEA- and DPA-
204 containing particles were possibly from the same sources.


205 Table 2. Meteorological factors and particle counts in summer and winter.

		Winter	Summer
207	Temperature (°C)	8 ±4	31±4
208	Relative humidity (%)	70±14	64±16
209	Wind Speed	1.2±0.7	1.5±1.0
	Amine -particle Count (# h ⁻¹)	587±384	47±26

210 DEA- and DPA-containing particles remained at low levels from 1/20/2016 to
211 01/26/2016 and averaged at 109 and 26 count h⁻¹, respectively. During this period, wind
212 speed was relatively high, commonly above 1.5 ms⁻¹. TMA-, DEA-, and DPA-
213 containing particles started accumulating after 01/26/2016 when wind speed was low
214 (0.8 ms⁻¹) and wind direction from the northwest. After 02/03/2016, DEA- and DPA-
215 containing particles showed regular diurnal patterns with high levels of hourly count

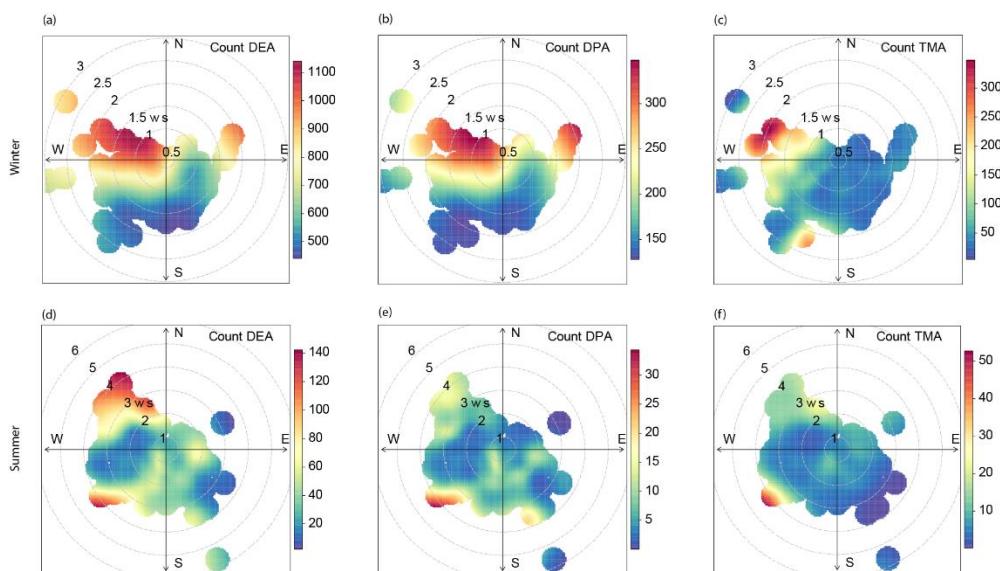
216 during daytime on most days and minimum levels at 15:00. A similar diurnal pattern
217 was also observed for DPA-containing particles during wintertime (Figures 3a and 3b).
218 TMA-containing particles presented a complex diurnal profile with peaks in the early
219 morning (4:00), at noon (12:00) and in the afternoon (18:00). The chemical composition
220 and diurnal pattern of TMA-containing particles were strongly connected to traffic
221 emissions.


222 Wind direction and number count of amine-containing particles were analyzed together
223 using bivariate polar plots (Figure 4). During wintertime, the dominant direction for
224 amine-containing particles was from the northwest where a forest park was located.
225 After being emitted from vegetation (plants, grass, and trees) (Ge et al., 2011a), DEA
226 could partition to the pre-existing particles before arriving at the sampling site. The
227 transport of these particles to the sampling site caused the elevation in the morning.
228 Based on the excellent correlation between DEA- and DPA-containing particles, DPA-
229 containing particles could also be from vegetation. It can be concluded that the major
230 source of amines in DEA- and DPA-containing particles was vegetation from the
231 northwest.

232

233 Figure 2. Temporal trends of relative humidity (RH), temperature (Temp.), hourly peak
 234 area (dark gray), and particle count (green) of DEA (m/z 74), DPA (m/z 86), and TMA
 235 (m/z 59) -containing particles in winter (top panel) and summer (bottom panel). The
 236 black lines in the two panels indicate RH of 90%.

237



238 Figure 3. Diurnal profiles of amine-containing particles during both winter (left panel)
 239 and summer (right panel). The green left axis in each panel indicates the average
 240 number count of DEA-containing particles, while the right-axis represents the number
 241 count of both DPA- and TMA-containing particles.

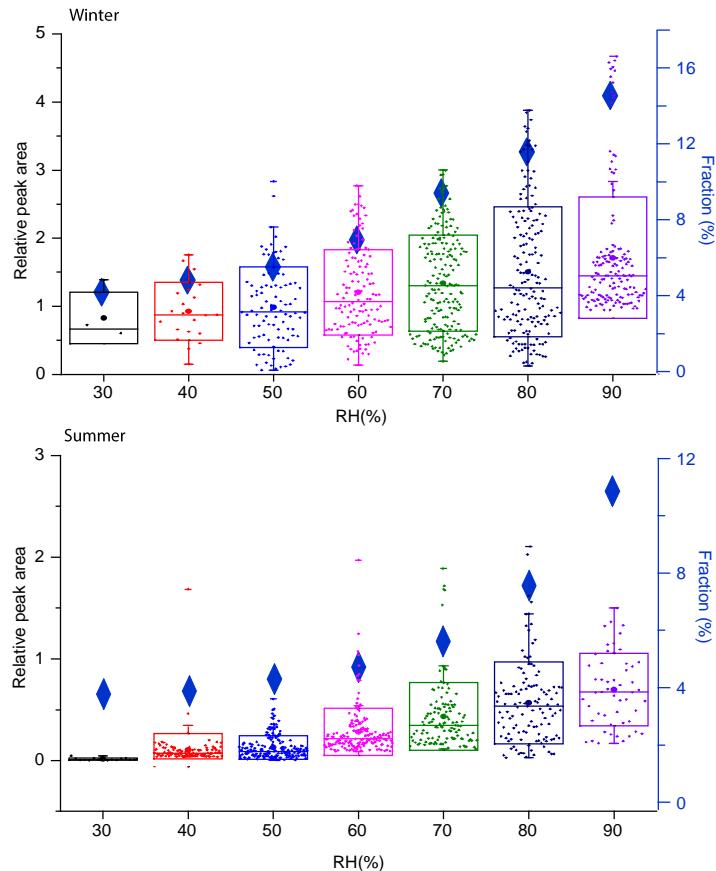
242 During summer, the amine particles appeared in several episodes; each episode lasted
 243 for 1~3 days. In these episodes, DPA-containing particles had two rush-hour peaks
 244 (7:00 and 17:00), likely from traffic (Dall'Osto et al., 2016). Besides traffic, vegetation
 245 is also a source of DPA-containing particles (from the southwest, Figure 4e). The DPA-
 246 containing particles peaked 0.84 μm , suggesting that they were not freshly-emitted and
 247 had undergone substantial aging processes. Moreover, as shown in Figure S2, the mass
 248 spectra of the amines were present with aromatic hydrocarbon fragments, such as C_4H_3^+
 249 (m/z 51), C_5H_3^+ (m/z 63), C_6H_5^+ (m/z 77), and C_9H_8^+ (m/z 116), as well as with alkanes
 250 fragments such as C_4H_7^+ (m/z 55), C_4H_9^+ (m/z 57), and C_5H_9^+ (m/z 69). The chemical
 251 composition of DPA-containing particles contained markers associated with traffic
 252 emissions. In addition, a similar amine-containing particle type has been reported in the
 253 literature (Dall'Osto et al., 2016).

254 In summer, DEA-containing particles had a diurnal pattern of three peaks appearing at
 255 3:00, 9:00 and 17:00. TMA-containing particles had an early morning (4:00) and a noon
 256 peak (12:00). The morning peaks of DEA- and TMA-containing particles could be due

257 to the local traffic emissions; specifically, heavy-duty vehicles were only allowed to
 258 enter the urban area between 00:00 and 6:00 (Chen et al., 2017). The polar plots showed
 259 that DEA-containing particles were from the northwest and southwest, passing through
 260 the forest park and traffic hub, respectively. This scenario seemed to be inconsistent
 261 with the wintertime results because of the limited traffic contributions to particle levels
 262 in winter. In addition, due to the competition between vegetation and traffic in summer,
 263 the number count and peak area of all three amine-containing particles were poorly
 264 correlated with each other.

265
 266 Figure 4. Polar plots of amine-containing particles during winter- and summertime. The
 267 axes in each figure indicate hourly count of each particle type and the colors within the
 268 circles represent wind speed (ws)

269 **3.3 Effect of RH on the enrichment of DEA-containing particles**


270 DEA-containing particles were predominant in both winter and summer, providing a
 271 unique opportunity for investigating DEA processing. Indeed, this kind of discussion
 272 should be treated cautiously and the influences of wind speed, wind direction,

273 temperature, and planetary boundary layer reduction should be removed. As described
274 above, the average wind speed in both winter and summer was 1.2 ms^{-1} and 1.5 ms^{-1} ,
275 respectively. In these stagnant air conditions, the sampled particles were generally local.
276 Temperature could influence the gas-particle phase partitioning. Assuming the Henry's
277 Law constants (K_H) and the enthalpy change $\Delta_r H_o(K_H)$ of DEA are constant, a variation
278 of 10°C in both summer and winter has negligible influence on the partitioning of
279 amines from the gas phase to the particle phase, according to the Clapeyron equation
280 (Ge et al., 2011b). In addition, the shift in planetary boundary layer (PBL) height could
281 affect the number count and concentration of PM. The relative peak area (RPA) is
282 defined as the peak area of each m/z divided by the total dual-ion mass spectral peak
283 areas of each particle (Healy et al., 2013). Using the temporal trends of RPA, the
284 influence of PBL height can be removed because it only shows the relative changes
285 between different species which are all simultaneously influenced by the shift in the
286 PBL height.

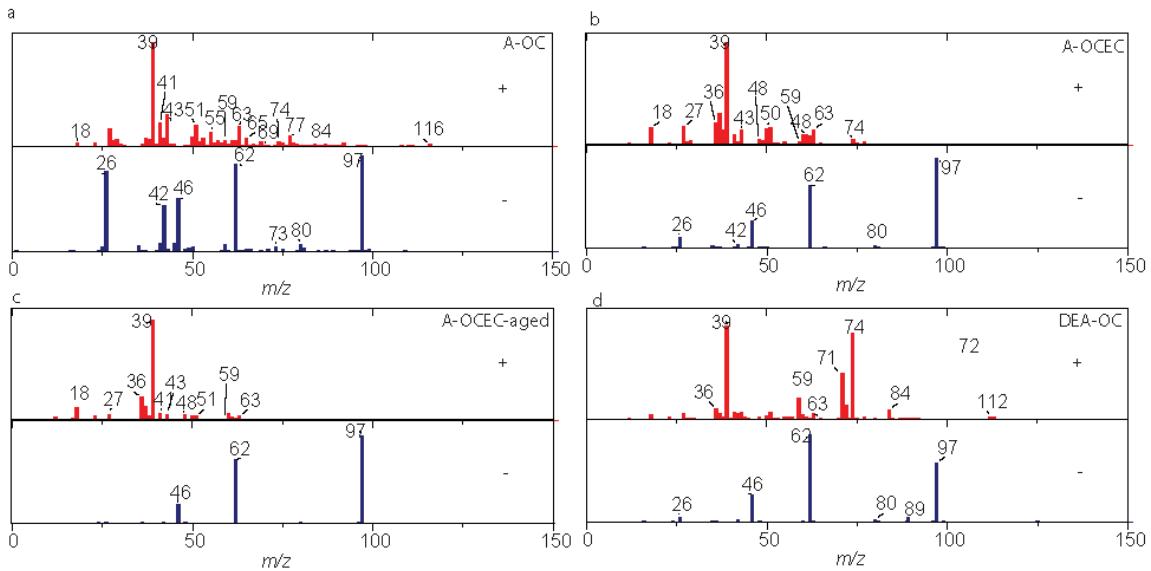
287 Box plots of DEA relative peak area under different RH are shown in Figure 5. In winter,
288 the median RPA of amine-containing particles increased by two times when RH
289 increased from 35% to 95%. Meanwhile, the fraction of DEA-containing particles
290 increased from 4.0% to 16.6%. In summer, the average RPA of DEA increased by three
291 times (from 0.25 to 0.75) and the fraction of DEA-containing particles ramped from
292 3.8% to 12.1% when RH increased from 60% to 90%. These results suggest that RH is
293 important to the enrichment of DEA in the particle phase. When DEA reacts with HCl,
294 H_2SO_4 , and HNO_3 , it tends to form aminium salts, which are soluble in aerosol water.
295 Along with the influence of aerosol water content, Ge et al. (2011a) also proposed that
296 strong aerosol acidity could also enhance the partitioning of DEA in the aqueous phase.
297 In this study, the relative acidity of amine-containing particles ((sulfate

298 +nitrate)/ammonium, (Yao et al., 2011)) was in a range of 20-150, providing favorable
299 conditions for the dissolution of DEA. [Indeed, due to the nature of SPAMS, the amount](#)
300 [of aerosol water content and pH were unavailable, making it difficult for further](#)
301 [analysis.](#) Overall, these results implied that high RH conditions in Chongqing was
302 favorable for particle uptake of DEA, and the resulting formation of aminium salts
303 stabilized pre-existing particles; thus, increased their number concentrations.

304 Rehbein et al. (2011) and Zhang et al. (2012) observed direct links between fog
305 processing and enhancement of TMA-containing particles. High RH conditions were
306 favorable for TMA entering the particle phase via gas -particle partitioning (Rehbein et
307 al., 2011; Zhang et al., 2012). Ge et al. (2011b) argued that TMA in the aerosol phase
308 was in the form of free base, e.g., amine, not aminium salt; TMA could be dissolved in
309 the aerosol water content; the formation of TMA-HSO₄ salt was possible, but the
310 formation of TMA-NO₃ and TMA-Cl was impossible due to the competition with
311 ammonia. Thus, TMA could enter the aerosol phase by gas-aqueous partitioning, or in
312 the form of TMA-HSO₄ salt. The mechanism of DEA entering the aerosol phase might
313 be different from TMA. DEA salts were [favorable](#) for forming in aerosol phase (Ge et
314 al., 2011b). Besides, Pankow (2015) proposed that the absorptive uptake of atmospheric
315 amines could also be possible on organic aerosols. In the context of single particle
316 mixing state, the amine-containing particles were internally mixed with hygroscopic
317 species, e.g., sulfate, nitrate, POA species (C_xH_y⁺, see section 3.4), and SOA species
318 (oxalate, C₂H₃O⁺). Therefore, the mixing state of amine-containing particles was also
319 favorable for the uptake of amines via different pathways: the aqueous dissolution of
320 aminium salts and the absorptive uptake on OA.

321

322 Figure 5. Box plots of the hourly relative peak area of DEA under different RH
 323 conditions in winter (top panel) and summer (bottom panel). The boxes indicate the
 324 25th and 75th percentiles; the dots indicate mean value with each data point representing
 325 a datum of RPA in an hour size bin. Right axis in each panel and the blue diamonds
 326 show the average number fraction of amine-containing particles among the whole
 327 [SPAMS](#) dataset.


328 **3.4 Particle types of amine-containing particles**

329 As shown in Figure 6, four amine-containing particle types were resolved, including
 330 amine-OC (A-OC, 41%), A-ECOC (39%), DEA-OC (11%), and A-ECOC-aged (9%).
 331 All of these particle types had strong signals of amines, and the amines were internally
 332 mixed with sulfate, nitrate, elemental carbon, and organics.

333 In the A-OC particles, amines were mixed with aromatic hydrocarbon fragments, such
334 as C_4H_3^+ (m/z 51), C_5H_3^+ (m/z 63), C_6H_5^+ (m/z 77), and C_9H_8^+ (m/z 116), as well as with
335 alkanes fragments such as C_4H_7^+ (m/z 55), C_4H_9^+ (m/z 57), and C_5H_9^+ (m/z 69). In the
336 negative mass spectrum of A-OC, strong signals from CN^- (m/z -26) and CNO^- (m/z
337 -42) were typically primary species, along with levoglucosan (Silva et al., 1999). The
338 amine fragments, such as TMA (m/z 59), DEA (m/z 74), and DPA (m/z 86), were very
339 abundant in this particle type (76%, 95%, and 88%, respectively). The parent particles
340 of A-OC [were](#) a kind of OC particles from biomass burning; then they mixed with
341 amines via uptake. [Amines could enter the A-OC particle type via dissolution in the](#)
342 [aerosol water content or uptake due to absorptive uptake on the OC aerosol \(Pankow,](#)
343 [2015\).](#)

344 In A-ECOC mass spectra, strong signals of amines (m/z 59 and 74), along with the
345 major aromatic hydrocarbon fragments and [EC components \(i.e., \$m/z\$ 36, 48, 60\)](#) were
346 detected. In the negative mass spectra, nitrate and sulfate were also dominant. The A-
347 ECOC-aged particle type had a similar chemical composition to A-ECOC ($R^2 = 0.53$)
348 but with weaker relative intensities of C_xH_y^+ and amine ions, suggesting it could be
349 more secondary.

350 In the positive mass spectra of DEA-OC, DEA fragment (m/z 74) was dominant and
351 present with organic fragments described above. The secondary organic marker ions,
352 such as m/z 43 ($[\text{C}_2\text{H}_3\text{O}]^+$) and -89 (oxalic acid), were found in the mass spectra.
353 Besides, DEA-OC was not sensitive to wind speed ($R^2 = 0.18$), implying they were local.

354

355 Figure 6. Average mass spectra of major particle types clustered from amine-containing
 356 particles.

357 The summertime amine-containing particles were similar to the particle types during
 358 winter (all $R^2 > 0.7$), except a Ca-rich particle type was also resolved (Figure S5). A-
 359 Ca-OC particle type was mainly composed of calcium (Ca^+ and CaO^+), sodium (m/z
 360 23), potassium (m/z 39), TMA (m/z 59), sulfate, nitrate, and phosphate. An ion signal
 361 of zinc (m/z 64) was observed in the positive mass spectrum. Zn is a marker for tire
 362 wear on roads (Grigoratos and Martini, 2015; Thorpe and Harrison, 2008). The A-Ca-
 363 OC particle type was possibly from traffic activities (Chen et al., 2017).

364 The amine-containing particle types reported in this study were different from those in
 365 literature. Cheng et al. (2018) reported that m/z 74 amine-containing particles were most
 366 abundant in the Pearl River Delta, China, but the chemical composition and mixing
 367 state of amine particles were different from this study. For example, the mixing ratio of
 368 DPA was much stronger (~0.2) in Guangdong than in Chongqing (<0.1). In most related
 369 studies, TMA-containing particles were dominant, while the present study showed

370 DEA-containing particles were dominant (Rehbein et al., 2011; Zhang et al., 2012;
371 Healy et al., 2015; Dall'Osto et al., 2016).

372 **4. Conclusions**

373 Amine-containing particles were collected and analyzed during winter and summer in
374 the urban area of Chongqing. Generally, amine-containing particles were more
375 abundant in winter than in summer. DEA-containing particles (m/z 74) were the most
376 important particle type during both summer and winter. [Amines were internally mixed](#)
377 [with EC components, organics, sulfate, and nitrate, suggesting particle aging was](#)
378 [significant in both seasons. Amine-containing particles had monomodal size](#)
379 [distributions in the droplet mode, and the distributions peaked at a larger \$D_{va}\$ in summer](#)
380 [than winter. DEA- and DPA-containing particles showed strong homogeneity, and](#)
381 [good correlations between the hourly number count and peak area were observed during](#)
382 [winter. The amine-containing particles were mostly from vegetation located southwest](#)
383 [of the sampling area, and traffic sources in the northwest. An enrichment of DEA-](#)
384 [containing particles under high RH conditions was revealed. Reduction of](#)
385 [anthropogenic amines, such as DEA and TMA, would improve the air quality in this](#)
386 [region, which can be achieved by decreasing the emissions of on-road fuel-powered](#)
387 [automobiles.](#)

388 Acknowledgments. Financial support from the National Key Research and
389 Development Program of China (2018YFC0200403 and 2016YFC0201506), the
390 Nature Science Foundation of China (Grant No. 41375123), and the Starting-up project
391 for Ph.D. (15ZA0213) are acknowledged.

392 Author Contribution. CY and YF designed the experiments; TM, SG, PC, WH, and WQ
393 carried them out; HR, CY, ZL, CJ, and GD analyzed the experiment data; CY prepared
394 the manuscript with contributions from all co-authors.

395 **References**

396 Angelino, S., Suess, D. T., and Prather, K. A.: Formation of aerosol particles from
397 reactions of secondary and tertiary alkylamines: characterization by aerosol time-of-
398 flight mass spectrometry, *Environ Sci Technol*, 35, 3130-3138, 10.1021/es0015444,
399 2001.

400 Bzdek, B. R., Zordan, C. A., Pennington, M. R., Luther, G. W., 3rd, and Johnston, M.
401 V.: Quantitative assessment of the sulfuric acid contribution to new particle growth,
402 *Environ Sci Technol*, 46, 4365-4373, 10.1021/es204556c, 2012.

403 Chen, Y., Cao, J., Huang, R., Yang, F., Wang, Q., and Wang, Y.: Characterization,
404 mixing state, and evolution of urban single particles in Xi'an (China) during wintertime
405 haze days, *Sci Total Environ*, 573, 937-945, 10.1016/j.scitotenv.2016.08.151, 2016.

406 Chen, Y., Yang, F., Mi, T., Cao, J., Shi, G., Huang, R., Wang, H., Chen, J., Lou, S., and
407 Wang, Q.: Characterizing the composition and evolution of urban particles in
408 Chongqing (China) during summertime, *Atmos Res*, 187, 84-94,
409 10.1016/j.atmosres.2016.12.005, 2017.

410 Cheng, C. L., Huang, Z. Z., Chan, C. K., Chu, Y. X., Li, M., Zhang, T., Ou, Y. B., Chen,
411 D. H., Cheng, P., Li, L., Gao, W., Huang, Z. X., Huang, B., Fu, Z., and Zhou, Z.:
412 Characteristics and mixing state of amine-containing particles at a rural site in the Pearl
413 River Delta, China, *Atmos Chem Phys*, 18, 9147-9159, 10.5194/acp-18-9147-2018,
414 2018.

415 Dall'Osto, M., Beddows, D. C. S., McGillicuddy, E. J., Esser-Gietl, J. K., Harrison, R.
416 M., and Wenger, J. C.: On the simultaneous deployment of two single-particle mass
417 spectrometers at an urban background and a roadside site during SAPUSS, Atmos
418 Chem Phys, 16, 9693-9710, 10.5194/acp-16-9693-2016, 2016.

419 Dall'osto, M., and Harrison, R.: Chemical characterisation of single airborne particles
420 in Athens (Greece) by ATOFMS, Atmos Environ, 40, 7614-7631,
421 10.1016/j.atmosenv.2006.06.053, 2006.

422 De Haan, D. O., Hawkins, L. N., Kononenko, J. A., Turley, J. J., Corrigan, A. L.,
423 Tolbert, M. A., and Jimenez, J. L.: Formation of nitrogen-containing oligomers by
424 methylglyoxal and amines in simulated evaporating cloud droplets, Environ Sci
425 Technol, 45, 984-991, 10.1021/es102933x, 2011.

426 Denkenberger, K. A., Moffet, R. C., Holecek, J. C., Rebotier, T. P., and Prather, K. A.:
427 Real-time, single-particle measurements of oligomers in aged ambient aerosol particles,
428 Environ Sci Technol, 41, 5439-5446, 10.1021/es0703291, 2007.

429 Ge, X., Wexler, A. S., and Clegg, S. L.: Atmospheric amines – Part I. A review, Atmos
430 Environ, 45, 524-546, 10.1016/j.atmosenv.2010.10.012, 2011a.

431 Ge, X., Wexler, A. S., and Clegg, S. L.: Atmospheric amines – Part II. Thermodynamic
432 properties and gas/particle partitioning, Atmos Environ, 45, 561-577,
433 10.1016/j.atmosenv.2010.10.013, 2011b.

434 Gómez Alvarez, E., Viidanoja, J., Muñoz, A., Wirtz, K., and Hjorth, J.: Experimental
435 Confirmation of the Dicarbonyl Route in the Photo-oxidation of Toluene and Benzene,
436 Environ Sci Technol, 41, 8362-8369, 10.1021/es0713274, 2007.

437 Grigoratos, T., and Martini, G.: Brake wear particle emissions: a review, Environ Sci
438 Pollut Res Int, 22, 2491-2504, 10.1007/s11356-014-3696-8, 2015.

439 Healy, R. M., Sciare, J., Poulain, L., Crippa, M., Wiedensohler, A., Prevot, A. S. H.,
440 Baltensperger, U., Sarda-Esteve, R., McGuire, M. L., Jeong, C. H., McGillicuddy, E.,
441 O'Connor, I. P., Sodeau, J. R., Evans, G. J., and Wenger, J. C.: Quantitative
442 determination of carbonaceous particle mixing state in Paris using single-particle mass
443 spectrometer and aerosol mass spectrometer measurements, Atmos Chem Phys, 13,
444 9479-9496, 10.5194/acp-13-9479-2013, 2013.

445 Healy, R. M., Evans, G. J., Murphy, M., Sierau, B., Arndt, J., McGillicuddy, E.,
446 O'Connor, I. P., Sodeau, J. R., and Wenger, J. C.: Single-particle speciation of
447 alkylamines in ambient aerosol at five European sites, Anal Bioanal Chem, 407, 5899-
448 5909, 10.1007/s00216-014-8092-1, 2015.

449 Huang, Q., Cai, X., Song, Y., and Zhu, T.: Air stagnation in China (1985–2014):
450 climatological mean features and trends, Atmos. Chem. Phys., 17, 7793-7805,
451 10.5194/acp-17-7793-2017, 2017.

452 Huang, Y., Chen, H., Wang, L., Yang, X., and Chen, J.: Single particle analysis of
453 amines in ambient aerosol in Shanghai, Environ Chem, 9, 202-210, 10.1071/en11145,
454 2012.

455 Kirkby, J., Curtius, J., Almeida, J., Dunne, E., Duplissy, J., Ehrhart, S., Franchin, A.,
456 Gagne, S., Ickes, L., Kurten, A., Kupc, A., Metzger, A., Riccobono, F., Rondo, L.,
457 Schobesberger, S., Tsagkogeorgas, G., Wimmer, D., Amorim, A., Bianchi, F.,
458 Breitenlechner, M., David, A., Dommen, J., Downard, A., Ehn, M., Flagan, R. C.,
459 Haider, S., Hansel, A., Hauser, D., Jud, W., Junninen, H., Kreissl, F., Kvashin, A.,
460 Laaksonen, A., Lehtipalo, K., Lima, J., Lovejoy, E. R., Makhmutov, V., Mathot, S.,

461 Mikkila, J., Minginette, P., Mogo, S., Nieminen, T., Onnela, A., Pereira, P., Petaja, T.,
462 Schnitzhofer, R., Seinfeld, J. H., Sipila, M., Stozhkov, Y., Stratmann, F., Tome, A.,
463 Vanhanen, J., Viisanen, Y., Vrtala, A., Wagner, P. E., Walther, H., Weingartner, E.,
464 Wex, H., Winkler, P. M., Carslaw, K. S., Worsnop, D. R., Baltensperger, U., and
465 Kulmala, M.: Role of sulphuric acid, ammonia and galactic cosmic rays in atmospheric
466 aerosol nucleation, *Nature*, 476, 429-433, 10.1038/nature10343, 2011.

467 Li, L., Huang, Z., Dong, J., Li, M., Gao, W., Nian, H., Fu, Z., Zhang, G., Bi, X., Cheng,
468 P., and Zhou, Z.: Real time bipolar time-of-flight mass spectrometer for analyzing
469 single aerosol particles, *Int J Mass Spectrom*, 303, 118-124,
470 10.1016/j.ijms.2011.01.017, 2011.

471 Li, Y. J., Sun, Y., Zhang, Q., Li, X., Li, M., Zhou, Z., and Chan, C. K.: Real-time
472 chemical characterization of atmospheric particulate matter in China: A review, *Atmos*
473 *Environ*, 2017.

474 Moffet, R. C., de Foy, B., Molina, L. T., Molina, M. J., and Prather, K. A.: Measurement
475 of ambient aerosols in northern Mexico City by single particle mass spectrometry,
476 *Atmos. Chem. Phys.*, 8, 4499-4516, 10.5194/acp-8-4499-2008, 2008.

477 Monks, P. S.: Gas-phase radical chemistry in the troposphere, *Chem Soc Rev*, 34, 376-
478 395, 10.1039/b307982c, 2005.

479 Onasch, T. B., Trimborn, a., Fortner, E. C., Jayne, J. T., Kok, G. L., Williams, L. R.,
480 Davidovits, P., and Worsnop, D. R.: Soot Particle Aerosol Mass Spectrometer:
481 Development, Validation, and Initial Application, *Aerosol Sci. Technol.*, 46, 804-817,
482 10.1080/02786826.2012.663948, 2012.

483 Pankow, J. F.: Phase considerations in the gas/particle partitioning of organic amines
484 in the atmosphere, *Atmos Environ*, 122, 448-453, 10.1016/j.atmosenv.2015.09.056,
485 2015.

486 Pratt, K. A., Murphy, S. M., Subramanian, R., DeMott, P. J., Kok, G. L., Campos, T.,
487 Rogers, D. C., Prenni, A. J., Heymsfield, A. J., Seinfeld, J. H., and Prather, K. A.:
488 Flight-based chemical characterization of biomass burning aerosols within two
489 prescribed burn smoke plumes, *Atmos Chem Phys*, 11, 12549-12565, 10.5194/acp-11-
490 12549-2011, 2011.

491 Qin, X., Pratt, K. A., Shields, L. G., Toner, S. M., and Prather, K. A.: Seasonal
492 comparisons of single-particle chemical mixing state in Riverside, CA, *Atmos Environ*,
493 59, 587-596, 10.1016/j.atmosenv.2012.05.032, 2012.

494 Rehbein, P. J., Jeong, C. H., McGuire, M. L., Yao, X., Corbin, J. C., and Evans, G. J.:
495 Cloud and fog processing enhanced gas-to-particle partitioning of trimethylamine,
496 *Environ Sci Technol*, 45, 4346-4352, 10.1021/es1042113, 2011.

497 Silva, P. J., Liu, D.-Y., Noble, C. A., and Prather, K. A.: Size and Chemical
498 Characterization of Individual Particles Resulting from Biomass Burning of Local
499 Southern California Species, *Environ Sci Technol*, 33, 3068-3076, 10.1021/es980544p,
500 1999.

501 Smith, J. N., Barsanti, K. C., Friedli, H. R., Ehn, M., Kulmala, M., Collins, D. R.,
502 Scheckman, J. H., Williams, B. J., and McMurry, P. H.: Observations of aminium salts
503 in atmospheric nanoparticles and possible climatic implications, *Proc Natl Acad Sci U
504 S A*, 107, 6634-6639, 10.1073/pnas.0912127107, 2010.

505 Song, X. H., Hopke, P. K., Fergenson, D. P., and Prather, K. A.: Classification of single
506 particles analyzed by ATOFMS using an artificial neural network, ART-2A, Anal.
507 Chem., 71, 860-865, DOI 10.1021/ac9809682, 1999.

508 Tan, P. V., Evans, G. J., Tsai, J., Owega, S., Fila, M. S., Malpica, O., and Brook, J. R.:
509 On-line analysis of urban particulate matter focusing on elevated wintertime aerosol
510 concentrations, Environ Sci Technol, 36, 3512-3518, 10.1021/es011448i, 2002.

511 Tao, J., Zhang, L., Cao, J., and Zhang, R.: A review of current knowledge concerning
512 PM_{2.5} chemical composition, aerosol optical properties and
513 their relationships across China, Atmos Chem Phys, 17, 9485-9518, 10.5194/acp-17-
514 9485-2017, 2017.

515 Thorpe, A., and Harrison, R. M.: Sources and properties of non-exhaust particulate
516 matter from road traffic: a review, Sci Total Environ, 400, 270-282,
517 10.1016/j.scitotenv.2008.06.007, 2008.

518 Wang, J. F., Ge, X. L., Chen, Y. F., Shen, Y. F., Zhang, Q., Sun, Y. L., Xu, J. Z., Ge,
519 S., Yu, H., and Chen, M. D.: Highly time-resolved urban aerosol characteristics during
520 springtime in Yangtze River Delta, China: insights from soot particle aerosol mass
521 spectrometry, Atmos Chem Phys, 16, 9109-9127, 10.5194/acp-16-9109-2016, 2016.

522 Wang, L., Khalizov, A. F., Zheng, J., Xu, W., Ma, Y., Lal, V., and Zhang, R.:
523 Atmospheric nanoparticles formed from heterogeneous reactions of organics, Nature
524 Geoscience, 3, 238, 10.1038/ngeo778
525 <https://www.nature.com/articles/ngeo778#supplementary-information>, 2010.

526 Yao, L., Garmash, O., Bianchi, F., Zheng, J., Yan, C., Kontkanen, J., Junninen, H.,
527 Mazon, S. B., Ehn, M., Paasonen, P., Sipila, M., Wang, M., Wang, X., Xiao, S., Chen,

528 H., Lu, Y., Zhang, B., Wang, D., Fu, Q., Geng, F., Li, L., Wang, H., Qiao, L., Yang,
529 X., Chen, J., Kerminen, V. M., Petaja, T., Worsnop, D. R., Kulmala, M., and Wang, L.:
530 Atmospheric new particle formation from sulfuric acid and amines in a Chinese
531 megacity, *Science*, 361, 278-281, 10.1126/science.aoa4839, 2018.

532 Yao, X., Rehbein, P. J. G., Lee, C. J., Evans, G. J., Corbin, J., and Jeong, C.-H.: A study
533 on the extent of neutralization of sulphate aerosol through laboratory and field
534 experiments using an ATOFMS and a GPIC, *Atmos. Environ.*, 45, 6251-6256,
535 10.1016/j.atmosenv.2011.06.061, 2011.

536 You, Y., Kanawade, V. P., de Gouw, J. A., Guenther, A. B., Madronich, S., Sierra-
537 Hernández, M. R., Lawler, M., Smith, J. N., Takahama, S., Ruggeri, G., Koss, A., Olson,
538 Baumann, K., Weber, R. J., Nenes, A., Guo, H., Edgerton, E. S., Porcelli, L., Brune,
539 W. H., Goldstein, A. H., and Lee, S. H.: Atmospheric amines and ammonia measured
540 with a chemical ionization mass spectrometer (CIMS), *Atmos. Chem. Phys.*, 14, 12181-
541 12194, 10.5194/acp-14-12181-2014, 2014.

542 Zhang, G., Bi, X., Chan, L. Y., Li, L., Wang, X., Feng, J., Sheng, G., Fu, J., Li, M., and
543 Zhou, Z.: Enhanced trimethylamine-containing particles during fog events detected by
544 single particle aerosol mass spectrometry in urban Guangzhou, China, *Atmos. Environ.*,
545 55, 121-126, 10.1016/j.atmosenv.2012.03.038, 2012.

546