
Comments to the Author: 

You have not adequately addressed the comments made by the reviewers. 

To be able to have this manuscript published I would like you to take into consideration the 

following remarks: 

 

To Editor:  

Thanks so much for providing us a chance to revise this manuscript again. We have 

carefully checked this manuscript and revised it fully according to your comments. 

Please feel free to contact us if further revisions are required.   

 

In the Introduction, please make sure that you site all the relevant work that has been devoted 

to looking at trends of PM2.5 over Beijing. In addition, the last 3-4 sentences of the 

introduction should summarize the sections that you develop in the paper. 

R: Thanks so much for this point. We have added more relevant works concerning 

trends of PM2.5 over Beijing. Meanwhile, the introduction section has been revised 

according to your suggestions.  

We have carefully searched relevant publications that looking at trends of PM2.5 

variations from 2013 to 2017, which is a specific period for evaluation. Since the 

completion of this period just passed for one year, not many relevant papers found. In 

the revised manuscript, we included another five papers that mentioned PM2.5 variations 

in Beijing from 2013 to 2017. These papers mainly discussed the spatial-temporal 

variations of PM2.5 variations in Beijing from 2013 to 2017. Several of them employed 

some field-collected PM2.5 sample to analyze the source of PM2.5 component during 

short-term pollution episodes. Therefore, they are not highly correlated with the major 

aim of this research, the meteorological influences on PM2.5 variations from 2013 to 

2017.  
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So we gave a general introduction of these studies concerning the specific trends of PM2.5 

over Beijing during the Clean Air Action period  

 

“The notable decrease of PM2.5 concentrations attracted nationwide attentions and 

growing studies have been conducted to understand spatio-temporal characteristics 

(Shao et al., 2018; Sun et al., 2019; Wang et al., 2019), sources (Chen et al., 2019; Xu et 

al., 2019; Cheng et al., 2019) and health effects (Liang et al., 2019) of PM2.5 variations in 

Beijing from 2013 to 2017. These studies revealed that air quality in Beijing was 

improved significantly in 2017 in terms of annual mean PM2.5 concentrations, polluted 

days and pollution durations. Furthermore, despite different outputs, both source 

apportionment during pollution episodes based on collected samples (Shao et al., 2019; 

Xu et al., 2019; Chen et al., 2019) and long-term model simulation based on regional and 

local emission inventories (Cheng et al., 2019) suggested that local and regional 

anthropogenic emissions (e.g. coal combustion and vehicle emissions) were the major 



influencing factors for long-term and short-term PM2.5
 variations in Beijing.”   

 

We also added some introduction for a recently published paper concerning 

PM2.5-meteorology relationship across China from 2013 to 2018 

“Based on a stepwise multiple linear regression (MLR) model, Zhai et al. (2019) 

quantified the relative contribution of meteorology to PM2.5 variations from 2013 to 

2018 in Beijing-Tianjin-Hebei region, Yangtze River Delta, Pearl River Delta and 

Sichuan Basin and Fenwei plain was 14%, 3%, 19%, 27% and 23% respectively.” 

 

According to your comment, we added a short introduction of the structure of this 

manuscript at the end of the introduction section as follows:  

 

“This manuscript is structured as follows: Firstly, major data sources, including PM2.5 

and meteorological data, and emission inventories, employed for this research are 

briefly introduced. Secondly, the principle and parameter setting of two models, KZ 

filtering and WRF-CMAQ, and model verification are explained. In the result section, 

the relative contribution of meteorological conditions and anthropogenic emissions to 

PM2.5 variations in Beijing from 2013 to 2017 calculated using both models is presented. 

In the discussion and conclusion part, implementations of this research and suggestions 

for further improving air quality in Beijing are given.” 

 

Thanks again for this valuable comments.  

 

Remarks to be addressed concerning reviewer 1: 

 

I propose that you include the following Table with the relevant explanations from your 

answers to comment 3 from Reviewer 1 in the manuscript: 

 

The comparison of The local environmental statistical data used for this research and other 

official statistical data in 2017 (unit: 10k tons)  

SO2 NOx CO VOC NH3 PM10 PM2.5 BC OC  

Statistical data for this research 1.38 10.15 49.54 13.47 3.20 14.74 3.92 0.17 0.44  



National Environmental Statistics Bulletin 1.38 12.16 52.03 24.24 3.26 14.68 3.91 0.22 0.41  

“2+26” center for air pollution prevention and control 0.89 9.24 48.98 13.93 3.16 13.82 3.72 

0.19 0.46  

 

R: Thanks so much for this comment. We have added this table and the following text to 

the revised manuscript.  

“As shown in table 1, it is highly consistent with other official statistical data, such as the 

Annual report from National Environmental Statistics Bulletin 

(http://www.mee.gov.cn/gzfw_13107/hjtj/qghjtjgb/) and “2+26” Center for Air Pollution 

Prevention and Control, and has been formally employed for the implementation of 

recent “2017 Air Pollution Prevention and Management Plan for the 

Beijing-Tianjin-Hebei Region and its Surrounding Areas” (MEP, 2017).” 

 

 

Where in the revised version do you indicate the following results that appears in your answer 

to Comment 4 of reviewer 1? 

“This means the extracted seasonal component and short-term component made a significant 

contribution to seasonal and short-term variations of original PM2.5 concentrations in Beijing 

from 2013 to 2017, indicating a satisfactory KZ filtering result. » 

R: Thanks so much for pointing this out. There are one major approach to verify the 

efficiency of KZ. If the total variations of long-term, seasonal and short-term component 

was close to 1, it suggests that a majority of meteorological influences has been 

considered and effectively removed. Specifically, the variation of seasonal (ranging from 

9%-23.8%) and short-term component (ranging from 66.8%-83.8%) was much larger 

than that of long-term component (ranging from 1.2%-3.5%).  

 

So in the revised manuscript, we included the following text 

 

“The sum of the long-term, seasonal and short-term component contributed to 

more than 93.6~95.3% of the total variance in different stations respectively. The 

larger the total variance, the three components are more independent to each 

other. The total variance close to 100% suggests that a majority of 

http://www.mee.gov.cn/gzfw_13107/hjtj/qghjtjgb/


meteorological influences has been considered and effectively removed. As shown 

in Table 3, the large value of the total variation in all stations indicated a 

satisfactory output from the KZ filtering. 

 

Specifically, the relative contribution of the seasonal component (ranging from 

9%-23.8%) and short-term component (ranging from 66.8%-83.8%) was much 

larger than that of the long-term component (ranging from 1.2%-3.5%), 

suggesting that seasonal and short-term variations of meteorological and 

emission factors exerted a major influence on the rapid change of PM2.5 

concentrations in Beijing.” 

 

In addition to the statistical results, according to the comment 4 from reviewer 1, we 

added a Figure 2 to present the decomposed long-term, seasonal and short-term 

components using KZ filter. According to Figure 2, we can see that the long-term 

component demonstrates a smooth curve whilst the trend of season component and 

short-term component is highly consistent with that of the original PM2.5 time series, 

especially for some simultaneous peaks. Therefore, the seasonal and short-term 

variations of PM2.5 concentrations were effectively extracted as indicative seasonal 

component and short-term component. In the revised manuscript, we employed the 

following text to explain this 

 

“According to Fig 2, the notable peaks of decomposed seasonal and short-term 

component were highly consistent with the peaks of PM2.5 concentrations in the original 

time-series, which further proved the dominant influence of seasonal and short-term 

variations of meteorological and anthropogenic factors on the temporal changes of PM2.5 

concentrations in Beijing.”   

 

You do not answer adequately the comment 5 of reviewer 1.  

“Q5. Section 3.2.2. Model evaluation is the key point in this paper. If the model data is not 

consistent with observation, contribution of emission control is out of the question. It seems 

that lots of data are far from the observation especially during the heavy air pollution days. So 

it is better to convert Fig 2 to time series plots, which can tell us more detailed information 

about the model evaluation.” 



Please draft an adequate answer and modify the manuscript accordingly. 

R: Thanks so much for pointing this out. According to this comment, firstly, we have 

converted this Figure (Fig 3 in revised manuscript) to time series plots and included 

other three urban stations, which presented detailed information about the model 

evaluation.  

As we acknowledged in the revised manuscript 

“According to Fig 3, the general trend of the simulated PM2.5 concentrations was consistent 

with that of the observed PM2.5 concentrations. For six stations, the correlation coefficient R, 

normalized mean bias (NMB), normalized mean error (NME), mean fractional bias (MFB) 

and mean fractional error (MFE) between observed and simulated data was 0.63~0.91, 

-6%~6%, 26%~40%, -5%~7%, and 27%~46% respectively, indicating a satisfactory 

simulation output (EPA，2005; Boylan et al., 2006). However，as shown in Figure 3, 

WRF-CMAQ may notably underestimate PM2.5 concentrations during heavy pollution 

episodes due to unified parameter setting for long-term simulation, the uncertainty in 

emission inventories, and especially insufficient chemical reaction mechanisms, which is a 

common challenge for CTM-based PM2.5 simulation (Li et al., 2011).” 

The general accuracy of model simulation was satisfactory in terms of R, NMB, NME, MFB 

and MFE. Meanwhile, the long-term trend of simulated PM2.5 concentrations was consistent 

with that of observed PM2.5 concentrations. However, as the reviewer pointed out, 

WRF-CAMQ could lead to large variations during heavy pollution episodes, especially for 

long-term simulation with unified parameters (Li et al., 2011). We explained some 

underlying reasons for this common and unsolved challenge, the uncertainty in emission 

inventories, and especially insufficient chemical reaction mechanisms. We gave an example 

of this issue and its potential solution in the revised manuscript. More finer-scale emission 

inventories and better descriptions of reaction mechanisms in WRF-CAMQ can further 

improve simulation accuracy.  

“For instance, without considering heterogeneous/aqueous reactions between multiple 

precursors, CTMs failed to approach the maximum PM2.5 concentrations during severe haze 

episodes and the simulation accuracy was dramatically improved by including proper 

descriptions of heterogeneous/aqueous reactions into CTMs (Chen, D. et al. 2016). With 

more finer-scale emission inventories and better descriptions of reaction mechanisms 

between precursors, the accuracy of PM2.5 simulation can be improved significantly” 

 



 

In your revised manuscript 2 Tables are referenced as Table 3. You should have picked up this 

mistake. 

R: We are very sorry for this mistake. We have checked the manuscript carefully and 

revised this and other typos.  

 

 

In the new Figure 3 you have 6 plots of timeseries and 3 scatterplots. I want a descriptive 

Figure caption for ALL of them. 

In the new Figure 4 you have 6 plots of timeseries and 2 plots with stacked lines. Please write 

a Figure caption for ALL of them. 

R: I think there is some misunderstanding here. It may be attributed to the 

change-track version of the manuscript and deleted figures may appeared as part of the 

new Figures. Actually, in the clean version of the revised manuscript, according to the 

reviewer 1’s comments, for Figure 3, we simply have 6 plots of time series images. As 

follows: 

 



 

Fig 3. The comparison between observed and WRF-CMAQ simulated PM2.5 

concentrations in 2017 in six stations across Beijing 

 

For figure 4, we simply have 6 plots of time series.  As follows: 

 



 

Fig 4. The comparison of original and KZ processed time series of PM2.5 

concentrations in six stations from 2013 to 2017 

 

 

How did you change the text to reflect Question 7 of reviewer 1: 

“L339. How did you get the conclusion “KZ filtering provides a more reliable method”? Just 

because the KZ filtering was station-based and WRF-CMAQ model was  

a grid-based? The averaged relative contribution of meteorological variations to PM2.5 

reduction using the WRF-CMAQ model was very similar to that using KZ filtering. 

Verification is very important » ? 

R: Thanks so much for this. In the revised manuscript, we included the text as follows to 

explain why KZ filter was a more reliable method to quantify the relative contribution 



of meteorological conditions and anthropogenic emissions.  

 

“It is worth mentioning that WRF-CMAQ is a grid-based model and thus the calculated 

contribution of meteorological variations for some stations located in the same grid was 

the same. Instead, station-based KZ filtering led to more reliable analysis for each 

station and can better distinguish the differences between multiple stations. 

Furthermore, WRF-CMAQ simply considered the differences between meteorological 

conditions in 2013 and 2017 without considering their variations during the five-year 

period while the KZ filtering analyzed the entire time series of PM2.5 and meteorological 

data from 2013 to 2017.”  

 

“ Since KZ filtering is fully based on observed data, and simply considers the influence 

of time-series meteorology data on PM2.5 time series, less uncertainty is involved. The 

accuracy of KZ filtering is influenced mainly by the variations of PM2.5-meteorology 

interactions in different areas and seasons. On the other hand, CTMs, e.g. WRF-CMAQ 

or WRF-CAMx consider both meteorological conditions (mainly large-scale 

meteorological data for model simulation, not as accurate as local observed 

meteorological data) and anthropogenic emissions for estimating PM2.5 concentrations 

under different emission scenarios. The accuracy of these models are not only decided 

by proper understanding of PM2.5-meteorology interactions, but also the reliability of 

emission inventories and proper descriptions of reaction mechanisms for PM2.5 

production, especially during heavy pollution episodes, which is a major challenge for 

current model simulation. Consequently, KZ filtering provides a more reliable method 

for researchers and decision makers to understand the relative importance of 

emission-reduction and meteorological conditions in recent PM2.5 reduction in Beijing. 

Meanwhile, similar outputs from WRF-CMAQ simulation provide complementary 

evidence for the fact that anthropogenic emissions exerted a much stronger influence on 

PM2.5 concentrations than meteorological conditions.”  

 

How did you change the text to reflect the comment “Question 8” of Reviewer 1? 

“L398-399. Supplement the correlation coefficient between wind speed and PM2.5. And how 

about the influence of the other meteorological parameters (such as T, RH, wind direction) on 

PM2.5?  



R: Thanks so much for pointing this out. In the revised manuscript, we changed the following 

text to reflect the comment.  

“We examined correlations between seasonal PM2.5 concentrations in Beijing and a 

series of meteorological factors, including temperature, wind speed, wind direction, 

precipitation, relative humidity, solar radiation, evaporation and air pressure. Due to 

limited space, detailed correlations between PM2.5 concentrations and individual 

meteorological factors in Beijing are not presented here and readers can refer to 

previous studies for more information (Chen et al., 2017; 2018). The correlation analysis 

revealed that wind speed, relative humidity, temperature and solar radiation were 

strongly and significantly correlated with PM2.5 concentrations in Beijing (as shown in 

Table 2), which was consistent with findings from other studies (Sun et al., 2013; Wang 

et al., 2018). 

 

Table 2. Major meteorological factors strongly correlated with seasonal PM2.5 

concentrations in Beijing (Chen et al., 2017)  

Spring Summer Autumn Winter 

 

RHU**(0.532) 

RHU**(0.648) 

SSD**(−0.447) 

TEM**(0.554) 

RHU**(0.587) 

SSD**(−0.509) 

WIN**(−0.468) 

RHU**(0.738) 

SSD**(−0.715) 

WIN**(−0.558) 

**Correlation is significant at the 0.01 level (2 tailed); 

RHU: Relative humidity; SSD: Sunshine Duration; TEM: Temperature; WIN: Wind 

speed” 

 

Finally all your co-authors should read and approve of your answers. Is it the case? 

R: Yes, all co-authors read the comments carefully and we discussed together to make 

revisions and write responses. All co-authors approved our answers.  

 

Sincerely, 

 

Yves Balkanski 

 



Non-public comments to the Author: 

I confirm that this is not of adequate quality to be published in ACP. So make a big effort if 

you want it to be published. 

R: Dear Professor Yves Balkanski 

Thanks so much for giving us a chance to resubmit this manuscript. We realized that the 

previous manuscript should be improved significantly by adding more necessary 

technical details, providing better figures, citing more relevant works, better structuring 

and careful wording. Thanks again for all the valuable comments from reviewers and 

you. Please feel free to let us know if further revisions are required. We are more than 

willing to conduct all necessary revisions until this manuscript meet the requirement of 

ACP publications.   
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Abstract 19 

With the completion of the Beijing Five-year Clean Air Action Plan by the end of 20 

2017, the annual mean PM2.5 concentration in Beijing dropped dramatically to 58.0 21 

μg/m3 in 2017 from 89.5 μg/m3 in 2013. However, controversies exist to argue that 22 

favorable meteorological conditions in 2017 were the major driver for such rapid 23 

decrease in PM2.5 concentrations. To comprehensively evaluate this five-year plan, we 24 

employed Kolmogorov-Zurbenko (KZ) filter and WRF-CMAQ to quantify the 25 

relative contribution of meteorological conditions and the control of anthropogenic 26 

emissions to PM2.5 reduction in Beijing from 2013 to 2017. For these five years, the 27 

relative contribution of emission-reduction to the decrease of PM2.5 concentrations 28 

calculated by KZ filtering and WRF-CMAQ was 80.6% and 78.6% respectively. KZ 29 

filtering suggested that short-term variations of meteorological and emission 30 

conditions contributed majorly to rapid changes of PM2.5 concentrations in Beijing. 31 



WRF-CMAQ revealed that the relative contribution of local and regional 32 

emission-reduction to PM2.5 decrease in Beijing was 53.7% and 24.9% respectively. 33 

For local emission-reduction measures, the regulation of coal boilers, increasing use 34 

of clean fuels for residential use and industrial restructuring contributed to 20.1 %, 35 

17.4% and 10.8% of PM2.5 reduction respectively. Both models suggested that the 36 

control of anthropogenic emissions accounted for around 80% of the PM2.5 reduction 37 

in Beijing, indicating that emission-reduction was crucial for air quality enhancement 38 

in Beijing from 2013 to 2017. Consequently, such long-term air quality clean plan 39 

should be continued in the following years to further reduce PM2.5 concentrations in 40 

Beijing.  41 

Keywords: PM2.5, anthropogenic emissions, meteorological conditions, 42 

Kolmogorov-Zurbenko (KZ) filtering, WRF-CMAQ 43 



1 Introduction 44 

In January 2013, persistent haze episodes occurred in Beijing, during which the highest 45 

hourly PM2.5 concentration once reached 886 μ g/m3, a historic high record. 46 

High-concentration PM2.5 led to long-lasting black and thick fogs, which not only 47 

significantly influenced people’s daily life (low-visibility induced traffic jam), but also posed 48 

a severe threat to public health (Brunekreef et al., 2002; Dominici et al., 2014; Nel et al., 49 

2005; Zhang et al., 2012; Qiao et al., 2014). Since then, severe haze episodes have frequently 50 

been observed in Beijing and other regions across China (Chan et al., 2008; Huang, R., et al., 51 

2014; Guo et al.,2014; Zheng et al.,2015), and PM2.5 pollution has become one of the most 52 

concerned environmental issues in China. Consequently, a national network for monitoring 53 

hourly PM2.5 concentrations has been established gradually, including 35 ground observation 54 

stations in Beijing, which provide important support for better understanding and managing 55 

PM2.5 concentrations. To effectively mitigate PM2.5 pollution, Beijing Municipal 56 

Government released “Beijing Five-year Clean Air Action Plan (2013-2017)” with a series of 57 

long-term emission-reduction measures, including shutting down heavily polluting factories, 58 

restricting traffic emissions and replacing coal fuels with clean energies, and “Heavy Air 59 

Pollution Contingency Plan” with a series of contingent emission-reduction measures during 60 

heavy pollution episodes. By the end of 2017, these long-term and contingent 61 

emission-reduction measures worked jointly to reduce the annually mean PM2.5 62 

concentration in Beijing from 89.5 μg/m3 in 2013 to 58.0 μg/m3 in 2017, indicating a great 63 

success of PM2.5 management during the past five years. The notable decrease of PM2.5 64 

concentrations attracted nationwide attentions and growing studies have been conducted to 65 

understand spatio-temporal characteristics (Shao et al., 2018; Sun et al., 2019; Wang et al., 66 

2019), sources (Chen et al., 2019; Xu et al., 2019; Cheng, J. et al., 2019) and health effects 67 

(Liang et al., 2019) of PM2.5 variations in Beijing from 2013 to 2017. These studies revealed 68 

that air quality in Beijing was improved significantly in 2017 in terms of annual mean PM2.5 69 

concentrations, polluted days and pollution durations. Furthermore, despite different outputs, 70 

both source apportionment during pollution episodes based on collected samples (Shao et al., 71 

2019; Xu et al., 2019; Chen et al., 2019) and long-term model simulation based on regional 72 

and local emission inventories (Cheng, J. et al., 2019) suggested that local and regional 73 

anthropogenic emissions (e.g. coal combustion and vehicle emissions) were the major 74 

influencing factors for long-term and short-term PM2.5
 variations in Beijing.   75 
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In addition to anthropogenic emissions, the strong meteorological influences on PM2.5 76 

concentrations in Beijing have been widely acknowledged (Zhao et al., 2013; Wang et al., 77 

2014; UNEP, 2016; Cheng et al., 2017; Chen et al., 2017; Sun et al., 2019Cheng et al., 2017; 78 

Chen et al., 2017, 2018; UNEP, 2016; Wang et al., 2014; Zhao et al., 2013). For instance, for 79 

2014, more than 180 days in Beijing experienced a dramatic daily AQI (Air Quality Index) 80 

change (△AQI>50) (Chen, Z. et al., 2016). Considering that anthropogenic emissions for a 81 

mega city unlikely changed significantly on a daily basis, rapid variations of meteorological 82 

conditions were one major driver for the dramatic change of daily air quality in Beijing. In 83 

winter 2017, strong northwest winds led to favorable meteorological conditions for PM2.5 84 

diffusion and low PM2.5 concentrations in Beijing. This raised the controversy that 85 

meteorological conditions, instead of emission-reduction，accounted for the remarkable 86 

PM2.5 reduction in Beijing from 2013 to 2017. In this case, with the completion of the 87 

five-year plan, it is highly necessary to quantify the relative contribution of meteorological 88 

conditions and emission-reduction to the notable decrease in PM2.5 concentrations in Beijing 89 

from 2013 to 2017.  90 

In recent years, growing studies have been conducted to investigate meteorological and 91 

anthropogenic influences on long-term PM2.5 variations. Based on Goddard Earth Observing 92 

System (GEOS) chemical transport model (GEOS-Chem), Yang et al (2016) revealed that 93 

the relative contribution of meteorological conditions to PM2.5 variations in Eastern China 94 

from 1985 to 2005 was 12%. Based on a multiple general linear model (GLM), Gui et al. 95 

(2019) quantified that meteorological conditions accounted for 48% of PM2.5 variations in 96 

Eastern China from 1998 to 2016. Based on a stepwise multiple linear regression (MLR) 97 

model, Zhai et al. (2019) quantified the relative contribution of meteorology to PM2.5 98 

variations from 2013 to 2018 in Beijing-Tianjin-Hebei region, Yangtze River Delta, Pearl 99 

River Delta and Sichuan Basin and Fenwei plain was 14%, 3%, 19%, 27% and 23% 100 

respectively.  Through a two-stage hierarchical clustering method, Zhang et al. (2018) 101 

calculated that the relative contribution of meteorological conditions to heavy pollution 102 

episodes within the Beijing-Tianjin-Hebei region was larger than 50% from 2013 to 2017. 103 

These studies quantified the overall meteorological influences on long-term PM2.5 variations 104 

using different statistical models and chemical transport models (CTMs). However, due to 105 

strong interactions between individual meteorological factors, traditional statistical methods 106 

such as correlation analysis and linear regression may be biased significantly when 107 



quantifying meteorological influences on PM2.5 concentrations (Chen et al., 2017). On the 108 

other hand, the accuracy of CTMs can be influenced largely by the uncertainty in emission 109 

inventories (Xu et al., 2016) and deficiency of heterogeneous/aqueous processes (Li et al., 110 

2011). Therefore, multiple advanced models should be comprehensively considered to better 111 

quantify meteorological influences on PM2.5 concentrations (Pearce et al., 2011). 112 

To evaluate this five-year clean-air plan, we employ an advanced statistical model, 113 

Kolmogorov-Zurbenko (KZ) filtering, which is advantageous of filtering meteorological 114 

influences on long-term time series of airborne pollutants, and a CTM model, WRF-CMAQ, 115 

which is advantageous of quantifying the relative contribution of different emission sources, 116 

to comprehensively investigate the relative contribution of meteorological conditions and 117 

emission-reduction to PM2.5 reduction in Beijing from 2013 to 2017 respectively. In this light, 118 

this research provides important insight for better designing and implementing successive 119 

clean air plans in the future to further mitigate PM2.5 pollution in Beijing.  120 

This manuscript is structured as follows: Firstly, major data sources, including PM2.5 and 121 

meteorological data, and emission inventories, employed for this research are briefly 122 

introduced. Secondly, the principle and parameter setting of two models, KZ filtering and 123 

WRF-CMAQ, and model verification are explained. In the result section, the relative 124 

contribution of meteorological conditions and anthropogenic emissions to PM2.5 variations in 125 

Beijing from 2013 to 2017 calculated using both models is presented. In the discussion and 126 

conclusion part, implementations of this research and suggestions for further improving air 127 

quality in Beijing are given.  128 

2 Data Sources  129 

2.1 PM2.5 and meteorological data 130 

In this study, hourly PM2.5 concentration data were acquired from the website PM25.in 131 

(www.PM25.in), which collects official data provided by China National Environmental 132 

Monitoring Center (CNEMC). Beijing has established an advanced air quality monitoring 133 

network with 35 ground stations across the city. Considering the major contribution of 134 

industry and traffic-induced emissions in urban areas, we selected all twelve urban stations 135 

to analyze spatio-temporal variations of PM2.5 concentrations and quantify their influencing 136 
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factors. In addition to these urban stations, we selected two background stations, the 137 

DingLing Station located in the suburb and the MiYun Reservoir Station located in the outer 138 

suburb, one transportation station (the Qianmen station) located close to a main road, and 139 

one rural station (the Yufa Station) that is far away from central Beijing for the following 140 

analysis. The DingLing and MiYun Reservoir Station were chosen as background stations by 141 

the Ministry of Environmental Protection of China. These two stations receive limited 142 

influence from anthropogenic emissions due to their location in suburban and outer suburban 143 

areas. The Qianmen transportation station received more influences from vehicle emissions. 144 

Long-term variations of PM2.5 concentrations in different type of stations provide a useful 145 

reference for comprehensively understanding the effects of emission-reduction measures on 146 

PM2.5 decrease in Beijing from 2013 to 2017. Meteorological data for this research were 147 

collected from the Guanxiangtai Station (GXT,54511, 116.46° E, 39.80° N), Beijing and 148 

downloaded from the Department of Atmospheric Science, College of Engineering, 149 

University of Wyoming (http://weather.uwyo.edu/upperair/sounding.html). Both PM2.5 and 150 

meteorological data were collected from January 1st, 2013 to December 31st, 2017. The 151 

locations of these selected stations are shown in Fig 1.  152 

 153 

http://weather.uwyo.edu/upperair/sounding.html


Fig 1. Locations of different ground monitoring stations.  154 

2.2 Emission inventories 155 

For this research, we employed both regional and local emission inventories for running 156 

model simulation. Multi-resolution Emission Inventory for China, MEIC, 157 

(http://meicmodel.org/) provided by Tsinghua University, were employed as the regional 158 

emission inventories. MEIC has been widely employed and verified as a reliable emission 159 

inventory by a diversity of studies (Hong et al., 2017; Saikawa et al., 2017; Zhou et al., 2017; 160 

etc.). For simulating five-year PM2.5 concentrations, MEIC from 2013 to 2017 are required. 161 

Since official MEIC 2017 has not been available yet, we employed a strategy from previous 162 

studies (Chen et al., 2019; etc) and updated MEIC 2016 for simulating emission-reduction 163 

scenarios and PM2.5 concentrations in 2017 by considering official 2017 emission-reduction 164 

plans (e.g. the target of coal combustion reduction) required by the local government. 165 

Different from regional emission inventories, local emission inventories are usually 166 

produced independently by local institutions. The Beijing local-emission inventory 167 

employed for this research was produced and updated by Beijing Municipal Research 168 

Institute of Environmental protection, fully according to the requirement of MEP on the 169 

production of local emission inventories within Beijing-Tianjin-Hebei region. This Beijing 170 

local-emission inventory from 2013 to 2017 was produced by synthesizing local 171 

environmental statistical data and reported emission data, carrying out field investigations 172 

and conducting a series of estimation according to Beijing Five-year Clean Air Action Plan. 173 

As shown in table 1, iIt is highly consistent with other official statistical data, such as the 174 

Annual report from National Environmental Statistics Bulletin 175 

(http://www.mee.gov.cn/gzfw_13107/hjtj/qghjtjgb/) and “2+26” Center for Air Pollution Prevention 176 

and Control, and has been formally employed for the implementation of recent “2017 Air 177 

Pollution Prevention and Management Plan for the Beijing-Tianjin-Hebei Region and its 178 

Surrounding Areas” (MEP, 2017).  179 

  180 
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Table 1. The comparison of local environmental statistical data used for this research 181 

and other official statistical data in 2017 (unit: 10k tons) 182 

  SO2 NOx CO VOC NH3 PM10 PM2.5 BC OC 

Statistical data for this research 1.38  10.15  49.54  13.47  3.20  14.74  3.92  0.17  0.44 

National Environmental 

Statistics Bulletin 
1.38  12.16  52.03  24.24  3.26  14.68  3.91  0.22  0.41 

“2+26” center for air pollution 

prevention and control 
0.89  9.24  48.98  13.93  3.16  13.82  3.72  0.19  0.46 

 183 

3 Methods 184 

A key step for quantifying the relative contribution of anthropogenic emissions to PM2.5 185 

variations is to properly filter meteorological influences on PM2.5 concentrations, which is 186 

highly challenging and rarely investigated by previous studies. Therefore, we employed both 187 

a statistical method and a CTM to comprehensively evaluate the role of anthropogenic 188 

emissions and meteorological conditions in the decrease of PM2.5 concentrations in Beijing 189 

from 2013 to 2017.  190 

3.1 Kolmogorov-Zurbenko (KZ) filtering 191 

Since meteorological conditions exert a strong influence on PM2.5 concentrations in Beijing, 192 

the removal of seasonal signals from time series of meteorological factors produces data sets 193 

suitable for understanding the trend of PM2.5 concentrations mainly influenced by 194 

anthropogenic factors (Eskridge et al., 1997). To better analyze the trend of time series data 195 

without the disturbances from other major influencing variables, a statistical method 196 

Kolmogorov-Zurbenko (KZ) filtering was proposed by Rao et al. (1994). The KZ filter is 197 

advantageous of removing high-frequency variations in data sets through iterative moving 198 

average. Eskridge et al. (1997) compared four major approaches for trend detection, 199 

including PEST, anomalies, wavelet transform, and the KZ filter, and suggested that KZ 200 

achieved higher confidence in detecting long-term trend than other models. Due to its 201 

reliable performance in trend detection in complicated ecosystems, the KZ filter has been 202 
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increasingly employed to remove seasonal signals of meteorological conditions and extract 203 

long-term trend of airborne pollutants (Zurbenko, et al., 1996; Eskridge, et al., 1997; Kang, 204 

et al., 2013; Ma et al., 2016; Cheng, N et al., 2019). One potential limitation of the KZ filter 205 

is that iterative moving average (m) may impose an influence on detecting abrupt variations. 206 

Therefore, Zurbenko et al.（1996）proposed an enhanced KZ filter that employed a dynamic 207 

variable m that decreased with the increase in changing rate. For this research, we employed 208 

this dynamic m to produce an adjusted time-series of PM2.5 concentrations in Beijing by 209 

removing large inter-annual and seasonal variations in meteorological conditions. The 210 

principle of the KZ filter is briefly introduced as follows. 211 

The raw time-series of airborne pollutants can be decomposed as:  212 

         X(t)=E(t)+S(t)+W(t)        (1) 213 

     𝑋𝑏(𝑡) = 𝐸(𝑡) + 𝑆(𝑡)         (2) 214 

           𝐸(𝑡) = 𝐾𝑍365,3(𝑋)          (3) 215 

  S(t) = 𝐾𝑍15,5(𝑋) − 𝐾𝑍365,3(𝑋)   (4) 216 

         𝑊(𝑡) = 𝑋(𝑡) − 𝐾𝑍15,5(𝑋)      (5) 217 

Where X (t) is the original time series of airborne pollutants, E(t) is the long-term trend component, 218 

S(t) is the seasonal component, W(t) is the short-term (synoptic-scale) component or residue. KZi, j(X) 219 

indicates KZ filtering on the original dataset X with a moving wind size of i and j iterations.  220 

Xb (t) stands for the base component, the sum of the long-term and seasonal component, 221 

presenting steady trend variation. E(t) is mainly affected by long-term anthropogenic 222 

emission and climate change. S(t) is mainly influenced by the seasonal variation of emission 223 

and meteorological conditions. W(t) is caused by short-term and small-scale shifts of 224 

emissions and meteorological conditions.  225 

The long-term trend component E(t) processed by KZ filtering still contains the influence of 226 

meteorological conditions, which can be removed by multiple regression models. Multiple 227 

linear relationships are established for the residue and baseline component respectively using 228 

meteorological factors strongly correlated with airborne pollutants. 229 

We examined correlations between seasonal PM2.5 concentrations in Beijing and a series of 230 

meteorological factors, including temperature, wind speed, wind direction, precipitation, 231 



relative humidity, solar radiation, evaporation and air pressure. Due to limited space, detailed 232 

correlations between PM2.5 concentrations and individual meteorological factors in Beijing 233 

are not presented here and readers can refer to previous studies for more information (Chen 234 

et al., 2017; 2018). The correlation analysis revealed that wind speed, relative humidity, 235 

temperature and solar radiation were strongly and significantly correlated with PM2.5 236 

concentrations in Beijing (as shown in Table 2), which was consistent with findings from 237 

other studies (Sun et al., 2013; Wang et al., 2018). 238 

Table 2. Major meteorological factors strongly correlated with seasonal PM2.5 239 

concentrations in Beijing (Chen et al., 2017)  240 

Spring Summer Autumn Winter 

 

RHU**(0.532) 

RHU**(0.648) 

SSD**(−0.447) 

TEM**(0.554) 

RHU**(0.587) 

SSD**(−0.509) 

WIN**(−0.468) 

RHU**(0.738) 

SSD**(−0.715) 

WIN**(−0.558) 

**Correlation is significant at the 0.01 level (2 tailed); 241 

RHU: Relative humidity; SSD: Sunshine Duration; TEM: Temperature; WIN: Wind speed 242 

 Therefore, we further established multiple linear regression equations between PM2.5 243 

concentrations and wind speed, relative humidity, temperature and solar radiation as follows.  244 

     𝑊(𝑡) = 𝛼0 + ∑ 𝛼𝑖 𝑤𝑖 (𝑡) + 𝜀𝑤(𝑡)  (6)                                                                 245 

      𝑋𝑏(𝑡) = 𝑏0 + ∑ 𝑏𝑖 𝑥𝑖(𝑡) + 𝜀𝑏(𝑡)  (7)                                                              246 

           𝜀(𝑡) = 𝜀𝑤(𝑡) + 𝜀𝑏(𝑡)      (8)                247 

Where 𝒘𝒊(𝐭) and  𝒙𝒊(𝐭) stand for the different short-term and baseline component of the ith 248 

meteorological factor. 𝜺𝒘 and 𝜺𝒃  is the regression residue of the short-term and baseline 249 

component. 𝛆(𝐭) indicates the total residue, including the short-term influence of local emission 250 

and meteorological factors neglected during the regression process and other noises.  251 

Next, KZ filtering was conducted on the ε(t) for its long-term component 𝜀𝐸(𝑡). After the 252 

variation of meteorological influences was filtered, the reconstructed time series of airborne 253 

pollutants XLT(t) was calculated as the sum of 𝜀𝐸(𝑡) and the average value of E(t) , 𝐸(𝑡).  254 

  𝑋𝐿𝑇(𝑡) = 𝐸(𝑡)̅̅ ̅̅ ̅̅ + 𝜀𝐸(𝑡)     (9) 255 

After KZ filtering, the relative contribution of meteorological conditions to PM2.5 variations 256 
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can be calculated as follows:  257 

𝑃𝑐𝑜𝑛𝑡𝑟𝑖𝑏 =
𝐾𝑜𝑟𝑔−𝐾

𝐾𝑜𝑟𝑔
× 100%  (10) 258 

Where Pcontrib is the relative contribution of meteorological conditions to PM2.5 variations in Beijing, 259 

Korg is the variation slope of the original PM2.5 time series; K is the variation slope of adjusted PM2.5 260 

time series with filtered influences from meteorological variations.   261 

3.2 WRF-CMAQ model 262 

We employed WRF-CMAQ for simulating the effects of emission-reduction on the decrease 263 

of PM2.5 concentrations. WRF-CMAQ includes three models: The middle-scale meteorology 264 

model (WRF), the source emission model (SMOKE) (http://www.cmascenter.org/smoke/) 265 

and the community multiscale air quality modeling system (CMAQ) 266 

(http://www.cmascenter.org/CMAQ). The center of the CMAQ was set at coordinate 35°N, 267 

110°E and a bi-directional nested technology was employed, producing two layers of grids 268 

with a horizontal resolution of 36 km and 12 km respectively. The first layer of grids with 269 

36km resolution and 200×160 cells covered most areas in East Asia (including China, Japan, 270 

North Korea, South Korea, and other countries). The second layer of grids with 12km 271 

resolution and 120×102 cells covered the North China Plain (including the 272 

Beijing-Tianjin-Hebei region, Shandong and Henan Province). The vertical layer was 273 

divided into 20 unequal layers, eight of which were of a less-than-1km distance to the 274 

ground for better featuring the structure of atmospheric boundary. The height of the ground 275 

layer was 35m.  276 

We employed ARW-WRF3.2 to simulate the meteorological field. The setting of the center 277 

and the bidirectional nest for WRF and CMAQ was similar. There were 35 vertical layers for 278 

WRF and the outer layer provided boundary conditions of the inner layer. The 279 

meteorological background field and boundary information with a FNL resolution of 1°×1° 280 

and temporal resolution of 6h were acquired from NCAR (National Center for Atmospheric 281 

Research, https://ncar.ucar.edu/) and NCEP (National Centers for Environmental Prediction) 282 

respectively. The terrain and underlying surface information was obtained from the USGS 283 

30s global DEM (https://earthquake.usgs.gov/). The outputs from WRF were interpolated to 284 

the region and grid of CMAQ using the Meteorology-Chemistry Interface Processor (MCIP, 285 

https://www.cmascenter.org/mcip). The meteorological factors used for this model included 286 

temperature, air pressure, humidity, geopotential height, zonal wind, meridional wind, 287 
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precipitation, boundary layer heights and so forth. An estimation model for terrestrial 288 

ecosystem MEGAN (http://ab.inf.uni-tuebingen.de/software/megan/) was employed to 289 

process the natural emissions. Multi-resolution Emission Inventory for China, MEIC 290 

0.5°×0.5° emission inventory (http://www.meicmodel.org/) and Beijing emission inventory 291 

(http://www.cee.cn/) provided anthropogenic emission data. We input the processed natural 292 

and anthropogenic emission data into the SMOKE model and acquired comprehensive 293 

emission source files.  294 

Scenario simulation is employed to estimate the contribution of emission-reduction to the 295 

variation of PM2.5 concentrations.  296 

𝑃𝑐𝑜𝑛𝑡𝑟𝑖𝑏 =
𝐶−𝐶𝑏𝑎𝑠𝑒

𝐶
× 100%  (11) 297 

Where contribP , C  and baseC
 
are the contribution rate of emission-reduction to PM2.5 298 

concentrations, simulated PM2.5 concentrations under the emission-reduction scenario, and 299 

simulated PM2.5 concentrations in the baseline scenario respectively.  300 

To evaluate the relative contribution of meteorological conditions and different 301 

emission-reduction measures to the decrease of PM2.5 concentrations, we designed two 302 

baseline experiments and four sensitivity experiments. For the first baseline experiment, we 303 

employed the actual meteorological data in 2013. For the second baseline experiment, we 304 

employed the actual meteorological data in 2017 and emission inventory in 2017. Since no 305 

emission-reduction measures were conducted in 2013, the first baseline experiment was used 306 

to estimate the relative contribution of meteorological conditions to the variation of PM2.5 307 

concentrations. By comparing the first and second baseline experiment, the relative 308 

contribution of all emission-reduction measures to the variation of PM2.5 concentrations can 309 

be quantified. For the first sensitivity experiment, we employed the actual meteorological 310 

conditions in 2013 and emission inventory in 2017 and compared the simulation result with 311 

the baseline experiment, which demonstrated the relative contribution of meteorological 312 

concentrations to PM2.5 reduction in Beijing from 2013 to 2017. Since the WRF-CMAQ 313 

simulation simply considers PM2.5 concentrations and meteorological conditions in 2013 and 314 

2017 without considering their variation process from 2013 to 2017, KZ filtering may 315 

perform better in quantifying the relative contribution of meteorological variations to PM2.5 316 

reduction in Beijing. However, the output from this sensitivity experiment serves as a useful 317 

reference for cross-verifying the output from the KZ filtering. For the remaining three 318 
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sensitivity-simulation experiments, we added the reduced emission amount induced by one 319 

specific emission-reduction measure to the actual emission amount in 2017 and kept other 320 

parameters unchanged, and thus quantified the relative contribution of one specific 321 

emission-reduction measure to PM2.5 reduction in Beijing from 2013 to 2017. Consequently, 322 

we quantified the relative contribution of three major emission-reduction measures to PM2.5 323 

reduction in Beijing (Table 13).  324 



Table 13.  The design and materials for two baseline and four sensitivity experiments using WRF-CMAQ  325 

For emission data, all experiments employed Beijing local emissions inventory in 2017 for Beijing and regional emission inventory in 2017 for other regions.  326 

MEIC 2017 was acquired based on our update of MEIC 2016 according to official 2017 emission-reduction targets required by the local government. 327 

ID 
Meteorological 

Data 

Emission-reduction 

measures 

Simulation 

Year 
Major purposes 

Baseline 

Experiment1 
2013 No emission-reduction Measures 2013 2013 baseline scenario 

Baseline 

Experiment2 
2017 All emission-reduction Measures 2017 2017 baseline scenario 

Sensitivity 

Experiment 1 

2013 All emission-reduction Measures 2017 
The relative contribution of meteorological variations to the 

decrease of PM2.5 concentrations in Beijing from 2013 to 2017 

Sensitivity 

Experiment 2 

2017 
All emission-reduction measures except for 

industrial restructuring 
2017 

The relative contribution of industrial restructuring to the decrease 

of PM2.5 concentrations in Beijing from 2013 to 2017 

Sensitivity 

Experiment 3 

2017 
All emission-reduction measures except for 

the regulation of coal boilers 
2017 

The relative contribution of the regulation of coal boilers to the 

decrease of PM2.5 concentrations in Beijing from 2013 to 2017 

Sensitivity 

Experiment 4 

2017 
All emission-reduction measures except for 

increasing clean fuels for civil use 
2017 

The relative contribution of increasing clean fuels for civil use to 

the decrease of PM2.5 concentrations in Beijing from 2013 to 2017 



3.3 Model verification 328 

3.3.1 Verification of KZ filtering 329 

For each station, the original time series of PM2.5 data was processed by the KZ filter 330 

and the relative contribution of the long-term, seasonal and short-term component to 331 

the total variance is shown as Table 24. The sum of the long-term, seasonal and 332 

short-term component contributed to more than 93.6~95.3% of the total variance in 333 

different stations respectively. The larger the total variance, the three components are 334 

more independent to each other. The total variance close to 100% suggests that a 335 

majority of meteorological influences has been considered and effectively removed. 336 

As shown in Table 24, the large value of the total variation in all stations indicated a 337 

satisfactory output from the KZ filtering.  338 

Specifically, tThe relative contribution of the seasonal component (ranging from 339 

9%-23.8%) and short-term component (ranging from 66.8%-83.8%) was much larger 340 

than that of the long-term component (ranging from 1.2%-3.5%)the short-term 341 

component was much larger than that of the seasonal and long-term component, 342 

suggesting that seasonal and short-term variations of meteorological and emission 343 

factors exerted a major influence on the rapid change of PM2.5 concentrations in 344 

Beijing. The decomposed long-term, seasonal and short-term component from the 345 

original time series of mean urban PM2.5 concentrations in Beijing from 2013 to 2017 346 

is are demonstrated as Fig 2. According to Fig 2, the notable peaks of decomposed 347 

seasonal and short-term component were highly consistent with the peaks of PM2.5 348 

concentrations in the original time-series, which further proved the dominant 349 

influence of seasonal and short-term variations of meteorological and anthropogenic 350 

factors on the temporal changes of PM2.5 concentrations in Beijing. 351 



Table 24. The relative contribution of different components to the total variance of 352 

original time series of PM2.5 concentrations from 2013-2017 at different stations 353 

Stations 
Long-term 

component (%) 

Seasonal 

component (%) 

Short-term 

component (%) 

Total 

variance(%) 

Yufa 2.1  23.8  66.8  94.0  

Miyun Reservoir 1.4  9.0  83.8  95.2  

Dingling 1.6  11.0  81.3  94.9  

Qianmen 2.7  12.7  78.5  95.1  

Olympic center 2.1  11.9  80.0  95.3  

Xiangshan 1.2  10.3  83.4  94.9  

Huayuan 2.2  15.9  75.6  93.7  

Yungang 2.1  15.1  76.5  93.6  

WanShouxigong  1.6  14.2  78.2  94.0  

Dongsi 1.6  12.3  80.0  94.0  

TianTan 2.1  13.2  78.6  93.8  

NongZhanguan 1.8  13.7  78.6  94.1  

Gucheng 1.8  13.5  78.5  93.7  

Guanyuan 1.6  12.6  79.8  94.0  

BeiBuxinqu 1.7  13.8  78.4  93.9  

WanLiu 3.5  11.9  78.2  93.6  



 354 

Fig 2. The long-term, seasonal and short-term component extracted from the original 355 

time series of mean urban PM2.5 concentrations in Beijing from 2013 to 2017  356 

3.3.2 Verification of WRF-CMAQ  357 

We employed the emission inventory and meteorological data for 2017 to verify the 358 

accuracy of WRF-CMAQ simulation. For six stations of different types (DingLing 359 

background station, Yufa rural station, Olympic Center urban station, Guanyuan urban 360 

station, Dongsi urban station and Agricultural museum urban station), we compared 361 

the observed and estimated PM2.5 concentrations and presented the comparison result 362 

as Fig 3. According to Fig 3, the general trend of the simulated PM2.5 concentrations 363 

was consistent with that of the observed PM2.5 concentrations. For six stations, the 364 

correlation coefficient R, normalized mean bias (NMB), normalized mean error 365 

(NME), mean fractional bias (MFB) and mean fractional error (MFE) between 366 

observed and simulated data was 0.63~0.91, -6%~6%, 26%~40%, -5%~7%, and 367 

27%~46% respectively, indicating a satisfactory simulation output (EPA，2005; 368 

Boylan et al., 2006). However，as shown in Figure 3, WRF-CMAQ may notably 369 

underestimate PM2.5 concentrations during heavy pollution episodes due to unified 370 

parameter setting for long-term simulation, the uncertainty in emission inventories, 371 

and especially insufficient chemical reaction mechanisms, which is a common 372 

challenge for CTM-based PM2.5 simulation (Li et al., 2011). For instance, without 373 

considering heterogeneous/aqueous reactions between multiple precursors, CTMs 374 

failed to approach the maximum PM2.5 concentrations during severe haze episodes 375 



and the simulation accuracy was dramatically improved by including proper 376 

descriptions of heterogeneous/aqueous reactions into CTMs (Chen, D. et al. 2016). 377 

With more finer-scale emission inventories and better descriptions of reaction 378 

mechanisms between precursors, the accuracy of PM2.5 simulation can be improved 379 

significantly.  380 

 381 

Fig 3. The comparison between observed and WRF-CMAQ simulated PM2.5 382 

concentrations in 2017 in six stations across Beijing 383 



4 Results 384 

4.1 The relative contribution of emission-reduction and meteorological variations 385 

to the decrease of PM2.5 concentrations in Beijing from 2013 to 2017 386 

4.1.1 Estimation based on KZ filtering  387 

Through KZ filtering, the adjusted time-series of PM2.5 concentrations with filtered 388 

meteorological variations was acquired. Next, for each station, the actual PM2.5 389 

variations and adjusted PM2.5 variations without the disturbance of meteorological 390 

variations from 2013 to 2017 were calculated respectively (as shown in Table 35). 391 

Based on this, the relative contribution of emission-reduction and meteorological 392 

conditions to PM2.5 reduction in Beijing from 2013 to 2017 can be quantified.  393 

The original and KZ-processed time series of PM2.5 concentrations were illustrated 394 

using one background station, one rural station and four urban stations (Fig 4). As 395 

shown in Fig 4, most abrupt variations in the original time series of PM2.5 396 

concentrations have been smoothed through KZ filtering and the generally decreasing 397 

trend of PM2.5 variations from 2013 to 2017 caused by anthropogenic emissions can 398 

be clearly presented.399 



Table 35. Estimated relative contribution of emission-reduction and meteorological variations to PM2.5 reduction in Beijing from 2013 to 2017 using KZ filter 400 

1 PM2.5 decrease rate: the fitted variation slope of original monthly average PM2.5 time series; 401 
2 Adjusted PM2.5 decrease rate: the fitted variation slope of adjusted monthly average PM2.5 time series; 402 
3. Contribution of emission reduction = 1 - Contribution of meteorological variations; 403 
4. Contribution of meteorological variations = (PM2.5 decrease rate - Adjusted PM2.5 decrease rate) / PM2.5 decrease rate. 404 

 Stations 

PM2.5 

concentrations 

in 2013(μg·m-3) 

PM2.5 

concentrations 

in 2017 (μg·m-3) 

Adjusted PM2.5 

concentrations in 

2017(μg·m-3) 

PM2.5 Decrease 

rate 

(μg·m-3·m-1)1
 

Adjusted 

PM2.5 Decrease 

rate 

(μg·m-3·m-1)2 

Contribution 

of emission 

reduction (%)3 

Contribution 

of meteorological 

variations (%)4 

Yufa 111.1 69.7 74.6 -0.78 -0.63 80.4 19.7 

Miyun Reservoir 58.8 44.8 47.0 -0.40 -0.33 82.8 17.2 

Dingling 69.6 47.1 50.6 -0.54 -0.44 80.8 19.2 

Qianmen 103.9 64.0 68.9 -0.81 -0.69 85.0 15.0 

Olympic center 90.4 57.2 61.7 -0.68 -0.55 80.8 19.2 

Xiangshan 77.0 59.3 60.3 -0.46 -0.39 83.9 16.1 

Huayuan 101.5 64.4 69.2 -0.77 -0.63 81.9 18.1 

Yungang 91.8 60.2 64.0 -0.69 -0.55 79.6 20.4 

WanShouxigong  93.7 62.0 66.8 -0.64 -0.50 78.2 21.8 

Dongsi 94.9 62.4 67.5 -0.62 -0.49 78.9 21.1 

TianTan 92.3 58.4 64.6 -0.68 -0.55 80.2 19.9 

NongZhanguan 92.2 59.9 65.9 -0.66 -0.53 80.3 19.8 

Gucheng 92.7 61.4 65.9 -0.65 -0.50 77.6 22.4 

Guanyuan 89.6 59.5 64.6 -0.60 -0.48 79.6 20.4 

BeiBuxinqu 86.6 59.5 63.3 -0.60 -0.45 75.2 24.8 

WanLiu 98.1 56.2 60.4 -0.87 -0.73 84.2 15.8 



 405 

Fig 4. The comparison of original and KZ processed time series of PM2.5 406 

concentrations in six stations from 2013 to 2017 407 

According to Table 35, the annual mean PM2.5 concentration in Beijing in 2017 was 408 

35.6% lower than that in 2013. By filtering the influence of meteorological variations, 409 

the adjusted annual mean PM2.5 concentration in Beijing in 2017 decreased by 31.7% 410 

when compared to that in 2013, indicating that the variation in meteorological 411 

conditions exerted a moderate influence on PM2.5 reduction from 2013 to 2017. 412 

Meteorological conditions in Beijing were generally favorable for PM2.5 dispersion 413 

during the five-year period, especially the latter half of 2017, when there was a high 414 

frequency of strong northerly winds and much lower wintertime PM2.5 concentrations 415 

than previous years.  416 



For the winter of 2017, frequent windy weather and successive clean sky had a strong 417 

influence on the reduction of PM2.5 concentrations in Beijing. This led to a hot debate 418 

concerning whether the notable decrease in PM2.5 concentrations was mainly 419 

attributed to the favorable meteorological conditions or emission-reduction. Table 3 5 420 

suggests that the control of anthropogenic emissions contributed to 75.2%~85.0% of 421 

PM2.5 decrease in the five-year period, indicating that emission-reduction worked 422 

effectively in all rural, urban and background stations. On average, the relative 423 

contribution of emission-reduction and meteorological variations to PM2.5 reduction 424 

in Beijing from 2013 to 2017 was 80.6% and 19.4% respectively. Therefore, in spite 425 

of more favorable meteorological conditions, properly designed and implemented 426 

emission-reduction measures were the dominant driver for the remarkable decrease of 427 

PM2.5 concentrations in Beijing from 2013 to 2017.428 



4.1.2 Estimation based on WRF-CMAQ  429 

In addition to the KZ filter, we also employed WRF-CMAQ to estimate the relative 430 

contribution of emission-reduction and meteorological conditions to the decrease of 431 

PM2.5 concentrations in Beijing. The result is shown in Table 46.  432 

Table 46. Estimated relative contribution of emission-reduction and meteorological variations to 433 

PM2.5 reduction in Beijing from 2013 to 2017 using WRF-CMAQ  434 

 Stations 
Contribution of  

meteorological variations (%) 

Contribution of 

emission-reduction(%) 

Yufa 21.9 78.2 

Miyun Reservoir 20.8 79.2 

Dingling 21.7 78.3 

Qianmen 21.2 78.8 

Olympic center 21.2 78.8 

Xiangshan 20.3 79.7 

Huayuan 21.2 78.8 

Yungang 21.2 78.8 

WanShouxigong  21.2 78.8 

Dongsi 21.2 78.8 

TianTan 21.2 78.8 

NongZhanguan 21.2 78.8 

Gucheng 22.2 77.8 

Guanyuan 21.2 78.8 

BeiBuxinqu 22.2 77.8 

WanLiu 22.2 77.8 

Based on WRF-CMAQ, the relative contribution of meteorological variations to the 435 

decrease in PM2.5 concentrations in Beijing ranged from 20.3% to 22.2% in different 436 

stations, whilst emission-reduction accounted for about four-fifths of PM2.5 reduction 437 

from 2013 to 2017. It is worth mentioning that WRF-CMAQ is a grid-based model 438 

and thus the calculated contribution of meteorological variations for some stations 439 

located in the same grid was the same. Instead, station-based KZ filtering led to more 440 

reliable analysis for each station and can better distinguish the differences between 441 

multiple stations. Furthermore, WRF-CMAQ simply considered the differences 442 



between meteorological conditions in 2013 and 2017 without considering their 443 

variations during the five-year period while the KZ filtering analyzed the entire time 444 

series of PM2.5 and meteorological data from 2013 to 2017. The averaged relative 445 

contribution of meteorological variations to PM2.5 reduction in Beijing calculated 446 

using WRF-CMAQ was 21.4%, very similar to the 19.4% calculated using KZ 447 

filtering. The slightly larger meteorological contribution calculated using 448 

WRF-CMAQ might be attributed to that WRF-CMAQ simply considered the 449 

favorable meteorological conditions in 2017 whilst KZ fully considered the long-term 450 

meteorological variations from 2013 to 2017.   451 

Since KZ filtering is fully based on observed data, and simply considers the influence 452 

of time-series meteorology data on PM2.5 time series, less uncertainty is involved. The 453 

accuracy of KZ filtering is influenced mainly by the variations of PM2.5-meteorology 454 

interactions in different areas and seasons. On the other hand, CTMs (e.g. 455 

WRF-CMAQ or WRF-CAMx) consider both meteorological conditions (mainly 456 

large-scale meteorological data for model simulation, not as accurate as local 457 

observed meteorological data) and anthropogenic emissions for estimating PM2.5 458 

concentrations under different emission scenarios. The accuracy of these models are 459 

not only decided by proper understanding of PM2.5-meteorology interactions, but also 460 

the reliability of emission inventories and proper descriptions of reaction mechanisms 461 

for PM2.5 production, especially during heavy pollution episodes, which is a major 462 

challenge for current model simulation.When KZ filtering is an advanced statistical 463 

model solely based on observed meteorological and PM2.5 time series data whilst 464 

CTMs involved meteorological data, PM2.5 data, a diversity of reaction mechanisms 465 

and emission inventories, CTMs are influenced by more types of data and mechanism 466 

uncertainties. Consequently, KZ filtering provides a more reliable method for 467 

researchers and decision makers to understand the relative importance of 468 

emission-reduction and meteorological conditions in recent PM2.5 reduction in Beijing. 469 

However Meanwhile, similar outputs from WRF-CMAQ simulation provide 470 

complementary evidence for the fact that anthropogenic emissions exerted a much 471 

stronger influence on PM2.5 concentrations than meteorological conditions. In 472 

addition to the combined effects of all emission-reduction measures, we further 473 

employed WRF-CMAQ to quantify the relative contribution of different 474 
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emission-reduction measures to the decrease in PM2.5 concentrations in Beijing from 475 

2013 to 2017. 476 

4.2 The relative contribution of different emission-reduction measures to the 477 

decrease in PM2.5 concentrations in Beijing 478 

The observed annual average PM2.5 concentration in Beijing in 2017 was 58 mg/m3, 479 

compared with 89.5 μg/m3 in 2013. Based on WRF-CMAQ simulation, 480 

meteorological conditions contributed 6.7 μg/m3 whilst the control of anthropogenic 481 

emissions contribute contributed 24.7 μg/m3 to the total PM2.5 reduction of 31.5 μg/m3 482 

in Beijing from 2013 to 2017. Specifically, local and regional emission-reduction 483 

accounted for 16.9 μg/m3 and 7.8 μg/m3 of PM2.5 reduction. Local emissions and 484 

regional transport took up 68.4% and 31.6% of total anthropogenic emissions in 485 

Beijing. This result is consistent with our recent study (Chen et al., 2019). Chen et al. 486 

(2019) investigated four pollution episodes in Beijing in 2013, 2016, 2017 and 2018 487 

respectively and found that local emissions accounted for 69.3%, 76.8%, 49.5% and 488 

88.4% of total emissions in Beijing respectively. Except for the moderate pollution 489 

episode in 2017, local emissions caused more than two thirds of anthropogenic 490 

emissions in Beijing. Therefore, local emissions played a dominant role for PM2.5 491 

variations in Beijing in both long-term run and heavy pollution episodes. According to 492 

three emission-reduction scenarios designed, the regulation of coal boilers had the 493 

most significant effect on PM2.5 reduction in Beijing and resulted in a decrease of 6.3 494 

μg/m3. Meanwhile, increasing clean fuels for residential use and industrial 495 

restructuring also exerted strong influences on PM2.5 reduction and contributed to a 496 

decrease of 5.5 μg/m3 and 3.4 μg/m3 respectively. The three major strategies 497 

accounted for around half of the total effects of emission-reduction on PM2.5 498 

variations in Beijing.  499 



 500 

Fig 5. The relative contribution of different influencing factors to the decrease of 501 

PM2.5 concentrations in Beijing from 2013 to 2017 502 

5 Discussion  503 

By the end of 2017, the Beijing Five-year Clean Air Action Plan (2013-2017) was 504 

completed and achieved its primary goal of reducing the annual average PM2.5 505 

concentration to less than 60 μg/m3. Meanwhile, in November 2017, strong northerly 506 

winds in Beijing resulted in the cleanest winter in the past five years, raising 507 

arguments whether the favorable meteorological conditions were primarily 508 

responsible for PM2.5 reduction or whether the significant improvement in air quality 509 

in Beijing was mainly attributed to the control of anthropogenic emissions. In this 510 

case, a quantitative comparison between the influence of meteorological conditions 511 

and emission-reduction on PM2.5 reduction is necessary for comprehensively 512 

evaluating the Five-year Clean Air Action Plan. Based on two different approaches, 513 

this research revealed that the control of anthropogenic emissions contributed to 514 

around 80% of PM2.5 reductions in Beijing from 2013 to 2017, indicating that the 515 

Five-Year Clean Air Plan exerted a dominant influence on air quality enhancement in 516 

Beijing. The large contribution of some specific emission-reduction measures may be 517 

obscured in the presence of favorable meteorological conditions. For instance, many 518 

residents may attribute the clean winter of 2017 to the notable strong winds without 519 

noticing some of major emission-reduction strategies implemented during this period. 520 



A large-scale replacement of coal boilers with gas boilers was conducted in Beijing 521 

and its neighboring areas since 2013. As quantified by WRF-CMAQ，the regulation of 522 

coal boilers and increasing use of clean fuels for residential use jointly contributed to 523 

an 11.8μg/m3 decrease in PM2.5 concentrations，much (almost twice) larger than the 524 

6.7 μg/m3 decrease caused by favorable meteorological conditions. In general, 525 

although favorable meteorological conditions (e.g., strong winds) may lead to an 526 

instant improvement of air quality, regular emission-reduction measures exert a 527 

reliable and consistent influence on the long-term reduction of PM2.5 concentrations in 528 

Beijing. Given the satisfactory performance of the Five-year Clean Air Action Plan in 529 

PM2.5 reduction, such long-term clean air plan should be further designed and 530 

implemented in Beijing and other mega cities with heavy PM2.5 pollution. 531 

Recently, with growing attention to the completion of the Five-year Clean Air Action 532 

Plan, some other studies have also been conducted to evaluate this five-year plan. 533 

Cheng, J. et al. (2019) employed a finer-scale and more detailed local 534 

emission-inventory and quantified the relative contribution of multiple 535 

emission-reduction strategies, including the control of coal-fired boilers, increasing 536 

use of clean fuels, optimization of industrial structure, fugitive dust control, vehicle 537 

emission control, improved end-of-pipe control, and integrated treatment of VOCs. 538 

The relative contribution of these emission-reduction measures to PM2.5 reduction in 539 

Beijing from 2013 to 2017 was 18.7%, 16.8%, 10.2%, 7.3%, 6.0%, 5.7% and 0.6% 540 

respectively. By contrast, our research revealed that three major emission-reduction 541 

measures (the regulation of coal-fired boiler, increasing use of clean fuels and 542 

industrial restructuring) contributed 20.1%, 17.4% and 10.8% of total PM2.5 reduction 543 

in Beijing from 2013 to 2017, which was very close to Cheng, J et al. (2019)’s 544 

findings. Based on finer-scale local emission-inventories with more field-collected 545 

emission data, Cheng, J et al. (2019) provided a comprehensive and reliable 546 

understanding of the effects of multiple emission-reduction measures on PM2.5 547 

reduction in Beijing. The similar outputs from the two studies further proved the 548 

reliability of WRF-CMAQ simulation. Meanwhile, Cheng, J et al. (2019) and UNEP 549 

(2019) jointly quantified that the total amount of reduction in SO2, NOx, VOCs and 550 

direct PM2.5 induced by the control of anthropogenic emissions was 79420t, 93522t, 551 

115752t and 44307t respectively, which was the major driver for the notable PM2.5 552 



reduction in Beijing from 2013 to 2017.  553 

Although the “2+26” regional strategy for air quality improvement in Beijing has 554 

become a hotly debated issue and growing emphasis has been placed on the proper 555 

design and implementation of regional emission-reduction strategies in Beijing and its 556 

surrounding cities，previous studies (Chen et al., 2019; Cheng, J. et al., 2019) and this 557 

research proved that local emissions played a dominant role in affecting PM2.5 558 

concentrations in Beijing. Specifically, Chen et al. (2019) pointed out that with 559 

intensive reduction of coal-fired boilers in Beijing-Tianjin-Hebei region, the relative 560 

contribution of vehicle emissions to PM2.5 concentrations in Beijing, especially during 561 

heavy pollution episodes, could be up to 50%. To further improve air quality in 562 

Beijing, stricter regulations on local vehicle emissions, including contingent strategies 563 

during pollution episodes (e.g. odd-even license plate policy) and long-term policies 564 

(e.g. increasing availability of public transit systems and electric cars) should be a 565 

major priority for the next stage clean-air actions.   566 

Based on KZ filtering, Cheng, N et al. (2019) and Ma et al. (2016) suggested the 567 

seasonal component contributed dominantly to O3 variations in Beijing. By 568 

comparison, this research revealed that the short-term component contributed 569 

dominantly to PM2.5 variations in Beijing. These findings well explained the 570 

phenomenon that ground ozone pollution in Beijing, controlled by seasonal variations 571 

of emission and meteorological conditions (especially high-temperature and 572 

low-humidity), simply occurred in summer, whilst PM2.5 pollution in Beijing, 573 

controlled by short-term variations of meteorological and emission factors, might 574 

occur in all seasons. Consequently, contingent emission-reduction measures during 575 

heavy pollution episodes are an effective approach to offset the short-term 576 

deterioration of meteorological conditions and improve local air quality.  577 

Despite the major contribution of emission-reduction measures to PM2.5 reduction in 578 

Beijing, meteorological influences, which contributed to 20% of PM2.5 reduction, 579 

should also be considered balancedly. In addition to the control of anthropogenic 580 

emissions, PM2.5 reduction may be realized through meteorological means. For the 581 

winter of 2017, strong northwesterly winds led to instant improvement in air quality, 582 

suggesting wind was a dominant meteorological factor for the accumulation or 583 



dispersion of PM2.5 in Beijing. Meanwhile, previous studies (Chen et al., 2017) 584 

suggested that increasing wind speeds led to increased evaporation, increased 585 

sunshine duration (SSD) and reduced humidity, which further reduced local PM2.5 586 

concentrations. In other words, strong winds help reduce PM2.5 concentrations 587 

through direct and indirect measures. In this light, the forthcoming Beijing 588 

Wind-corridor Project, which includes five 500m-width corridors and more than ten 589 

80m-width corridors to bring in stronger wintertime northwesterly winds, can be a 590 

promising approach for promoting long-term favorable meteorological influences on 591 

PM2.5 reduction in Beijing.  592 

6 Conclusions 593 

To comprehensively evaluate the effect of the Beijing Five-year Clean Air Action Plan 594 

(2013-2017), we quantified the relative contribution of meteorological conditions and 595 

the control of anthropogenic emissions to the notable decrease in PM2.5 concentrations 596 

in Beijing from 2013 to 2017. Based on KZ filtering, we found that meteorological 597 

conditions and emission-reduction accounted for 19.4% and 80.6% of the PM2.5 598 

reduction in Beijing, respectively. The large short-term component suggested that 599 

short-term variations of meteorological and emission factors exerted a dominant 600 

influence on the rapid variation of PM2.5 concentrations in Beijing. Meanwhile, 601 

WRF-CAMQ revealed that meteorological conditions and emission-reduction 602 

contributed to 21.4% and 78.6% of PM2.5 variations. Specifically, local and regional 603 

emission-reduction measures contributed to 53.7% and 24.9％of PM2.5 reduction. For 604 

three major emission-reduction measures, the regulation of coal boilers, increasing 605 

use of clean fuels for residential use and industrial restructuring contributed to 20.1 %, 606 

17.4% and 10.8% of PM2.5 reduction, respectively. Similar outputs from two models 607 

suggested that the control of anthropogenic emissions contributed to around 80% of 608 

the total decrease in PM2.5 concentrations in Beijing from 2013 to 2017, indicating 609 

that the Five-year Clean Air Plan worked effectively and such long-term clean air plan 610 

should be continued in the following years to further reduce PM2.5 concentrations in 611 

Beijing. 612 
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