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Abstract. Bootstrap analysis is commonly used to capture the uncertainties of a bilinear receptor model such as 

the positive matrix factorisation (PMF) model. This approach can estimate the factor related uncertainties and 

partially assess the rotational ambiguity of the model. The selection of the environmentally plausible solutions 

though can be challenging and a systematic approach to identify and sort the factors is needed. For this, 20 
comparison of the factors between each bootstrap run and the initial PMF output, as well as with externally 

determined markers, is crucial. As a result, certain solutions that exhibit sub-optimal factor separation should be 

discarded. The retained solutions would then be used to test the robustness of the PMF output. Meanwhile, 

analysis of filter samples with the Aerodyne aerosol mass spectrometer and the application of PMF and 

bootstrap analysis on the bulk water soluble organic aerosol mass spectra has provided insight into the source 25 
identification and their uncertainties. Here, we investigated a full yearly cycle of the sources of organic aerosol 

(OA) at three sites in Estonia, Tallinn (urban), Tartu (suburban) and Kohtla-Järve (KJ, industrial). We identified 

six OA sources and an inorganic dust factor. The primary OA types included biomass burning, dominant in 

winter in Tartu accounting for 73% ± 21% of the total OA, primary biological OA which was abundant in Tartu 

and Tallinn in spring (21% ± 8% and 11% ± 5%, respectively) and two other primary OA types lower in mass. 30 
A sulphur containing OA was related to road dust and tire abrasion which exhibited a rather stable yearly cycle, 

and an oil OA was connected to the oil shale industries in KJ prevailing at this site comprising 36% ± 14% of 

the total OA in spring. The secondary OA sources were separated based on their seasonal behaviour: a winter 

oxygenated OA dominated in winter (36% ± 14% for KJ, 25% ± 9% for Tallinn and 13% ± 5% for Tartu) and 

was correlated with benzoic and phthalic acid implying an anthropogenic origin. A summer oxygenated OA was 35 
the main source of OA in summer at all sites (26% ± 5% in KJ, 41% ± 7% in Tallinn and 35% ± 7% in Tartu) 

and exhibited high correlations with oxidation products of a-pinene like pinic acid and 3-methyl-1, 2, 3-

butanetricarboxylic acid(MBTCA) suggesting a biogenic origin.  

1. Introduction 

Particulate matter of aerodynamic diameter smaller than 10 μm (PM10) has been extensively explored at many 40 
sites around the globe due to their various adverse effects upon human health and climate. In Europe, several 

monitoring networks have been measuring PM10 for long time periods and an increasing trend in concentrations 

from north to south was noticed (Fuzzi et al., 2015, Putaud et al., 2010). Despite of this, some North European 
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countries are still suffering from PM10 daily limit exceedances (European Environment Agency report No 

13/2017), and according to modelling studies following the “current legislation” scenarios, some of these sites 

will remain exposed to high PM10 standards up to 2030 (Kiesewetter et al., 2015). Therefore, understanding the 

origins of the pollutants can play a crucial role for future abatement policies. 

While large efforts have been devoted to the investigation of the sources and the chemical composition of PM10 5 
and in particular the organic fraction in Western and Central Europe, measurements in Eastern Europe and the 

Baltic region are scarce. More specifically, the organic aerosol (OA) composition in Estonia has received little 

attention so far. PM2.5 organic aerosol source apportionment was extensively studied by Elser et al. (2016) who 

performed mobile lab measurements during March 2014 at two different sites, Tallinn and Tartu. They found 

similar sources of OA at both sites where residential biomass burning, traffic and long-range transported OA 10 
were the major sources of OA. They also found a localised residential influenced OA factor, which was 

connected to cooking activities and possibly coal and waste burning. Whilst the long-range transported OA was 

dominating during night time and during several events when polluted air masses were transported from 

Northern Germany, the remaining factors were important during day time. These results provided insights into 

the spatial resolution of OA; nevertheless, they were limited to short time periods, hence, the seasonal variation 15 
of the pollutants remains unknown. Residential wood combustion and traffic were also presented as important 

sources of PM in previous long-term air pollution studies in Estonia (Urb et al., 2005, Orru et al., 2010). 

However, they did not provide any quantitative source apportionment on OA.  

The offline AMS technique was recently developed by Daellenbach et al. (2016) where aqueous filter extracts 

are measured after nebulisation with an Aerodyne high resolution time of flight aerosol mass spectrometer (HR-20 
ToF-AMS, Canagaratna et al., 2007) and the resulting organic mass spectra are analysed with positive matrix 

factorisation (PMF, Paatero 1997). This technique has significantly increased our capability in investigating and 

identifying the seasonal behaviour of OA sources at several sites around the globe (Huang et al., 2014, 

Daellenbach et al., 2017, Bozzetti et al., 2017a). In addition, this technique allows for OA measurements of 

different size fractions overcoming the limitation given by the transmission window of the AMS, resulting in 25 
quantifying sources from the coarse mode, such as primary (i.e., OA directly emitted in the atmosphere) 

biological  (Bozzetti et al., 2016) or sulphur containing primary OA sources (Daellenbach et al., 2017). 

PMF is widely used to analyse ambient aerosol measurement data by decomposing the input aerosol mass 

spectra into factor concentration time series and factor profiles. To do so, PMF iteratively solves the bilinear Eq. 

(1), where Xi,j represents the measured input data matrix in which i is the number of samples and j the chemical 30 
species measured, Gi,k represents the concentration time series matrix in which k is the number of factors, Fk,j 

represents the factor profiles matrix and E the residual matrix. The goal of PMF is to solve Eq. (1) such that the 

object function Q (Eq. 2) is minimised. In Eq. (2), U represents the corresponding error matrix. 

𝑿𝒊,𝒋 =   𝑮𝒊,𝒌𝑭𝒌,𝒋𝒌 +  𝑬𝒊,𝒋   (1) 

 35 

𝑄 =    [𝑬 𝑼 ]𝟐𝒋𝒊     (2) 

Bilinear models suffer from rotational ambiguity; that is mathematically similar goodness of fit (Henry, 1987), 

leading to uncertainties in extracting the contributions of different OA sources. Additional modelling errors may 

occur due to the user subjectivity in analysing natural phenomena, when for example selecting the number of 

interpretable factors or estimating the error matrix. 40 

The bootstrap analysis (Davison and Hinkley, 1997), a resampling technique of the original data and error 

matrices, has been widely adopted to assess to a certain extent the rotational ambiguity related to PMF analysis 

(Brown et al., 2015). For each bootstrap iteration a random number of samples are selected with repeats from 

the original input matrices (base case), to recreate new input matrices with the same dimensions (bootstrap 

iteration) that will be analysed with PMF. As a result, the bootstrap analysis results in a great number of 45 
solutions, whose environmental representativeness has to be assessed, which requires a systematic approach in 
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relating the separated factors to specific sources. This factor classification has been typically based on the 

contributions of certain markers (e.g., C2H4O2
+
 to identify biomass burning OA or CO2

+
to identify secondary 

OA) (Daellenbach et al., 2017, 2018, Bozzetti et al., 2017a, Vlachou et al., 2018) in the case of the application 

of PMF to AMS data. However, in datasets with similar factor profiles, for example two oxygenated OA factors 

or more, this type of sorting can become challenging, especially when a bootstrap iteration does not provide the 5 
expected factors. To assess the quality of the different bootstrap solutions, users typically compare the factor 

time-series to external marker measurements, when available, and discard suboptimal solutions using a set of 

acceptance criteria (Ulbrich et al., 2009, Zhang et al., 2011, Norris and Brown, 2014, Bozzetti et al., 2017a, 

2017b, Zhang et al., 2017).  

In this study, we propose a novel technique to evaluate the selection of the PMF solutions generated through a 10 
large number of bootstrap iterations. The method is based on the examination of the correlation matrix between 

the base case and bootstrap iterations for both time series and profiles, without setting a priori a defined 

threshold in the correlation coefficient. We assess the performance of the technique (accuracy and probability of 

false positive and false negative results) by comparing the factors’ time-series to the available specific markers. 

We have applied the technique to an unprecedented dataset of 150 PM10 filter samples from 3 sites in Estonia 15 
covering a full year (Sept. 2013 - Sept. 2014), where anthropogenic and natural emissions of primary and 

secondary organic aerosols could be extracted.  

2. Methods 

2.1 Sampling sites 

The samples were collected at three different sites in Estonia: Tallinn, Tartu and Kohtla-Järve. Tallinn is the 20 
capital and the largest city of Estonia located on the northern coast facing the Gulf of Finland. The measurement 

station is located about 9 km from the city centre, in the sub-district Õismäe (59°24′50.927″, 24°38′57.207″, 8.5 

m a.s.l.). Tartu is the second largest city of Estonia, located in the south-eastern part of the country, in the valley 

of the Emajõgi River, a location that favours temperature inversions and the trapping of air pollutants. The 

measurement station (58°22′14.183″, 26°44′5.517″, 39.5 m a.s.l.) is positioned in the city centre. According to 25 
Orru et al. (2010) traffic and local heating are important sources of air pollution at these sites. In both cities the 

fleet of cars increases in contrast to the limited street network capacity. Moreover, the local heating is more 

pronounced in Tartu compared to Tallinn. Kohtla-Järve (KJ) is a coastal industrial city located in the north-

eastern part of Estonia (59°24′34.513″, 27°16′43.166″, 55.5 m a.s.l.). The main industries are related to large 

production of petroleum products, oil shale processing and electricity generation. As it is not a highly populated 30 
area, residential heating or traffic are not as important as in the other two cities. 

The measurements were performed with 24 h integrated PM10 quartz fibre filter samples from KJ (31/08/2013 to 

25/08/2014), Tallinn (05/09/2013 to 01/09/2014) and Tartu (05/09/2013 to 31/08/2014) (see Tables S1, S2 and 

Fig. S1 for details). PM was collected onto 15 cm diameter quartz filters, using a high volume sampler (500 l 

min
-1

). After exposure, the filter samples were wrapped in lint-free paper, sealed in polyethylene bags and stored 35 
at -20 °C. 

2.2 Major ionic species, sugar and acid analyses 

The additional filter measurements, performed to corroborate and support the source apportionment, are listed in 

Table 1. 

2.3 Offline AMS technique 40 
The offline AMS technique was established by Daellenbach et al. (2016) and is briefly described in the 

following. From each filter sample, 4 punches of 16 mm diameter were extracted in 15 ml of ultrapure water 

(18.2 MΩ cm at 25 °C with total organic carbon < 3 ppb). The liquid extracts were inserted into an ultra-sonic 

bath for 20 minutes at 30 °C. The ultra-sonicated samples were then filtered through a nylon membrane syringe 

of 0.45 µm. Out of the resulting solutions, aerosols were generated in Ar (≥ 99.998% Vol., Carbagas, 3073, 45 
Gümligen, Switzerland) via an Apex Q nebulizer (Elemental Scientific Inc., Omaha, NE, USA) operating at 60 

°C and subsequently directed into the AMS after getting dried by a Nafion dryer. 
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The technique was performed on 150 filter samples in total: 39 from KJ, 69 from Tallinn and 42 from Tartu 

(Tables S1 and S2). The resulting organic spectra were analysed by PMF with the use of the Multilinear engine 

2 (ME-2; Paatero, 1999). The interface for the data processing was provided by the Source finder toolkit (SoFi 

version 4.9; Canonaco et al., 2013) for Igor Pro (WavemetricsInc, Portland, Oregon, USA). 

The NH4NO3 artefact on the CO2
+
 signal (Pieber et al., 2016) was also accounted for. For a thorough description 5 

of the artefact and the correction procedure the reader is referred to Pieber et al. (2016) and to Daellenbach et al. 

(2017). 

2.4 PMF input and uncertainties 

As stated in the introduction, the input data matrix for the PMF is the organic mass spectra data matrix Xi,j 

which consists of a combination of factor profiles, and time-series and the input error matrix U includes the 10 
blank variability and the measurement uncertainties. Before using the PMF algorithm, all the fragments with 

signal-to-noise ratio (SNR) below 0.2 were removed from the input matrix and the ones with SNR below 2 were 

down-weighted according to Paatero and Hopke’s (2003) recommendations. Note that the PMF input matrix 

Xi,j  included the data from all 3 sites. 

To obtain quantitative results, both data and error matrices were multiplied by the externally measured water 15 
soluble OC (WSOC) times the OM:OC ratio retrieved from the factor profiles of the matrix Xi,j. 

Even though traffic is expected to be one of the primary sources of air pollutants especially in Tallinn and Tartu, 

a clear hydrocarbon like OA (HOA) which mainly contains non water soluble compounds could not be 

identified due the extraction procedure used. To assess a potential effect of the water soluble HOA (WSHOA) 

on the PMF results we estimate the WSHOA contribution to the different fragments in the data matrix. The 20 
calculation was based on the time series of the concentration of EC, and the averaged high resolution HOA 

reference factor profiles from Crippa et al. (2013) and Mohr et al. (2012) multiplied by the HOA:EC ratio (=0.4) 

reported by El Haddad et al. (2013) times the recovery RHOA = 0.11 reported by Daellenbach et al. (2016) (see 

Section 4 for more information on the recoveries). The calculated WSHOA data matrix was then subtracted 

from the original data matrix. The PMF output did not change with the subtraction of WSHOA even though the 25 
calculated concentration of the latter was a high estimate due to the assumption that EC only originates from 

traffic. A thorough apportionment of EC and the calculation of HOC will be discussed in Section 4.1. 

The variability of the AMS input dataset was best described by a seven factor solution which will be thoroughly 

described in Section 3.1 below. To assess the stability of the PMF solution and the sensitivity of the model for 

the WSHOA subtraction, we performed 250 bootstrap runs by perturbing the HOA:EC and RHOA parameters 30 
within their errors (1 standard deviation, σ) assuming a normal distribution. Note that this number of runs was 

restricted by computational limitations. 

The sorting of the factors and the concomitant selection of the retainable solutions out of the 250 runs was based 

on the correlation (R Spearman, Rs) of the time series between the base case (which is the PMF result before 

bootstrapping) and each bootstrap iteration n, as well as the correlation (Rs) of each factor profile between the 35 
base case and each iteration n. In the following, the sorting based on the time series is denoted as “ts” and the 

sorting based on profiles is denoted as “pr”. The criteria, followed for the selection or rejection of each solution, 

are described in Section 3.2. 

3. Source apportionment  

3.1 Interpretation of PMF factors 40 
As already mentioned, the variability of the water soluble organic mass spectra was best explained by a seven 

factor solution, to which we refer as base case. The factors found were:  

1. An oil related OA which was rich in hydrocarbons (Fig. 1a) and showed elevated concentrations 

mainly in KJ (Fig. 1b). 
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2. A sulphur containing OA (SCOA) factor with a pronounced peak at m/z 79 (CH3SO2
+
) (Fig. 1a) and 

rather stable contributions at all sites (Fig. 1b). As this factor was significantly enriched in the coarse 

mode (Vlachou et al., 2018), mainly found in urban areas influenced by traffic at other European sites 

(Daellenbach et al., 2017) and clearly associated with fossil carbon (Vlachou et al., 2018), we have 

previously related it to asphalt abrasion or tire wear.  5 
3. A summer oxygenated OA (SOOA) with enhanced m/z 43 (C3H2O

+
) and 44 (CO2

+
) peaks (Fig. 1a) 

which was highest during summer at all sites (Fig. 1b). 

4. A winter oxygenated OA (WOOA) with enhanced peaks at m/z 28 (CO
+
) and 44 (CO2

+
) (Fig. 1a) 

dominating in winter at all sites (Fig. 1b). Both of these two oxygenated factors (SOOA and WOOA) 

were also found in different European sites and were connected to non-fossil sources; biogenic and 10 
anthropogenic respectively (Vlachou et al., 2018, Daellenbach et al., 2018). Such a distinction was also 

found in Canonaco et al. (2015) where an online ACSM was used. 

5. A factor with a significantly pronounced peak at m/z 44 (CO2
+
) (Fig. 1a) and elevated concentrations in 

summer (Fig. 1b), which was identified as dust. This factor will be more thoroughly examined in 

Section 4.  15 
6. A primary biological OA (PBOA) which exhibited high contributions of the fragment C2H5O2

+ 
(at m/z 

61, Bozzetti et al., 2016) (Fig. 1a) and increased concentrations during late spring and summer at all 

sites (Fig. 1b). 

7. A biomass burning OA (BBOA) with a characteristic peak at m/z 60 (C2H4O2
+
) (Alfarra et al., 2007) 

(Fig. 1a) and elevated concentrations during late fall and winter in Tallinn and especially Tartu (Fig. 20 
1b). 

3.2 PMF uncertainty analysis: factor sorting and solution selection 

The framework for factor sorting and solution selection proceeded as follows: 

1. A correlation matrix was composed including all the correlations between base case factor time series 

(profiles) represented in rows and bootstrap iteration n time series (profiles) represented in columns, 25 
demonstrating the Rs per correlation (Fig. 2). 

2. Factors were sorted according to the highest correlation of their time series (profiles) with the base case 

factor time series (profile).  

3. Solutions were discarded, if any of the correlation coefficients occurring in the matrix diagonal was not 

statistically significantly higher than at least one of the coefficients in the respective column or row 30 
(significance level α=0.05). These selection criteria have two implications. (1) Every factor separated 

in a bootstrap run should correspond to a unique factor of the seven factors separated in the base case. 

(2) All factors that could be identified in the base case have one unambiguous corresponding factor in 

the bootstrap run. We have statistically evaluated the comparison between the Spearman coefficients 

by treating them as if they were Pearson coefficients (Myers et al., 2006) and applying the standard 35 
Fisher's z‐transformation and subsequent comparison using a t-test. This approach was reported to be 

more robust with respect to Type I error (false positive) than ignoring the non-normality and using 

Pearson instead of Spearman coefficients. 

An example of the correlation matrix of a retained solution is shown in Fig. 2a for time series and 2b for 

profiles. Meanwhile, Fig. 2c and 2d represent examples of a bootstrap iteration (n=140) where the solution was 40 
rejected because SCOA was not resolved, based on both ts and pr analysis, respectively. In Fig. 2c, the highest 

correlation between the time series of factor 2 and the factors of the base case was found with dust instead of 

SCOA, yet much weaker (Rs=0.34) than the correlation between factor 7 and dust (Rs=0.79). Therefore, factor 7 

could be identified as dust and factor 2 could not be identified as an interpretable factor. In Fig. 2d factor profile 

2 correlated most with the base case SCOA profile; however this correlation was not significantly higher than 45 
the correlation between factor 2 and dust. Moreover, base case SCOA correlated better with factor 6, which was 

related to SOOA, indicating that SCOA could not be unambiguously related to factor 2. 

To validate the selection of the solutions we compared the factors of each bootstrap iteration with an externally 

measured marker; more specifically BBOA with levoglucosan, PBOA with cellulose, WOOA with phthalic acid 
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and SOOA with 3-methyl-1,2,3-butanetricarboxylic acid (MBTCA).The retained solutions exhibited the highest 

correlations between the external markers and the respective factors (red markers in Fig. 3). To seal the validity 

of the retained solutions, we also compared the Rs between the base case factors and their respective external 

marker with the Rs between the bootstrap iteration factors and their respective external markers. We performed 

the bootstrap technique for a second time on the time series of the base case factors and the respective external 5 
markers for 1000 times. The resulting Rs coefficients are represented in probability density functions (PDF) 

indicated as red curves in Fig. 3, centred at 0.8 for BBOA (Fig. 3a), 0.7 for WOOA (Fig. 3c) and 0.9 for SOOA 

(Fig. 3d) and a broader one centred at 0.45 for PBOA (Fig. 3b). In all four cases the retained solutions, either 

coming from the “ts” or the “pr” approach, spanned around the centre of each PDF (Fig. 3 and Fig. S2 for the 

“pr”) and most of the solutions where at least one factor was not resolved (black markers in Fig. 3) were not 10 
included within the PDF boundaries. The general agreement between the PDFs and the retained solutions 

ratified the solution selection approach, however, there were still some cases of possible misallocation of 

retained or rejected solutions (for example a few black markers appearing at the centre of the PDF, Fig. 3c).  

To assess whether the retained bootstrap solutions share the same quality with the base case solution with regard 

to correlations between factors and markers, we calculated the probability of type I (false positive) and type II 15 
(false negative) errors associated with the solution selection approach (Fig. 4). The analysis entailed a 

quantitative comparison of the Spearman coefficients obtained between markers and factor time series from the 

bootstrap iterations, Rsboots, with the respective Spearman coefficients obtained between markers and factor time 

series from the base case Rsbase, considering the same samples as in the corresponding bootstrap iterations. The 

comparison between Rsboots and Rsbase was performed by applying a Fisher transformation followed by a t-test. 20 
We defined true positive and false negative as the red (retained solutions) and black (non-resolved factors) 

points, respectively lying within the PDF boundaries with regard to the total number of red and black points 

within the PDF boundaries. True negative and false positive were defined as the black and red points lying 

outside the PDF boundaries with respect to the total number of red and black points outside the PDF boundaries.  

The limits between false positive and false negative were set by 2 standard deviations from the one-to-one line. 25 
The percentages of the accuracy and the probability of false positive or false negative cases are compiled in 

Table S3. Sorting based on profiles seemed less reliable and is more prone to false negative solutions (TablesS3 

and S4), as the profiles often look similar and therefore the Rs exhibits high values for all factors (Fig. 2b and 

d). On the contrary, sorting based on time series showed clearer results as the Rs spanned over a greater range of 

values (Fig. 2a and 2c). Still the “ts” method produced false negative solutions, for example 53% for PBOA due 30 
to the combination of (i) limited number of points available for cellulose and (ii) the representativeness of the 

marker time series after the resampling (bootstrap analysis). Note that PBOA was important only during a few 

days in spring and therefore it is possible that these days were not always selected in the resampling process. 

The SOOA on the other hand exhibited 0% false negative and 16% false positive cases always demonstrating 

high Rsboots and Rsbase values. 35 

However, in any of the two methods “ts” and “pr”, the Fisher-transformed correlation coefficient rendered the 

selection of the solution evident, and eventually the two sorting methods yielded a very similar retained solution 

space (Fig. 4 and 5). Figure 5 depicts the correlation between the averaged common retained solutions and the 

averaged retained solutions coming from either the “ts” or the “pr” sorting method for the example of BBOA 

(correlations for the other factors are shown in Fig. S3). There is a minor deviation from the one to one line for 40 
the standard deviation scatter plot (Fig. 5b) for the “ts” sorting method. However, as soon as the solutions got 

weighted according to the correlation between external marker and bootstrap run time series, then the deviation 

decreased (blue markers in Fig. 5). The weighting factor 𝑤𝑖  was calculated as:  

𝑤𝑖 =
1

  (𝑆𝐸)2
𝑖

 (4),  

where SE is the standard error resulting from the regression between external marker and bootstrap iteration. 45 
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4. Investigation of sources and discussion 

4.1 Estimation of traffic contribution to EC and OC 

We estimated above that the traffic contribution to WSOA (<1%) can be neglected and has little effect on the 

PMF outputs. However, traffic might be an important source of EC and OA, which is assessed in the following.  

To estimate the percentage of EC coming from traffic (ECtr) we used the ME-2 model (with SoFi standard 5 
version 6.399, Canonaco et al., 2013) assuming that the sources of EC are biomass burning, resuspension of 

road dust, industrial emissions from the oil shale factories and traffic. Here the input data matrix included the 

time series of water soluble BBOA (WSBBOA), WSSCOA, WSOilOA and EC. PMF was called 1000 times 

varying the initial seed to solve Eq. (3). 

EC = ECtr + ECbb + ECoil + ECrrd= ECtr + a*WSOAbb + b*WSOAoil + c*WSOAsoil  (3) 10 

Here, ECbb, ECoil and ECrrd represent the EC concentration time-series related to the primary sources biomass 

burning, oil shale industry and resuspension of road dust/tire wear, respectively, while, a, b, and c are the 

EC:WSOA ratios characteristic of the emissions from the same sources and were obtained as outputs of the 

model. This new methodology, based on PMF, is especially pertinent as unlike other inversion techniques it sets 

positive constraints on a, b and c and offers the possibility of resolving the contributions of factors for which no 15 
constraints are available, here ECtr.  

 

We found that ECtr contributed 57% ± 5% to the total EC (on a yearly average), while 36% ± 5% of EC was 

attributed to biomass burning, 4% ± 1% to road dust resuspension and 3% ± 1% to the oil shale emissions (Fig. 

S4). The contribution of EC from fossil fuel combustion (ECff) measured at a site similar to Tartu, i.e., an 20 
Alpine valley in Southern Switzerland, Magadino in 2014 (Vlachou et al., 2018) was in agreement with our EC tr 

contribution, with a yearly average of 55% ± 7%. Also in Zurich, an urban site, ECff ranged from 40% to 55% 

during winter 2012 (Zotter et al., 2014). From the EC tr contribution, we estimated that the HOC (obtained by 

multiplication of the ECtr time series with the HOC:EC ratio) contributed 4% to the total OC on a yearly 

average. 25 
 

4.2 Scaling to organic carbon 

All the retained solutions (in total 62%) were averaged per factor and their seasonal behaviour as well as their 

correlations with the external markers are presented in Section 4.4. Note that all the water soluble factors were 

recovered following the method described in Daellenbach et al. (2016) and Vlachou et al. (2018). The recoveries 30 
were calculated by fitting Eq. (4). 

𝑂𝐶𝑖 ,𝑛 =   
𝑊𝑆𝑂𝐶𝑖 ,𝑛 ,𝑘

𝑅𝑘
𝑘     (4) 

where 𝑂𝐶𝑖 ,𝑛  is the OC concentration per bootstrap run n per sample i, 𝑅𝑘  is the recovery R per factor k, and 

𝑊𝑆𝑂𝐶𝑖 ,𝑛 ,𝑘  is the water soluble OC concentration calculated based on the measured WSOC and the OM:OC per 

factor. From the 𝑂𝐶𝑖 ,𝑛  the part of hydrocarbon like OC as well as the inorganic carbon related to dust were 35 

removed. The carbonate carbon investigation and calculation is discussed in Section 4.3. To define the 

recoveries we used a non-negative multilinear fit. The starting points of the fitting for each 𝑅𝑘  with the 

exception of 𝑅𝑜𝑖𝑙  were obtained from the literature (Bozzetti et al., 2016, Daellenbach et al. 2016 and Vlachou et 

al., 2018) and were randomly varied within their literature range with an increment of 10
-4

. The final 

distributions of the recoveries are shown in the Supplementary (Fig. S5). The recoveries in this study were all 40 
shifted to the lower end of the recoveries reported in the literature. While the reason remains unclear, the water 

solubility of OA is dataset specific therefore we can expect differences to other datasets. Moreover, we re-

measured in a different laboratory the OC concentrations from a subset of 21 samples covering all sites and all 

seasons. The agreement between the two differently determined OC concentrations was excellent (Fig. S6, slope 

= 0.93, R
2
 = 0.99).  45 

4.3 Exploration of the dust factor 

Mineral dust can contain a significant amount of inorganic carbon in the form of CO3
2-

. The water extracts used 

in the offline AMS technique have a pH that is always < 8. Therefore, the CO3
2- 

in our samples is all solubilized 
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into HCO3
- 
(pKa (HCO3

-
/CO3

2-
) = 10.33, Bruice, 2010). The latter is shown to release CO2 when it undergoes 

thermal decomposition on the AMS vaporiser (at 600 °C) (Bozzetti et al., 2017b). Thus, the contribution of 

CO2
+
 to organic aerosols is overestimated and the fraction coming from the inorganic carbon should be removed 

from the OA spectra.  

To remove the influence of the inorganic dust, we estimated the carbonate carbon concentrations (C_CO3) 5 
corrected for the relative ionisation efficiency, as discussed in the Supplementary. This estimated C_CO3 

concentration was compared to measured carbonate on a subset of 19 filter samples. While the agreement 

between measured and estimated concentrations is poor for Tartu, a decent agreement was found for KJ and 

Tallinn, especially given the large uncertainties in both variables (Fig. S7). On an absolute basis, PMF seems to 

overestimate the C_CO3 concentrations by ~20% compared to the measured concentrations.  10 

Ca
2+  

is one of the most common constituents of mineral dust and therefore can be used to trace this source. The 

time series of C_CO3 and Ca
2+

, available for the entire set of samples, displayed in Fig. 6, show that the two 

variables exhibit similar trends (except for Tallinn). Despite the large errors in the C_CO3 estimates, an 

uncertainty weighted correlation analysis (SI and Fig. S8) shows that C_CO3 and Ca
2+

 correlate statistically 

significantly (R=0.4, p-value < 10
-5

) with a slope of 0.2, consistent with C_CO3 and Ca
2+

 being in the form of 15 
calcium bicarbonate.  

We have validated the identity of the dust factor even further, by measuring the same subset of 19 filters with 

the offline AMS technique before and after fumigation with HCl (as described in Zhang et al., 2016). The 

comparison of the mass spectra of fumigated and non-fumigated samples is illustrated in Figure 7 for two 

samples: with high and low contribution of dust. In the example of KJ (05/06/2014) where the dust factor 20 
exhibited the highest contribution, f44 was substantially decreased after fumigation (Fig. 7a). In the case of 

Tallinn (19/01/2014), where the dust factor concentration was negligible, f44 remained stable after fumigation 

(Fig. 7b). Overall, the comparison of the Δf44 modelled (= f44total – f44org) from the initial data set of 150 

filters and the Δf44 measured (=f44non_fum – f44fum) from the subset of 19 filters showed consistent results 

(Fig. 8). Taken together these results provide strong confidence on the nature of the dust factor extracted by 25 
PMF.  

4.4 Seasonal variation of organic aerosol sources 

The sources were quantified after removing the contribution of the dust factor from the total OA. All the factor 

concentrations with their uncertainties averaged per season are presented in Table S3. In general, the relative 

uncertainties decreased with increasing concentrations per factor (Fig. S9). For concentrations above ~1 μg m
-3

 30 
the percentage error became more important than the error related to noise and thus more stable for all factors. 

Consistent with the factor separation and uncertainty analysis above, the factors that were well separated, such 

as SOOA, exhibited low relative uncertainty (0.15), while the factors that were more difficult to extract, such as 

BBOA exhibited higher relative uncertainty (0.45). 

BBOA exhibited high concentrations in Tallinn during winter (on average 3.7 ± 2.7 μg m
-3

) and fall (1.2 ± 0.9 35 
μg m

-3
) and in Tartu (8.4 ± 3.9 and 3.8 ± 1.9 μg m

-3
, winter and fall, respectively) (Fig. 9a, Table S5). In both 

cities BBOA and the marker levoglucosan correlated very well (Fig. 9b) confirming the identity of the factor. 

For KJ the concentrations of BBOA were lower in winter (1.3 ± 0.8 μg m
-3

) as expected, due to the low number 

of residents and low biomass burning activities in the region. At all sites the levoglucosan:BBOA ratio (0.08 for 

KJ, 0.05 for Tallinn and 0.05 for Tartu) assessed in this study was consistent with the one reported in the 40 
neighbouring country,  Lithuania (Bozzetti et al., 2017). Potassium (K

+
), which is often used as a wood burning 

marker, especially for ash, also correlated well with BBOA for Tallinn (R
2
=0.80) and Tartu (R

2
=0.58). Different 

BBOA:K
+
 ratios were used in the past to describe burning conditions (Zotter et al., 2014, Daellenbach et al., 

2018) and higher values were linked to inefficient burning conditions. Here, the BBOA:K
+
 ratio (14.3 for 

Tallinn and 18.1 for Tartu) was in agreement with the one found at Southern Alpine valley sites (Magadino and 45 
San Vittore, Switzerland, Daellenbach et al., 2018) where older stoves are still used. In Estonia more than 80% 

of households use old type stoves for heating purposes (Maasikmets et al., 2015), therefore, BBOA could be 

linked to inefficient residential wood burning. 
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The recognition of PBOA as described in Section 3.2 was also supported by the high correlations of this factor 

with cellulose and erythritol (Fig. 9d). Cellulose is related to plant debris and is typically used as a marker for 

primary biological aerosols (Bozzetti et al., 2016) while erythritol, among other sugar alcohols, reflects airborne 

biogenic detritus (Graham et al., 2002). The seasonal behaviour of PBOA was very similar to the respective 

behaviour of both markers (Fig. 9c) with average spring concentrations of 0.2 ± 0.2 μg m
-3

 for KJ, 1.2 ± 0.8 5 
μg m

-3
 for Tallinn and 0.7 ± 0.4 μg m

-3
 for Tartu. 

SOOA exhibited a clear yearly cycle at all sites with the highest concentrations witnessed in summer and early 

fall (in summer on average 1.8 ± 0.7 μg m
-3

 for KJ, 2.8 ± 0.6 μg m
-3

 for Tallinn and 2.1 ± 0.4 μg m
-3

 for Tartu) 

(Fig. 9e). In previous studies this factor showed an exponential increase (Fig. S10) with temperature and was 

linked to terpene oxidation products (Daellenbach et al. 2017, Leaitch et al., 2011). In another study in an 10 
Alpine valley site, this factor was also found to be 79% non-fossil, supporting the connection to biogenic 

secondary OA (Vlachou et al., 2018). Here, SOOA not only correlated with temperature (Rs = 0.77, Fig. S10) 

but also with two oxidation products of a-pinene, i.e., with pinic acid and even better with MBTCA (Fig. 9f). 

The latter was shown to be produced by reaction of pinonic acid with the OH-radical (Mueller et al., 2012). 

WOOA was more pronounced during fall and winter at all sites with average concentrations in winter of 1.4 ± 15 
0.5 μg m

-3
 for KJ, 2.2 ± 0.8 μg m

-3
 for Tallinn, and 1.5 ± 0.5 μg m

-3
 for Tartu (Fig. 9g). In earlier studies WOOA 

was characterised as non-fossil (Vlachou et al., 2018) and was identified based on its correlation with NH4
+
 

coming mainly from NH4NO3 in winter time (Lanz et al., 2007, Daellenbach et al., 2017). It was also related to 

long-range transported oxygenated OA stemming from anthropogenic emissions during winter, such as biomass 

burning. Also, WOOA demonstrated high correlations with two anthropogenic organic acids: benzoic and 20 
phthalic acid (Fig. 9h), formed via the photo-oxidation of aromatic hydrocarbons, such as toluene and 

naphthalene, and therefore suggested to be tracers for anthropogenic sources (Kawamura and Yasui 2005, 

Deshmukh et al., 2016). Recently, Bruns et al. (2016) found that aromatic compounds, such as benzene and 

naphthalene emitted by wood combustion can indeed produce highly oxygenated SOA. Taking all the above 

into account, it was concluded that WOOA might be linked mostly to aged wood burning OA. 25 

Figure 10 illustrates the relative contributions per factor per site to the total OA (all averaged contributions per 

season per factor with their uncertainties are shown in Table S6). Out of the primary sources, the major 

contributor was BBOA during winter and fall (on average and one standard deviation: 39% ± 16% and 27% ± 

13% in Tallinn and 73% ± 21% and 53% ± 14% in Tartu). However, in KJ during winter and fall WOOA was 

the dominant source (36% ± 14% and 39% ± 13%, respectively) indicating that for this site regional transport of 30 
OA is important. In spring, PBOA was the major source in Tartu (21% ± 8%) while in Tallinn BBOA and 

SOOA were the dominating sources during that season (30% ± 14% and 18% ± 5%, respectively). This could be 

due to the fact that temperatures in early spring are still low (2 °C on average in Tallinn in March) and wood 

burning for residential heating is still widely used. Towards the end of spring (15 °C on average in Tallinn in 

May) the rising temperature favours the biogenic emissions. In KJ, the most important source was oil OA (36% 35 
± 14% in spring), most possibly coming from the oil shale industries in the region. The presence of the oil factor 

at the other two sites could be an indication that this factor is mixed with coal or waste burning, as also found by 

Elser et al. (2016). Besides, the oil OA profile resembled the coal profile identified in Cork city, Ireland 

(Dall’Osto et al., 2013). During the summer months and early fall, SOOA was prevailing over all sources at all 

sites, with 26% ± 5% in KJ, 41% ± 7% in Tallinn and 35% ± 7% in Tartu. Even though KJ is highly 40 
industrialised, SOOA can still be related to the production of secondary OA from biogenic volatile organic 

compounds. The least significant source, especially in Tartu, with rather stable seasonal behaviour was SCOA. 

The yearly average contribution of SCOA was 12% ± 4% in KJ, 14% ± 5% in Tallinn and 4% ± 2% in Tartu. 

Although it is generally found that the secondary sources are prevailing over the primary, here the primary 

sources seem to dominate the secondary ones. This is also observed in other European sites such as Payerne 45 
(Bozzetti et al., 2016 for coarse particles) or Magadino especially in winter (Vlachou et al., 2018 for PM10) as 

well as in China, Beijing (Zhang et al., 2017 for PM1). 
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5. Conclusions 

The offline AMS technique was applied on a set of 150 filter samples covering a yearly cycle at three sites in 

Estonia. The uncertainties of the PMF solution were assessed by bootstrap analysis. In order to identify the 

factors the Spearman R (Rs) coefficients between base case time series and bootstrap run time series (“ts”) as 

well as base case profiles and bootstrap run profiles (“pr”) were monitored. The results showed that the retained 5 
solution space if one follows the “ts” or the “pr” sorting method was very similar. Weighting with the Rs 

between external markers and bootstrap run increased our confidence towards the solution space. The source 

apportionment results revealed four primary OA sources, two secondary OA and a dust factor. The dust factor 

was identified by measurements of calcium carbonate as well as by acidification with HCl of a selected batch of 

filters. Out of the primary sources, three had an anthropogenic influence. BBOA was mainly present in winter 10 
and autumn in Tallinn and Tartu, the two largest cities of Estonia, where residential heating activities are 

common. SCOA was mostly important in winter in Tallinn and KJ in contrast to Tartu. The third anthropogenic 

primary factor was oil OA which exhibited the highest concentrations in KJ, as expected. The reason why this 

factor was evident in Tallinn and Tartu could be that it may include coal combustion for residential heating 

purposes. PBOA was the only primary OA not related to anthropogenic emissions and was prevailing in spring 15 
at all sites. The two oxygenated OA factors were separated according to their seasonal behaviour: WOOA was 

linked to anthropogenic wood burning activities as it dominated in winter and autumn at all sites and also 

correlated with phthalic and benzoic acid. SOOA was significant during summer at all sites and was related to 

biogenic emissions and strong aging as it was highly correlated with a second generation oxidation product of a-

pinene. 20 
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Table 1. Detailed overview of the additional measurements. 

Method Compounds Number of filters 

Ion chromatography (Jaffrezo et 

al., 1998) 

 

K
+
, Na

+
, Mg

2+
, Ca

2+
, NH4

+
, Cl

-
, 

NO3
-
, SO4

2-
 and methane sulfonic 

acid 

All (150) 

Liquid chromatography-

electrospray ionisation mass 

spectrometry (Jacob et al., 2019) 

 

Organic acids (e.g., benzoic acid, 

pinic acid) 

69 (Tallinn) 

High performance liquid 

chromatography with pulsed 

amperometric detection (Waked et 

al., 2014) 

 

Anhydrous sugars 

(e.g.,levoglucosan, mannosan) and 

sugar alcohols (e.g.,erythritol, 

mannitol) 

150 

Enzymatic conversion of cellulose 

(Kunit and Puxbaum, 1996) 

 

Cellulose 69 (Tallinn) 

Sunset EC/OC analyser (Birch and 

Carry, 1996) with the EUSAAR2 

protocol (Cavalli et al., 2010) 

 

Organic (OC) and elemental (EC) 

carbon 

150 

Total organic carbon analyser (Piot 

et al., 2012) with the use of 

catalytic oxidation and detection of 

CO2 with a non-dispersive infrared 

detector 

 

Thermal Optical 

Transmittanceusing Sunset EC/OC 

analyser (Karanasiou et al., 2011) 

Water soluble OC (WSOC) 

 

 

 

 

CO3
2-

 

150 

 

 

 

 

19 (from all sites) 
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Figure 1. Factor profiles (a) and time series (b) of the seven factor solution: Biomass burning OA (BBOA), 

sulfur-containing OA (SCOA), primary biological OA (PBOA), Industrial/ Oil combustion OA (OilOA), winter 

oxygenated OA (WOOA), summer oxygenated OA (SOOA) and a dust related OA (Dust). Note that the water 5 
soluble parts are illustrated here. 

Figure 2. Explanatory tables for the factor sorting based on the time series: (a) accepted bootstrap iteration 

where all highest correlations (Rs) lay in the diagonal, (c) failure to resolve SCOA as for this bootstrap iteration 

both factors 2 and 7 showed the highest correlation with dust factor. The respective tables for the case of 10 
profiles are in (b) and (d). Note the different scales of Rs for the profiles. 
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Figure 3. Solution space per factor defined by investigation of the correlation (Rs) between base case time series 

and bootstrap runs (bottom x-axis) and external markers and bootstrap runs (y-axis): BBOA with levoglucosan 

(a), PBOA with cellulose (b), WOOA with phthalic acid (c) and SOOA with MBTCA (d). The retained 

solutions are indicated in red and the rejected ones in grey. The points in black represent the runs where the 5 
specific factor was not resolved at all. Each PDF (top x-axis) includes the range of R coming from the 

correlations between the time series of the base case factors with their respective markers. 
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Figure 4. Scatter plots of Rsboots between markers and bootstrap runs and Rsbase between markers and base cases 

per factor: BBOA with levoglucosan (a), PBOA with cellulose (b), WOOA with phthalic acid (c) and SOOA 

with MBTCA (d) for the “ts” sorting method. The black points that lie below the 1σ line (in solid dark red) 

indicate true negative solutions, whereas the black points within 2σ indicate false negative solutions. The red 5 
points below 1σ represent the false positive solutions, while the red points above are the true positive solutions. 

The respective scatter plots for the “pr” method are shown in (e), (f), (g) and (h). Note the different Rs scales per 

factor. 

 

Figure 5. (a) Scatter plots between BBOA time series averaged (avg) over the common solutions coming from 10 
both the time series (“ts”) and profile (“pr”) sorting method plotted in the x-axis, and plotted in the y-axis the 

BBOA time series averaged over the solutions coming from the “ts” method in red, from the “pr” in black cross 

and from the weighted average based on the marker, here levoglucosan, in blue. The respective scatter plot for 

the standard deviation (stdev) is shown in (b). 
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Figure 6. Time series of the inorganic dust factor (C_CO3) with interquartile ranges (Q25 and Q75) and of Ca
2+ 

per site. 

 

Figure 7. Example mass spectra from two fumigated and non-fumigated samples, with a high (KJ 05/06/2014, 5 
a), and a low dust concentration (Tallinn 19/01/2014, b). 

 

 

Figure 8. Scatter plot between the calculated Δf44 and the measured Δf44 coming from dust.  
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Figure 9. Factor median and external marker concentration time series for all three sites; (a) BOOA and 

levoglucosan (note the change of the scale for KJ), (c) PBOA, cellulose and erythritol, (note the change of the 

scale for KJ) (e) SOOA, pinic acid and MBTCA and (g) WOOA, benzoic and phthalic acid, with the respective 

scatter plots between factors and external markers in (b), (d), (f) and (h). The colours red, green and blue denote 5 
the site (KJ, Tallinn and Tartu) and the markers in light and dark grey denote the concentrations of the external 

markers. The shaded areas represent the first (Q25) and third (Q75) quartiles. 
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Figure 10. Seasonally averaged relative contributions of each factor to the total OA per site. The red and black 

boxes indicate the contributions of primary and secondary OA, respectively.  
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