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Abstract. Atmospheric inversions inform about the magnitude and variations of greenhouse gas (GHG) sources
and sinks from global to local scales. Deployment of observing systems such as spaceborne sensors and ground-
based instruments distributed around the globe has started to offer an unprecedented amount of information to
estimate surface exchanges of GHG at finer spatial and temporal scales. However, all inversion methods still rely
on imperfect atmospheric transport models whose error structures directly affect the inverse estimates of GHG
fluxes. The impact of spatial error structures on the retrieved fluxes increase concurrently with the density of the
available measurements. In this study, we diagnose the spatial structures due to transport model errors affecting
modeled in situ carbon dioxide (CO2) mole fractions and total column dry air mole fractions of CO2 (XCO2). We
implement a cost-effective filtering technique recently developed in the meteorological data assimilation commu-
nity to describe spatial error structures using a small-size ensemble. This technique can enable ensemble-based
error analysis for multi-year inversions of sources and sinks. The removal of noisy structures due to sampling er-
rors in our small-size ensembles is evaluated by comparison to larger-size ensembles. A second filtering approach
for error covariances is proposed (Wiener filter), producing similar results over the 1-month simulation period
compared to a Schur filter. Based on a comparison to a reference 25-member calibrated ensemble, we demon-
strate that error variances and spatial error correlation structures are recoverable from small-size ensembles of
about eight (8) to ten (10) members, improving the representation of transport errors in mesoscale inversions
of CO2 fluxes. Moreover, error variances of in situ near-surface and free-tropospheric CO2 mole fractions dif-
fer significantly from total column XCO2 error variances. We conclude that error variances for remote sensing
observations need to be quantified independently of in situ CO2 mole fractions due to the complexity of spatial
error structures at different altitudes. However, we show the potential use of meteorological error structures such
as the mean horizontal wind speed, directly available from Ensemble Prediction Systems, to approximate spatial
error correlations of in situ CO2 mole fractions, with similarities in seasonal variations and characteristic error
length scales.
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1 Introduction

Atmospheric carbon dioxide (CO2) mole fraction has been
increasing steadily since the first industrial revolution, pri-
marily due to fossil fuel emissions and land use change (Ciais
et al., 2015). Recent estimates of sources and sinks at the5

global scale suggest a coincidental reinforcement of natural
sinks balancing the continuously increasing anthropogenic
emissions (Le Quéré et al., 2016; Keenan et al., 2016). There-
fore, the fraction of fossil fuel CO2 remaining in the atmo-
sphere was kept constant at 2ppm per year1, excluding short-10

time anomalies such as El Niño events (Feely et al., 1999;
Kim et al., 2016). In the objective of characterizing the nat-
ural sink mechanisms, atmospheric inversion methods have
provided some evidences of a fertilization effect possibly in-
creasing the effective absorption by plants of the exceeding15

CO2 in the atmosphere (Schimel et al., 2015). But large un-
certainties still affect atmospheric inversions of CO2 fluxes
and limit the interpretation of continental-scale CO2 bud-
gets (Peylin et al., 2013). Therefore, more robustness in these
findings first requires better characterization of the error af-20

fecting inverse estimates (Baker et al., 2007; Stephens et al.,
2007; Díaz-Isaac et al., 2014).

Atmospheric inversions of Greenhouse Gases (GHG) are
now widely used to infer surface fluxes from natural (e.g.
Enting, 2002; Gurney et al., 2002; Lauvaux et al., 2012;25

Peylin et al., 2013) and anthropogenic (e.g. McKain et al.,
2015; Lauvaux et al., 2016) sources at global, regional, and
local scales. However, key information in carbon cycle sci-
ence lies in multi-year time scales, therefore confining the
development of inverse methodologies to cost-effective ap-30

proaches (e.g. Bruhwiler et al., 2005). Based on similar
methodologies than those of meteorology or geophysics, at-
mospheric inversions have used primarily fast approaches to
produce multi-decadal fluxes such as variational approaches
(Baker et al., 2006; Chevallier et al., 2010), avoiding large35

ensemble of simulations based on Monte Carlo formulation
(Evensen, 1994). In parallel, assumptions made in prior flux
errors and transport errors impact the inverse solution in sim-
ilar ways (Engelen et al., 2002). Concerning the prior flux
errors, few studies have proposed to constrain the spatial40

and temporal structures more rigorously (Wu et al., 2013;
Ganesan et al., 2014), some of them based on terrestrial bio-
geochemical models and eddy-covariance flux measurements
to estimate the spatial structures in the prior flux errors of
CO2 (e.g. Chevallier et al., 2006; Hilton et al., 2013). For45

transport errors, correlations remained small at the global
scale, primarily due to sparse atmospheric GHG observa-
tion networks. However, denser tower networks (Andrews
et al., 2014) and recent satellite missions have significantly
increased the sampling density (e.g. the Greenhouse gases50

Observing SATellite (GOSAT; Yokota et al. (2009); Houwel-
ing et al. (2015)) and the Orbital Carbon Observatory (OCO-

1www.esrl.noaa.gov/gmd/ccgg/trends/

2) missions (Crisp et al., 2004)) requiring the characteriza-
tion of their correlated errors in inversion systems.

The increased density in existing tower networks and the 55

availability of fine-scale satellite retrievals raised concerns
about spatial and temporal structures in transport model er-
rors (Rayner and O’Brien, 2001; Lauvaux et al., 2009; Miller
et al., 2015). The proximity of the measurements (e.g. cou-
ple kilometers between OCO-2 retrievals) means that spatial 60

correlations in model errors are significant and can no longer
be ignored (Chevallier, 2007). This issue becomes critical to
greenhouse gas inversion problems when applied to urban
scales (Lauvaux et al., 2016) but remains poorly studied to
date. Recent deployment of path-integrated instruments also 65

increased the complexity of the problem from the ground
when trying to invert for emissions from single facilities such
as a large dairy (Viatte et al., 2017).

Ensemble approaches are useful to describe flow-
dependent errors (e.g. Anderson, 2001; Evensen, 2003) but 70

remain computationally expensive due to the number of
model simulations required to correctly represent model er-
ror statistics (Houtekamer and Mitchell, 1998). In general, a
small number of members leads to incomplete descriptions of
error structures which require the use of localization to avoid 75

spurious correlations due to sampling errors (Houtekamer
and Mitchell, 2001; Raynaud and Pannekoucke, 2013). But
small-size ensembles are efficient computationally and able
to provide information on flow-dependent error structures
compared to prescribed static error structures (Brousseau 80

et al., 2012). With the development of new perturbation
methods, the number of members may decrease significantly
thanks to optimal perturbations combining physics, parame-
ter sensitivity and energy-based perturbations (Jankov et al.,
2017). In any case, small-size ensembles remain affected by 85

sampling noise which has to be removed before extracting
spatial structures, either by modeling (Pannekoucke et al.,
2008; Lauvaux et al., 2009) or by filtering unphysical struc-
tures (Hamill et al., 2001; Houtekamer and Mitchell, 2001).
Here, we apply a newly developed approach based on lo- 90

cal filtering and a localization technique (Ménétrier et al.,
2015a; Ménétrier et al., 2015b). There are only a few ap-
proaches for the optimal localization of covariance matrices
in the field of data assimilation for the geosciences (Lei and
Anderson, 2014; Flowerdew, 2015; De La Chevrotière and 95

Harlim, 2017). To our knowledge, the method is the only one
so far which is both (i) mathematically consistent and (ii) a
priori, i.e. not based on learning on past or present datasets.
Besides, in spite of its sophistication, the filtering approach
is rather straightforward to implement. 100

In this study, we apply the filter of variances and the co-
variance localization developed in Ménétrier et al. (2015a),
and propose an additional solution to using the optimality
condition, both for Gaussian and non-Gaussian error statis-
tics cases. The filter is applied to several calibrated ensem- 105

bles of different sizes to evaluate the impact of our filter on
small (5 members) to larger (25 members) to the full ensem-
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ble (45 members) based on multi-physics simulations (Díaz-
Isaac et al., 2018a). Results are presented for in situ CO2

mole fractions, XCO2 dry air mole fractions, mean horizon-
tal winds, and

. We discuss the results in Section 4.5

2 Methods

2.1 Calibration of WRF-CO2 ensembles

We generate an ensemble using the Weather Research and
Forecasting (WRF) model version 3.5.1 (Skamarock et al.,
2008), including the chemistry module modified in this study10

for CO2 (Lauvaux et al., 2012). The ensemble consists of 45
members that were generated by varying the different physics
parameterization and meteorological data. The land surface
models, surface layers, planetary boundary layer schemes,
cumulus schemes, microphysics schemes, and meteorologi-15

cal data (i.e., initial and boundary conditions) are alternated
in the ensemble (Díaz-Isaac et al., 2018b). All the simula-
tions use the same radiation schemes, both long and short-
wave. All simulations were run using the one-way nesting
method, with two nested domains. The coarse domain uses20

a horizontal grid spacing of 30 km and covers most of the
United States and part of Canada. The inner domain uses a
10 km grid spacing, is centered in Iowa and covers the Mid-
west region of the United States. The vertical resolution of
the model is described with 59 vertical levels, with 40 of25

them within the first 2 km of the atmosphere. This work
focuses on the WRF simulation with the higher resolution,
therefore only the 10-km domain will be analyzed. Simula-
tions were performed from 27 June, 2008 to 21 July 2008,
with a 10-day spin-up for initial conditions. The CO2 fluxes30

for summer 2008 were obtained from NOAA Global Mon-
itoring Division’s CarbonTracker version 2009 (CT2009)
data assimilation system (Peters et al. (2007), with updates
documented at http://carbontracker.noaa.gov). The different
fluxes that CT2009 propagates into the models are fossil fuel35

burning, terrestrial biosphere exchange, and the exchange
with oceans. The CO2 lateral boundary conditions were ob-
tained from CT2009 mole fractions. Only the meteorological
transport fields vary between each model configuration or en-
semble member.40

The ensemble was calibrated over the Midwest U.S.
using the available meteorological observations and
the 10-km model simulation as described in Díaz-
Isaac et al. (2018a). The measurements used included
balloon soundings collected over the Midwest region45

(http://weather.uwyo.edu/upperair/sounding.html) for 14
rawinsonde stations. The ensemble was calibrated for
three different meteorological variables: wind speed, wind
direction and Planetary Boundary Layer Height (PBLH) in
the late afternoon data (i.e., 0000 UTC) from the different50

rawinsondes. Daytime data was used to represent well mixed
conditions, at the selected time when CO2 mole fraction

are assimilated in atmospheric inversions to avoid stable
conditions near the surface. The calibration algorithm is
described in Garaud and Mallet (2011), selecting optimal 55

ensembles of different sizes using Simulated Annealing
and Genetic Algorithm techniques. The metric used in
Díaz-Isaac et al. (2018a) is the flatness of the Rank His-
togram which is a measure of the ensemble dispersion. By
eliminating members with redundant information, smaller 60

ensembles were able to better match the variability in the
observations. We refer to Díaz-Isaac et al. (2018a) for a full
description of the calibration process and the final selection
of optimal ensembles.

Here, we will compare the different ensembles generated 65

in Díaz-Isaac et al. (2018a) from 5 to 8 to 10 members. An
additional ensemble was created for our study with a larger
number of members in order to address the potential lack
of representativeness of model errors with small-size ensem-
bles. Therefore, we generated a 25-member ensemble and 70

applied the same calibration process. This ensemble has not
been documented in Díaz-Isaac et al. (2018a) but is described
here in the Appendix A. We compare the results of the fil-
tering for small sizes to the 25-member calibrated ensemble
instead of the original 45-member ensemble that was not cal- 75

ibrated.

2.2 Variance Filtering and Covariance Localization

Ménétrier et al. (2015a); Ménétrier et al. (2015b) have pro-
posed a new theory for the optimal filtering of sample vari-
ances and covariances. These are defined by the following 80

empirical second-order moment statistics. Assume we have
an ensemble of states xk ∈ Rn for k = 1, . . . ,N of mean
x, from which to infer the statistics. Define the associated
anomalies δxk = xk−x, also called perturbations. Then, the
sample covariance matrix is: 85

B̃ =
1

N − 1

N∑
k=1

δxk
(
δxk
)T
, (1)

which is an unbiased estimator of the true covariance matrix
B?, i.e., E

[
B̃
]

= B? where E is the expectation operator
over the reference distribution from which the xk are sam-
pled. In the following, we denote by B̃ij the entries of this 90

covariance matrix.
Filtering of variances and covariances is made necessary

because of the finite-size of the sample ensembles, which can
generate significant sampling errors. The sampling errors can
be filtered out by applying a linear filter on the variances and 95

covariances. The most general linear filter is of the form

B̂ij =
∑
kl

FijklB̃kl, (2)

where B̂ is the filtered error covariance matrix. Typical ex-
amples are the application of a convolution to the vector of
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variances to smooth them out, or the application of a Schur
product with a non-degenerate, short-range correlation ma-
trix to the sample covariance matrix. The linear filter often
requires parameters, a correlation length typically, that must
be tuned for the filter to be optimal.5

The theory proposed in Ménétrier et al. (2015a) to achieve
optimality of the filter is based on three key ingredients:

1. The first one consists in requiring that the residual sam-
pling error be minimal. Assume that we have an estima-
tor x̃ of some statistics of a reference distribution with10

true statistics x?, obtained from sampling from this dis-
tribution. We regularize x̃ with a linear filter F (a matrix
here) in order to minimize the sampling error: x̂ = Fx̃.
A typical criterion to minimize is

L(F) = E
[
(x?−Fx̃)T(x?−Fx̃)

]
. (3)15

The variation of this criterion with respect to a variation
δF of F is δL(F) =−2Tr

{
δFTE

[
(x?−Fx̃)x̃T

]}
,

which implies, that, at the minimum, we have an opti-
mality condition in the form of an orthogonality of ran-
dom vectors:20

E
[
(x?−Fx̃)x̃T

]
= E

[
(x?− x̂)x̃T

]
= 0. (4)

This is a linear equation in F whose solution is

F? =
{
E
[
x̃x̃T

]}−1E
[
x?x̃T

]
. (5)

If F is a Schur filter, i.e., x̂ = f ◦ x̃, given by the Schur
or Hadamart product (which is a subcase of the above25

problem) – hence F is now a vector f – then the solution
has the form

f? =
E [x? ◦ x̃]

E [x̃ ◦ x̃]
, (6)

where the division of vectors is component-wise. Eqs.
(5,6) can be applied to the filtering of B̃, storing the en-30

triesBij in x. Hence, they provide optimality conditions
for linear filtering of B̃. They are known in the signal
scientific community as Wiener filters. We note that F?,
or f?, still depends on the unknown true statistics x?

2. The second one is to exploit the structure relationships35

that bind the moments of sample estimators of the ref-
erence distribution. For any reference distribution (re-
ferred to as the non-Gaussian case in the following),
the second-order moments of the sample covariances
Bij are functions of the second-order and fourth-order40

moments of the reference distribution. If, in addition,
one assumes this reference distribution to be a Gaus-
sian, then the covariances of the sample covariances B̃ij

are only functions of the second-order moments of the
reference distribution. This will be naturally referred to45

later as the Gaussian case. For instance, in the Gaussian
case, the relation has the well-known form:

E
[(
B?

ij − B̃ij

)2]
=

1

N − 1

(
B?

ijB
?
ij +B?

iiB
?
jj

)
. (7)

3. In spite of the above key ideas, some local spatial aver-
aging will additionally be needed to obtain robust esti- 50

mators for the filters and their correlation lengths. Such
averaging can be justified by ergodic assumptions on the
statistics of the errors.

In the following, we make the difference between the cases
where the true distribution is assumed Gaussian or not, since 55

we saw it has an impact on the structure function such as Eq.
(7), and could yield distinct optimal filtering results.

2.2.1 Gaussian case

It turns out that it is more convenient to filter the variance
and the correlation independently, in particular using a gen- 60

eral linear filter for the variances and a Schur filter for the
correlation (Ménétrier et al., 2015a).

We denote v the vector of variances, i.e., vi ≡Bii. Com-
bining the optimality criterion (4) with the structure relation-
ship (7), without reference to any explicit filter at this stage, 65

the filtered and the sampled variances are related by (see
Eq. (50) of Ménétrier et al., 2015a):

CG
i ≡ E[ṽ2i ]− N + 1

N − 1
E[ṽiv̂i] = 0, (8)

with CG
i = 0 the optimality criterion in Gaussian condi-

tions. If we filter the covariances with a Schur filter, i.e. 70

B̂ = F◦B̃, then one obtains (see Eq. (64) of Ménétrier et al.,
2015a):

FG
ij =

N − 1

(N + 1)(N − 2)

{
(N − 1)− E[ṽiṽj ]

E[B̃2
ij ]

}
. (9)

2.2.2 Non-Gaussian case

In the non-Gaussian case, the structure relationship incorpo- 75

rates a term that depends on the fourth-order moments Ξijkl

of the true error statistics. Using these relationships and the
optimality criterion (4), without reference at this stage to any
particular filter, one obtains (see Eq. (48) of Ménétrier et al.,
2015a): 80

CNG
i ≡E[ṽ2i ]− N(N − 2)(N − 3)

(N − 1)(N2− 3N + 3)
E[ṽiv̂i]

− N2

(N − 1)(N2− 3N + 3)
E[Ξ̃iiii] = 0. (10)

Again, but in the non-Gaussian case, if we regularize the
covariances with a Schur filter, i.e., B̂ = F ◦ B̃, then ones
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obtains the optimal filter (see Eq. (62) of Ménétrier et al.,
2015a):

FNG
ij =

(N − 1)2

N(N − 3)
− N

(N − 2)(N − 3)

E[Ξ̃ijij ]

E[B̃2
ij ]

+
N − 1

N(N − 2)(N − 3)

E[ṽiṽj ]

E[B̃2
ij ]
. (11)

For the localization of the covariances and hence the cor-5

relations, Eqs. (9,11) provide the optimal Schur localization.
For the filtering of the variances, one uses Eqs. (8,10) but
still need to specify a filter, such as a convolution with a
short-range kernel of correlation length l. Then Eqs. (8,10)
are implicit equations for l, which can be solved iteratively10

using, for instance, a fixed point method.
We note that all these formulae still depend on some sta-

tistical expectation, such as E[B̃2
ij ]. To make those formu-

lae practical, we identify these expectations as local, if not
global, spatial averages.15

2.2.3 Wiener filter

There is an alternative to using the optimality condition (4) in
conjunction with the structure relationships of the moments
of B̃. We propose to solely use the optimality condition (4)
and upon choosing the generic form of the filter use the opti-20

mal filters given by Eqs. (5) or (6). We will call them Wiener
filters in the following.

For instance, assuming Schur regularization, we obtain the
Wiener filter:

Lij =
E[B̃ijB

?
ij ]

E[B̃2
ij ]

. (12)25

Using the sample estimator B?
ij = E[B̃ij ], we obtain:

Lij =
E2[B̃ij ]

E[B̃2
ij ]

. (13)

Both Wiener and Schur filters will be applied to sub-
domains defined around instrumented tower locations mea-
suring continuously CO2 mole fractions in the US Upper30

Midwest (Miles et al., 2012). The sub-domains cover an area
of 400x400 km2 around each site (here seven sites across
the domain) which also correspond to the spatial extent of
the local spatial averaging (3rd item in Section 2.2). Due to
computational limitations, we performed additional experi-35

ments with larger sub-domains for our 25-member ensemble,
as show in the Section 3.5.

2.3 Meteorology and CO2 error structures

We want to explore the relationships between the differ-
ent variables especially in situ mole fractions of CO2, total40

column XCO2, and PBLH. We will compare both the er-
ror variances and covariances to identify possible links be-
tween error structures in PBLH and CO2/XCO2 mole frac-
tions. We will explore the spatial correlation lengths for CO2

mole fractions, mean horizontal wind (zonal and latitudinal 45

components), and PBLH to quantify and possible utilize er-
ror structures in meteorological fields to generate CO2 and
XCO2 error structures. Most Ensemble Prediction Systems
(EPS’s) provide spatial error correlations for meteorological
variables which could be used to construct error covariances 50

for CO2 and XCO2. Error covariances of CO2 mole fractions
depend on the CO2 fluxes, but error structures in the atmo-
spheric models should remain independent of the CO2 flux
distribution. Díaz-Isaac et al. (2018a) show that first-order
discrepancies in PBLH seem related to large errors in CO2. 55

Here, we investigate further the links between errors across
different variables. We present the results in Section 3.4 for
the variances and in section 4.3 for the error correlations.

3 Results

3.1 Sampling noise due to ensemble size 60

We computed the sample variances over the domain from
the 5-, 8-, 10- and 25-member ensembles as shown in Fig.
1. The increase in variances and the presence of additional
fine-scale structures are visible in small-size ensembles (5 to
10 members) compared to the 25-member ensemble. Fine- 65

scale structures reflect the sampling noise in the small-size
ensembles, reaching a maximum in the 5-member ensembles
(cf. Fig. 1, panel d). These spurious structures appear with
small-size ensembles and are to be filtered later. The range
of values for error variances increases for small-size ensem- 70

bles, independently of the calibration process. In addition,
the variances in calibrated ensembles with more members are
smaller because the inflation of the variance is a direct con-
sequence of removing members. Hence, the calibration pro-
cess better inflates the deviation of members from the mean 75

for small ensembles. Díaz-Isaac et al. (2018a) have shown
that the calibration process yields smaller-size ensembles to
better represent model errors. Here, the variance from the 25-
member ensemble remains harder to inflate by the calibration
process, also less affected by sampling noise which is likely 80

to be less representative of the actual transport model errors.

3.2 Filtering of sampling noise

We show here the values of the length scales in our filter re-
sulting from the optimality criteria, applying both Gaussian
(cf. Eq. 8) and non-Gaussian (cf. Eq. 10) filters to the raw 85

variances. We implemented the dichotomy algorithm pro-
posed in Ménétrier et al. (2015b) to obtain the optimal length
scale of the filter, dividing (or multiplying) the length scale
by a factor of 2 until convergence. The algorithm solves for
the optimal length scale of the filter by scanning the space of 90
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Figure 1. Variances of CO2 in situ mole fractions (about 100m agl) (in ppm2) using 25 members (upper left panel), 10 members (upper right
panel), 8 members (lower left panel), and 5 members (lower right panel).

solutions iteratively (applying a multiplicative factor at each
time step to minimize the cost function). For all our cases,
we defined the upper bound of the diagnosed length scale at
750 km, to represent about half the size of our simulation
domain (square of 1,600 km wide). This large value means5

that the extent of noisy structures would encompass the en-
tire domain, and therefore would not be recoverable. Here,
the sampling noise is characterized by length scales of sizes
ranging from a few kilometers to several hundred kilometers.
In practice, the algorithm always converges but length scale10

might be larger than the domain size, meaning that all spatial
structures in the variances are considered as noise. This situ-
ation happens for two main reasons: spatial structures in the
noise are similar to spatial gradients in the true variances, or
the noise is larger than the true variances. Hence, the length15

scale falls beyond the limit of our simulation domain. In the
method described by Ménétrier et al. (2015b), the ergodic
assumption is necessary to diagnose robust estimators of the
filter (cf. Section 2.2).

For CO2 mole fractions (cf. Fig. 2), the algorithm for the20

calibrated 25-member ensemble systematically converges to
small length scales (<50 km), indicating that noise struc-
tures are very small in our optimal ensemble. When using
the Gaussian filter, the algorithm systematically converges
below our 750-km threshold for all cases except for 30% of25

the days with the smallest ensemble (5 members). In the non-
Gaussian case, the filter converges to larger length scales be-
yond our threshold with the 5- and 10-member ensembles for

less than 30% of the days. Typically, length scales beyond our
750-km threshold are temporally coherent over periods of 30

several days suggesting weather-related structures possibly
inherited from synoptic-scale systems. These periods might
be caused by high sampling noise compared to the true vari-
ances or by similar scales in spatial structures for both noise
and true variances. Overall, the non-Gaussian filter shows a 35

lower rate of convergence below 750 km compared to the
Gaussian filter for CO2 mole fractions.

For XCO2 column mole fractions (cf. Fig. 3), the optimal
length scales are larger and the non-Gaussian filter converges
beyond our threshold more frequently (about 50% of the days 40

for 8 members or less). Even with the optimal 25-member
ensembles, error structures of about 50 to 200km are filtered
out, significantly larger than for the CO2 mole fractions. We
discuss in Section 4.2 the possible physical reasons behind
these larger length scales, possibly due to large-scale struc- 45

tures in the Free Troposphere or to the complexity in noise
structures as XCO2 data integrate noises from different alti-
tudes. Fig. 4 shows the results of the PBLH’s for which both
filters converges beyond our threshold for half of the days
in the Gaussian case. However, the filter converges more of- 50

ten below our threshold with the non-Gaussian filter applied
to 10-member ensembles. Variance noise for PBLH present
skewed distributions (not shown here) requiring the use of a
non-Gaussian filter. We conclude here that 8- and 10-member
ensembles are the minimum sizes with which sub-threshold 55

convergence can be obtained on most days for most vari-
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Figure 2. Length scale (in km) of the variance filter for in situ CO2

mole fractions at about 100m agl using Gaussian (solid lines) and
non-Gaussian (dash lines) equations from 27 June to 21 July, 2008.

ables. 5-member ensembles will still be studied later on for
covariances, as the localization of covariances does not de-
pend on the filtered variances, but the low rate of convergence
below 750 km might limit the use of the filtered variances.

3.3 Variance filtering and ensemble sizes5

The filtered variances shown in Fig. 5, here with the Gaus-
sian filter, for the different ensemble sizes are in better agree-
ment with the variances of the 25-member ensemble both in
term of spatial patterns and magnitudes among the different
ensembles. The filter successfully removed noisy structures,10

therefore decreasing the dependence on the number of mem-
bers used in each case. Despite length scales beyond our
threshold for 30% of the days with the 5-member ensem-
ble, filtered variances at the monthly time scale show simi-
lar structures than 8- or 10-member ensembles, with nearly15

all of the noisy structures being removed by the filter. Com-
pared to earlier results, the ensemble size does not seem to
fundamentally limit the capacity of the filter to remove the
noise, despite days with convergence beyond 750 km. The
variance magnitude remains slightly larger for 10 members20

or less, with a relative over-estimation of about 15%. Our 5-
member ensemble provided the best match with only 10%
higher than the 25-member filtered variances. The averaging
over a whole month compensates for days with convergence
beyond 750-km, producing reasonable estimates of the opti-25

mal variance even with 5 members. This results suggests that
climatological error variances from small-size ensembles can
be a good first approximation of the true variance when fil-
tered correctly over most days.

3.4 Error variances in CO2, XCO2, and PBLH30

We show in Fig. 6 the spatial distribution of error variances
from the 25-member calibrated ensemble for in situ CO2

mole fractions in the PBL (100m agl), in situ CO2 mole
fractions in the Free Troposphere (about 5km agl), total col-

Figure 3. Length scale (in km) of the variance filter for XCO2 total
column dry air mole fractions using Gaussian (solid lines) and non-
Gaussian (dash lines) equations from 27 June to 21 July, 2008.

Figure 4. Length scale (in km) of the variance filter for Plane-
tary Boundary Layer heights using Gaussian (solid lines) and non-
Gaussian (dash lines) equations from 27 June to 21 July, 2008.

umn of XCO2 dry air mole fractions, and PBLH (in meter 35

agl). The four variables display very distinct spatial patterns.
XCO2 variance spatial patterns (cf. Fig. 6, panel c) exhibit
distinct maximum values located in the eastern and south-
eastern part of the domain, whereas high CO2 variances are
observed in the northeastern part of the domain for free tro- 40

pospheric CO2 (cf. Fig. 6, panel b) or centrally located for
CO2 variances in the PBL (cf. Fig. 6, panel a). Finally, PBLH
variances (cf. Fig. 6, panel d) show no indication of direct
relationship between large errors in the western part of the
domain and the other three CO2 variables. We conclude here 45

that no direct relationship can be utilized to construct CO2

variances based on PBLH. Similarly, maximum variances
among the three CO2 variables are also significantly different
in distribution and magnitudes.

3.5 Covariance Localization: Schur and Wiener filters 50

Error covariances in CO2 mole fractions scale with the mag-
nitude of the surface CO2 fluxes. They are therefore difficult
to interpret. Instead, we present here the error correlations
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Figure 5. Monthly averages of the filtered variances of in situ CO2 mole fractions (about 100m agl) (in ppm2) using 25 members (upper left
panel), 10 members (upper right panel), 8 members (lower left panel), and 5 members (lower right panel).

Figure 6. Filtered variances using the calibrated 25-member ensemble of in situ CO2 mole fractions at 100m agl (in ppm2) (a), in situ CO2

mole fractions at 5km agl (in ppm2) (b) XCO2 total dry air mole fractions (in ppm2) (c), and PBLH (in m2) (d).
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to highlight the spatial structures inherited from the trans-
port models, independent of the magnitude of the underlying
CO2 surface fluxes. We show in Fig. 7 the hourly correlation
structures from the full 45-member ensemble (top row) and
our 25-member calibrated ensemble (lower row) at one of5

the instrumented towers in the US Midwest, i.e. Centerville,
Iowa. We applied both Schur (cf. Fig. 7, middle column) and
Wiener (cf. Fig. 7, right column) filters to compare the impact
of both filters on the raw correlations (cf. Fig. 7, left column).
The Schur filter has less impact on the correlations compared10

to the Wiener filter which attenuates significantly the magni-
tude of the correlations for both ensembles. In Section 2.2,
the local averaging of the optimal length scale assumes that
the sampling noise is spatially homogeneous (third ingre-
dient of the methods). This homogeneity assumption is re-15

quired for the ergodicity assumption to apply, therefore yield-
ing a domain-averaged filtering approach. The sub-domain
used for the covariance filtering (here 400x400 km2) limits
the spatial extent to 200 km around the observation location.
The size of the domain was defined primarily for computa-20

tional efficiency and based on the size of correlation struc-
tures, usually of about 100-200 km in length scale. To evalu-
ate this assumption, we compared the size of the sub-domain
to filter the covariances with a large area of 900x900 km2 for
the 45-member ensemble to a smaller area of 400x400 km2

25

for the 25-member ensemble. Filtered correlations show sim-
ilar results for Schur and slightly larger values for the smaller
sub-domain when applying the Wiener filter. We conclude
here that the spatial local averaging has a minor impact on
the results, and that our 25-member ensemble has similar30

spatial structures to the original 45-member ensemble, with
larger correlations at short distances. We extend this analy-
sis to the monthly time scale by showing monthly averaged
error correlations, super-imposed from different tower loca-
tions on the same map to aggregate the results at multiple35

locations (cf. Fig. 8). When averaged over longer time scales
(cf. Fig. 8), the filtered correlations become isotropic, dis-
tributed around each location. The magnitudes remain larger
with the Schur filter (cf. Fig. 8, middle panel) compared to
the Wiener filter (cf. Fig. 8, right panel) but the differences40

are noticeably smaller. The unfiltered correlations (cf. Fig.
8, left panel) are noticeably larger due to noisy structures).
After filtering, the spatial structures are distributed around
the observation locations following a pseudo-Gaussian pat-
tern. The magnitude of the error correlations, i.e. the length45

scale of the errors, is reduced in both cases compared to the
raw correlations (cf. Fig. 8, left panel). This result confirms
the sub-domain used here (400x400 km2) is sufficient to rep-
resent the error correlation structures around each measure-
ment location and describes fully the error structures.50

We show in Fig. 9 the results for the different ensemble
sizes using the Schur filter. The 10- and 8-member ensembles
show similar magnitude and patterns for the different sites,
but the correlations are smaller than with the original ensem-
ble. In comparison, the Wiener filter (cf. Fig. 10) generates55

consistent patterns with 25-, 10- and 8-member ensembles. In
both cases, the filters decreases significantly the correlations
in the 5-member ensemble, revealing the inability of the fil-
ter to separate the noise from the actual error correlations.
We present the localized correlation length scales for each 60

tower and for each day in Fig. 12 (upper left panel). For both
Center and Mead, length scales are noticeably larger than for
the other towers and decrease rapidly until July 2nd, before
converging back to the same values diagnosed for other mea-
surement sites. The differences across towers suggest local 65

differences in error correlations, even across the same region
for a single day (up to 70 km across our sites). These dif-
ferences correspond to the beginning of summer, when both
weather and ecosystem fluxes vary rapidly especially in agri-
cultural areas. We discuss in Section 4.3 the relationship be- 70

tween meteorological and CO2 variables for both error vari-
ances and error correlations.

4 Discussion

4.1 Minimum size of calibrated ensembles

We discussed in Section 3.3 the dependence of the success 75

of the variance filtering on the ensemble size. From these re-
sults, an ensemble of at least 8 to 10 members seems required
to reach convergence below our 750-km convergence and
hence filter the error variances. However, the spatial repre-
sentation of the averaged filtered variances using a calibrated 80

5-member ensemble (cf. Fig. 5) indicates a reasonable recov-
ery of the error variances at the monthly time scale but not at
the daily time scale. Theoretically, the minimum number of
members for the covariance filtering is four, based on the Eq.
11 with a factor (N−3) in the denominator, which shows that 85

5-member ensembles are close to this limit and are not rec-
ommended in a more general context. The application here
suggests 5-member ensembles are acceptable but 8- to 10-
member ensembles would be a minimum both in practice and
in theory over different seasons and regions. Convergence be- 90

yond our threshold over single days has a limited impact on
the monthly mean filtered variances. We conclude here that
the filter produces satisfactory results to generate first-order
estimates of the CO2 mole fraction errors. To achieve a sys-
tematic daily convergence below threshold, we recommend 95

a larger number of members in the ensemble. One important
point here is the calibration step performed before filtering,
which optimizes the information content in each member rel-
ative to the other members. Therefore, a randomly-generated
ensemble may require additional members in order to repre- 100

sent the actual error variances. We tested the filtering tech-
nique on random ensemble (i.e. uncalibrated) and found that
beyond-threshold convergence is more frequent with 10 or
less members (not shown here).
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Figure 7. Hourly raw (left column) and filtered correlations using Schur (middle column) and Wiener (right column) filtered correlations
of in situ CO2 mole fractions at the Centerville tower (at about 100m agl) on June 26, 2008. The correlations are based on the original
45-member ensemble (top row) with a large subdomain (900x900 km2) and the 25-member ensemble (bottom row) over the reference
subdomain (400x400 km2). The highlighted domain also corresponds to the domain used for the spatial averaging of the correlations in the
optimality conditions.

Figure 8. Raw (left panel) and filtered correlations of CO2 in situ mole fractions at about 100m agl based on 25 members using the Schur
localization (middle panel) and Wiener and Schur filter (right panel).

4.2 Impact of calibration on small-size ensembles

We have explored the impact of the calibration process on the
error variances and covariances by filtering non-calibrated
sub-ensembles of 8 and 10 members (cf. Fig. 11). These ran-
dom ensembles have no member in common with their cal-5

ibrated counter-part, and are composed of simulations using
various physics configuration randomly selected among the
45 original model configurations. The optimal length scale of
the variance filter is systematically lower for non-calibrated
ensembles (cf. Fig. 11, in grey and light blue) compared to10

calibrated ensembles (cf. Fig. 11, in black and royal blue),
suggesting lower levels of noise with larger spatial struc-
tures, similar to larger ensemble sizes (25 members or more).
Because members of the calibrated ensembles were selected
to maximize the information content, calibrated-ensemble15

members differ more from each other than non-calibrated en-

semble members. As shown in Díaz-Isaac et al. (2018a), one
member with higher or lower PBLH statistics (usually the
monthly mean model estimate) is systematically selected in
order to generate calibrated ensembles with enough variance, 20

and therefore capture the spatial and temporal variability in
observed PBLH’s from 14 radiosondes. Calibration might
suggest different combinations of model physics for every
single time period. In future studies, we recommend a com-
bination of several pre-selected model physics with added 25

perturbations to produce a sufficient ensemble spread but not
perform the calibration for every time period. The calibra-
tion procedure might still be applied to existing ensembles
but remain insufficient to sample the full spatial and tem-
poral variability as discussed in Díaz-Isaac et al. (2018a). 30

Some of these members introduce different spatial structures
compared to the original ensemble, increasing the spread sig-
nificantly. However, the small size of our ensembles with a
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Figure 9. Filtered correlations (using Schur product only) of CO2 in situ mole fractions (about 100m agl) (in ppm2) (about 100m agl) (in
ppm2) using 25 members (upper left panel), 10 members (upper right panel), 8 members (lower left panel), and 5 members (lower right
panel).

larger variance may affect the sampling of these structures
and hence our ability to differentiate noise from actual er-
ror structures. The approach proposed by Ménétrier et al.
(2015a) was initially designed for ensembles with indepen-
dently distributed members, which is not the case here. Some5

true correlation structures in the calibrated ensemble may be
considered as noise by the filter. Another approach would
generate an ensemble based on the localized ensemble-based
error covariance matrix. This approach will be developed fur-
ther in future studies but is beyond the scope of this paper.10

4.3 Spatial structures in CO2 and meteorological errors

In Fig. 6, significant differences in filtered error variances
were observed between in situ CO2 mole fractions (at dif-
ferent altitudes), XCO2 mole fractions, and PBLH. There-
fore, we conclude here that transport errors of meteorolog-15

ical variables are not transferable to CO2 and XCO2 error
variances. This finding is in agreement with Miller et al.
(2015) who found no direct relationship between errors in the
meteorology and in situ CO2 mole fractions. However, con-
sidering the covariances, the spatial structures in CO2 mole20

fraction errors inherited from transport model errors exhibit

well-defined patterns (e.g. Fig. 10). By fitting a simple Gaus-
sian function in the form of e−

x
L to the filtered covariance

fields, we diagnosed the characteristic length scale of the
spatial error structures for the different variables, here CO2 25

100m-high mole fractions, the mean horizontal zonal wind
component, and PBLH. Fig. 12 shows the daily length scales
at the seven measurement locations over the simulation pe-
riod (i.e. 27 June to 21 July). The length scales L for the
three variables increase rapidly between 27 June and 4 July 30

from less than 100 km to 150 km or higher. As there is no
long-term spin-up (re-initialization of the perturbations ev-
ery 5 days), the asymptotic behavior is most likely due to the
seasonality of the errors from early to late summer. The sea-
sonal changes in the atmospheric dynamics impact the spa- 35

tial structures in the errors for the three variables. Across
the seven sites, the characteristic length scale of spatial er-
ror structures also vary significantly, in particular for PBLH
with large differences across sites. Both CO2 mole fractions
and the mean zonal wind component reach a maximum value 40

over July, respectively 140 km and 120 km. The compari-
son of the mean length scales (lower right panel in Fig. 12)
highlight the differences between the three variables. Both
the CO2 100m-high mole fractions and the mean horizontal
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Figure 10. Filtered correlations (using Wiener & Schur) of CO2 in situ mole fractions (about 100m agl) (in ppm2) (about 100m agl) (in
ppm2) using 25 members (upper left panel), 10 members (upper right panel), 8 members (lower left panel), and 5 members (lower right
panel).

Figure 11. Length scale (in km) of the Gaussian
variance filter for 10-member random (in grey) and calibrated (in

black) ensembles, and 8-member random (in light blue) and
calibrated (royal blue) ensembles, for in situ CO2 mole fractions at
about 100m agl using Gaussian equations from 27 June to 21 July,

2008.

zonal wind component show similar variations and converge
towards the same values, but differ significantly from 29 June
to July 10. We conclude here that first-order estimates for
CO2 spatial error correlations may be derived from meteoro-
logical error structures, in particular from the mean horizon-5

tal wind speed. But these approximations may be valid only
for specific time periods. As presented in Section 3.4, error

variances in CO2 and XCO2 mole fractions are decoupled
from PBLH errors. Here, we suggest that error correlations
may be derived from wind errors but error variances should 10

still be computed independently.

4.4 Evaluation and modeling of error correlations

This study presents a methodology to filter the noise in er-
ror structures from a small-size ensemble. The evaluation
of the filtered structures would benefit from dense mea- 15

surement campaigns sampling spatial structures across large
domains, such as the Atmospheric Carbon and Transport
(ACT)-America campaigns2. Previous studies have shown
the utility of aircraft measurements to diagnose error correla-
tions (Gerbig et al., 2003) but the separation of spatial struc- 20

tures induced by surface flux errors and atmospheric trans-
port errors remains challenging in order to construct obser-
vation error covariance matrices. The combination of ensem-
ble systems such as Ensemble Kalman Filter (EnKF) systems
and intensive aircraft campaigns will provide additional in- 25

sights to evaluate filtering approaches (e.g. Chen et al., 2019).
To introduce the findings of our study into an atmospheric
inversion system, an additional step would be required in or-
der to construct a regularized error covariance matrix. In this
study, we acknowledge here that we have applied Schur and 30

Wiener filters using the raw filtering matrices (Eqs. 9, 11, and

2https://www-air.larc.nasa.gov/missions/ACT-America/
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Figure 12. Characteristic length scales L of filtered error correlations (from the 25-member ensemble) using an exponential function (e−
x
L )

for CO2 100m-high mole fractions (upper left panel), the mean horizontal zonal wind component (U ; upper right panel), PBLH (lower left
panel), and the mean values for the three variables (lower right panel) for every day of the simulation period (27 June to 21 July).

6), that may not be semi-positive definite, requirement for
getting semi-positive definite regularized covariances. Future
studies should include an additional step by adding a reg-
ularization of the covariances before filtering. For example,
Lauvaux et al. (2009) proposed to model the error structures5

using a diffusion equation able to represent anisotropic struc-
tures, following the methodology described in Pannekoucke
et al. (2008). Here, we presented a local filter able to remove
the noise in the error structures. The diagnosed error struc-
tures can be approximated by different spatial functions of10

varying degree of complexity, further regularized to generate
positive-definite error covariance matrices. This next step is
beyond the scope of this paper but will be conducted in the
future to generate an efficient model of the corresponding er-
ror covariances based on our current results.15

5 Conclusions

We have diagnosed the error variances and the spatial er-
ror structures from our mesoscale transport models at daily
and monthly time scales. Applied to both CO2 mole frac-
tions and meteorological variables, we implemented a cost-20

effective filtering technique currently used in meteorologi-

cal data assimilation systems (Ménétrier et al., 2015b) to de-
scribe spatial error structures using a small-size ensemble.
The approach remains affordable for multi-year inversions
of sources and sinks at continental or regional scales. The re- 25

moval of noisy structures in our small-size ensembles is eval-
uated by comparison to larger-size ensembles, both the orig-
inal 45-member ensemble and our optimal calibrated sub-
ensemble of 25 members. A second filtering approach for
error covariances was successfully applied using the Wiener 30

filter, producing similar results compared to the Schur filter
over the 1-month simulation period. Differences were notice-
able at shorter time scales (i.e. daily). The spatial distribution
of error variances and spatial error structures are recoverable
from small-size ensembles of 8 to 10 members, daily for in 35

situ CO2 mole fractions and monthly for total column XCO2,
providing a more realistic representation of transport errors
in future mesoscale inversions of CO2 fluxes. We noted that
error variances of in situ CO2 mole fractions and total col-
umn XCO2 differ significantly, even when varying the al- 40

titudes or considering PBLH error structures. We conclude
that error variances for remote sensing observations need to
be quantified independently of PBL or free tropospheric mole
fractions.
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We have discussed the potential use of meteorological er-
ror structures such as the mean horizontal wind to approxi-
mate spatial error correlations of in situ CO2 mole fractions.
The seasonal variations in wind, PBLH, and in situ CO2 mole
fractions are highly correlated, while the typical length scales5

in error structures vary from 100km to 150km in the middle
of summer depending on the variable. We conclude here that
meteorological error structures may provide a first-order es-
timation of correlation length scales in CO2 inversions when
no ensemble of CO2 simulations is available.10

6 Code availability

The code is accessible under request by contacting the corre-
sponding author (thomas.lauvaux@lsce.ipsl.fr).

7 Data availability

The model simulation outputs are available un-15

der request by contacting the corresponding author
(thomas.lauvaux@lsce.ipsl.fr).

Appendix A: Calibration of the reference 25-member
ensemble

In this study, we generate a reference ensemble to evaluate20

the sampling noise in the ensembles of smaller sizes. The
original 45-member ensemble, uncalibrated, cannot be used
as a reference as it under-estimates model errors. Yet, the ref-
erence ensemble needs to include enough members to limit
the sampling noise. Based on the same original ensemble of25

45 members as in Díaz-Isaac et al. (2018a), we reduce it to
a calibrated 25-member ensemble using the Simulated An-
nealing (SA) algorithm. The selection of the optimal cali-
brated ensemble is based on three meteorological variables
(i.e., wind speed, wind direction and PBLH) and follows the30

same procedure described in Díaz-Isaac et al. (2018a). The
SA for 25 members uses 40,000 iterations to reach conver-
gence, significantly larger than the 20,000 iterations for 10-,
8- and 5-member ensembles. The same criteria used by Díaz-
Isaac et al. (2018a) was applied to the selection process of the35

calibrated 25-member ensemble, improving the flatness of
the rank histograms (Fig. A1). This selection is based on two
criteria. First, we selected all the 25-member sub-ensembles
with a rank histogram score smaller than six for each indi-
vidual meteorological variable. In a second step, we filtered40

out the 25-member ensembles accepted by the SA algorithm
but corresponding to a bias (i.e. mean model-data mismatch
over 25 days) larger than the bias in the original 45-member
ensemble. These criteria are applied to the three meteorolog-
ical variables. This procedure is described in more details in45

Díaz-Isaac et al. (2018a). The rank histograms in Fig. A1
show a limited under-dispersion of the 25-member ensem-
ble, significantly reduced after calibration from 6.1, 6.2, 3.2

to 5.1, 4.9, and 2.5 for wind speed, wind direction, and PBLH
respectively. 50
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