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Abstract. Atmospheric inversions inform about the magnitude and variations of greenhouse gas (GHG) sources and sinks from

global to local scales. Deployment of observing systems such as spaceborne sensors and ground-based instruments distributed

around the globe has started to offer an unprecedented amount of information to estimate surface exchanges of GHG at finer

spatial and temporal scales. However, all inversion methods still rely on imperfect atmospheric transport models whose error

structures directly affect the inverse estimates of GHG fluxes. The impact of spatial error structures on the retrieved fluxes5

increase concurrently with the density of the available measurements. In this study, we diagnose the spatial structures due to

transport model errors affecting modeled in situ carbon dioxide (CO2) mole fractions and total column dry air mole fractions

of CO2 (XCO2). We implement a cost-effective filtering technique recently developed in the meteorological data assimilation

community to describe spatial error structures using a small-size ensemble. This technique can enable ensemble-based error

analysis for multi-year inversions of sources and sinks. The removal of noisy structures due to sampling errors in our small-size10

ensembles is evaluated by comparison to larger-size ensembles. A second filtering approach for error covariances is proposed

(Wiener filter), producing similar results over the 1-month simulation period compared to a Schur filter. Based on a comparison

to a reference 25-member calibrated ensemble, we demonstrate that error variances and spatial error correlation structures are

recoverable from small-size ensembles of about eight (8) to ten (10) members, improving the representation of transport errors

in mesoscale inversions of CO2 fluxes. Moreover, error variances of in situ near-surface and free-tropospheric CO2 mole15

fractions differ significantly from total column XCO2 error variances. We conclude that error variances for remote sensing

observations need to be quantified independently of in situ CO2 mole fractions due to the complexity of spatial error structures

at different altitudes. However, we show the potential use of meteorological error structures such as the mean horizontal wind

speed, directly available from Ensemble Prediction Systems, to approximate spatial error correlations of in situ CO2 mole

fractions, with similarities in seasonal variations and characteristic error length scales.20
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1 Introduction

Atmospheric carbon dioxide (CO2) mole fraction has been increasing steadily since the first industrial revolution, primarily

due to fossil fuel emissions and land use change (Ciais et al., 2015). Recent estimates of sources and sinks at the global scale

suggest a coincidental reinforcement of natural sinks balancing the continuously increasing anthropogenic emissions (Le Quéré

et al., 2016; Keenan et al., 2016). Therefore, the fraction of fossil fuel CO2 remaining in the atmosphere was kept constant at5

2ppm per year1, excluding short-time anomalies such as El Niño events (Feely et al., 1999; Kim et al., 2016). In the objective

of characterizing the natural sink mechanisms, atmospheric inversion methods have provided some evidences of a fertilization

effect possibly increasing the effective absorption by plants of the exceeding CO2 in the atmosphere (Schimel et al., 2015).

But large uncertainties still affect atmospheric inversions of CO2 fluxes and limit the interpretation of continental-scale CO2

budgets (Peylin et al., 2013). Therefore, more robustness in these findings first requires better characterization of the error10

affecting inverse estimates (Baker et al., 2007; Stephens et al., 2007; Díaz-Isaac et al., 2014).

Atmospheric inversions of Greenhouse Gases (GHG) are now widely used to infer surface fluxes from natural (e.g. Enting,

2002; Gurney et al., 2002; Lauvaux et al., 2012; Peylin et al., 2013) and anthropogenic (e.g. McKain et al., 2015; Lauvaux

et al., 2016) sources at global, regional, and local scales. However, key information in carbon cycle science lies in multi-year

time scales, therefore confining the development of inverse methodologies to cost-effective approaches (e.g. Bruhwiler et al.,15

2005). Based on similar methodologies than those of meteorology or geophysics, atmospheric inversions have used primarily

fast approaches to produce multi-decadal fluxes such as variational approaches (Baker et al., 2006; Chevallier et al., 2010),

avoiding large ensemble of simulations based on Monte Carlo formulation (Evensen, 1994). In parallel, assumptions made in

prior flux errors and transport errors impact the inverse solution in similar ways (Engelen et al., 2002). Concerning the prior flux

errors, few studies have proposed to constrain the spatial and temporal structures more rigorously (Wu et al., 2013; Ganesan20

et al., 2014), some of them based on terrestrial biogeochemical models and eddy-covariance flux measurements to estimate

the spatial structures in the prior flux errors of CO2 (e.g. Chevallier et al., 2006; Hilton et al., 2013). For transport errors,

correlations remained small at the global scale, primarily due to sparse atmospheric GHG observation networks. However,

denser tower networks (Andrews et al., 2014) and recent satellite missions have significantly increased the sampling density

(e.g. the Greenhouse gases Observing SATellite (GOSAT; Yokota et al. (2009); Houweling et al. (2015)) and the Orbital25

Carbon Observatory (OCO-2) missions (Crisp et al., 2004)) requiring the characterization of their correlated errors in inversion

systems.

The increased density in existing tower networks and the availability of fine-scale satellite retrievals raised concerns about

spatial and temporal structures in transport model errors (Rayner and O’Brien, 2001; Lauvaux et al., 2009; Miller et al., 2015).

The proximity of the measurements (e.g. couple kilometers between OCO-2 retrievals) means that spatial correlations in model30

errors are significant and can no longer be ignored (Chevallier, 2007). This issue becomes critical to greenhouse gas inversion

problems when applied to urban scales (Lauvaux et al., 2016) but remains poorly studied to date. Recent deployment of path-

1www.esrl.noaa.gov/gmd/ccgg/trends/
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integrated instruments also increased the complexity of the problem from the ground when trying to invert for emissions from

single facilities such as a large dairy (Viatte et al., 2017).

Ensemble approaches are useful to describe flow-dependent errors (e.g. Anderson, 2001; Evensen, 2003) but remain compu-

tationally expensive due to the number of model simulations required to correctly represent model error statistics (Houtekamer

and Mitchell, 1998). In general, a small number of members leads to incomplete descriptions of error structures which re-5

quire the use of localization to avoid spurious correlations due to sampling errors (Houtekamer and Mitchell, 2001; Raynaud

and Pannekoucke, 2013). But small-size ensembles are efficient computationally and able to provide information on flow-

dependent error structures compared to prescribed static error structures (Brousseau et al., 2012). With the development of new

perturbation methods, the number of members may decrease significantly thanks to optimal perturbations combining physics,

parameter sensitivity and energy-based perturbations (Jankov et al., 2017). In any case, small-size ensembles remain affected10

by sampling noise which has to be removed before extracting spatial structures, either by modeling (Pannekoucke et al., 2008;

Lauvaux et al., 2009) or by filtering unphysical structures (Hamill et al., 2001; Houtekamer and Mitchell, 2001). Here, we ap-

ply a newly developed approach based on local filtering and a localization technique (Ménétrier et al., 2015a; Ménétrier et al.,

2015b). There are only a few approaches for the optimal localization of covariance matrices in the field of data assimilation

for the geosciences (Lei and Anderson, 2014; Flowerdew, 2015; De La Chevrotière and Harlim, 2017). To our knowledge, the15

method is the only one so far which is both (i) mathematically consistent and (ii) a priori, i.e. not based on learning on past or

present datasets. Besides, in spite of its sophistication, the filtering approach is rather straightforward to implement.

In this study, we apply the filter of variances and the covariance localization developed in Ménétrier et al. (2015a), and

propose an additional solution to using the optimality condition, both for Gaussian and non-Gaussian error statistics cases. The

filter is applied to several calibrated ensembles of different sizes to evaluate the impact of our filter on small (5 members) to20

larger (25 members) to the full ensemble (45 members) based on multi-physics simulations (Díaz-Isaac et al., 2018a). Results

are presented for in situ CO2 mole fractions, XCO2 dry air mole fractions, mean horizontal winds, and

. We discuss the results in Section 4.

2 Methods

2.1 Calibration of WRF-CO2 ensembles25

We generate an ensemble using the Weather Research and Forecasting (WRF) model version 3.5.1 (Skamarock et al., 2008),

including the chemistry module modified in this study for CO2 (Lauvaux et al., 2012). The ensemble consists of 45 members

that were generated by varying the different physics parameterization and meteorological data. The land surface models,

surface layers, planetary boundary layer schemes, cumulus schemes, microphysics schemes, and meteorological data (i.e.,

initial and boundary conditions) are alternated in the ensemble (Díaz-Isaac et al., 2018b). All the simulations use the same30

radiation schemes, both long and shortwave. All simulations were run using the one-way nesting method, with two nested

domains. The coarse domain uses a horizontal grid spacing of 30 km and covers most of the United States and part of Canada.

The inner domain uses a 10 km grid spacing, is centered in Iowa and covers the Midwest region of the United States. The
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vertical resolution of the model is described with 59 vertical levels, with 40 of them within the first 2 km of the atmosphere.

This work focuses on the WRF simulation with the higher resolution, therefore only the 10-km domain will be analyzed.

Simulations were performed from 27 June, 2008 to 21 July 2008, with a 10-day spin-up for initial conditions. The CO2

fluxes for summer 2008 were obtained from NOAA Global Monitoring Division’s CarbonTracker version 2009 (CT2009) data

assimilation system (Peters et al. (2007), with updates documented at http://carbontracker.noaa.gov). The different fluxes that5

CT2009 propagates into the models are fossil fuel burning, terrestrial biosphere exchange, and the exchange with oceans. The

CO2 lateral boundary conditions were obtained from CT2009 mole fractions. Only the meteorological transport fields vary

between each model configuration or ensemble member.

The ensemble was calibrated over the Midwest U.S. using the available meteorological observations and the 10-km model

simulation as described in Díaz-Isaac et al. (2018a). The measurements used included balloon soundings collected over the10

Midwest region (http://weather.uwyo.edu/upperair/sounding.html) for 14 rawinsonde stations. The ensemble was calibrated for

three different meteorological variables: wind speed, wind direction and Planetary Boundary Layer Height (PBLH) in the late

afternoon data (i.e., 0000 UTC) from the different rawinsondes. Daytime data was used to represent well mixed conditions,

at the selected time when CO2 mole fraction are assimilated in atmospheric inversions to avoid stable conditions near the

surface. The calibration algorithm is described in Garaud and Mallet (2011), selecting optimal ensembles of different sizes15

using Simulated Annealing and Genetic Algorithm techniques. The metric used in Díaz-Isaac et al. (2018a) is the flatness of

the Rank Histogram which is a measure of the ensemble dispersion. By eliminating members with redundant information,

smaller ensembles were able to better match the variability in the observations. We refer to Díaz-Isaac et al. (2018a) for a full

description of the calibration process and the final selection of optimal ensembles.

Here, we will compare the different ensembles generated in Díaz-Isaac et al. (2018a) from 5 to 8 to 10 members. An20

additional ensemble was created for our study with a larger number of members in order to address the potential lack of

representativeness of model errors with small-size ensembles. Therefore, we generated a 25-member ensemble and applied

the same calibration process. This ensemble has not been documented in Díaz-Isaac et al. (2018a) but is described here in

the Appendix A. We compare the results of the filtering for small sizes to the 25-member calibrated ensemble instead of the

original 45-member ensemble that was not calibrated.25

2.2 Variance Filtering and Covariance Localization

Ménétrier et al. (2015a); Ménétrier et al. (2015b) have proposed a new theory for the optimal filtering of sample variances and

covariances. These are defined by the following empirical second-order moment statistics. Assume we have an ensemble of

states xk ∈ Rn for k = 1, . . . ,N of mean x, from which to infer the statistics. Define the associated anomalies δxk = xk −x,

also called perturbations. Then, the sample covariance matrix is:30

B̃ =
1

N − 1

N∑
k=1

δxk
(
δxk
)T
, (1)
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which is an unbiased estimator of the true covariance matrix B?, i.e., E
[
B̃
]

= B? where E is the expectation operator over the

reference distribution from which the xk are sampled. In the following, we denote by B̃ij the entries of this covariance matrix.

Filtering of variances and covariances is made necessary because of the finite-size of the sample ensembles, which can

generate significant sampling errors. The sampling errors can be filtered out by applying a linear filter on the variances and

covariances. The most general linear filter is of the form5

B̂ij =
∑
kl

FijklB̃kl, (2)

where B̂ is the filtered error covariance matrix. Typical examples are the application of a convolution to the vector of variances

to smooth them out, or the application of a Schur product with a non-degenerate, short-range correlation matrix to the sample

covariance matrix. The linear filter often requires parameters, a correlation length typically, that must be tuned for the filter to

be optimal.10

The theory proposed in Ménétrier et al. (2015a) to achieve optimality of the filter is based on three key ingredients:

1. The first one consists in requiring that the residual sampling error be minimal. Assume that we have an estimator x̃

of some statistics of a reference distribution with true statistics x?, obtained from sampling from this distribution. We

regularize x̃ with a linear filter F (a matrix here) in order to minimize the sampling error: x̂ = Fx̃. A typical criterion to

minimize is15

L(F) = E
[
(x?−Fx̃)T(x?−Fx̃)

]
. (3)

The variation of this criterion with respect to a variation δF of F is δL(F) =−2Tr
{
δFTE

[
(x?−Fx̃)x̃T

]}
, which

implies, that, at the minimum, we have an optimality condition in the form of an orthogonality of random vectors:

E
[
(x?−Fx̃)x̃T

]
= E

[
(x?− x̂)x̃T

]
= 0. (4)

This is a linear equation in F whose solution is20

F? =
{
E
[
x̃x̃T

]}−1E
[
x?x̃T

]
. (5)

If F is a Schur filter, i.e., x̂ = f ◦ x̃, given by the Schur or Hadamart product (which is a subcase of the above problem)

– hence F is now a vector f – then the solution has the form

f? =
E [x? ◦ x̃]

E [x̃ ◦ x̃]
, (6)

where the division of vectors is component-wise. Eqs. (5,6) can be applied to the filtering of B̃, storing the entries Bij in25

x. Hence, they provide optimality conditions for linear filtering of B̃. They are known in the signal scientific community

as Wiener filters. We note that F?, or f?, still depends on the unknown true statistics x?
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2. The second one is to exploit the structure relationships that bind the moments of sample estimators of the reference

distribution. For any reference distribution (referred to as the non-Gaussian case in the following), the second-order

moments of the sample covariances Bij are functions of the second-order and fourth-order moments of the reference

distribution. If, in addition, one assumes this reference distribution to be a Gaussian, then the covariances of the sample

covariances B̃ij are only functions of the second-order moments of the reference distribution. This will be naturally5

referred to later as the Gaussian case. For instance, in the Gaussian case, the relation has the well-known form:

E
[(
B?

ij − B̃ij

)2]
=

1

N − 1

(
B?

ijB
?
ij +B?

iiB
?
jj

)
. (7)

3. In spite of the above key ideas, some local spatial averaging will additionally be needed to obtain robust estimators for

the filters and their correlation lengths. Such averaging can be justified by ergodic assumptions on the statistics of the

errors.10

In the following, we make the difference between the cases where the true distribution is assumed Gaussian or not, since we

saw it has an impact on the structure function such as Eq. (7), and could yield distinct optimal filtering results.

2.2.1 Gaussian case

It turns out that it is more convenient to filter the variance and the correlation independently, in particular using a general linear

filter for the variances and a Schur filter for the correlation (Ménétrier et al., 2015a).15

We denote v the vector of variances, i.e., vi ≡Bii. Combining the optimality criterion (4) with the structure relationship

(7), without reference to any explicit filter at this stage, the filtered and the sampled variances are related by (see Eq. (50) of

Ménétrier et al., 2015a):

CG
i ≡ E[ṽ2i ]− N + 1

N − 1
E[ṽiv̂i] = 0, (8)

with CG
i = 0 the optimality criterion in Gaussian conditions. If we filter the covariances with a Schur filter, i.e. B̂ = F ◦ B̃,20

then one obtains (see Eq. (64) of Ménétrier et al., 2015a):

FG
ij =

N − 1

(N + 1)(N − 2)

{
(N − 1)− E[ṽiṽj ]

E[B̃2
ij ]

}
. (9)

2.2.2 Non-Gaussian case

In the non-Gaussian case, the structure relationship incorporates a term that depends on the fourth-order moments Ξijkl of the

true error statistics. Using these relationships and the optimality criterion (4), without reference at this stage to any particular25

filter, one obtains (see Eq. (48) of Ménétrier et al., 2015a):

CNG
i ≡E[ṽ2i ]− N(N − 2)(N − 3)

(N − 1)(N2− 3N + 3)
E[ṽiv̂i]

− N2

(N − 1)(N2− 3N + 3)
E[Ξ̃iiii] = 0. (10)
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Again, but in the non-Gaussian case, if we regularize the covariances with a Schur filter, i.e., B̂ = F ◦ B̃, then ones obtains

the optimal filter (see Eq. (62) of Ménétrier et al., 2015a):

FNG
ij =

(N − 1)2

N(N − 3)
− N

(N − 2)(N − 3)

E[Ξ̃ijij ]

E[B̃2
ij ]

+
N − 1

N(N − 2)(N − 3)

E[ṽiṽj ]

E[B̃2
ij ]
. (11)

For the localization of the covariances and hence the correlations, Eqs. (9,11) provide the optimal Schur localization. For the5

filtering of the variances, one uses Eqs. (8,10) but still need to specify a filter, such as a convolution with a short-range kernel

of correlation length l. Then Eqs. (8,10) are implicit equations for l, which can be solved iteratively using, for instance, a fixed

point method.

We note that all these formulae still depend on some statistical expectation, such as E[B̃2
ij ]. To make those formulae practical,

we identify these expectations as local, if not global, spatial averages.10

2.2.3 Wiener filter

There is an alternative to using the optimality condition (4) in conjunction with the structure relationships of the moments of

B̃. We propose to solely use the optimality condition (4) and upon choosing the generic form of the filter use the optimal filters

given by Eqs. (5) or (6). We will call them Wiener filters in the following.

For instance, assuming Schur regularization, we obtain the Wiener filter:15

Lij =
E[B̃ijB

?
ij ]

E[B̃2
ij ]

. (12)

Using the sample estimator B?
ij = E[B̃ij ], we obtain:

Lij =
E2[B̃ij ]

E[B̃2
ij ]

. (13)

Both Wiener and Schur filters will be applied to sub-domains defined around instrumented tower locations measuring con-

tinuously CO2 mole fractions in the US Upper Midwest (Miles et al., 2012). The sub-domains cover an area of 400x400 km220

around each site (here seven sites across the domain) which also correspond to the spatial extent of the local spatial averaging

(3rd item in Section 2.2). Due to computational limitations, we performed additional experiments with larger sub-domains for

our 25-member ensemble, as show in the Section 3.5.

2.3 Meteorology and CO2 error structures

We want to explore the relationships between the different variables especially in situ mole fractions of CO2, total column25

XCO2, and PBLH. We will compare both the error variances and covariances to identify possible links between error struc-

tures in PBLH and CO2/XCO2 mole fractions. We will explore the spatial correlation lengths for CO2 mole fractions, mean
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horizontal wind (zonal and latitudinal components), and PBLH to quantify and possible utilize error structures in meteoro-

logical fields to generate CO2 and XCO2 error structures. Most Ensemble Prediction Systems (EPS’s) provide spatial error

correlations for meteorological variables which could be used to construct error covariances for CO2 and XCO2. Error co-

variances of CO2 mole fractions depend on the CO2 fluxes, but error structures in the atmospheric models should remain

independent of the CO2 flux distribution. Díaz-Isaac et al. (2018a) show that first-order discrepancies in PBLH seem related to5

large errors in CO2. Here, we investigate further the links between errors across different variables. We present the results in

Section 3.4 for the variances and in section 4.3 for the error correlations.

3 Results

3.1 Sampling noise due to ensemble size

We computed the sample variances over the domain from the 5-, 8-, 10- and 25-member ensembles as shown in Fig. 1. The10

increase in variances and the presence of additional fine-scale structures are visible in small-size ensembles (5 to 10 members)

compared to the 25-member ensemble. Fine-scale structures reflect the sampling noise in the small-size ensembles, reaching a

maximum in the 5-member ensembles (cf. Fig. 1, panel d). These spurious structures appear with small-size ensembles and are

to be filtered later. The range of values for error variances increases for small-size ensembles, independently of the calibration

process. In addition, the variances in calibrated ensembles with more members are smaller because the inflation of the variance15

is a direct consequence of removing members. Hence, the calibration process better inflates the deviation of members from

the mean for small ensembles. Díaz-Isaac et al. (2018a) have shown that the calibration process yields smaller-size ensembles

to better represent model errors. Here, the variance from the 25-member ensemble remains harder to inflate by the calibration

process, also less affected by sampling noise which is likely to be less representative of the actual transport model errors.

3.2 Filtering of sampling noise: convergence20

We show here the values of the length scales in our filter resulting from the optimality criteria, applying both Gaussian (cf.

Eq. 8) and non-Gaussian (cf. Eq. 10) filters to the raw variances. We implemented the dichotomy algorithm proposed in

Ménétrier et al. (2015b) to obtain the optimal length scale of the filter, dividing (or multiplying) the length scale by a factor

of 2 until convergence. The algorithm solves for the optimal length scale of the filter by scanning the space of solutions

iteratively (applying a multiplicative factor at each time step to minimize the cost function). For all our cases, we defined the25

upper bound of the diagnosed length scale at 750 km, to represent about half the size of our simulation domain (square of

1,600 km wide). This large value means that the extent of noisy structures would encompass the entire domain, and therefore

would not be recoverable. Here, the sampling noise is characterized by length scales of sizes ranging from a few kilometers

to several hundred kilometers. In practice, the algorithm always converges but length scale might be larger than the domain

size, meaning that all spatial structures in the variances are considered as noise. This situation happens for two main reasons:30

spatial structures in the noise are similar to spatial gradients in the true variances, or the noise is larger than the true variances.
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Figure 1. Variances of CO2 in situ mole fractions (about 100m agl) (in ppm2) using 25 members (upper left panel), 10 members (upper right

panel), 8 members (lower left panel), and 5 members (lower right panel).

Hence, the length scale falls beyond the limit of our simulation domain. In the method described by Ménétrier et al. (2015b),

the ergodic assumption is necessary to diagnose robust estimators of the filter (cf. Section 2.2).

For CO2 mole fractions (cf. Fig. 2), the algorithm for the calibrated 25-member ensemble systematically converges to small

length scales (<50 km), indicating that noise structures are very small in our optimal ensemble. When using the Gaussian filter,

the algorithm systematically converges for all cases except for 30% of the days with the smallest ensemble (5 members). In the5

non-Gaussian case, the filter converges to larger length scales beyond our threshold with the 5- and 10-member ensembles for

less than 30% of the days. Typically, length scales beyond our 750-km threshold are temporally coherent over periods of several

days suggesting weather-related structures possibly inherited from synoptic-scale systems. These periods might be caused by

high sampling noise compared to the true variances or by similar scales in spatial structures for both noise and true variances.

Overall, the non-Gaussian filter shows a lower rate of convergence compared to the Gaussian filter for CO2 mole fractions.10

For XCO2 column mole fractions (cf. Fig. 3), the optimal length scales are larger and the non-Gaussian filter converges

beyond our threshold more frequently (about 50% of the days for 8 members or less). Even with the optimal 25-member

ensembles, error structures of about 50 to 200km are filtered out, significantly larger than for the CO2 mole fractions. We

discuss in Section 4.2 the possible physical reasons behind these larger length scales, possibly due to large-scale structures in

the Free Troposphere or to the complexity in noise structures as XCO2 data integrate noises from different altitudes. Fig. 415
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shows the results of the PBLH’s for which both filters converges beyond our threshold for half of the days in the Gaussian case.

However, the filter converges more often below our threshold with the non-Gaussian filter applied to 10-member ensembles.

Variance noise for PBLH present skewed distributions (not shown here) requiring the use of a non-Gaussian filter. We conclude

here that 8- and 10-member ensembles are the minimum sizes with which sub-threshold convergence can be obtained on most

days for most variables. 5-member ensembles will still be studied later on for covariances, as the localization of covariances5

does not depend on the filtered variances, but the low rate of convergence might limit the use of the filtered variances.

3.3 Variance filtering and ensemble sizes

The filtered variances shown in Fig. 5, here with the Gaussian filter, for the different ensemble sizes are in better agreement

with the variances of the 25-member ensemble both in term of spatial patterns and magnitudes among the different ensembles.

The filter successfully removed noisy structures, therefore decreasing the dependence on the number of members used in each10

case. Despite length scales beyond our threshold for 30% of the days with the 5-member ensemble, filtered variances at the

monthly time scale show similar structures than 8- or 10-member ensembles, with nearly all of the noisy structures being

removed by the filter. Compared to earlier results, the ensemble size does not seem to fundamentally limit the capacity of the

filter to remove the noise, despite the lack of convergence. The variance magnitude remains slightly larger for 10 members or

less, with a relative over-estimation of about 15%. Our 5-member ensemble provided the best match with only 10% higher15

than the 25-member filtered variances. The averaging over a whole month compensates for the lack of convergence, producing

reasonable estimates of the optimal variance even with 5 members. This results suggests that climatological error variances

from small-size ensembles can be a good first approximation of the true variance when filtered correctly over most days.

3.4 Error variances in CO2, XCO2, and PBLH

We show in Fig. 6 the spatial distribution of error variances from the 25-member calibrated ensemble for in situ CO2 mole20

fractions in the PBL (100m agl), in situ CO2 mole fractions in the Free Troposphere (about 5km agl), total column of XCO2

dry air mole fractions, and PBLH (in meter agl). The four variables display very distinct spatial patterns. XCO2 variance

spatial patterns (cf. Fig. 6, panel c) exhibit distinct maximum values located in the eastern and southeastern part of the domain,

whereas high CO2 variances are observed in the northeastern part of the domain for free tropospheric CO2 (cf. Fig. 6, panel

b) or centrally located for CO2 variances in the PBL (cf. Fig. 6, panel a). Finally, PBLH variances (cf. Fig. 6, panel d) show25

no indication of direct relationship between large errors in the western part of the domain and the other three CO2 variables.

We conclude here that no direct relationship can be utilized to construct CO2 variances based on PBLH. Similarly, maximum

variances among the three CO2 variables are also significantly different in distribution and magnitudes.

3.5 Covariance Localization: Schur and Wiener filters

Error covariances in CO2 mole fractions scale with the magnitude of the surface CO2 fluxes. They are therefore difficult to30

interpret. Instead, we present here the error correlations to highlight the spatial structures inherited from the transport models,
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Figure 2. Length scale (in km) of the variance filter for in situ CO2 mole fractions at about 100m agl using Gaussian (solid lines) and

non-Gaussian (dash lines) equations from 27 June to 21 July, 2008.

Figure 3. Length scale (in km) of the variance filter for XCO2 total column dry air mole fractions using Gaussian (solid lines) and non-

Gaussian (dash lines) equations from 27 June to 21 July, 2008.
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Figure 4. Length scale (in km) of the variance filter for Planetary Boundary Layer heights using Gaussian (solid lines) and non-Gaussian

(dash lines) equations from 27 June to 21 July, 2008.

independent of the magnitude of the underlying CO2 surface fluxes. We show in Fig. 7 the hourly correlation structures

from the full 45-member ensemble (top row) and our 25-member calibrated ensemble (lower row) at one of the instrumented

towers in the US Midwest, i.e. Centerville, Iowa. We applied both Schur (cf. Fig. 7, middle column) and Wiener (cf. Fig.

7, right column) filters to compare the impact of both filters on the raw correlations (cf. Fig. 7, left column). The Schur

filter has less impact on the correlations compared to the Wiener filter which attenuates significantly the magnitude of the5

correlations for both ensembles. In Section 2.2, the local averaging of the optimal length scale assumes that the sampling

noise is spatially homogeneous (third ingredient of the methods). This homogeneity assumption is required for the ergodicity

assumption to apply, therefore yielding a domain-averaged filtering approach. The sub-domain used for the covariance filtering

(here 400x400 km2) limits the spatial extent to 200 km around the observation location. The size of the domain was defined

primarily for computational efficiency and based on the size of correlation structures, usually of about 100-200 km in length10

scale. To evaluate this assumption, we compared the size of the sub-domain to filter the covariances with a large area of

900x900 km2 for the 45-member ensemble to a smaller area of 400x400 km2 for the 25-member ensemble. Filtered correlations

show similar results for Schur and slightly larger values for the smaller sub-domain when applying the Wiener filter. We

conclude here that the spatial local averaging has a minor impact on the results, and that our 25-member ensemble has similar

spatial structures to the original 45-member ensemble, with larger correlations at short distances. We extend this analysis to15

the monthly time scale by showing monthly averaged error correlations, super-imposed from different tower locations on the

same map to aggregate the results at multiple locations (cf. Fig. 8). When averaged over longer time scales (cf. Fig. 8), the

12



Figure 5. Monthly averages of the filtered variances of in situ CO2 mole fractions (about 100m agl) (in ppm2) using 25 members (upper left

panel), 10 members (upper right panel), 8 members (lower left panel), and 5 members (lower right panel).

filtered correlations become isotropic, distributed around each location. The magnitudes remain larger with the Schur filter

(cf. Fig. 8, middle panel) compared to the Wiener filter (cf. Fig. 8, right panel) but the differences are noticeably smaller.

The unfiltered correlations (cf. Fig. 8, left panel) are noticeably larger due to noisy structures). After filtering, the spatial

structures are distributed around the observation locations following a pseudo-Gaussian pattern. The magnitude of the error

correlations, i.e. the length scale of the errors, is reduced in both cases compared to the raw correlations (cf. Fig. 8, left panel).5

This result confirms the sub-domain used here (400x400 km2) is sufficient to represent the error correlation structures around

each measurement location and describes fully the error structures.

We show in Fig. 9 the results for the different ensemble sizes using the Schur filter. The 10- and 8-member ensembles

show similar magnitude and patterns for the different sites, but the correlations are smaller than with the original ensemble. In

comparison, the Wiener filter (cf. Fig. 10) generates consistent patterns with 25-, 10- and 8-member ensembles. In both cases,10

the filters decreases significantly the correlations in the 5-member ensemble, revealing the inability of the filter to separate the

noise from the actual error correlations. We present the localized correlation length scales for each tower and for each day in

Fig. 12 (upper left panel). For both Center and Mead, length scales are noticeably larger than for the other towers and decrease

rapidly until July 2nd, before converging back to the same values diagnosed for other measurement sites. The differences

across towers suggest local differences in error correlations, even across the same region for a single day (up to 70 km across15

13



Figure 6. Filtered variances using the calibrated 25-member ensemble of in situ CO2 mole fractions at 100m agl (in ppm2) (a), in situ CO2

mole fractions at 5km agl (in ppm2) (b) XCO2 total dry air mole fractions (in ppm2) (c), and PBLH (in m2) (d).

our sites). These differences correspond to the beginning of summer, when both weather and ecosystem fluxes vary rapidly

especially in agricultural areas. We discuss in Section 4.3 the relationship between meteorological and CO2 variables for both

error variances and error correlations.

4 Discussion

4.1 Minimum size of calibrated ensembles5

We discussed in Section 3.3 the dependence of the success of the variance filtering on the ensemble size. From these results,

an ensemble of at least 8 to 10 members seems required to reach convergence and hence filter the error variances. However,

the spatial representation of the averaged filtered variances using a calibrated 5-member ensemble (cf. Fig. 5) indicates a

reasonable recovery of the error variances at the monthly time scale but not at the daily time scale. Theoretically, the minimum

number of members for the covariance filtering is four, based on the Eq. 11 with a factor (N − 3) in the denominator, which10

shows that 5-member ensembles are close to this limit and are not recommended in a more general context. The application
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Figure 7. Hourly raw (left column) and filtered correlations using Schur (middle column) and Wiener (right column) filtered correlations

of in situ CO2 mole fractions at the Centerville tower (at about 100m agl) on June 26, 2008. The correlations are based on the original

45-member ensemble (top row) with a large subdomain (900x900 km2) and the 25-member ensemble (bottom row) over the reference

subdomain (400x400 km2). The highlighted domain also corresponds to the domain used for the spatial averaging of the correlations in the

optimality conditions.

Figure 8. Raw (left panel) and filtered correlations of CO2 in situ mole fractions at about 100m agl based on 25 members using the Schur

localization (middle panel) and Wiener and Schur filter (right panel).

here suggests 5-member ensembles are acceptable but 8- to 10-member ensembles would be a minimum both in practice and

in theory over different seasons and regions. Convergence beyond our threshold over single days has a limited impact on the

monthly mean filtered variances. We conclude here that the filter produces satisfactory results to generate first-order estimates

of the CO2 mole fraction errors. To achieve a systematic daily convergence below threshold, we recommend a larger number

of members in the ensemble. One important point here is the calibration step performed before filtering, which optimizes the5

information content in each member relative to the other members. Therefore, a randomly-generated ensemble may require

15



Figure 9. Filtered correlations (using Schur product only) of CO2 in situ mole fractions (about 100m agl) (in ppm2) (about 100m agl) (in

ppm2) using 25 members (upper left panel), 10 members (upper right panel), 8 members (lower left panel), and 5 members (lower right

panel).

additional members in order to represent the actual error variances. We tested the filtering technique on random ensemble (i.e.

uncalibrated) and found that beyond-threshold convergence is more frequent with 10 or less members (not shown here).

4.2 Impact of calibration on small-size ensembles

We have explored the impact of the calibration process on the error variances and covariances by filtering non-calibrated sub-

ensembles of 8 and 10 members (cf. Fig. 11). These random ensembles have no member in common with their calibrated5

counter-part, and are composed of simulations using various physics configuration randomly selected among the 45 original

model configurations. The optimal length scale of the variance filter is systematically lower for non-calibrated ensembles (cf.

Fig. 11, in grey and light blue) compared to calibrated ensembles (cf. Fig. 11, in black and royal blue), suggesting lower levels of

noise with larger spatial structures, similar to larger ensemble sizes (25 members or more). Because members of the calibrated

ensembles were selected to maximize the information content, calibrated-ensemble members differ more from each other than10
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Figure 10. Filtered correlations (using Wiener & Schur) of CO2 in situ mole fractions (about 100m agl) (in ppm2) (about 100m agl) (in

ppm2) using 25 members (upper left panel), 10 members (upper right panel), 8 members (lower left panel), and 5 members (lower right

panel).

non-calibrated ensemble members. As shown in Díaz-Isaac et al. (2018a), one member with higher or lower PBLH statistics

(usually the monthly mean model estimate) is systematically selected in order to generate calibrated ensembles with enough

variance, and therefore capture the spatial and temporal variability in observed PBLH’s from 14 radiosondes. Calibration might

suggest different combinations of model physics for every single time period. In future studies, we recommend a combination

of several pre-selected model physics with added perturbations to produce a sufficient ensemble spread but not perform the5

calibration for every time period. The calibration procedure might still be applied to existing ensembles but remain insufficient

to sample the full spatial and temporal variability as discussed in Díaz-Isaac et al. (2018a). Some of these members introduce

different spatial structures compared to the original ensemble, increasing the spread significantly. However, the small size of

our ensembles with a larger variance may affect the sampling of these structures and hence our ability to differentiate noise

from actual error structures. The approach proposed by Ménétrier et al. (2015a) was initially designed for ensembles with10

independently distributed members, which is not the case here. Some true correlation structures in the calibrated ensemble

may be considered as noise by the filter. Another approach would generate an ensemble based on the localized ensemble-based

error covariance matrix. This approach will be developed further in future studies but is beyond the scope of this paper.
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Figure 11. Length scale (in km) of the Gaussian variance filter for 10-member random (in grey) and calibrated (in black) ensembles, and

8-member random (in light blue) and calibrated (royal blue) ensembles, for in situ CO2 mole fractions at about 100m agl using Gaussian

equations from 27 June to 21 July, 2008.

4.3 Spatial structures in CO2 and meteorological errors

In Fig. 6, significant differences in filtered error variances were observed between in situ CO2 mole fractions (at different

altitudes), XCO2 mole fractions, and PBLH. Therefore, we conclude here that transport errors of meteorological variables are

not transferable to CO2 and XCO2 error variances. This finding is in agreement with Miller et al. (2015) who found no direct

relationship between errors in the meteorology and in situ CO2 mole fractions. However, considering the covariances, the5

spatial structures in CO2 mole fraction errors inherited from transport model errors exhibit well-defined patterns (e.g. Fig. 10).

By fitting a simple Gaussian function in the form of e−
x
L to the filtered covariance fields, we diagnosed the characteristic length

scale of the spatial error structures for the different variables, here CO2 100m-high mole fractions, the mean horizontal zonal

wind component, and PBLH. Fig. 12 shows the daily length scales at the seven measurement locations over the simulation

period (i.e. 27 June to 21 July). The length scales L for the three variables increase rapidly between 27 June and 4 July from10

less than 100 km to 150 km or higher. As there is no long-term spin-up (re-initialization of the perturbations every 5 days), the

asymptotic behavior is most likely due to the seasonality of the errors from early to late summer. The seasonal changes in the

atmospheric dynamics impact the spatial structures in the errors for the three variables. Across the seven sites, the characteristic

length scale of spatial error structures also vary significantly, in particular for PBLH with large differences across sites. Both

CO2 mole fractions and the mean zonal wind component reach a maximum value over July, respectively 140 km and 120 km.15

The comparison of the mean length scales (lower right panel in Fig. 12) highlight the differences between the three variables.
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Figure 12. Characteristic length scales L of filtered error correlations (from the 25-member ensemble) using an exponential function (e−
x
L )

for CO2 100m-high mole fractions (upper left panel), the mean horizontal zonal wind component (U ; upper right panel), PBLH (lower left

panel), and the mean values for the three variables (lower right panel) for every day of the simulation period (27 June to 21 July).

Both the CO2 100m-high mole fractions and the mean horizontal zonal wind component show similar variations and converge

towards the same values, but differ significantly from 29 June to July 10. We conclude here that first-order estimates for CO2

spatial error correlations may be derived from meteorological error structures, in particular from the mean horizontal wind

speed. But these approximations may be valid only for specific time periods. As presented in Section 3.4, error variances in

CO2 and XCO2 mole fractions are decoupled from PBLH errors. Here, we suggest that error correlations may be derived from5

wind errors but error variances should still be computed independently.

4.4 Evaluation and modeling of error correlations

This study presents a methodology to filter the noise in error structures from a small-size ensemble. The evaluation of the

filtered structures would benefit from dense measurement campaigns sampling spatial structures across large domains, such

as the Atmospheric Carbon and Transport (ACT)-America campaigns2. Previous studies have shown the utility of aircraft10

2https://www-air.larc.nasa.gov/missions/ACT-America/
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measurements to diagnose error correlations (Gerbig et al., 2003) but the separation of spatial structures induced by surface

flux errors and atmospheric transport errors remains challenging in order to construct observation error covariance matrices.

The combination of ensemble systems such as Ensemble Kalman Filter (EnKF) systems and intensive aircraft campaigns will

provide additional insights to evaluate filtering approaches (e.g. Chen et al., 2019). To introduce the findings of our study into

an atmospheric inversion system, an additional step would be required in order to construct a regularized error covariance5

matrix. In this study, we acknowledge here that we have applied Schur and Wiener filters using the raw filtering matrices (Eqs.

9, 11, and 6), that may not be semi-positive definite, requirement for getting semi-positive definite regularized covariances.

Future studies should include an additional step by adding a regularization of the covariances before filtering. For example,

Lauvaux et al. (2009) proposed to model the error structures using a diffusion equation able to represent anisotropic structures,

following the methodology described in Pannekoucke et al. (2008). Here, we presented a local filter able to remove the noise10

in the error structures. The diagnosed error structures can be approximated by different spatial functions of varying degree of

complexity, further regularized to generate positive-definite error covariance matrices. This next step is beyond the scope of

this paper but will be conducted in the future to generate an efficient model of the corresponding error covariances based on

our current results.

5 Conclusions15

We have diagnosed the error variances and the spatial error structures from our mesoscale transport models at daily and monthly

time scales. Applied to both CO2 mole fractions and meteorological variables, we implemented a cost-effective filtering tech-

nique currently used in meteorological data assimilation systems (Ménétrier et al., 2015b) to describe spatial error structures

using a small-size ensemble. The approach remains affordable for multi-year inversions of sources and sinks at continental

or regional scales. The removal of noisy structures in our small-size ensembles is evaluated by comparison to larger-size en-20

sembles, both the original 45-member ensemble and our optimal calibrated sub-ensemble of 25 members. A second filtering

approach for error covariances was successfully applied using the Wiener filter, producing similar results compared to the

Schur filter over the 1-month simulation period. Differences were noticeable at shorter time scales (i.e. daily). The spatial dis-

tribution of error variances and spatial error structures are recoverable from small-size ensembles of 8 to 10 members, daily for

in situ CO2 mole fractions and monthly for total column XCO2, providing a more realistic representation of transport errors in25

future mesoscale inversions of CO2 fluxes. We noted that error variances of in situ CO2 mole fractions and total column XCO2

differ significantly, even when varying the altitudes or considering PBLH error structures. We conclude that error variances for

remote sensing observations need to be quantified independently of PBL or free tropospheric mole fractions.

We have discussed the potential use of meteorological error structures such as the mean horizontal wind to approximate

spatial error correlations of in situ CO2 mole fractions. The seasonal variations in wind, PBLH, and in situ CO2 mole fractions30

are highly correlated, while the typical length scales in error structures vary from 100km to 150km in the middle of summer

depending on the variable. We conclude here that meteorological error structures may provide a first-order estimation of

correlation length scales in CO2 inversions when no ensemble of CO2 simulations is available.
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6 Code availability

The code is accessible under request by contacting the corresponding author (tul5@psu.edu).

7 Data availability

The model simulation outputs are available under request by contacting the corresponding author (tul5@psu.edu).

Appendix A: Calibration of the reference 25-member ensemble5

In this study, we generate a reference ensemble to evaluate the sampling noise in the ensembles of smaller sizes. The original 45-

member ensemble, uncalibrated, cannot be used as a reference as it under-estimates model errors. Yet, the reference ensemble

needs to include enough members to limit the sampling noise. Based on the same original ensemble of 45 members as in Díaz-

Isaac et al. (2018a), we reduce it to a calibrated 25-member ensemble using the Simulated Annealing (SA) algorithm. The

selection of the optimal calibrated ensemble is based on three meteorological variables (i.e., wind speed, wind direction and10

PBLH) and follows the same procedure described in Díaz-Isaac et al. (2018a). The SA for 25 members uses 40,000 iterations to

reach convergence, significantly larger than the 20,000 iterations for 10-, 8- and 5-member ensembles. The same criteria used

by Díaz-Isaac et al. (2018a) was applied to the selection process of the calibrated 25-member ensemble, improving the flatness

of the rank histograms (Fig. A1). This selection is based on two criteria. First, we selected all the 25-member sub-ensembles

with a rank histogram score smaller than six for each individual meteorological variable. In a second step, we filtered out15

the 25-member ensembles accepted by the SA algorithm but corresponding to a bias (i.e. mean model-data mismatch over 25

days) larger than the bias in the original 45-member ensemble. These criteria are applied to the three meteorological variables.

This procedure is described in more details in Díaz-Isaac et al. (2018a). The rank histograms in Fig. A1 show a limited under-

dispersion of the 25-member ensemble, significantly reduced after calibration from 6.1, 6.2, 3.2 to 5.1, 4.9, and 2.5 for wind

speed, wind direction, and PBLH respectively.20

https://fr.overleaf.com/6695143474xcwvygkygdyf https://fr.overleaf.com/6695143474xcwvygkygdyf
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