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Figure S1: The EMAC setup yields realistic results for the AOD at visible wavelength (550 nm, left) and in the
infrared (10 wm, right, dust related AOD only). The top row shows the model results, the bottom row satellite
observations by MODIS (left) and IASI (right).
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Figure S2: The total (solar and terrestrial) direct radiative forcing of anthropogenic aerosol in the dust free
scenario at the top of the atmosphere (TOA, top), within the atmosphere (centre) and at the bottom of the
atmosphere (BOA, bottom). Dots indicate regions where the forcing is insignificant.
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Figure S3: Same as Fig. S2, but only considering solar (shortwave, SW) radiation.
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Figure S4: Same as Fig. S2, but only considering terrestrial (longwave, LW) radiation.
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Figure S5: Same as Fig. S2, but for each season (December, January, February (DJF); March, April, May
(MAM); June, July, August (JJA); September, October, November (SON)) individually.
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Figure S6: The total (solar and terrestrial) direct radiative forcing of mineral dust in the natural scenario at the
top of the atmosphere (TOA, top), within the atmosphere (centre) and at the bottom of the atmosphere (BOA,
bottom). Dots indicate regions where the forcing is insignificant.
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Figure S7: Same as Fig. S6, but only considering solar (shortwave, SW) radiation.
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Figure S8: Same as Fig. S6, but only considering terrestrial (longwave, LW) radiation.
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Figure S9: Same as Fig. S6, but for each season (December, January, February (DJF); March, April, May
(MAM); June, July, August (JJA); September, October, November (SON)) individually.
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Figure S10: Global direct radiative forcing by dust in the EMAC simulations of the present study in comparison
to results of previous studies (Yue et al. 2010, Table 1).
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A accumulation mode NH4p
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Figure S11: Effect of the dust-pollution interaction on the burdens of the main aerosol ions (left column:
accumulation mode, centre column: coarse mode) and the corresponding precurser gases (right column).
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Figure S12: Annual mean aerosol mass burdens over the northern part of South Sudan, where the interaction
of dust and pollution yields the strongest accumulation mode burden increase. Burdens from simulation 1 with
all emissions, simulation 2 without dust emissions and simulation 3 without anthropgenic pollution are shown
after subtracting the burdens from simulation 4 without dust and pollution. Dry aerosol, aerosol water and bulk
dust (also included in dry aerosol) burdens of accumulation mode (top) and coarse mode (bottom) are shown
separately.
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Figure S13: Annual mean aerosol mass burdens over the north of Pakistan, where the interaction of dust
and pollution yields the strongest accumulation mode burden decrease. Burdens from simulation 1 with all
emissions, simulation 2 without dust emissions and simulation 3 without anthropgenic pollution are shown
after subtracting the burdens from simulation 4 without dust and pollution. Dry aerosol, aerosol water and bulk
dust (also included in dry aerosol) burdens of accumulation mode (top) and coarse mode (bottom) are shown
separately.
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Figure S14: Same as Fig. 2 (top) but at 550 nm wavelength.
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Figure S15: Same as Fig. 2, but for each season (December, January, February (DJF); March, April, May
(MAM); June, July, August (JJA); September, October, November (SON)) individually.
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Figure S16: Annual mean of the extinction weighted single scattering albedo (SSA) for the different emission
setups.
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Figure S17: Same as Fig. 4, but only considering solar (shortwave, SW) radiation.
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Figure S18: Same as Fig. 4, but only considering terrestrial (longwave, LW) radiation.
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Figure S19: Same as Fig. 4, but for each season (December, January, February (DJF); March, April, May
(MAM); June, July, August (JJA); September, October, November (SON)) individually.
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Figure S20: Atmospheric cooling (blue, below -0.01 K / day) and heating (red, above 0.01 K / day) by
dust-pollution interaction during Winter (December, January, February)

Figure S21: Atmospheric cooling (blue, below -0.01 K / day) and heating (red, above 0.01 K / day) by
dust-pollution interaction during Spring (March, April, May)
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Figure S22: Atmospheric cooling (blue, below -0.01 K / day) and heating (red, above 0.01 K / day) by
dust-pollution interaction during Summer (June, July, August)

Figure S23: Atmospheric cooling (blue, below -0.01 K / day) and heating (red, above 0.01 K / day) by
dust-pollution interaction during Autumn (September, October, November)
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