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Abstract. This study assesses the impact of different state-of-the-science global biospheric CO2 flux models, when applied as prior 15 

information, on inverse modeling “top-down” estimates of terrestrial CO2 fluxes obtained when assimilating Orbiting Carbon 16 

Observatory 2 (OCO-2) observations. This is done with a series of Observing System Simulation Experiments (OSSEs) using 17 

synthetic CO2 column-average dry air mole fraction (XCO2) retrievals sampled at the OCO-2 satellite spatio-temporal frequency. 18 

The OSSEs used the four-dimensional variational (4D-Var) assimilation system with the GEOS-Chem global chemical transport 19 

model (CTM) to estimate CO2 net ecosystem exchange (NEE) fluxes using synthetic OCO-2 observations. The impact of biosphere 20 

models in inverse model estimates of NEE is quantified by conducting OSSEs using the NASA-CASA, CASA-GFED, SiB-4 and 21 

LPJ models as prior estimates and using NEE from the multi-model ensemble mean of the Multiscale Synthesis and Terrestrial 22 

Model Intercomparison Project as the “truth”. Results show that the assimilation of simulated XCO2 retrievals at OCO-2 observing 23 

modes over land results in posterior NEE estimates which generally reproduce “true” NEE globally and over terrestrial TransCom-24 

3 regions that are well-sampled. However, we find larger spread among posterior NEE estimates, when using different prior NEE 25 

fluxes, in regions and seasons that have limited OCO-2 observational coverage and a large range in “bottom-up” NEE fluxes. 26 

Posterior NEE estimates had seasonally-averaged posterior NEE standard deviation (SD) of ~10% to ~50% of the multi-model-27 

mean NEE for different TransCom-3 land regions with significant NEE fluxes (regions/seasons with a NEE flux ≥ 0.5 PgC yr-1). 28 

On a global average, the seasonally-averaged residual impact of the prior model NEE assumption on posterior NEE spread is ~10-29 

20% of the posterior NEE mean. Additional OCO-2 OSSE simulations demonstrate that posterior NEE estimates are also sensitive 30 

to the assumed prior NEE flux uncertainty statistics, with spread in posterior NEE estimates similar to those when using variable 31 

prior model NEE fluxes. In fact, the sensitivity of posterior NEE estimates to prior error statistics was larger compared to prior 32 

flux values in some regions/times of the Tropics and Southern Hemisphere where sufficient OCO-2 data was available and large 33 

differences between the prior and “truth” were evident. Overall, even with the availability of dense OCO-2 data, noticeable residual 34 

differences (up to ~20-30% globally and 50% regionally) in posterior NEE flux estimates remain that were caused by the choice 35 

of prior model flux values and the specification of prior flux uncertainties. 36 
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1 Introduction 1 

Carbon dioxide (CO2) is the most important greenhouse gas (GHG) contributing to climate change on a global scale (IPCC, 2014). 2 

The anthropogenic emission of CO2, primarily from fossil fuel usage, has led to average global CO2 mixing ratios reaching 3 

historically high levels of > 400 parts per million (ppm) (Seinfeld and Pandis, 2016). In addition to fossil fuel emissions, the 4 

processes involved in the exchange of carbon between the atmosphere and terrestrial biosphere are a major factor controlling 5 

atmospheric concentrations of CO2 (e.g., Schimel et al., 2001) with an estimated global biosphere sink of ~3.0 PgC yr-1 (Le Quéré 6 

et al., 2018). However, current estimates of regional-scale atmosphere-terrestrial biosphere CO2 exchange have large uncertainties 7 

(Schimel et al., 2015). “Bottom-up” techniques typically simulate the atmosphere-terrestrial biosphere exchange based on our 8 

understanding of these complex exchange processes and by constraining these estimates with remote-sensing inputs and limited 9 

measurements available for evaluation. Previous studies inter-comparing several of the most commonly used biospheric flux 10 

models (Heimann et al., 1998, Huntzinger et al., 2012; Sitch et al., 2015; Ott et al., 2015; Ito et al., 2016) and multi-model ensemble 11 

integration projects (Schwalm et al., 2015) reveal a large spread among global/regional “bottom-up” terrestrial biospheric flux 12 

estimates and the sub-components such as ecosystem primary production and respiration (Huntzinger et al., 2012).  13 

 An alternate approach to estimate biospheric CO2 fluxes is through “top-down” estimation techniques using inverse 14 

models with highly accurate in situ data (e.g., Baker et al., 2006b) or dense and globally distributed satellite data (e.g., Chevallier 15 

et al., 2005). The Orbiting Carbon Observatory-2 (OCO-2) satellite, launched in 2014, is the space-borne sensor with the finest 16 

resolution and highest sensitivity of CO2 in atmospheric boundary layer to date (Crisp et al., 2017; Eldering et al., 2017a). Studies 17 

applying OCO-2 retrievals revealed the ability to investigate novel aspects of the carbon cycle (e.g., Eldering et al., 2017b; Liu et 18 

al., 2017), however, the “top-down” estimates of surface CO2 fluxes from numerous inverse modeling systems, using identical 19 

OCO-2 observations, show differences among optimized/posterior regional CO2 fluxes (Crowell et al., in prep). Previous studies 20 

investigating CO2 flux inversions (e.g., Peylin et al., 2013; Chevallier et al., 2014; Houweling et al., 2015) suggest that this spread 21 

among optimized CO2 flux estimates could be due to numerous factors, such as the accuracy and precision of observation data 22 

(Rödenbeck et al., 2006), imperfect observation coverage (Liu et al., 2014; Byrne et al., 2017), data density (Law et al., 2003; 23 

Rödenbeck et al., 2003) and poorly characterized measurement error covariance (Law et al., 2003; Takagi et al., 2014). Variations 24 

in inverse estimation setups between modeling groups, such as model transport (Chevallier et al., 2010; Houweling et al., 2010; 25 

Basu et al., 2018) and inversion methods (Chevallier et al., 2014; Houweling et al., 2015), could also lead to inter-model spread in 26 

posterior estimates.  27 

 In addition to the variables listed above, the assumed prior fluxes and the associated prior error covariance can also impact 28 

“top-down” global/regional CO2 flux estimates (e.g., Gurney et al., 2003). Gurney et al. (2003) assessed the sensitivity of CO2 flux 29 

inversions to the specification of prior flux uncertainty and found that the posterior estimates were sensitive to the prior fluxes over 30 

regions with limited in situ observations. In addition, Wang et al. (2018) found that optimal CO2 flux allocation over land versus 31 

ocean, using satellite and/or in situ data assimilations, is sensitive to the specification of prior flux uncertainty. Furthermore, 32 

Chevalier et al. (2005) and Baker et al. (2006a; 2010) highlighted the importance of accurate assumptions of prior flux uncertainty 33 

by conducting four-dimensional variational (4D-Var) assimilation of satellite column retrievals of CO2. However, to date, there 34 

are no controlled experimental studies to isolate and quantitatively assess the impact of assumed prior fluxes and prior uncertainty 35 

to inverse estimates of biospheric CO2 fluxes using satellite observations.  36 

 Therefore, during this study we conduct a series of controlled experiments to quantitatively assess the impact of assumed 37 

prior fluxes and prior uncertainty on global and regional CO2 inverse model flux estimates when assimilating OCO-2 data. In order 38 

to achieve this, a series of Observing System Simulation Experiments (OSSEs) are conducted using synthetic OCO-2 observations 39 

in the GEOS-Chem 4D-Var assimilation system, with four different prior “bottom-up” NEE CO2 flux estimates. Section 2 of this 40 
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study describes the methods applied during this work including models and model input, synthetic OCO-2 data and the inversion 1 

technique applied in the OSSEs. Section 3 presents the forward and inverse model results of simulated atmospheric CO2 2 

concentrations and inferred posterior flux estimates. Finally, our concluding remarks and discussion are described in Section 4. 3 

2 Methods 4 

To quantify the impact of prior model NEE predictions on posterior estimates of biospheric CO2 fluxes, a series of CO2 forward 5 

and inverse model simulations were conducted with four different state-of-the-science biosphere models. OSSE simulations were 6 

designed to isolate the differences in posterior NEE estimates caused by the selection of prior model biospheric CO2 fluxes and 7 

uncertainties when assimilating OCO-2 observations. The OSSE framework, input variables, inversion technique and analysis 8 

method are presented below. 9 

2.1 Prior NEE fluxes 10 

NEE is the net difference of gross primary production (GPP) and total ecosystem respiration (Re), which itself is the sum of 11 

autotrophic respiration (Ra) and heterotrophic respiration (Rh). NEE, estimated by terrestrial biospheric CO2 flux models, is 12 

commonly applied in CTMs to simulate atmosphere-terrestrial biosphere carbon exchange. Many biosphere carbon models 13 

estimate GPP and Re, however, some models simulate net primary productivity (NPP), which is defined as the difference between 14 

GPP and Ra. In this study, we apply year-specific NEE fluxes calculated from four state-of-the-science biosphere models: 1) NASA 15 

Carnegie Ames Stanford Approach (NASA-CASA), 2) CASA-Global Fire Emissions Database (CASA-GFED), 3) Simple-16 

Biosphere model version 4 (SiB-4) and 4) Lund‐Potsdam‐Jena (LPJ). It should be noted that the prior biosphere models used in 17 

this study include only NEE and a single dataset for wild fire and fuel wood burning CO2 emissions was added separately (see 18 

Sect. 2.3). The models applied during this study represent a range of diagnostic approaches, from models predicting biospheric 19 

CO2 fluxes using remotely-sensed data (e.g., Fraction of Absorbed Photosynthetically Active Radiation, Leaf Area Index, 20 

Normalized Difference Vegetation Index) to fully prognostic models unconstrained by observations. In addition, we selected both 21 

balanced/neutral (SiB-4) and non-balanced (NASA-CASA, CASA-GFED, LPJ) biospheric fluxes in our OSSEs in order to 22 

represent the range of prior models currently being used in CO2 inversion modeling studies. 23 

 CASA is an ecosystem model predicting NPP based on light use efficiency and Rh based on soils/plant production 24 

information (Potter et al., 1993; 2012b). The NASA-CASA model is a version of the original CASA model (Potter et al., 1993) 25 

currently being developed at NASA Ames Research Center (Potter et al., 2003; 2007; 2009; 2012a; 2012b). NASA-CASA 26 

specifically utilizes data on global vegetation cover (enhanced vegetation index, surface solar irradiance data) and land disturbances 27 

retrieved from the NASA Moderate Resolution Imaging Spectroradiometer (MODIS) satellite (Potter et al., 2012b). In addition to 28 

Rh, NASA-CASA includes redistributed crop harvest CO2 emissions to the atmosphere (Potter et al., 2012b). The CASA-GFED 29 

model is a different version of the original CASA model and is described in Randerson et al. (1996) with subsequent versions 30 

being described in recent literature (van der Werf et al., 2004; 2006; 2010). NASA-CASA and CASA-GFED differ in the use of 31 

input parameters and some of the parameterizations (see Ott et al. (2015) for further description).  32 

 The SiB-4 model was developed at Colorado State University (Sellers et al., 1986; Denning et al., 1996) with details of 33 

the newest versions described in Haynes et al. (2013). This model is a mechanistic, prognostic land surface model that integrates 34 

heterogeneous land cover, environmentally responsive prognostic phenology, dynamic carbon allocation and cascading carbon 35 

pools from live biomass to surface litter and soil organic matter (Haynes et al., 2013; Baker et al., 2013; Lokupitiya et al., 2009; 36 

Schaefer et al., 2008; Sellers et al., 1996). By combining biogeochemical, biophysical and phenological processes, SiB-4 predicts 37 

vegetation and soil moisture states, land surface energy and water budgets and the terrestrial carbon cycle. Rather than relying on 38 
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satellite input data, SiB-4 fully simulates the terrestrial carbon cycle by using the carbon fluxes to determine the above and below-1 

ground biomass, which in turn feed back to impact carbon assimilation and respiration. Similar to NASA-CASA, the SiB4 model 2 

redistributes crop harvest CO2 emission to the atmosphere. Note that we use a balanced (neutral) biospheric NEE flux (balanced 3 

biosphere for the 1998-2017 time period) for the SiB-4 model. 4 

 The LPJ model is a process-based dynamic global vegetation model (Sitch et al., 2003; Polter et al., 2014). The LPJ-wsl 5 

dynamic global vegetation model (Sitch et al., 2003) was used to simulate NEE using meteorological data from the Climate 6 

Research Unit (Harris et al., 2013). LPJ is fully prognostic, meaning that the establishment, growth and mortality of vegetation are 7 

represented by first-order physiological principles. The model includes nine plant functional types distinguished by their 8 

phenology, photosynthetic pathway and physiognomy. Phenology status is determined daily and photosynthesis is estimated using 9 

a modified Farquhar scheme (Haxeltine and Prentice, 1996). NPP is calculated from photosynthesis after accounting for Ra and 10 

reproductive allocation. The LPJ-wsl model has been evaluated in several benchmarking activities for stocks and fluxes (Peng et 11 

al., 2015; Sitch et al., 2015). 12 

 In order to provide a “true” NEE flux for the OSSEs conducted in this study (Sect. 2.4), we use the multi-model ensemble 13 

NEE mean from the Multiscale Synthesis and Terrestrial Model Intercomparison Project (MsTMIP) (Huntzinger et al., 2013; 2018; 14 

Fisher et al., 2016a; 2016b). The MsTMIP NEE fluxes are from a weighted ensemble mean of 15 biosphere models (Schwalm et 15 

al., 2015) for the year 2010. Here we apply the MsTMIP data for year 2010 as the “truth” with year-specific prior model predictions 16 

for 2015. This procedure is justified in our case as within an OSSE framework there needs to be a difference between “true” and 17 

prior fluxes, as long as the “true” values are realistic in nature. The MsTMIP ensemble NEE mean represents a summary over all 18 

15 models which smooths out errors particular to any given model. This “true” NEE flux is used to produce the synthetic OCO-2 19 

observations applied in this study (described further in Sect. 2.4.3).  20 

 The four prior and the “true” NEE fluxes were regridded from their native horizontal resolutions to the grid resolution of 21 

the inverse model simulations (4.0° latitude × 5.0° longitude). The MsTMIP NEE fluxes are provided as 3-hourly averages and 22 

the four year-specific prior models were provided as monthly-mean GPP or NPP and Re or Rh. Therefore, we imposed diurnal 23 

(hourly) and daily variability to these four prior models following the approach in CarbonTracker CT2016 24 

(http://carbontracker.noaa.gov), which is based on Olsen and Randerson (2004). This hourly/daily NEE variability for each prior 25 

model was calculated using the downward solar radiation flux and 2-meter air temperature data from the GEOS-FP (Goddard Earth 26 

Observing System Model, Version 5 "Forward Processing") meteorological product and monthly-averaged GPP and Rh from the 27 

respective model. We allow the “true” and prior models to have different diurnal variability in order to represent a realistic scenario, 28 

as prior models will differ some from the actual diurnal variability of NEE in nature. Table 1 shows the global annual NEE flux 29 

estimates for the four prior models and the “truth”. From this table it can be seen that the MsTMIP product shows a strong annual 30 

global sink of -4.31 PgC yr-1. NASA-CASA and CASA-GFED predict a global sink of ~2 PgC yr-1 and differ by ~0.6 PgC yr-1. 31 

SiB-4 NEE predicts a source of ~1 PgC yr-1 and the LPJ model predicts a strong sink of ~5.5 PgC yr-1. Section 3.1 further describes 32 

the spatio-temporal differences of the NEE fluxes between these four prior models and the “truth”. 33 

2.2 GEOS-Chem model 34 

The GEOS-Chem chemical transport model (CTM) (http://geos-chem.org; Bey et al., 2001) used in this study has the capability to 35 

run forward CO2 simulations (Suntharalingam et al., 2004; Nassar et al., 2010) and corresponding adjoint model calculations 36 

(Henze et al., 2007; Liu et al., 2014). In this study, we use the GEOS-Chem adjoint version 35, which is compatible with version 37 

8-02 of the GEOS-Chem forward model. Liu et al. (2014) tested the accuracy of the GEOS-Chem CO2 adjoint system, which has 38 

been used for several CO2 inverse modeling studies (e.g., Liu et al., 2017; Bowman et al., 2017; Deng et al., 2014). The model is 39 
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driven with assimilated meteorological fields from the GEOS-FP model of the NASA Global Modeling Assimilation Office 1 

(GMAO). The GEOS-FP meteorology fields have a native horizontal resolution of 0.25° × 0.3125° and 72 native hybrid sigma-2 

pressure vertical levels from the Earth’s surface to 0.01 hPa. We conduct simulations with a coarser spatial resolution (4.0° × 5.0°) 3 

with 47 reduced vertical levels to attain reasonable computational efficiency. 4 

2.3 Non-NEE CO2 fluxes  5 

To simulate concentrations of atmospheric CO2, we used several land and ocean CO2 flux inventories in addition to the NEE 6 

estimates from the prior biosphere models (global annual budgets listed in Table 1). This study used the year-specific fossil fuel 7 

and cement production inventory from the Open-source Data Inventory for Anthropogenic CO2 (ODIAC-2016) developed by Oda 8 

et al. (2018). Following the approach of Nassar et al. (2013), the monthly ODIAC-2016 inventory is converted from the native 9 

temporal variability into diurnal (hourly) and weekday/weekend variability (courtesy: Sourish Basu and the OCO-2 Science Team). 10 

Wild fire emissions and fuel wood burning emissions were taken from the 3-hourly varying Global Fire Emissions Database 11 

(GFED3) database. Shipping emissions are from the International Comprehensive Ocean-Atmosphere Data Set (ICOADS) 12 

(Corbett and Koehler, 2003; 2004) and aviation emissions are from Aviation Emissions Inventory Code (AEIC) inventory (Olsen 13 

et al., 2013). We used 3D chemical production of CO2 from the oxidation of carbon monoxide, methane and non-methane volatile 14 

organic compounds (Nassar et al., 2010). The shipping, aviation and 3D chemical source are climatological and are taken from the 15 

Bowman (2017) dataset. To simulate oceanic CO2 fluxes, we apply the year-specific 3-hourly posterior estimates from the 16 

CarbonTracker 2016 (CT2016) model constrained with in situ data (Peters et al., 2007; http://carbontracker.noaa.gov). All emission 17 

inventories, besides NEE fluxes, are kept constant between the different inverse model simulations.  18 

2.4 Observing System Simulation Experiments (OSSEs) 19 

2.4.1 OSSE framework 20 

This study conducted several OSSEs to assess the impact of prior biospheric CO2 models and associated prior uncertainty 21 

specifications on posterior estimates of NEE when assimilating OCO-2 data. To assess the impact of prior fluxes, we conduct four 22 

baseline OSSEs (using the four prior biosphere models) assimilating synthetic land nadir (LN) and land glint (LG) observations 23 

together, plus an additional four OSSEs using just ocean glint (OG) observations. These OSSE simulations were designed in such 24 

a way that the differences in posterior NEE estimates are due solely to the choice of prior biospheric flux (e.g., identical initial 25 

atmospheric CO2 conditions, non-NEE fluxes, OCO-2 sampling frequency, observational data uncertainty, etc.). Furthermore, to 26 

assess the impact of prior uncertainty specifications, we conduct two additional OSSEs (in addition to our baseline prior uncertainty 27 

assumption described in Sect. 2.4.5) with synthetic LN and LG observations using prior error set uniformly to 10% and 100% of 28 

a particular prior NEE flux (CASA-GFED). Table 2 shows the summary of OSSEs conducted for this study. During all OSSE 29 

simulations NEE and oceanic CO2 fluxes are optimized, with all other sources kept constant, in order to be consistent with the 30 

methods commonly used by inverse modeling systems focused on estimating NEE. We optimize oceanic fluxes together with NEE, 31 

although the same ocean fluxes were used for the “truth” and the prior in all OSSE simulations (Sect. 2.3) for simplicity and 32 

because the terrestrial NEE fluxes are the focus of this work. It is noteworthy that the assimilation of land or ocean data in fact do 33 

not produce substantial deviations from the “truth” over the TransCom-3 oceanic regions (Fig. S1). For all OSSE simulations, an 34 

assimilation window of 18 months covering the period from August 1, 2014 to January 31, 2016 was applied. NEE/oceanic fluxes 35 

are optimized for every month of the assimilation window at each surface grid box in the GEOS-Chem model. The analysis of 36 

prior and posterior NEE fluxes is for all months in 2015, treating the other months as spin-up and spin-down periods.  37 
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2.4.2 Initial CO2 concentrations 1 

We use identical initial atmospheric concentrations of CO2 at August 1, 2014 for: 1) the GEOS-Chem forward model simulations 2 

generating synthetic XCO2 using the “true” NEE fluxes (Sect. 2.4.3) and 2) for all the OSSEs using variable prior biosphere model 3 

predictions. The initial CO2 concentrations were generated by running the GEOS-Chem forward model for two years using the 4 

“true” MsTMIP NEE and other non-NEE CO2 sources. The restart file used for this two year forward model run was taken from 5 

an earlier GEOS-Chem model simulation constrained with in situ observations (personal communication from Ray Nassar) in order 6 

to represent a realistic initial condition.  7 

2.4.3 Synthetic OCO-2 retrievals 8 

In this study, we used synthetic satellite data that is directly representative of version 8 of the OCO-2 product. The OCO-2 satellite 9 

sensor is in sun-synchronous polar orbit with a repeat cycle of 16 days and a local over-pass time in the early afternoon (Crisp et 10 

al., 2017). OCO-2 has three different viewing modes: soundings over land from LN and LG and over oceans from OG. The 11 

algorithm of O’Dell et al. (2012) is used to retrieve column-average dry air mole fraction of CO2 (XCO2) and other retrieval 12 

variables. OCO-2 XCO2 is retrieved using the following equation using a prior CO2 vertical profile (𝐜a) and prior CO2 column 13 

(XCO2 (𝑎)) value,  14 

 XCO2 =  XCO2 (𝑎) + 𝐚T(𝐜 −  𝐜a)      (1) 15 

where 𝐜 is the true profile of CO2 concentrations, a is the averaging kernel vector. The individual soundings of OCO-2 are at a 16 

fine-resolution (24 spectra per second with < 3 km2 spatial resolution per sounding), leading to a very large data volume (Crisp et 17 

al., 2017). This level of detail is lost when the measurements are used in global inverse models with much coarser spatial resolution, 18 

with numerous individual OCO-2 soundings occur in a single model grid cell. In addition, each sounding does not really provide 19 

an independent piece of information to the inversion system due to spatial and temporal error correlations. Therefore, we use 10-20 

sec averages of the individual XCO2 soundings similar to those developed/described in Basu et al. (2018), however, from an 21 

updated version with file name: OCO2_b80_10sec_WL04_GOOD_v2.nc. This 10-sec data contains averages of retrievals with a 22 

“GOOD” quality flag and Warn Level from 1 to 4. Note that in this study we do not use actual retrieved 10-sec XCO2 values for 23 

our OSSEs, however, synthetic XCO2 data were generated corresponding to the spatio-temporal sampling frequency of version 8 24 

OCO-2 10-sec data. The synthetic 10-sec XCO2 data is calculated with the CO2 concentration profile simulated using the GEOS-25 

Chem forward model (using MsTMIP as the NEE flux model). In this manner we produced synthetic XCO2 data that is 26 

representative of the “true” atmosphere corresponding to the “true” NEE fluxes used in this study. We archive these synthetic 27 

XCO2 data and applied them for all OSSEs conducted.  28 

2.4.4 Inverse modeling approach 29 

The transport of atmospheric CO2 is simulated using GEOS-Chem along with prescribed surface fluxes as input data (see Table 30 

1). Subsequently, the GEOS-Chem 4D-Var inverse modeling system assimilates synthetic OCO-2 XCO2 data to estimate the 31 

posterior/optimized monthly-mean NEE and oceanic fluxes at each surface grid of the model. The GEOS-Chem adjoint system 32 

applies the L-BFGS numerical optimization algorithm with a no-bound option (Liu and Nocedal, 1989). Posterior monthly-33 

averaged NEE/oceanic fluxes (x) are inferred for each surface model grid by optimizing a vector of scaling factors σj for the 𝑗th 34 

model grid, 35 

 xj= σj xa,j        (2) 36 
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where  𝐱a represents the monthly-mean prior NEE/oceanic fluxes. Scaling factors are assumed to be unity at the first iteration (that 1 

is, prior NEE flux itself is used). The inversion system, as described below, optimizes the scaling factor applied to the monthly-2 

mean fluxes and the posterior scaling factors are then used to scale prior fluxes to infer posterior CO2 fluxes.  3 

 For each iteration, the inversion system uses the forward model simulated profiles of CO2 concentrations mapped to OCO-4 

2 retrieval levels (f(x)) in each model grid in order to compare with the synthetic OCO-2 observations (𝐲). The observation operator 5 

(M) represents the model simulated XCO2 corresponding to each synthetic OCO-2 retrieval,  6 

 M =  Ma+ 𝐚T (𝐟(𝐱) −  𝐲a)       (3) 7 

where Ma is the prior XCO2 used in the retrieval of the OCO-2 XCO2 product and 𝐲a is the corresponding prior profile of CO2 8 

concentrations assumed in the retrieval. The optimization approach used in this work defines the 4D-Var cost function (J) as,  9 

 J(𝛔) =
1

2
∑ (Mi − 𝐲i)

T𝐑i
−1(Mi − 𝐲i) +i  

1

2
(𝛔 − 𝛔a)T𝐏−1(𝛔 − 𝛔a)  (4) 10 

where 𝐲i is the vector of synthetic OCO-2 XCO2 data across the assimilation window, with ‘i’ being the number of XCO2 data. 11 

Furthermore, R and P are the observational error covariance matrix and prior error covariance matrix, respectively. 12 

2.4.5 Prior flux uncertainty 13 

For a perfect optimization, the prior error covariance matrix (P) assumed in the inversion should equal the uncertainty of the prior 14 

model used. However, the estimation of prior error statistics is a challenging task due to the lack of flux evaluation data. Previous 15 

studies have used a range of techniques to characterize prior error covariance: by developing the full error covariance matrix with 16 

assumed error correlations (Basu et al., 2013), based on a fraction of heterotrophic respiration (Basu et al., 2018), conducting 17 

Monte Carlo simulations (Liu et al., 2014), using standard deviations and absolute differences between several different prior flux 18 

models (Baker et al., 2006a; 2010) and applying globally uniform prior flux uncertainty values to satisfy the posterior 19 

𝜒2(normalized cost function) = 1 criteria (Deng et al., 2014). During this study, a 1σ standard deviation (SD) of the four prior 20 

biosphere models (see Sect. 3.1 for the description of SD values) is considered to be the measure of uncertainty in the prior 21 

knowledge of “bottom-up” model predicted biospheric CO2 fluxes. The SD of the four prior NEE estimates is applied in the prior 22 

error covariance matrix and no spatial or temporal correlations are taken in to account. This assumption is reasonable as optimized 23 

fluxes are at coarse spatio-temporal scales (monthly mean fluxes at horizontal resolutions of > 400 km2) and is representative of 24 

the majority of inverse modeling studies assimilating CO2 satellite data (e.g., Baker et al., 2010; Liu et al., 2014; Deng et al., 2014). 25 

Finally, since the inverse modeling system applied in this work optimizes scaling factors, we use the square of the fractional prior 26 

error in the P matrix, where the fractional error is calculated for each individual prior model as the SD of the four prior models 27 

divided by the absolute value of the NEE magnitude. For generating prior error for the oceanic fluxes, we follow the same method 28 

we adopted for generating prior errors in NEE. The SD of four different state-of-the-science oceanic CO2 flux datasets (NASA-29 

CMS CO2 oceanic flux from Bowman (2017), CarbonTracker 2016 prior ocean data (CT2016; http://carbontracker.noaa.gov), 30 

Takahashi et al. (2009) and Landschützer et al. (2016; 2017)) was calculated to generate prior error values.  31 

2.4.6 XCO2 uncertainty 32 

As described in Sect. 2.4.3, the synthetic XCO2 used in this study is calculated at the spatio-temporal sampling frequency of OCO-33 

2 10-sec average dataset. Although we use synthetic XCO2, we apply the same observation error statistics generated with the actual 34 

OCO-2 XCO2 10-sec dataset in order to develop the observational error covariance matrix (R). The final observation error for the 35 

10-sec average data is generated as a quadratic sum of the retrieval error from individual OCO-2 soundings, 10-sec averaging error, 36 

and a ‘model representation error’ as described in Basu et al. (2018). Similar to prior error statistics, we neglect observation error 37 

correlations and assume a diagonal observational error covariance. No random perturbations were added to the synthetic XCO2 38 
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used in this study, as the goal of this work was not to quantify the analytical posterior flux uncertainty but instead was aimed to 1 

analyze the spread among posterior NEE estimates. We note that other inverse modeling groups assimilating OCO-2 data also do 2 

not add random perturbations to the data and use the same error statistics generated along with the OCO-2 10-sec product that are 3 

applied in this study (e.g., Basu et al., 2018; Crowell et al., in prep). During this study the square of the observation error for the 4 

10-sec average data was applied as the diagonal in the R matrix. From our initial OSSE tests it was determined that the use of 10-5 

sec error statistics led to posterior 𝜒2 (normalized cost function) values that were much lower than unity. Therefore, we divided 6 

the 10-sec error values uniformly by a factor of 5 to approximately satisfy the 𝜒2 = 1 criteria for all the OSSEs. This deflation 7 

procedure reduced the average 10-sec observational error values for LN+LG (OG) data from ~1.5 (~0.9) ppm to ~0.3 (~0.2) ppm. 8 

These procedures give more confidence to the observational data and lead to results in this study which can be assumed as the 9 

lower limit of the impact of prior model flux and uncertainty statistics in inverse model estimates. 10 

2.4.7 Evaluation of OSSE results 11 

During this study, the posterior NEE values from the OSSEs are compared to the “true” fluxes to assess accuracy and also inter-12 

compared to assess the spread in posterior estimates due to the assumed prior NEE and prior error statistics. The primary statistical 13 

parameters used to evaluate the spread in posterior NEE fluxes are the SD (hereafter the term “spread” will be used to represent 14 

SD) and range (difference between maximum and minimum in NEE). The SD/spread and range of posterior NEE estimates, when 15 

using the different prior models, will provide an understanding of the spatio-temporal residual impact of the prior models in “top 16 

down” estimates of global/regional NEE fluxes when assimilating OCO-2 data.  17 

 In order to evaluate the spatio-temporal variability of prior and posterior regional NEE fluxes, we aggregate individual 18 

model grids to The Atmospheric Tracer Transport Model Intercomparison Project-3 (TransCom-3) land regions (TransCom-3 19 

regions illustrated in Fig. S2). To further interpret the OSSE results, we produce additional classifications of three broad 20 

hemisphere-scale TransCom-3 land regions: Northern Land (NL), Tropical Land (TL) and Southern Land (SL). TL includes 21 

Tropical South America, North Africa and Tropical Asia; SL includes South American Temperate, South Africa and Australia; 22 

and NL includes the other five land regions. The evaluation of SD and range of prior model and posterior/optimized NEE fluxes 23 

were calculated for the 11 individual TransCom-3 regions, for the three hemisphere-scale TransCom-3 regions and globally. 24 

Throughout the manuscript, seasonally-averaged prior and posterior NEE fluxes will be discussed and these seasons are presented 25 

with respect to the Northern Hemisphere. 26 

2.4.8 Pseudo data assimilations 27 

In order to test our OSSE framework, we first run four “pseudo” experiments by conducting inverse modeling studies using 28 

“pseudo” surface observations. These test OSSE simulations were conducted for five-month assimilation windows for two separate 29 

seasons (November 2014 to March 2015 (analysis for winter, DJF) and May 2015 to September 2015 (analysis for summer, JJA)) 30 

using all four prior model NEE values separately. Simulated hourly concentrations of CO2 for all surface grids of GEOS-Chem are 31 

taken as “pseudo” surface observations. In order to check whether the model framework can converge to the “truth”, a simple 32 

controlled experiment was performed assuming a very small observational data uncertainty (0.001%) and with the prior flux 33 

uncertainty set equal to the absolute magnitude of the “truth” - prior NEE (divided by the absolute value of the NEE magnitude for 34 

that respective prior model). The robustness of the flux inversions conducted in the subsequent sections is validated by the results 35 

of these “pseudo” tests. Figure S3 shows the results of the four “pseudo” tests using the four different NEE flux model predictions 36 

as the prior information. From this figure it is apparent that, regardless of the prior NEE assumed, posterior NEEs were able to 37 

reproduce the “truth” with near perfect accuracy for all TransCom-3 regions, with the range between the posterior NEEs typically 38 
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approaching ~0 PgC yr-1. This test also demonstrates that a “perfect” assimilation (using uniform and dense surface data coverage, 1 

highly accurate data and known/loose prior uncertainty) is almost insensitive to the prior assumed. Having tested the robustness of 2 

our inversion setup, we feel confident in presenting the output from our OSSE framework, using synthetic OCO-2 remote-sensing 3 

data, in the following sections. 4 

3. Results and discussion 5 

3.1 Prior NEE fluxes 6 

Figure 1 shows the seasonally-averaged multi-model-mean and SD of the NEE fluxes from the four prior biosphere models used 7 

in the OSSE simulations (individual prior model and “true” seasonally-averaged NEE fluxes are displayed in Fig. S4). This figure 8 

shows the main features of NEE that are expected, such as the Northern Hemispheric fall/winter maximum in Re and summer 9 

maximum in GPP due to the seasonality of photosynthesis and respiration. Figure 1 also shows the spread of the four prior model 10 

fluxes (used as prior uncertainty), which is typically highest over the Temperate regions of the Northern Hemisphere in the spring 11 

and summer and high in the Tropical regions during all seasons (the left panel of Figure S5 shows a spatial map of the corresponding 12 

range of the four prior model fluxes). Furthermore, Fig. S6 shows the time-series of monthly-mean prior NEE fluxes, and the 13 

corresponding prior error uncertainty (error bars), for the individual prior models. From this figure it can be seen that the 1σ prior 14 

uncertainties for the global land are ~50-70% of the total NEE for the different prior models, with variability among other 15 

TransCom-3 land regions. 16 

Table 3 displays the statistics of the prior NEE multi-model-mean and SD and range for the 11 individual TransCom-3 17 

land regions. The SD values for prior NEE fluxes range from ~20% to frequently > 100% of the multi-model NEE mean for 18 

different regions/seasons with significant NEE fluxes (hereafter this refers to regions/seasons with NEE flux ≥ 0.5 PgC yr-1). When 19 

comparing the magnitude of NEE between the four prior models, it can be seen from this table that the range in NEE values are 20 

large in some regions (up to 6 PgC yr-1). In general, all regions/seasons tend to have at least an ~1 PgC yr-1 range among the four 21 

prior models, indicating the large diversity in NEE predicted by current “bottom-up” biosphere models (Table 3). Figure S6 shows 22 

the time-series of monthly-mean NEE for individual prior models averaged over the globe, hemispheric-scale land regions (NL, 23 

TL, SL) and the 11 individual TransCom-3 land regions. It can be seen from this figure that the majority of the seasonality in the 24 

global NEE flux is controlled by the NL regions. Figure S6 also shows that the spread in prior NEE fluxes in general is larger for 25 

TL and SL regions compared to the NL, except for the North American Temperate region. Furthermore, when focusing on 26 

individual models, differences in NEE seasonality are evident. The impact of these differences among the four prior biospheric 27 

CO2 flux models on simulated XCO2 and posterior estimates of global/regional NEE fluxes is evaluated in the following sections.  28 

3.2 Simulated XCO2  29 

Figure 2 shows the number of observations sampled in the OCO-2 LN and LG modes during the different seasons of 2015 summed 30 

in each model grid. Large spatio-temporal variability can be seen in the OCO-2 observation density, with the largest values over 31 

regions with minimal cloud coverage (e.g., desert regions of North/South Africa, Middle East, Australia, etc.). The opposite is true 32 

for many Tropical regions (e.g., Amazon, central Africa, Tropical Asia, etc.) where cloud occurrence is prominent and the number 33 

of OCO-2 observations is lowest. From Fig. 2 it can also be seen that the OCO-2 observation density has noticeable seasonality. 34 

For example, during the winter months low numbers of OCO-2 observations are made in the Northern Boreal regions and the 35 

largest amounts are observed during the summer. Furthermore, larger numbers of OCO-2 observations are made in the SL during 36 

the summer (JJA) compared to other seasons.  37 
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 The seasonally-averaged multi-model-mean GEOS-Chem simulated XCO2 using the four prior model NEE fluxes is 1 

shown in the right panel of Fig. 2. The most notable feature in this figure is the Northern Hemisphere seasonality, with higher 2 

XCO2 concentrations in the winter months and lowest XCO2 values in the growing seasons of the summer. Seasonality in model-3 

predicted XCO2 values is also evident in the TL and SL, with largest values in the autumn and lowest values in the spring. Figure 4 

S7 (left panel) shows the range of XCO2 values simulated using the four prior model NEE fluxes. The differences between 5 

individual model simulations of XCO2 values deviated among themselves by up to ~10 ppm.  These large differences in XCO2 6 

values across the four different prior NEE flux models show that the choice of prior NEE has a large impact on simulated XCO2 7 

values.  8 

3.3 Optimized global NEE fluxes 9 

From Table 1 it can be seen that annual global mean posterior NEE flux, when using the different prior models and assimilating 10 

synthetic LN+LG OCO-2 XCO2, ranges from -4.11 to -4.36 PgC yr-1, which are generally close in magnitude to the “true” flux of 11 

-4.31 PgC yr-1. Although these posterior NEEs generally converged to the “truth”, there are some remaining differences, with an 12 

annual global mean posterior NEE range of 0.25 PgC yr-1 (~6% of the multi-model-mean posterior NEE; Table 1). From the results 13 

of the OSSE simulations, it was found that the spread and range in XCO2 simulated using the optimized posterior NEE fluxes was 14 

greatly reduced compared to the spread in XCO2 simulated using prior NEE fluxes. This is evident from the right panel of Fig. S7 15 

where XCO2 simulated using posterior NEE fluxes differ among themselves by < 0.5 ppm, which is greater than an order of 16 

magnitude lower, on average, than the spread among XCO2 simulated using prior NEEs.  17 

 Figure S5 shows the spatial distribution of the range of prior and posterior NEEs. As expected, the range in optimized 18 

posterior NEE flux estimates starting from the four separate prior models was substantially reduced compared to the spread in prior 19 

NEE fluxes. However, the posterior NEE fluxes for individual surface grid boxes of the model still depict some residual range 20 

among the posteriors, with the largest residuals being found across South America and South Africa in all seasons and in Temperate 21 

regions of the Northern Hemisphere in the spring months. As shown in Fig. S5, the geographical pattern of the range of prior and 22 

posterior NEEs does not indicate any noticeable correlations. From comparing Figs. S5 and S7, it is apparent that the spread in 23 

posterior XCO2 is significantly reduced in all regions of the globe compared to prior model simulations, however, while posterior 24 

NEE values are reduced compared to the prior, noticeable residual spread remains in some regions. This emphasizes the fact that 25 

the OSSEs successfully converge to match the synthetic OCO-2 XCO2 values by optimizing NEE in different ways depending on 26 

the prior NEE model used. The following sections investigate the regional differences in posterior NEE estimates due to the residual 27 

impact of prior biospheric CO2 flux predictions.  28 

3.4 Optimized regional NEE fluxes 29 

Figure 3 shows the seasonally-averaged “true”, prior and posterior NEE flux values for the 11 individual TransCom-3 land regions 30 

(with detailed statistics in Table 3 and monthly-mean time-series in Fig. S8). The first thing noticed from this figure is that all 31 

posterior NEE values, using variable priors, tend to reproduce the “truth” in most TransCom-3 land regions. From Fig. 3 it can 32 

also be seen that the assimilation of synthetic OCO-2 LN+LG XCO2 retrievals resulted in a large reduction in the range among the 33 

four modeled NEE values (Table 3 shows the corresponding SD values). The reduction in the SD of NEE in most regions/seasons, 34 

calculated as 100 × (1 – (posterior NEE SD)/(prior NEE SD)) is generally > 70% and up to 98%. However, the range of seasonal 35 

mean posterior NEEs over individual TransCom-3 regions is still as large as 1.4 PgC yr-1 when applying different prior NEE, with 36 

the largest ranges occurring in Northern Boreal regions (North America Boreal, Eurasian Boreal and Europe) in winter months. 37 

During the spring and summer months, regions in the TL (e.g., Tropical Asia) and SL (e.g., South American Temperate, South 38 
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Africa) have ranges in posterior NEEs up to ~0.5 PgC yr-1. The larger residual range among posterior NEE estimates for winter 1 

months in Northern Boreal regions is likely due to the insufficient OCO-2 observations during this time (see Fig. 2), while the 2 

larger range in the TL and SL regions is due to differences in the priors (see Fig. 1). This demonstrates that the impact from the 3 

prior model has regional and seasonal variability depending on: 1) the spatio-temporal flux variabilities inherent in prior NEEs and 4 

2) the observation density and coverage of synthetic OCO-2 data. Figure 3 and Table 3 show that the seasonally-averaged posterior 5 

NEE spread varies from ~10% to ~50% of the multi-model-mean for different TransCom-3 land regions with significant NEE 6 

fluxes. When evaluating this residual spread in posterior NEEs on a global average, seasonally-averaged values ranged from ~10% 7 

(JJA) to ~20% (DJF) of the posterior NEE mean. These statistics reveal that the impact of prior models lead to a much larger 8 

spread/range for regional/seasonal posterior fluxes (up to ~50%) compared to annual global averaged values (6%). This emphasizes 9 

that while OCO-2 observations on average constrain global, hemispheric and regional biospheric fluxes, noticeable residual 10 

differences in posterior NEE flux estimates remain due to the choice of prior model values. Overall, the results of this evaluation 11 

suggest that when inter-comparing inverse model results assimilating similar OCO-2 observational data, differences in posterior 12 

NEE in regions with significant NEE fluxes could vary by up to ~50% when using different prior flux assumptions. 13 

3.5 Impact of prior uncertainty  14 

Results of this study thus far have demonstrated the sensitivity of posterior NEE estimates to prior NEE flux assumptions. In this 15 

section, the sensitivity of posterior NEE estimates to the assumed prior uncertainty is tested, when assimilating synthetic OCO-2 16 

LN+LG XCO2 observations. The general importance of prior uncertainty values is highlighted in the TL regions. In these regions 17 

the largest differences in prior models are calculated, thus largest prior uncertainty is assigned, resulting in larger deviations from 18 

the prior and posterior NEE spread similar to other TransCom-3 land regions (see Fig. 3). In order to quantify the sensitivity of 19 

posterior NEE to prior uncertainty statistics, a single prior NEE flux model (CASA-GFED) is applied in the OSSE framework, 20 

with variable prior flux uncertainty assumptions. Two additional OSSE simulations (in addition to the baseline simulations using 21 

the SD of the four prior models as the prior uncertainty; see right panel of Fig. 1 for SD maps) are performed using prior NEE 22 

magnitudes from CASA-GFED and setting the prior uncertainty uniformly as 10% and 100% of the CASA-GFED NEE values. 23 

Figure 4 shows the results of these additional OSSE simulations over the TransCom-3 land regions. From this figure it can be seen 24 

that the range of seasonal mean posterior NEEs over individual TransCom-3 regions vary from ~0.1 to > 1 PgC yr-1 when applying 25 

variable prior error assumptions. Seasonally-averaged posterior NEE SD varies from ~10-50% of the multi-model-mean for 26 

different TransCom-3 land regions with significant NEE fluxes. On a global average, seasonal-average SD values range from 27 

~15% (JJA) to ~30% (DJF) of the posterior NEE mean. Note that these posterior NEE SD/range values here are similar to the 28 

baseline OSSEs conducted by changing prior NEE flux magnitudes (see Fig. 3). However, when comparing Fig. 4 and 3 (and Fig. 29 

S9), it is noticed that posterior NEE estimates are more sensitive to prior error assumptions compared to prior flux values in some 30 

seasons/regions of TL and SL (e.g., Northern Africa, Southern Africa, South America Temperate). It appears that NEE estimates 31 

during this study are more sensitive to prior error assumptions when sufficient observations are available and large differences 32 

between the prior and “truth” are present. Also, from Fig. 4 it can be seen that prior uncertainty assumptions in the baseline runs 33 

(using SD of prior models) and the assumption of 100% prior uncertainty tend to reproduce the “truth” more accurately than NEE 34 

estimates using 10% prior error. Overall, the results demonstrate that the posterior NEE fluxes over TransCom-3 land regions are 35 

in general similarly sensitive (up to ~50%) to the specification of prior flux uncertainties and the choice of bottom-up prior 36 

biospheric NEE model estimates. 37 
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3.6 OCO-2 ocean data  1 

This portion of the study investigates the impact of assimilating OCO-2 OG XCO2 data on posterior NEE flux estimates in our 2 

OSSE framework. To do this, four additional OSSE simulations were conducted with the four prior model NEEs when only 3 

assimilating synthetic OG retrievals (instead of LN+LG) in the inversions (everything else remains the same as in the baseline 4 

simulations). Figure 5 shows the results of these four additional OSSE simulations averaged over the TransCom-3 land regions. 5 

From these simulations it can be seen that OCO-2 OG indeed reduces the range in posterior NEE flux estimates, when applying 6 

different priors, compared to prior model predictions, and can generally reproduce the “truth”. On average, the spread in posterior 7 

NEE fluxes is ~20% to ~50% of the multi-model-mean for different TransCom-3 land regions with significant NEE fluxes. As 8 

expected, the comparison of Fig. 3 and 5 suggests that LN+LG data is better able to constrain biospheric CO2 fluxes compared to 9 

OG data, as the spread among the posteriors is generally lower in LN+LG only assimilations (~70% lower on a global average) 10 

compared to OG data only assimilations. However, there were some cases where OSSE simulations using OCO-2 OG data alone 11 

did in fact result in slightly lower posterior NEE spreads in some TransCom-3 land regions compared to LN+LG assimilations 12 

runs (e.g., Northern Boreal regions during summer months and Australia during winter months). Overall, our OSSE simulations 13 

using the OCO-2 OG data demonstrate the importance of these oceanic retrievals to constrain land NEE fluxes, as the posterior 14 

NEE range is much lower compared to prior NEE estimates (see Fig. 5). This generally agrees with previous studies that 15 

demonstrated the importance of satellite data over the ocean in constraining NEE fluxes over land regions (e.g., Deng et al., 2016).  16 

4. Conclusions 17 

To the best of our understanding, this is the first study directly quantifying the impact of different prior global land biosphere 18 

models on the estimate of terrestrial CO2 fluxes when assimilating OCO-2 satellite observations. We conducted a series of OSSEs 19 

that assimilated synthetic OCO-2 observations applying four state-of-the-science biospheric CO2 flux models as the prior 20 

information. These controlled experiments were designed to systematically assess the impact of prior NEE fluxes and the impact 21 

of prior error assumptions on “top down” NEE estimates using OCO-2 data. The OSSEs incorporated NEE fluxes from the NASA-22 

CASA, CASA-GFED, SiB-4 and LPJ biosphere models as prior estimates and variable prior flux error assumptions.  23 

 We found that the assimilation of synthetic OCO-2 XCO2 retrievals resulted in posterior monthly/seasonal NEE estimates 24 

that generally reproduced the assumed “true” NEE globally and regionally. However, spread in posterior NEE exists in regions 25 

during seasons with poor data coverage, such as the Northern Boreal regions and some of the Tropical and Southern Hemispheric 26 

regions (e.g., South American Temperate, South Africa, Tropical Asia). This spread among posterior NEEs is likely due to the 27 

insufficient OCO-2 observations during winter over Northern Boreal regions and the large range among the priors in some of the 28 

Northern Boreal, Tropical and Southern Hemispheric regions. Residual spread from ~10% to 50% in seasonally-averaged posterior 29 

NEEs in TransCom-3 land regions with significant NEE flux were calculated due to using different prior models in inverse model 30 

simulations. We also found similar spreads in the magnitudes of posterior NEEs by conducting additional OSSEs using a single 31 

prior NEE flux model with variable prior flux uncertainty assumptions. While the spread in posterior NEE estimates, when using 32 

variable prior error statistics, was similar to when applying variable NEE flux models, the impact was larger in some seasons in 33 

the TL and SL regions. We determined that while OCO-2 observations on average constrain global, hemispheric and regional 34 

biospheric fluxes, noticeable residual differences (up to ~20-30% globally and 50% regionally) in posterior NEE flux estimates 35 

remain that were caused by the choice of prior model values and the specification of prior flux uncertainties.  36 

 There have been previous studies that investigated similar scientific objectives, such as the impact of prior uncertainties 37 

on inverse model estimates of NEE (Gurney et al., 2003; Chevalier et al., 2005; Baker et al., 2006a; 2010). The sensitivity of CO2 38 

flux inversions to the specification of prior flux information was first assessed by Gurney et al. (2003) using ground-based in situ 39 
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data. One main conclusion from Gurney et al. (2003) is that CO2 flux estimates were sensitive to the prior flux uncertainty over 1 

regions with limited observations and insensitive over data-rich regions. Chevallier et al. (2005) suggested the importance of an 2 

accurate formulation of prior flux uncertainty by conducting 4D-Var assimilation of satellite column retrievals of CO2. Baker et 3 

al. (2010) investigated the importance of assumed prior flux uncertainties by conducting sensitivity tests that mistuned the 4 

assimilations by using incorrect prior flux errors. Finally, Baker et al. (2006a, 2010) suggested the need for realistic prior models 5 

in the 4D-Var assimilations using OCO synthetic satellite CO2 data. The results of this research are generally consistent with the 6 

findings of these past studies. However, in comparison with these previous efforts, our study is a step forward, because we quantify 7 

the specific impact of prior model NEE spatio-temporal magnitude and prior uncertainties in optimizing regional and seasonal 8 

NEEs using satellite data in a more controlled manner by applying an OSSE framework.  9 

 The results of this study suggest the need to be aware of the residual impact from prior assumptions for CO2 global flux 10 

inversions, especially for regions and times 1) where current “bottom-up” biosphere models diverge greatly and 2) without 11 

sufficient observational coverage from space-borne platforms. For example, larger spread in posterior NEE estimates were 12 

calculated in portions of the Northern Boreal regions that tend to have insufficient satellite data coverage and moderate differences 13 

among prior biosphere models. In addition to these Northern Boreal regions, Tropical and Southern Hemispheric regions with 14 

large spread among prior biosphere models, which are assigned higher prior uncertainty values resulting in largely reduced spreads 15 

in posterior NEE estimates (large deviation from the prior), still have residual impact from the prior NEE predictions regardless of 16 

the fact that OCO-2 data is dense in these regions. Results of this study also indicate that in some regions/seasons of the TL and 17 

SL, inverse model estimates of NEE can be more sensitive to prior error statistics compared to prior flux values. Overall, in data-18 

poor regions/times, posterior estimates from inversion techniques relying on Bayesian statistics can result in similar estimates to 19 

the prior flux, however, with some improvements over broader regions. Additionally, in regions/seasons where uncertainty in NEE 20 

fluxes are large (e.g., in the TL where prior model NEE differences are large), inverse model estimates, applying large prior 21 

uncertainty values, will still have some residual impact from the choice of prior NEE flux. Finally, care should be given when 22 

interpreting flux estimates constrained with real OCO-2 satellite data over some of the regions identified in this study as it is 23 

suggested here that residual differences (up to ~20-30% globally and 50% regionally) in posterior NEE flux estimates can be 24 

produced by the choice of prior model values and the specification of prior flux uncertainties. In the future, studies should be 25 

designed to determine the relative importance of prior flux magnitudes and error assumptions on posterior estimates, in comparison 26 

with other error sources in inverse flux estimates (such as transport model errors and observation errors). Finally, the results of this 27 

study suggest that multi-inverse model inter-comparison studies should consider the differences in posterior NEE flux estimates 28 

caused by variable prior fluxes and error statistics used in different models.  29 

5. Code and Data Availability 30 

The forward and inverse model simulations for this work were performed using the GEOS-Chem model which is publicly available 31 

at: http://acmg.seas.harvard.edu/geos/. The 10-sec OCO-2 data used to produce synthetic observations during this study are 32 

available by request from the OCO-2 Science Team and individual OCO-2 sounding data can be downloaded here: 33 

https://oco.jpl.nasa.gov/. 34 
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Table 1: Prior and (Posterior) global annual mean NEE fluxes and CO2 emission inventories (PgC yr-1) for the year 2015 used in the 1 
OSSE simulations during this study. 2 

NEE Model NEE flux (PgC yr-1) 

MsTMIP1,2 -4.31 

NASA-CASA3 -1.86 (-4.14) 

CASA-GFED4 -2.42 (-4.24)  

SiB-45 0.95 (-4.11)  

LPJ6 -5.53 (-4.36)  

Inventory CO2 emission (PgC yr-1) 

Fossil fuel7 9.86 

Ocean8 -2.41 

Biomass burning9 2.05 

Fuel wood burning9 0.50 
1MsTMIP NEE dataset is representative of the year 2010 and is an ensemble mean of 15 different NEE models. 3 
2Huntzinger et al., 2013; 2016; Fisher et al., 2016a,2016b 4 
3Potter et al., 1993; 2012a; 2012b 5 
4Potter et al., 1993; Randerson et al., 1996 6 
5Haynes et al., 2013; Baker et al., 2013 7 
6Sitch et al., 2003; Poulter et al., 2014 8 
7Oda et al., 2018; Nassar et al., 2013 9 
8CarbonTracker CT2016; Peters et al., 2007 10 
9CASA-GFED3; van der Werf et al., 2004; 2006; 2010 11 
  12 

Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-1095
Manuscript under review for journal Atmos. Chem. Phys.
Discussion started: 6 February 2019
c© Author(s) 2019. CC BY 4.0 License.



23 
 

Table 2: Summary of the different OSSEs conducted during this work.  1 

Experiment (# of OSSEs) OCO-2 XCO2 Mode Prior NEE Model NEE Uncertainty 

Variable Prior NEE (4) LN + LG All1 Multi-Model SD2 

Variable Prior NEE (4) OG All1 Multi-Model SD2 

Variable Prior Uncert. (2) LN + LG CASA-GFED Uniform 10%/100% 

1 NASA-CASA, CASA-GFED, SiB-4 and LPJ 2 
2 SD = standard deviation 3 
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Table 3: Seasonally-averaged NEE (PgC yr-1) averaged over the 11 TransCom-3 land regions (refer to Fig. S2) for the MsTMIP (“truth”), 1 
multi-model prior mean and multi-model posterior mean (PgC yr-1). The differences between the prior and posterior model NEE values 2 
are presented as SD (1σ) and range. Prior model values are presented in standard font and posterior estimates are in bold. Seasons are 3 
represented as Winter (W): December-February, Spring (Sp): March-May, Summer (Su): June-August and Fall (F): September-4 
November. 5 

 NEE: Truth NEE: Mean NEE: Standard Deviation NEE: Range 

Region* W Sp Su F W Sp Su F W Sp Su F W Sp Su F 

1 1.1 -0.2 -2.8 0.7 1.1 1.0 0.4 0.3 -3.4 -2.7 1.3 0.9 0.5 0.4 0.5 0.1 0.8 0.2 0.5 0.1 1.2 0.9 1.0 0.3 1.9 0.5 1.2 0.2 

2 1.5 -1.5 -2.3 0.0 1.9 1.6 -1.0 -1.6 -3.2 -2.1 0.6 -0.2 1.1 0.3 1.3 0.1 2.0 0.2 0.8 0.1 2.3 0.6 3.2 0.2 4.3 0.4 1.6 0.2 

3 -0.6 -0.2 -1.4 -1.3 0.4 -0.8 0.6 0.2 -0.7 -1.2 0.1 -1.3 0.1 0.1 0.8 0.2 1.4 0.0 2.6 0.1 0.2 0.1 1.8 0.3 3.1 0.1 5.9 0.2 

4 -1.5 -0.4 0.7 -0.4 -1.1 -1.3 -0.1 -0.4 0.6 0.7 0.0 -0.1 0.9 0.1 0.4 0.2 0.8 0.1 0.9 0.1 2.0 0.1 0.9 0.5 1.9 0.2 2.0 0.3 

5 1.3 1.0 -1.9 -2.0 0.7 0.9 0.6 0.4 -0.8 -1.7 -1.4 -2.0 1.0 0.2 0.8 0.1 0.9 0.1 1.2 0.2 2.3 0.5 1.6 0.3 2.0 0.2 3.0 0.5 

6 -2.4 -1.6 1.2 1.2 -0.9 -1.9 -1.1 -1.8 0.3 0.8 0.7 1.2 0.5 0.2 1.0 0.1 1.2 0.2 0.7 0.1 1.2 0.3 2.2 0.2 2.6 0.5 1.7 0.2 

7 1.2 1.0 -4.6 1.2 1.5 1.2 0.9 0.9 -5.6 -4.8 2.0 1.3 0.9 0.7 1.0 0.1 1.6 0.1 0.6 0.2 1.8 1.4 2.2 0.3 3.3 0.2 1.3 0.6 

8 1.4 0.0 -1.9 -0.4 1.4 1.3 -1.0 -0.2 -2.3 -2.3 0.1 -0.7 1.3 0.3 0.9 0.1 2.5 0.2 1.7 0.1 3.0 0.6 2.1 0.3 5.7 0.5 3.7 0.2 

9 -0.1 0.4 -0.3 -0.5 0.1 0.3 0.0 0.6 -0.4 0.1 -0.5 -0.4 0.4 0.2 0.4 0.1 0.4 0.3 0.8 0.0 0.8 0.5 0.7 0.2 0.8 0.5 1.9 0.1 

10 -0.6 -0.6 -0.2 -0.7 -0.1 -0.6 0.0 -0.7 0.1 -0.4 -0.1 -0.8 0.4 0.1 0.3 0.1 0.3 0.1 0.6 0.1 0.9 0.2 0.6 0.2 0.7 0.3 1.2 0.3 

11 2.8 -1.7 -3.2 1.6 2.3 2.6 -0.9 -1.2 -3.7 -3.1 1.6 1.3 0.4 0.6 1.2 0.2 1.5 0.1 0.6 0.1 0.9 1.3 2.5 0.5 3.5 0.3 1.5 0.3 

*TransCom-3 region name and location displayed in Fig. S2.  6 
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 1 

Figure 1: Prior multi-model (NASA-CASA, CASA-GFED, SiB-4 and LPJ biosphere models) seasonally-averaged NEE (gC m-2 day-1) 2 
(left column) and NEE standard deviation (gC m-2 day-1) (right column) for the year 2015.  3 
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 1 

Figure 2: Total number of OCO-2 LN and LG XCO2 observations (left column) and the corresponding seasonally-averaged multi-model 2 
(NASA-CASA, CASA-GFED, SiB-4 and LPJ biosphere models) mean GEOS-Chem-simulated prior XCO2 (ppm) (right column) in 2015.  3 
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 1 

Figure 3: Seasonally-averaged NEE (PgC yr-1) averaged over the 11 TransCom-3 land regions from MsTMIP (“truth”) versus the prior 2 
biosphere models (NASA-CASA, CASA-GFED, SiB-4 and LPJ) (left column), posterior estimates (middle column) from the OSSE 3 
simulations and the corresponding range of prior and posterior NEE estimates (right column). The synthetic observations in these OSSE 4 
simulations correspond to the OCO-2 LN+LG observing modes. 5 
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 1 

Figure 4: Seasonally-averaged NEE (PgC yr-1) averaged over the 11 TransCom-3 land regions from MsTMIP (“truth”) versus CASA-2 
GFED prior biosphere model (left column), posterior estimates with the three different prior uncertainties (middle column) and the 3 
corresponding range of posterior NEE (right column). The synthetic observations in OSSE simulations correspond to the OCO-2 LN+LG 4 
observing modes. 5 
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 1 
 2 
Figure 5: Seasonally-averaged NEE (PgC yr-1) averaged over the 11 TransCom-3 land regions from MsTMIP (“truth”) versus the prior 3 
biosphere models (NASA-CASA, CASA-GFED, SiB-4 and LPJ) (left column), posterior estimates (middle column) from the OSSE 4 
simulations and the corresponding range of prior and posterior NEE (right column). The synthetic observations in these OSSE 5 
simulations correspond to the OCO-2 OG observing mode.  6 
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