Supporting information

Large increases in Ncn and Nccn together with a nucleation-mode-particle pool over the northwestern Pacific Ocean in the spring of 2014

Juntao Wang et al.

Correspondence to: Yang Gao(Yanggao@ouc.edu.cn) and Xiaohong Yao (xhyao@ouc.edu.cn)

Figure S1 An example to screen out the signals from ship self-emissions (a: high particle number concentration signals in dark red suffer from the large interference of ship self-emissions; particle number size distributions show a constant dominant mode at 22±2 nm; b: red spikes are the signals mainly reflect the contribution from ship-emissions and the black baseline reflects the signals of marine background aerosols.

Figure S2 Scatterplots of N_{cen} at SS of 0.2% versus $N_{>92.5 \text{ nm}}$. (Biomass burning aerosol and dust aerosol are shown in full red cycles with empty red cycles representing suspected either biomass burning or dust aerosol; the black line represents the 1:1 relationship, and the red line shows the best fit using the data shown as empty black cycles.)

Figure S3 72-hour air mass backward trajectories over the NWPO at 1000 m for Period 1 (a), Period 2 (b), Period 3 (c), and Period 4 (d).

Figure S4 Fire spots from FIRMS in East China, Siberia, and Russian Far East for Period 1 (a), Period 2 (b), Period 3 (c), and Period 4 (d).

Figure S5 Vertical profiles of the aerosol subtypes captured by CALIPSO during dust event.

Table S1 Concentrations of CN and CCN and AR during DOY 77-80 and DOY 109-112, 2014.

Sampling periods	DOY 77-80	DOY 109-112	DOY 77-80 and DOY 109-112
$CN(\times 10^3)^a$	1.9-19.2, 5.2±2.4 ^b	2.4-13.4, 7.2±3.1	1.9-19.2, 5.8±2.8
$CCN(\times 10^3)$, SS =0.2%	0.23 - 4.2 , 1.5 ± 1.0	0.64-4.0, 2.1±0.99	0.23 - 4.2 , 1.7 ± 1.0
$CCN(\times 10^3)$, SS =0.4%	$0.34-7.5, 2.7\pm1.9$	$1.1 - 7.5, 4.2 \pm 2.0$	$0.34-7.5, 3.3\pm2.0$
AR, 0.2%SS	$0.07 - 0.53, 0.29 \pm 0.11$	$0.21 \text{-} 0.53, 0.32 \pm 0.06$	0.07-0.53, 0.30±0.09
AR, 0.4%SS	0.11-0.92, 0.50±0.19	$0.29 - 0.88, 0.61 \pm 0.13$	0.11-0.92, 0.53±0.18

 $^{^{}a}$ Unit the $\times 10^{3}$ cm⁻³

^bRange and mean ±standard deviation