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Abstract.  

Atmospheric inversions have been used to assess biosphere-atmosphere CO2 surface exchanges at various scales, but 

variability among inverse flux estimates remains significant, especially at continental scales. Atmospheric transport errors are 10 

one of the main contributors to this variability. To characterize transport errors and their spatio-temporal structures, we present 

an objective method to generate a calibrated ensemble adjusted with meteorological measurements collected across a region, 

here the US upper Midwest in midsummer. Using multiple model configurations of the Weather Research and Forecasting 

(WRF) model, we show that a reduced number of simulations (less than 10 members) reproduces the transport error 

characteristics of a 45-member ensemble while minimizing the size of the ensemble. The large ensemble of 45-members was 15 

constructed using different physics parameterization (i.e., land surface models (LSMs), planetary boundary layer (PBL) 

schemes, cumulus parameterizations and microphysics parameterizations) and meteorological initial/boundary conditions. All 

the different models were coupled to CO2 fluxes and lateral boundary conditions from CarbonTracker to simulate CO2 mole 

fractions. Meteorological variables critical to inverse flux estimates, PBL wind speed, PBL wind direction and PBL height, 

are used to calibrate our ensemble over the region.  Two calibration techniques (i.e., simulated annealing and a genetic 20 

algorithm) are used for the selection of the optimal ensemble using the flatness of the rank histograms as the main criterion. 

We also choose model configurations that minimize the systematic errors (i.e. monthly biases) in the ensemble. We evaluate 

the impact of transport errors on atmospheric CO2 mole fraction to represent up to 40% of the model-data mismatch (fraction 

of the total variance). We conclude that a carefully-chosen subset of the physics ensemble can represent the errors in the full 

ensemble, and that transport ensembles calibrated with relevant meteorological variables provide a promising path forward for 25 

improving the treatment of transport errors in atmospheric inverse flux estimates. 

1 Introduction 

Atmospheric inversions are used to assess the exchange of CO2 between the biosphere and the atmosphere (e.g., Gurney et al., 

2002; Baker et al., 2006; Peylin et al., 2013). The atmospheric inversion or “top-down” method combines a prior distribution 

of surface fluxes with a transport model to simulate CO2 mole fractions and adjust the fluxes to be optimally consistent with 30 
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the observations (Enting, 1993). Large differences often exist among inverse flux estimates independent of the spatial scales 

(e.g., Gurney et al., 2002; Sarmiento et al., 2010; Peylin et al., 2013; Schuh et al., 2013). These posterior flux uncertainties 

arise from limited atmospheric data density (Gurney et al., 2002), uncertain prior fluxes (Corbin et al., 2010; Gourdji et al., 

2010; Huntzinger et al, 2012) and errors in atmospheric transport (Stephens et al., 2007; Gerbig et al., 2008; Pickett-Heaps et 

al., 2011; Díaz Isaac et al., 2014; Lauvaux and Davis, 2014).  5 

Atmospheric inversions based on Bayesian inference depend on the prior flux error covariance matrix and the observation 

error covariance matrix. The prior flux error covariance matrix represents the statistics of the mismatch between the true fluxes 

and the prior fluxes, but the limited density of flux observation limits our ability to characterize these errors (Hilton et al., 

2013). The observation error covariance describes errors of both measurements and the atmospheric transport model. In 

atmospheric inversions the model errors tend to be much greater than the measurement errors (e.g. Gerbig et al., 2003; Law et 10 

al., 2008). Additionally, atmospheric inversions assume that the atmospheric transport uncertainties are known and are 

unbiased, therefore the method propagates uncertain and potentially biased atmospheric transport model errors to inverse fluxes 

limiting their optimality. Unfortunately, rigorous assessments of the transport uncertainties within current atmospheric 

inversions are limited. Estimation of the atmospheric transport errors and their impact on CO2 fluxes remains a challenge 

(Lauvaux et al., 2009). 15 

A limited number of studies are dedicated to quantify the uncertainty in atmospheric transport models and even fewer attempted 

to translate this information into the impact on the CO2 mixing ratio and inverse fluxes. The atmospheric Tracer Transport 

Model Intercomparison Project (TransCom) has been dedicated to evaluate the impact of atmospheric transport models in 

atmospheric inversion systems (e.g., Gurney et al., 2002; Law et al., 2008; Peylin et al., 2013). These experiments have also 

shown the importance of the transport model resolution to avoid any misrepresentation of high frequency atmospheric signals 20 

(Law et al., 2008). Diaz Isaac et al., (2014) showed how two transport models with two different resolution and physics but 

using the same surface fluxes can lead to large model-data differences in the atmospheric CO2 mole fractions. These differences 

would yield significant errors on the inverse fluxes if propagated into the inverse problem. Errors in horizontal wind (Lin and 

Gerbig, 2005) and in vertical transport (Stephen et al., 2007; Gerbig et al. 2008; Kretschmer et al., 2012) have been shown to 

be important contributors to uncertainties in simulated atmospheric CO2. Lin and Gerbig (2005), for example, estimate the 25 

impact of horizontal wind error on CO2 mole fractions and conclude that uncertainties in CO2 due to advection errors can be 

as large as 6ppm. Other studies have shown that errors in the simulation of vertical mixing has a large impact on simulated 

CO2 and inverse flux estimates (e.g., Denning et al., 1995; Stephens et al., 2007; Gerbig et al., 2008). Therefore, some studies 

have evaluated the effects that planetary boundary layer height (PBLH) has on CO2 mole fractions (Gerbig et al., 2008; 

Williams et al., 2011; Kretschmer et al., 2012). Approximately 3 ppmv uncertainty in CO2 mole fractions have been attributed 30 

to PBLH errors over Europe during the summer time (Gerbig et al., 2008; Kretschmer et al., 2012). These studies have 

attributed the errors to the lack of sophisticated subgrid parameterization, especially PBL schemes and land surface models 

(LSMs). This led other studies (Kretschmer et al., 2012; Lauvaux and Davis, 2014; Feng et al., 2016) to evaluate the impact 

of different PBL parameterizations on simulated atmospheric CO2. These studies have found systematic errors of several ppm 
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in atmospheric CO2 that can generate biased inverse fluxes estimates. While there is an agreement that errors in the vertical 

mixing and advection schemes can affect directly the inverse fluxes, other components of the model physics (e.g. convection, 

large-scale forcing) have not been carefully evaluated.   

Atmospheric transport models have multiple sources of uncertainty including the boundary conditions, initial conditions, 

model physics parameterization schemes and parameter values. With errors inherited from all of these sources, ensembles have 5 

become a powerful tool for the quantification of atmospheric transport uncertainties. Different approaches have been evaluated 

in the carbon cycle community to represent the model uncertainty: (1) the multi-model ensembles that encompass models from 

different research institutions around the world (e.g. TransCom experiment; Gurney et al., 2002; Baker et al., 2006; Patra et 

al., 2008; Peylin et al., 2013; Houweling et al., 2010), (2) multi-physics ensembles that involve different model physics 

configurations generated by the variation of different parameterization schemes from the model (e.g., Kretschmer et al., 2012; 10 

Yver et al., 2013; Lauvaux and Davis 2014; Angevine et al., 2014; Feng et al., 2016; Sarmiento et al, 2017) and (3) multi-

analysis (i.e., forcing data) that consists of running a model over the same period using different analysis fields (where 

perturbations can be added) (e.g., Lauvaux et al., 2009; Miller et al., 2015; Angevine et al., 2014). These ensembles are 

informative (e.g., Peylin et al., 2013; Kretschmer et al., 2012; Lauvaux and Davis 2014), but have some shortcomings. In some 

cases, the ensemble spread includes a mixture of transport model uncertainties and other errors such as the variation in prior 15 

fluxes or the observations used. Other studies have only varied the PBL scheme parameterizations. None of these studies have 

carefully assessed whether or not their ensemble spreads represent the actual transport errors.    

In the last two decades, the development of ensemble methods has improved the representation of transport uncertainty using 

the statistics of large ensembles to characterize the statistical spread of atmospheric forecasts (e.g. Evensen, 1994a, 1994b). 

Single-physics ensemble-based statistics are highly susceptible to model error, leading to under-dispersive ensembles (e.g. Lee 20 

et al., 2012a). Large ensembles (>50 members) remain computationally expensive and ill-adapted to assimilation over longer 

time scales such as multi-year inversions of long-lived species (e.g. CO2). Smaller-size ensembles would be ideal, but most 

initial-condition-only perturbation methods produce unreliable and overconfident representation of the atmospheric state 

(Buizza et al. 2005). An ensemble used to explore and quantify atmospheric transport uncertainties requires a significant 

number of members to avoid sampling noise and the lack of dispersion of the ensemble members (Houtekamer and Mitchell, 25 

2001). However, large ensembles are computationally expensive. Limitations in computational resources lead to restrictions 

including the setup of the model (e.g., model resolution, nesting options, duration of the simulation) and the number of 

ensemble members. It is desirable to generate an ensemble that is capable of representing the transport errors, and that does 

not include any redundant members.  

Various post-processing techniques can be used to calibrate or “down-select” from a transport ensemble of 50 or more members 30 

to a subset of ensemble members that represent the model transport errors (e.g., Alhamed et al., 2002; Garaud and Mallet, 

2011; Lee et al., 2012a; 2016). Some of these techniques are principal component analysis (e.g., Lee et al., 2012a), K-means 

cluster analysis (e.g., Lee et al., 2012b) and hierarchical cluster analysis (e.g., Alhamed et al., 2002; Yussouf et al., 2004; 

Johnson et al., 2011; Lee et al., 2012b; 2016). Riccio et al. (2012), applied the concept of “uncorrelation” to reduce the number 
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of members without using any observations. Solazzo and Galmarini (2014) reduced the number of members by finding a subset 

of members that maximize a statistical performance skill such as the correlation coefficient, the root-mean-square error or the 

fractional bias. Other techniques applied less commonly to the calibration of the ensembles include simulated annealing and 

genetic algorithms (e.g. Garaud and Mallet, 2011). All these techniques are capable of eliminating those members that are 

redundant, and generating an ensemble with a smaller number of members that represents the uncertainty of the atmospheric 5 

transport model more faithfully than the larger ensemble.  

In this study we start with a large multi-physics/multi-analysis ensemble of 45-members presented in Díaz-Isaac et al. (2018) 

and apply a calibration process similar to the one explained in Garaud and Mallet (2011). Two principal features characterize 

an ensemble: reliability and resolution. The reliability is the probability that a simulation has of matching the frequency of an 

observed event. The resolution is the ability of the system to predict a specific event. Both features are needed in order to 10 

represent model errors accurately. Our main goal is to generate an ensemble that will represent the uncertainty of the transport 

model with respect to meteorological variables of most importance in simulating atmospheric CO2. These variables are the 

horizontal mean PBL wind speed and wind direction, and the vertical mixing of surface fluxes, i.e. PBLH. We focus on the 

criterion that will measure the reliability of the ensemble, i.e. the probability of the ensemble in representing the frequency of 

events (i.e. the spatio-temporal variability of the atmospheric state). For the selection of the ensemble, we will use two different 15 

techniques, simulated annealing and a genetic algorithm. In a final step, the ensemble with the optimal reliability will be 

selected by minimizing the biases in the ensemble mean. We will evaluate which physical parameterizations play important 

roles in balancing the ensembles and evaluate how well a pure physics ensemble can represent transport uncertainty. 

2 Methods 

2.1 Generation of the ensemble 20 

We generate an ensemble using the Weather Research and Forecasting (WRF) model version 3.5.1 (Skamarock et al., 2008), 

including the chemistry module modified in this study for CO2 (WRF-ChemCO2).  The ensemble consists of 45-members that 

were generated by varying the different physics parameterization and meteorological data. The land surface models, surface 

layers, planetary boundary layer schemes, cumulus schemes, microphysics schemes, and meteorological data (i.e., initial and 

boundary conditions) are alternated in the ensemble (see Table 1).  All the simulations use the same radiation schemes, both 25 

long and shortwave.  

The different simulations were run using the one-way nesting method, with two nested domains (Figure 1). The coarse domain 

(d01) uses a horizontal grid spacing of 30km and covers most of the United States and part of Canada. The inner domain (d02) 

uses a 10km grid spacing, is centered in Iowa and covers the Midwest region of the United States. The vertical resolution of 

the model is described with 59 vertical levels, with 40 of them within the first 2km of the atmosphere. This work focuses on 30 

the simulation with higher resolution, therefore only the 10-km domain will be analyzed.  
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The CO2 fluxes for summer 2008 were obtained from NOAA Global Monitoring Division’s CarbonTracker version 2009 

(CT2009) data assimilation system (Peters et al., 2007; with updates documented at 

https://www.esrl.noaa.gov/gmd/ccgg/carbontracker/). The different surface fluxes from CT2009 that we propagate into the 

WRF-ChemCO2 model are fossil fuel burning, terrestrial biosphere exchange, and exchange with oceans. The CO2 lateral 

boundary conditions were obtained from CT2009 mole fractions. The CO2 fluxes and boundary conditions are identical for all 5 

ensemble members.  

2.2 Dataset and data selection 

Our interest is to calibrate the ensemble over the Midwest U.S. using the meteorological observations available over this 

region. The calibration of the ensemble will be done only within the inner domain. To perform the calibration, we used balloon 

soundings collected over the Midwest region (Figure 1).  Meteorological data were obtained from the University of Wyoming’s 10 

online data archive (http://weather.uwyo.edu/upperair/sounding.html) for 14 rawinsonde stations over the U.S. Midwest region 

(Figure 1). To evaluate how the new calibrated ensemble impacts CO2 mole fractions we will use in-situ atmospheric CO2 

mole fraction data provided by seven communication towers (Figure 1). Five of these towers were part of a Penn State 

experimental network, deployed from 2007 to 2009 (Richardson et al., 2012; Miles et al., 2012, 2013; 

http://dx.doi.org/10.3334/ORNLDAAC/1202). The other two towers (Park Falls-WLEF and West Branch-WBI) are part of 15 

the Earth System Research Laboratory/Global Monitoring Division (ESRL/GMD) tall tower network (Andrews et al., 2014), 

managed by NOAA. Each of these towers sampled air at multiple heights, ranging from 11 m AGL to 396 m AGL.  

The ensemble will be calibrated for three different meteorological variables: PBL wind speed, PBL wind direction and 

planetary boundary layer height (PBLH). We will calibrate the ensemble with the late afternoon data (i.e., 0000 UTC) from 

the different rawinsondes. In this study, we use only daytime data, because we want to calibrate and evaluate the ensemble 20 

under the same well mixed conditions that are used to perform atmospheric inversions. For each rawinsonde site we will use 

wind speed and wind direction observations from approximately 300 m above ground level (AGL). We choose this 

observational level because we want the observations to lie within the well mixed layer, the layer into which surface fluxes are 

distributed, and the same air mass that is sampled and simulated for inversions based on tower CO2 measurements.  

The PBLH was estimated using the virtual potential temperature gradient (sθν). The method identifies the PBLH as the first 25 

point above the atmospheric surface layer where (1) sθν is greater than or equal to 0.2 K/km, and (2) the difference between 

the surface and the threshold level virtual potential temperature is greater than or equal to 3 K ( θνs - θν  ≥ 3K).    

WRF derives an estimated PBLH for each simulation, however the technique used to estimate the PBLH varies according to 

the PBL scheme used to run the simulation. For example, the YSU PBL schemes estimates PBLH using the Bulk Richardson 

number, MYJ PBL scheme uses the TKE to estimate the PBLH and MYNN PBL scheme uses QKE to estimate the PBLH. To 30 

avoid any errors from the technique used to estimate the PBLH, we decided to estimate the PBLH from the model using the 

same method used for the observations. Simulated PBLH will be analyzed at the same time as the observations, 0000 UTC, 

i.e., late afternoon in the study region. 
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We analyzed CO2 mole fractions collected from the sampling levels at or above 100m AGL, which is the highest observation 

level across the MCI network (Miles et al., 2012). This ensures that the observed mole fractions reflect regional CO2 fluxes 

and not near-surface gradients of CO2 in the atmospheric surface layer (ASL) or local CO2 fluxes (Wang et al., 2007). Both 

observed and simulated CO2 mole fractions are averaged from 1800 to 2200 UTC (12:00-16:00 LST), when the daytime period 

of the boundary layer should be convective and the CO2 profile well mixed (e.g., Davis et al., 2003; Stull, 1988). This averaged 5 

mole fraction will be referred to hereafter as daily daytime average (DDA).  

2.3 Criteria  

In this research we want to test the performance of the transport ensemble and try to achieve a better representation of transport 

uncertainties, if possible using an ensemble with a smaller number of members. A series of statistical metrics are used as 

criteria to measure the representation of uncertainty by the ensemble for the period of June 18 to July 21 of 2008. The criteria 10 

used for our down-selection process include ranks histograms, rank histogram scores and ensemble bias.   

2.3.1 Talagrand diagram (or rank histogram) and rank histogram score 

The rank histogram and the rank histogram scores are tools used to measure the spread, and hence the reliability of the ensemble 

(see Figure A1 in Appendix)..  The rank histogram (Anderson 1996; Hamill and Colucci 1997; Talagrand et al., 1999) is 

computed by sorting the corresponding modelled variable of the ensemble in increasing order and then a rank among the sorted 15 

predicted variable from lowest to highest is given to the observation. The ensemble members are sorted to define “bins” of the 

modelled variable, if the ensemble contains N members, then there will be N+1 bins.  If the rank is zero then the observed 

variable value is lower than all the modelled variable values, and if it is N+1 then the observation is greater than all of the 

modelled values. If the ensemble is perfectly reliable, the rank histogram should be flat (i.e. flatness equal to 1). This happens 

when the probability of occurrence of the observation within each bin is equal. A rank histogram that deviates from the flat 20 

shape implies a biased, overdispersive or underdispersive ensemble. A “U-shaped” rank histogram indicates that the ensemble 

is underdispersive, normally in this type of ensemble the observations tend to fall outside of the envelope of the ensemble and 

indicates a lack of variability. A “central-dome” (or “A-shaped”) histogram indicates that the ensemble is overdispersive; this 

kind of ensemble has an excess of variability. If the rank histogram is overpopulated at either of the ends of the diagram, then 

this indicates that the ensemble is biased.  25 

The rank histogram score is used to measure the deviation from flatness of a rank histogram: 

𝛿 = #$%
#&

(𝑟) − 𝑟),#
)-.  ,           (1) 

 

and should ideally be close to 1 (Talagrand et al., 1999; Candille and Talagrand, 2005). In Eq.(1), 𝑁 is the number of models, 

𝑀 is the number of observations, 𝑟)  the number of observations of rank j, and 𝑟 = 𝑀/(𝑁 + 1)	is the expectation of 𝑟) . In 30 

theory, the optimal ensemble has a score of one (1) when enough members are available. A score lower than one would indicate 
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overconfidence in the results, with an ensemble matching the observed variability better than statistically expected. Having a 

score smaller than one would not affect the selection process. Nevertheless, a flat rank histogram does not necessarily mean 

that the ensemble is reliable or has enough spread. For example, a flat histogram can still be generated from ensembles with 

different conditional biases (Hamill, 2001). The flat rank histogram can also be produced when covariances between samples 

are incorrectly represented. Therefore, additional verification analysis has to be introduced to certify that the calibrated 5 

ensemble has enough spread and is reliable. We introduce hereafter several additional metrics used to evaluate the ensemble. 

2.3.2 Ensemble bias 

Atmospheric inverse flux estimates are highly sensitive to biases.  The bias, or the mean of the model-data mismatches, was 

used to assist the selection of the calibrated sub-ensemble. We identify a sub-ensemble that has minimal bias, 

𝐵𝑖𝑎𝑠 = 	 %
&

(𝑝:)&
:-% ,           (2) 10 

where pi is the difference between the modeled wind speed, direction or PBLH, and the observed value, M is the number of 

measurements and i sums over each of the rawinsonde measurements. 

 

2.4 Verification methods 

Different statistical tools were used to evaluate both the large ensemble (45-member) and calibrated ensemble, these statistics 15 

include Taylor diagrams, spread-skill relationship, and ensemble root mean square deviation (RMSD). These statistical 

analyses will be used to describe each member performance (standard deviations and correlations), ensemble spread (root 

mean square deviation) and error structures in space (error covariance), these are some of the important aspects for the 

ensemble evaluation.  

We use Taylor diagrams to describe the performance of each of the models of the large ensemble (Taylor, 2001). The Taylor 20 

diagram relies on three nondimensional statistics: the ratio of the variance (model variance normalized by the observed 

variance), the correlation coefficient, and the normalized center root-mean square (CRMS) difference (Taylor, 2001). The ratio 

of the variance or normalized standard deviation indicates the difference in amplitude between the model and the observation. 

The correlation coefficient measures the similarity in the temporal variation between the model and the observation. The 

CRMS is normalized by the observed standard deviation and quantifies the ratio of the amplitude of the variations between the 25 

model and the observations.  

To verify that the ensemble captures the variability in the model performances across space and time, we computed the 

relationship between the spread of the ensemble and the skill of the ensemble over the entire data set (i.e. spread-skill 

relationship). The linear fit between the two parameters measures the correlation between the ensemble spread and the 

ensemble mean error or skill (Whitaker and Lough, 1998). The ensemble spread is calculated by computing the standard 30 

deviation of the ensemble and the mean error by computing the absolute difference between the ensemble mean and the 

observations. Ideally, as the ensemble skill improves (the mean error gets smaller), the ensemble spread becomes smaller, and 
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vice versa. Compared to the rank histograms, spread-skill diagrams represent the ability of the ensemble to represent the errors 

in time and space.  

The spread of the ensemble is evaluated in time, using the Root Mean Square Deviation (RMSD). The RMSD does not consider 

the observations as we take the square root of the average difference between model configuration and the ensemble mean. 

Additionally, we use the mean and standard deviation of the error (model-data mismatch) to evaluate the performance of each 5 

of the member selected for the calibrated ensembles.  

Transport model errors in atmospheric inversions are described in the observation error covariance matrix, hence in CO2 mole 

fractions (ppmv2). Therefore, we evaluate the impact of the calibration on the variances of CO2 mole fractions. For the 

covariances, we compare the spatial extent of error structures between the full ensemble and the reduced-size ensembles by 

looking at spatial covariances from our measurement locations. The limited number of members is likely to introduce sampling 10 

noise in the diagnosed error covariances. We also know that the full ensemble is not a perfect reference, but we believe is less 

noisy. The covariances were directly derived from the different ensembles to estimate the increase in sampling noise as a 

function of the ensemble size.  

2.5 Calibration methods 

In this study, we want to test the ability to reduce the ensemble from 45-members to an ensemble with a smaller number of 15 

members that is still capable of representing the transport errors and does not include members with redundant information. 

We use the Garaud and Mallet (2011) technique to define the size of the calibrated sub-ensemble that each optimization 

technique will generate, the size of the sub-ensemble was determined by dividing the total number of observations by the 

maximum frequency in the rank histogram. We are going to generate sub-ensembles of three different sizes (number of 

members) to evaluate the impact that an ensemble size has on the representation of atmospheric transport uncertainties. Each 20 

of the ensembles will be calibrated for the period of June 18 to July 21 of 2008. 

Two optimization methods, simulated annealing (SA) and a genetic algorithm (GA), are used to select a sub-ensemble that 

minimizes the rank histogram score (δ), which is the criterion that each algorithm will use to test the reliability of the ensemble. 

Each method will select a sub-ensemble that best represents the model uncertainties of PBL wind speed, PBL wind direction 

and PBLH.  25 

In this study, SA and GA techniques will randomly search for the different combinations of members and compute the flatness 

score. Both techniques generate a sub-ensemble (S) of size N. For the first test, we will use these algorithms to choose the 

combination of members that optimize the score of the reduced ensemble J(S) (i.e., rank histogram score (δ as defined in 

Eq.(1)) for each variable. With this evaluation, we determine if each optimization technique yields similar calibrated 

ensembles, and if the calibrated ensembles are similar among the different meteorological variables. In the second test, we 30 

calibrate the ensemble for all three variables simultaneously, where we use the sum of the score squared: [J(S)]2 (i.e. δ2 ): 

 [𝐽 𝑆 ], = [𝐽?@AB 𝑆 ], + [𝐽?B:C 𝑆 ], + [𝐽ADEF 𝑆 ],,        (3) 
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to control acceptance of the sub-ensembles. In Eq. (3), Jwspd(S), Jwdir(S) and Jpblh(S) are the scores of the sub-ensemble for PBL 

wind speed, PBL wind direction and PBLH respectively.  

2.5.1 Simulated Annealing 

Simulated annealing (SA) is a general probabilistic local search algorithm, described by Kirkpatrick et al. (1983) and Cerny et 

al. (1985) as an optimization method inspired from the process of annealing in metal work. Based on the Monte-Carlo iteration 5 

solving method, SA finds the global minimum using a cost function that gives to the algorithm the ability to jump or pass 

multiple local minima (see Figure A2 in Appendix). In this case the optimal solution is a sub-ensemble with a rank histogram 

score close to 1.  

The SA starts with a randomly selected sub-ensemble. The current state (i.e, initial random sub-ensemble) has a lot of 

neighbours states (i.e., other randomly generated sub-ensembles) in which a unit (i.e., model) is changed, removed or replaced. 10 

Let 𝑆 be the current sub-ensemble and 𝑆′ be the neighbor sub-ensemble. 𝑆H is a new sub-ensemble (i.e., neighbor) that is 

randomly built from the current sub-ensemble with one model added, removed or replaced. To minimize the score J, only two 

transitions to the neighbours are possible. First transition, if the score of the neighbour sub-ensembles J(S’) is lower than the 

current sub-ensemble J(S), then S’ becomes the current sub-ensemble and a new neighbour sub-ensemble is generated. Second 

transition, if the score of the neighbour sub-ensemble J(S’) is greater than the current sub-ensemble J(S), moving to the 15 

neighbour S’ only occurs through an acceptance probability. This acceptance probability is equal to 𝑒𝑥𝑝(− K(LM)NK(L)
O

) and it 

only allows the movement to the neighbor S’ if 𝑢 < 𝑒𝑥𝑝(− K(LM)NK(L)
O

). For the acceptance probability, u is a random number 

uniformly drawn from [0,1] and T is called temperature and it decreases after each iteration following a prescribed schedule. 

The acceptance probability is high at the beginning and the probability of switching to neighbour less at the end of the 

algorithm. The possibility to select a less optimal state S’, i.e., with higher J(S’) is meant to escape local minima where the 20 

algorithm could remain trapped. 

When the algorithm reaches the predefined number of iterations, we collect only the accepted sub-ensemble S and their 

respective scores J(S). When the algorithm finishes with the iterations, we choose the ensemble that has both the smallest rank 

histogram score and lowest bias among the different sub-ensembles (see Section 2.7). The number of iterations was defined 

by sensitivity test and repetitively of the experiments (see Section 2.6) 25 

2.5.2 Genetic Algorithm 

A genetic algorithm (GA) is a stochastic optimization method that mimics the process of biological evolution, with the 

selection, crossover and mutation of a population (Fraser and Burnell, 1970; Crosby, 1973; Holland, 1975). Let 𝑆:  be an 

individual; that is, a sub-ensemble, and let 𝑃 = {𝑆%, … , 𝑆:, … , 𝑆#VWV} be a population of 𝑁AYA individuals (see Figure A3 in 

appendix). As a first step in the GA a random population is generated (denoted 𝑃.). Then this population will go through two 30 

steps (1) selection and (2) crossover. In the selection step, we select half of the best individuals with respect to the score (i.e., 
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summation of the score of three variables J(S)). For the second step, a crossover among the selected individuals occurs when 

two parents create two new children by exchanging some ensemble members. A new population is generated with 𝑁AYA/2 

parents and 𝑁AYA/2 children.  

This process is repeated until it reaches the specified number of iterations.  This algorithm will provide at the end a population 

of individuals with a better rank histogram score than the initial population. Out of all those individuals we choose the sub-5 

ensemble with the best score for the three variables (i.e., wind speed, wind direction and PBLH) and with a smaller bias than 

the large ensemble. 

2.6 Parameterization of the selection algorithms 

Various inputs are required to guide the selection algorithms. For example, we typically need to choose the initial and final 

temperature (T0 and Tf) for the SA and its schedule, the best population size (Npop) for the GA and the number of iterations for 10 

each algorithm. The temperature of the SA, the Npop of the GA and the number of iterations were chosen by running the 

algorithms multiple times and confirming that the system reached similar solutions with independent minimization runs.  If 

similar solutions were not achieved within multiple SA or GA runs, the algorithm parameters were altered to increase the 

breadth of the search. For the SA we found that 20,000 iterations yielded similar solutions after multiple runs of the algorithm. 

For the GA, 30 to 50 iterations were sufficient as long as the ensemble was smaller than 8-members. For an ensemble of 10-15 

members we needed to increase to 100 iterations. Another factor that was important in the SA was the initial temperature used 

in the algorithm and the temperature decrease for each iteration. While the temperature is high, the algorithm will accept with 

more frequency the poorer solutions; as the temperature is reduced, the acceptance of poorer solutions is reduced. Therefore, 

we needed to provide an initial (T0) and final (Tf) temperature that allowed the system to reduce its acceptance condition 

gradually and to search more combinations of members to identify the best solution or sub-ensemble.  We determine the 20 

optimal parameters for SA by the maximum number of ensemble solutions which indicates that the algorithm explored the 

largest space of solution with T0 equal to 20 and Tf  equal to 1e-3. For GA the larger the population, the more we can explore 

the space to find an optimal solution.  We found that a Npop of 280 individuals was the value that produced similar solutions 

(sub-ensembles) after multiple runs. 

2.7 Selection of the optimal reduced sized-ensembles 25 

The selection process is performed in three distinct steps to ensure that the final calibrated ensembles will be the optimal 

combinations of model configurations (Figure 2). First, the flatness of the rank histograms will control the acceptance of the 

calibrated sub-ensembles by the selection algorithms (see Figure A1 in Appendix). The flatness is defined by equation (1) for 

the single-variable calibration and equation (3) for the calibration of the three variables simultaneously. The algorithm selects 

multiple sub-ensembles with a rank histogram score smaller than six for each individual meteorological variable, or smaller 30 

than the original ensemble score if higher than six (see Figure 2 and Table 2). In general, the lowest scores are found for PBLH 
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and the highest for wind speed, as shown in Figure 3. As a second step, sub-ensembles accepted by SA and GA algorithms 

with a bias larger than the bias of the full ensemble are filtered out. This step is critical to avoid the selection of biased 

ensembles as discussed by Hamill et al. (2001). Finally, the remaining calibrated ensembles are compared among SA and GA 

techniques to identify if both algorithms provide a common solution. If multiple common solutions were identified, the final 

sub-ensemble was determined by the solution with the smallest score and bias. However, if no common solution was found by 5 

both techniques, the final sub-ensemble corresponds to the smallest score among the different solutions that share >50% of the 

same model configurations.  

3. Results 

3.1 Evaluation of the large ensemble 

In this section, we evaluate the performance of the large ensemble. Our goal is to test the ensemble skill (ability of the models 10 

to match the observations) and the spread (variability across model simulations to represent the uncertainty). We will evaluate 

the skill and the spread for PBLH, PBL wind speed, and PBL wind direction across the region of study using afternoon (0000 

UTC) rawinsonde observations.  

3.1.2 Model skill 

We evaluate the performance of the different models of the 45-member ensemble by computing the normalized standard 15 

deviation, normalized center root mean square and correlation coefficient for wind speed (Figure 4a), wind direction (Figure 

4b) and PBLH (Figure 4c) (Taylor, 2001). The majority of the model configurations produce winds speeds and directions with 

higher standard deviations (more variability) than the observations, whereas the simulations over- and under-estimate PBLH 

variability depending on the model configuration. The model-data correlations with wind speed and wind direction are between 

0.4 and 0.7, whereas the PBLH shows a smaller correlation, between 0.3 and 0.6. The range of modeled PBL heights will 20 

provide a wide spectrum of alternatives to select the optimal calibrated sub-ensemble. However, wind speed and wind direction 

do not show much difference among the different models. This limited spread potentially reduces the selection of the model 

configurations to produce a sub-ensemble that matches the observed variability.  

3.1.3 Reliability and spread of the ensemble 

We illustrate the ensemble spread and how well this ensemble encompasses the observations using the time series of the 25 

simulated and observed meteorological variables. Figure 5 shows the time series of the ensemble spread for wind speed, wind 

direction and PBLH at the GRB (Figure 5 a,c,e) and TOP (Figure 5 b,d,f) sites. The time series show qualitatively that 

simulated wind speed (Figure 5 a-b) and wind direction (Figure 5 c-d) have a smaller spread compared to PBLH (Figure 5 e-

f). Figure 5 shows how the ensemble can have a small spread and still encompass the observations (i.e., DOY 183 Figure 5c); 
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and have a large spread and not encompass the observation (i.e., DOY 174 Figure 5e). These time series suggest that the 

ensemble may struggle to encompass the observed wind speed and wind direction more than the PBLH. 

Figure 6 shows the rank histograms of the 45-member ensemble for each of the meteorological variables that we use to calibrate 

the ensemble (i.e., wind speed, wind direction and PBLH). In these rank histograms we include all 14 rawinsonde sites. All 

the rank histograms have a U-shape.  U-shaped histograms mean the ensemble is under-dispersive, that is, the model members 5 

are too often all greater than or less than the observed atmospheric values (e.g. DOY 178-181, Fig 5b). Each rank histogram 

has the first rank as the highest frequency, indicating that observations are most frequently below the envelope of the ensemble 

(e.g. DOY 178-180, Fig 5b). The rank histogram score for each of the variables is greater than one, confirming that we do not 

have optimal spread in our ensemble. Table 2 shows that both wind speed and wind direction have a higher rank histogram 

score (i.e., ≥ 6) than the PBLH that has a score of 3.2. The ensemble mean wind speed and PBLH shows a small positive bias 10 

relative to the observations, averaged across the region, whereas wind direction has a very small negative bias.  

Figure 7 shows the spread-skill relationship, another method that we use to examine the representation of errors of the 

ensemble. Wind direction (Figure 7b) shows a higher correlation between the spread and the skill compared to the PBLH 

(Figure 7c) and the wind speed (Figure 7a).  Therefore, the ensemble has a wider spread when the model-data differences are 

larger. The PBLH and wind speed show consistently poorer skill (a large mean absolute error) compared to their spread. This 15 

supports the conclusion that the large ensemble is under-dispersive for these variables. None of these variables shows a 

correlation equal to one; this implies that our ensemble spread does not match exactly the atmospheric transport errors on a 

day-to-day basis. This feature is common among ensemble prediction systems (Wilks et al., 2011) and should not impair the 

ability to identify the optimal reduced-size ensembles.  

3.2 Calibrated ensemble 20 

In this section, we show the results of the calibrated ensembles generated with both SA and GA. Each calibration was 

performed for three different sub-ensemble sizes; the size of the ensembles is determined using the technique explained in 

Section 2.4. To compute the size of the sub-ensemble we use the maximum frequency of the rank histogram, in this case the 

maximum frequency is the left bar (r0) of every rank histogram. This technique yields the result that the calibrated ensemble 

should have about 8 to 10 members depending in the variable to be used. Therefore, for this study we will generate 10, 8 and 25 

5-member ensembles using the two calibration techniques. 

3.2.1 Individual variable calibration 

Table 3 shows that both techniques (i.e., SA and GA) were able to find similar combinations of model configurations (i.e., an 

ensemble that shares more than half of the members) when each meteorological variable was used separately. The 

configurations chosen for each sub-ensemble vary significantly across the different variables, with the exception of the 10-30 

member ensemble calibrated using wind speed and wind direction. The majority of the ensembles include model configuration 

14. This model configuration, as shown in Díaz-Isaac et al. (2018), introduces large errors for both wind speed and wind 
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direction, and is selected to allow for sufficient spread of these variables in the sub-ensembles. The final scores of the calibrated 

ensembles for each variable show that finding a calibrated sub-ensemble that reaches a score of one is not possible for wind 

speed and wind direction. A sub-ensemble with a score less than or equal to one can be found for PBLH. Figure 8 shows the 

rank histograms of the different calibrated ensembles (i.e., 10, 8 and 5-member) for each meteorological variables shown in 

Table 3. The calibrated ensembles of PBLH (Figure 8 c, f, i) are nearly flat for all ensemble sizes, whereas the 10- and 8- 5 

member sub-ensembles keep a slight U-shape for wind speed and wind direction, but are significantly flatter than the original 

ensemble. The ratio between the expected (	𝑟	) and observed frequency of the end members is reduced from 5 (original 

expected frequency of 0.02 with 0.1 frequency observed) to less than 2 (calibrated expected frequency of 0.1 with 0.15 

frequency observed). The smallest rank-histogram score for wind speed and wind direction are obtained with a 5-member 

ensemble (Figure 8 g-h).  The biases for all sub-ensembles (Table 3) are similar to or less than the bias of the large ensemble 10 

(Table 2). 

3.2.2 Multiple variable calibration 

Table 4 shows the sub-ensembles selected by SA. Each of the sub-ensembles have two simulations in common (i.e., 17 and 

33), implying that these models are crucial to build an ensemble that best represents the transport errors for the three variables. 

Figure 9 shows the rank histograms of the sub-ensembles shown in Table 4. These rank histograms show that we were able to 15 

flatten the histogram relative to the 45-member ensemble for all three meteorological variables. Similar to the individual 

variable calibration, the rank histogram for wind speed (Figure 9a, d) and wind direction (Figure 9b, e) still show a U-shape 

which is minimized for the smallest (i.e., 5-member) sub-ensemble (Figure 9g-h). The rank histograms are flatter for the PBLH 

(Figure 9c, f, i) and the histogram score is closer to one (Table 4) compared to wind speed and wind direction. The rank 

histogram scores for all variables are greater than those for one-variable optimization (see Table 4). In addition, all these 20 

calibrated sub-ensembles have biases smaller in magnitude than the 45-member ensemble. Both wind speed and PBLH retain 

an overall positive bias, and wind direction a negative bias. The standard deviations of these three calibrated ensembles are 

larger than those of the large ensemble, consistent with the effort to increase the ensemble spread. 

Using SA and GA techniques and the selection criteria detailed in Section 2.7 (i.e. low mean error of the entire ensemble), we 

defined an optimal 5-member sub-ensemble (the optimal solution using both techniques) and nearly identical combinations of 25 

members for 10-and 8-member sub-ensembles, with only two model configurations not being shared by both algorithms.  We 

also find that configuration 14 remains important for the multi-variable calibrated ensembles, as it was for the single-variable 

calibrated ensembles.  

3.2.3 Evaluation of the multiple variable calibrated ensemble 

Both optimization techniques were able to generate sub-ensembles that reduce the U-shape of the rank histograms while 30 

significantly decreasing the number of members in the ensemble. A flatter histogram indicates that the ensemble is more 

reliable (unbiased) and has a more appropriate (greater) spread. The correlation between spread and skill for the wind direction 
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increased while wind speed and PBLH remain similar. Therefore, we conclude that the calibrated sub-ensembles are equivalent 

or even better than the full ensemble to represent the daily model errors.  

Figure 10 shows the time series of the different calibrated ensembles generated by the SA algorithm at TOP site. In general 

there are no major differences among 5- (Figure 10a,d,g), 8- (Figure 10,e,h) and 10-member (Figure 10c,f,i) ensembles. Figure 

12 shows how the calibration can increase the spread of the ensemble to the extent of encompassing the observations (e.g., 5 

DOY 179 Figure 10 b-c) compared to the full ensemble (Figure 5b). The ensemble spread was reduced after calibration at a 

few specific points in space and time.  

Insight into the physics parameterizations can be gained by evaluating the calibrated ensembles.  The LSM, PBL, CP, and MP 

scheme, and reanalysis choice varies across all of the sub-ensemble members; no single parameterization is retained for all 

members in any of these categories. However, we also find that the calibrated ensembles rely upon certain physics 10 

parameterizations more than others. Figure 11 shows that most of the simulations in the calibrated ensemble use the RUC and 

Thermal Diffusion (T-D) LSMs in preference to the Noah LSM. In addition, more simulations use the MYJ PBL scheme than 

the other PBL schemes. The physics parameterizations shown with a higher percentage in Figure 11 appear to contribute more 

to the spread of the ensemble than the other parameterizations. 

We next explore the characteristics of the individual ensemble members that are retained in an effort to understand what 15 

member characteristics are important to increase the spread of the ensemble. Figure 12 shows the mean and standard deviation 

of the residuals for each simulation included in the 5-member ensemble of SA and GA. Ensembles appear to need at least one 

member with a larger standard deviation to improve the spread for wind speed and wind directions (see member 23 from Figure 

12a-b).  Additionally, a member that has a large PBLH bias (see member 16 from Figure 12c) appears to be selected, 

highlighting the need for end members among the model configurations in order to reproduce the observed variability in PBLH. 20 

We note here that the model configuration 14 was not selected when calibrating three variables together.  

3.3 Propagation of transport errors into CO2 concentrations 

The calibrated ensembles found in this study were chosen based on the meteorological variables and not on the CO2 mole 

fractions to avoid the propagation of CO2 flux biases into the solution. We can now propagate these errors, represented by the 

ensemble spread, into the CO2 concentration space. This straightforward calculation is possible because every model 25 

simulation uses identical CO2 fluxes. We present here the transport errors in both time and space with the spread in CO2 mole 

fractions, comparing the initial (un-calibrated) 45-member ensemble to the calibrated sub-ensembles. 

3.3.1 CO2 error variances 

Figure 13 shows the spread of daily daytime average CO2 mole fractions across the different sub-ensemble sizes at Mead 

(Figure 13a,d,g,j), West Branch (Figure 13b,e,h,k) and WLEF (Figure 13c,f,i,l). The spread of the DDA CO2 mole fractions 30 

of the large ensemble (Figure 13a-c) does not appear to differ in a systematic fashion from the spread of the calibrated small-

size ensembles (Figure 13 d-l). While the calibration has increased the average ensemble spread, none of the ensembles 

Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-1117
Manuscript under review for journal Atmos. Chem. Phys.
Discussion started: 10 December 2018
c© Author(s) 2018. CC BY 4.0 License.



15 
 

consistently encompasses the observations, either in terms of meteorological variables (Figure 12) or CO2 (Figure 15). The 

CO2 differences between the models and the observations may be caused by CO2 flux or boundary condition errors, the two 

components impacting the modeled CO2 mole fractions in addition to atmospheric transport. The cause of the total difference 

cannot be determined from the CO2 data alone. The increased daily variance in CO2 resulting from the ensemble calibration 

process is shown in Figure 14. The 8-member ensemble often has the maximum CO2 variance. Table 5 shows the spread 5 

(model-ensemble mean) and RMSE (model-data) ratio of the CO2 mole fraction for the full and calibrated 10-member 

ensemble at each in-situ CO2 observation tower.  The ratio of the variances is an estimate of the contribution of the transport 

errors to the CO2 model data mismatch for the summer of 2008. This table shows that the transport errors represent about 20% 

to 40% of the CO2 model-data mismatch. We found that values after calibration show a slight increase compared to the full 

ensemble.  10 

4. Discussion 

4.1 Impact of calibration on ensemble statistics 

The calibration of the multi-physics/multi-analysis ensemble using SA and GA optimization techniques generated 10-, 8- and 

5- member ensembles with a better representation of the error statistics of the transport model than the initial 45-member 

ensemble. One of our goals was to find sub-ensembles that fulfil the criteria of Section 2.7, independent of the selection 15 

algorithm and for multiple meteorological variables. Wind speed and wind direction statistics only improve by a modest 

amount in the calibrated ensembles as compared to the 45-member ensemble, while PBLH statistics, namely the flatness of 

the rank histogram, shows a significant improvement in the calibrated ensembles. The variance in the calibrated ensembles 

increased relative to the 45-member ensemble but the potential for improvement was limited by the spread in the initial 

ensemble. Stochastic perturbations (e.g. Berner et al., 2009) could increase the spread of the initial ensemble, which, combined 20 

with the suite of model configurations, could better represent the model errors. Here, we limited the 45-member ensemble to 

mass-conserved, continuous flow (i.e., unperturbed) members that can be used in a regional inversion. Future work should 

address the problem of using an under-dispersive ensemble before the calibration of the ensemble.  

4.2 Single-variable and multiple-variable ensembles 

We first attempted to calibrate the ensemble for each meteorological variable (i.e., wind speed, wind direction and PBLH). 25 

Table 3 shows that the different sub-ensembles were able to follow the criteria presented on Section 2.7, but the calibration of 

the single-variable ensembles did not allow us to find a unique sub-ensemble that can be used to represent the errors of the 

three variables. Therefore, the joint optimization of the three variables was required to identify an ensemble that best represents 

model errors across the three variables. By minimizing the sum of the squared rank-histogram scores of the three variables, 

the selection algorithm found common solutions at the expense of less satisfactory rank histogram scores than were obtained 30 

for single-variable ensembles (cf. Table 4). We assumed that each variable was equally important to the problem, an 
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assumption that has not been rigorously evaluated. Future work on the relative importance of meteorological variables on CO2 

concentration errors would help weigh the scores in the selection algorithms.  

 

4.3 Resolution and reliability  

The calibrated ensembles show the rank histogram score closer to one (Table 4), that is, flatter rank histograms (Figure 9) 5 

compared to the 45-member ensemble (Table 2 and Figure 7). The sub-ensembles do have a greater variance than the large 

ensemble (i.e., improved reliability) (Figure 14). However, the spread-skill relationship (i.e., resolution) of the calibrated 

ensembles do not show any major improvement compared to the 45-member ensemble, implying that the spread of the 

ensemble does not represent the day-to-day transport errors well. The disagreement between the rank histogram and the spread-

skill relationship suggests that using the score of the rank histogram alone may not be sufficient to measure the reliability of 10 

the ensemble (Hamill, 2001). Down-selection of ensembles has been implemented in other studies (e.g., Garaud and Mallet, 

2011; Lee et al., 2016) but resolution is usually excluded from the calibration process similar to our study (no skill score 

optimization). To represent daily model errors, additional metrics should be introduced and the initial ensemble should offer a 

sufficient spread, possibly with additional physic parameterizations, additional random perturbations, or modifications of the 

error distribution of the ensemble (Roulston and Smith, 2003). 15 

4.4 Error correlations 

Rank histograms, as explained in Section 2.3.1, evaluate the ensemble by ranking individual observations in a relative sense. 

The ensembles calibrated using the rank histograms may be representing the variances over the region correctly but not the 

covariances (Hamill, 2001). In this study, the calibrated ensembles show an improvement in the meteorological variances and 

an increase in the CO2 variances relative to the uncalibrated ensemble, but spatial structures of the errors (i.e., correlations) 20 

may have limited statistical sampling of the model error structures due to the limited number of ensemble members. For 

example, ensemble model prediction systems use at least 50 members to avoid sampling noise.  Figure 15 shows the spatial 

correlation of 300 m DDA CO2 errors with respect to the Round Lake site on DOY 180. We suspect here that reduced-size 

ensembles are impacted by sampling noise which would require additional filtering. Previous studies have suggested objective 

methods to filter the noise in small-size ensembles (i.e., Ménétrier et al., 2015) or modeling the error structures using the 25 

diffusion equation (e.g., Lauvaux et al., 2009). Future work should address the impact of the calibration on the error structures 

as this information is critical in the observation error covariance to assess the inverse fluxes. Concerning the magnitudes of 

the error correlation, the calibrated sub-ensembles exhibit a larger contrast in correlation values compared to the 45-member 

error correlations. Overall, the different ensembles show similar flow-dependent spatial patterns which demonstrates that the 

calibration process, even if generating sampling noise, preserves the dominant spatial patterns in the error structures. Therefore, 30 

the calibrated ensemble is likely to provide a better representation of the variances and a similar spatial error structure for the 

construction of error covariance matrices in regional inversions. 
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 5 Conclusion 

We applied a calibration (or down-selection) process to a multi-physics/multi-analysis ensemble of 45 members. In this 

calibration process, two optimization techniques were used to extract a sub-set of members from the initial ensemble to improve 

the representation of transport model errors in CO2 inversion modeling. We used purely meteorological criteria to calibrate the 

ensemble and avoid contaminating the calibration with CO2 flux errors. The calibrated ensembles were optimized using criteria 5 

based on the flatness of the rank histogram. We generated different calibrated ensembles for three meteorological variables; 

PBL wind speed, PBL wind direction and PBLH. With these techniques, we identified sub-ensembles by calibrating the three 

variables jointly. Both techniques show that calibrated small-size ensembles can reduce the score of the rank histogram flatness 

and therefore improve the representation of the model error variances with few members (between 5 and 10 members). 

The calibration techniques improved the spread (flatness of the rank histogram) of the ensembles, and slightly improved the 10 

biases, which were already small in the larger ensemble, but the calibration did not improve daily atmospheric transport errors 

as shown by the spread-skill relationship. We assessed how the calibrated ensemble errors propagate into the CO2 mole 

fractions simulated with identical CO2 fluxes (i.e., independent of the atmospheric conditions). The spread from the calibrated 

ensembles represented from 20% to 40% (Table 5) of the model-data 300 m DDA CO2 mismatches for summer 2008. These 

results suggest that additional errors in CO2 fluxes and/or large-scale boundary conditions represent a large fraction of the 15 

differences between modeled and observed CO2. Error correlations of the calibrated ensembles were compared to the large 

ensemble to identify any impact of the calibration. Compared to the initial error structures, the calibrated ensembles are most 

likely affected by sampling noise across the region which suggest that additional filtering or modeling of the errors would be 

required in order to construct the error covariance matrix for regional CO2 inversion. 

 20 

Code availability. The code is accessible under request by contacting the corresponding author (lzd120@psu.edu). 
 

Data availability. Meteorological data were obtained from the University of Wyoming’s online data archive 

(http://weather.uwyo.edu/upperair/sounding.html) for the 14 rawinsonde stations. Tower Atmospheric CO2 

Concentration data set is available on-line [http://daac.ornl.gov] from Oak Ridge National Laboratory Distributed Active 25 

Archive Center, Oak Ridge, Tennessee, USA. http://dx.doi.org/10.3334/ORNLDAAC/1202. The other two towers (Park Falls-

WLEF and West Branch-WBI) are part of the Earth System Research Laboratory/Global Monitoring Division (ESRL/GMD) 
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under request by contacting the corresponding author (lzd120@psu.edu). 
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 15 
Figure A1. Diagram of the rank histogram process and selection of subensembles based on the rank histogram score.  
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Figure A2. Diagram of Simulated Annealing algorithm process.  
 

 

 5 
Figure A3. Diagram of the Genetic Algorithm. 
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Table 1. Physics schemes used in WRF for the sensitivity analysis. 

Parameter Options 

Land Surface Model  Noah LSM  
Rapid Update Cycle (RUC) LSM  
5-layer Thermal Diffusion 

Planetary Boundary Layer (PBL) 
scheme  

Yonsei University (YSU)  
Mellor-Yamada-Janjic (MYJ)  
Mellor-Yamada-Nakanishi-Niino Level 2.5 (MYNN2.5) 

Surface Layer  MM5 similarity 
Eta Similarity 
MYNN surface layer 

Cumulus  Kain-Fritsch (KF)  
Grell-3Devenyi (G3D)  
No cumulus parameterization 

Microphysics WSM 5-class  
Thompson et al., (2004) 

Shortwave/Longwave  
radiation physics 

Dudhia/Rapid Radiative Transfer Model (RRTM) 

Initial & Boundary Conditions North America Regional Reanalysis (NARR) 
Global Final Analysis (FNL) 

 

Table 2. Rank histogram score (δ), biases and standard deviation (σ) of the 45-member ensemble for wind speed, wind direction and 
PBLH computed across 14 rawindsonde sites using daily 0000 UTC observations for June 18 to July 21 of 2008 in the upper Midwest 
of the U.S. 5 

Variables δ Bias σ 
Wind Speed 6.1 0.7 m/s 3.5 m/s 

Wind Direction 6.2 -0.6 degrees 55.7 degrees 
PBLH 3.2 98.2 m 787.5 m 

 

Table 3. Calibrated ensembles generated by both SA and GA and their rank histograms scores and bias for each variable. 

N Variable Sub-Ensemble δ Bias 
 

10 
 

WSPD [5 13 14 16 17 29 33 35 39 45] 3.8 0.4 m/s 
WDIR [5 13 14 16 17 20 31 33 34 37] 3.4 -0.6 deg. 
PBLH [2 11 14 23 27 31 35 37 43 44] 0.4 58 m 

8 WSPD [11 14 16 31 35 37 39 45] 3.7 0.5 m/s 
WDIR [14 15 17 20 23 33 34 37] 3.9 -1 deg. 
PBLH [12 13 14 23 26 28 37 44] 0.8 75.5 m 

5 WSPD [5 14 29 36 39] 3 0.4 m/s 
WDIR [14 23 33 34 37] 1.9 0.3 deg. 
PBLH [2 5 13 31 44] 0.1 69 m 
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Table 4. Ensemble members, rank histogram scores (δ), bias, and standard deviation (σ) for wind speed, wind direction and PBLH 
for the calibrated sub-ensembles generated with SA.  

N Sub-ensemble 
Wind Speed Wind Direction PBLH 

δ Bias 
m/s 

σ 
m/s 

δ Bias 
Deg. 

σ 
Deg. 

δ Bias 
m 

σ 
m 

10 [14 17 23 26 28 33 34 35 37 45] 5.5 0.6 3.6 4.6 -0.6 58 1.5 79.7 817.4 
8 [5 6 14 17 26 33 34 37] 5.6 0.6 3.6 3.4 -0.7 58.5 1.6 71.8 823.4 
5 [16 17 23 33 35] 5 0.5 3.6 3.4 -0.7 59 0.6 76.2 810.7 

 

Table 5. Spread (model-ensemble mean), RMSE (model-data) and ratio (Spread2/RMSE2) at each of the in-situ CO2 mixing ratio 
towers, for the 45-member ensemble and 10-member ensemble calibrated with SA and GA.   5 

Sites		 45-Member	Ensemble	 SA	10-Member	Ensemble	 GA	10-Member	Ensemble	
Spread	
(ppm)	

RMSE	
(ppm)	

Ratio	
(%)	

Spread	
(ppm)	

RMSE	
(ppm)	

Ratio	
(%)	

Spread	
(ppm)	

RMSE	
(ppm)	

Ratio	
(%)	

Centerville	 4.3	 9.3	 19.1	 4.7	 9.6	 22.7	 4.4	 9.4	 20.4	
Galesville	 5.8	 10.4	 28	 5.5	 9.9	 28.2	 5.4	 9.6	 29.3	
Kewanee	 5.2	 8.5	 35.8	 4.6	 8	 29.1	 4.7	 8.1	 31.2	
Mead	 5.1	 9.4	 23.7	 5	 9.1	 23.3	 4.8	 9	 20.9	

Round	Lake	 4.5	 10.8	 16	 4.6	 10.5	 16.7	 4.6	 10.4	 16.4	
WBI	 5.4	 9.4	 35.6	 5.4	 9.1	 37.5	 5.5	 9.2	 37.7	
LEF	 4.6	 7.5	 37.7	 5.1	 8.1	 40	 5.1	 8.3	 40.1	
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Figure 1: Geographical domain used by WRF-ChemCO2 physics ensemble. The parent domain (d01) has a 30-km resolution, the 
inner domain (d02) has a 10-km resolution.  Contours represent terrain height in meters. The inner domain covers the study region 
and includes the rawinsonde sites (red circles) and the CO2 towers (blue triangles) locations.   

Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-1117
Manuscript under review for journal Atmos. Chem. Phys.
Discussion started: 10 December 2018
c© Author(s) 2018. CC BY 4.0 License.



29 
 

 
Figure 2. Diagram of the process of selection of reduced-sized ensembles explained on section 2.7. In this diagram the sub-ensemble 
we show our two main thresholds after running each algorithm, sub-ensemble score has to be smaller than the full ensemble (δ <  δf) 
and the sub-ensemble bias is smaller than the full-ensemble bias (Bias < Biasf). 

 5 
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Figure 3. Box plot of the rank histogram scores of the different sub-ensembles of 10 (a), 8(b), and 5 (c) members accepted by the SA. 
Each figure shows the rank histograms scores for the different variables PBL wind speed (wspd), PBL wind direction (wdir) and 
PBLH.  The top of the box represents the 25th percentile, the bottom of the box is the 75th percentile, the red line in the middle is the 
median and the green ‘x’ the mean. Outliers beyond the threshold values are plotted using the ‘+’ symbol. 5 

 

 
Figure 4. Taylor diagram comparing the 0000 UTC rawinsonde observations (300 m wind speed (a), 300 m wind direction (b) and 
PBLH (c)) to the 45 model configurations (red circles). 
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Figure 5. Time series of the simulated and observed for 300 m wind speed (a-b), 300 m wind direction (c-d) and PBLH (e-f) at GRB 
(a,c,e) and TOP (b,d,f) sites. The shaded blue area represents the spread (i.e. RMSD) of the full ensemble, the solid line the ensemble 
mean and the red dots the observations at 0000 UTC. 
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Figure 6. Rank histogram of the 45-member ensemble for wind speed (a), wind direction (b) and PBLH (c) using 14 rawinsonde sites 
available over the region. The horizontal dashed line (𝒓) corresponds to the ideal value for a flat rank histogram with respect to the 
number of members. 
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Figure 7. Spread-skill for (a) wind speed, (b) wind direction and (c) PBLH using the 14 rawinsonde sites available over the region. 
Each point represents the model ensemble spread (standard deviation of the model-data difference) and skill (mean absolute error) 
for each observation.  A one-to-one line is plotted in black and a line of best fit is plotted in red. Correlation (r) and slope (b) of the 
line of best fit of the spread-skill relationship are plotted as well. 5 
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Figure 8. Rank histograms of the calibrated ensembles found for wind speed (a, d, g), wind direction (b, e, h) and PBLH (c, f, i) for 
each of the ensemble size. The upper, middle and lower panels correspond to the ensemble with 10, 8, and 5 members, respectively. 
The horizontal dashed line (𝒓) corresponds to the ideal value for a flat rank histogram with respect to the number of members. 

 5 
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Figure 9. Rank histograms of wind speed a, d, g), wind direction (b, e, h) and PBLH (c, f, i) using the calibrated ensembles found 
with SA.  The upper, middle and upper lower panels correspond to the ensemble with 10, 8 and 5 members, respectively. The 
horizontal dashed line (𝒓) corresponds to the ideal value for a flat rank histogram with respect to the number of members. 

 5 
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Figure 10. Time series of simulated and observed 300 m wind speed (a-c), 300 m wind direction (d-f) and PBLH (g-i) using the 5 , 8- 
and 10-member calibrated ensembles (first, second and third column respectively) at the TOP rawinsonde site. The green shaded 
area represents the spread (i.e., Root Mean Square Deviation) of the ensemble, the black line is the mean of the ensemble and the 
red dots are the observations at 0000UTC. 5 
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Figure 11. Frequency with which the physics schemes are used for the SA (a, c, e) and GA (b, d, e) calibrated ensembles of 10 
members (a-b), 8-members (c-d) and 5-members (e). 

 
Figure 12. Residual (model-data mismatch) mean and standard deviation of individual members for wind speed (a), wind direction 5 
(b), PBLH (c) using the SA and GA calibrated sub-ensemble of five members. 
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Figure 13. Ensemble mean and spread (i.e., RMSD) of the daily daytime average (DDA) at approximately 100 m CO2 concentrations 
at Mead (first column a,d,g,j), WBI (middle column b,e,h,k) and WLEF (last column c,f,i,l) towers using SA calibrated ensembles. 
Rows from top to bottom are 45, 10, 8 and 5 member ensembles. The blue area is the spread of the 45-member ensemble, the green 
area is the spread is the spread of the calibrated (10-, 8- and 5-member) ensemble, the black line is the mean of the ensemble and 5 
the red dots are the observations. 
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Figure 14. Sum of the CO2 mixing ratio variance of the large ensemble (45-members) and the different sub-ensembles selected with 
the SA (a) and GA (b) down-selection techniques.  
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Figure 15. Spatial correlation of CO2 for the 45- (a), 10-(b), 8-(c) and 5-member (d) ensembles with respect to the location of the 
Round Lake tower for DOY 180.  This figure uses the calibrated ensembles of 10-, 8-, and 5-members found by the SA technique. 
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