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We thank the three anonymous referees for their comments which have allowed
us to clarify various points in the paper. There are some common points made by
several referees. We will deal with these first as general comments then with particular
comments from each referee. We place referees’ comments in typewriter font and our
replies in Roman

General Comments
There is a general concern from all three reviewers about the purpose and target audi-
ence of the paper. The critiques diverge e.g. (paraphrasing) “The paper is not rigorous
enough” (R1) or “Section 2.2 is too general” (R3). Unfortunately, as authors, we can-
not assume from this divergence that we have the balance about right. It could well be
that the “sweet spot” we seek does not exist. Obviously we do not think so and our
experience in teaching, both at the summer school that spawned this special issue and
more generally supports this view. The question of mathematical rigour is particularly
difficult. The usual route to a well-grounded description of probability and its manipu-
lation is via an undergraduate course in measure theory. Very few likely readers of this
paper will have undertaken such a course. Reviews or even text on data assimilation do
not generally dedicate the space to provide this level of background. We have instead
started from a few precepts:

1. The basic concepts are rather intuitive if demonstrated carefully;

2. The best starting point is the axioms of probability, Bayes Theorem is rather a
consequence of these. This approach mirrors both Jaynes and Bretthorst (2003)
and Tarantola (2005). We currently note this in Section 3 and have added a
comment to the introduction.

3. there really is no distinction in principle between problems given names like data
assimilation or inversion. As such we very much thank the reviewers for pointing
out inconsistencies in language. We have corrected these and expanded on the
problem description in the introduction to clarify these relationships.

The other general critique touches the role of the paper as a review, tutorial or
perspective. Reviewers have suggested we should survey the current state of the art and
describe future directions. This does not fulfil the paper’s role within the special issue.
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The other papers in the issue do precisely this for their fields, usually by presenting
a state-f-the-art example. There seems little value in summarising those results here.
We do, however, accept that more forward-looking material on the general problem is
warranted and have expanded the relevant section.

Specific Comments

Reviewer I
First we have dealt with the general comments above although the reviewer makes
some points as part of these to which we respond directly.

For example, the term ‘‘target variable’’ is used on page
5, line 13 without any prior definition. We have added text defin-
ing this and strengthening the link between the definition of events and PDFs.

Furthermore, the manuscript makes references to "the inversion
(or inverse) problem" many times without explaining what the
inverse problem is (it is only mentioned briefly in Introduction
on page 1, line 16). We have switched to the term “data assimilation” or
“assimilation” throughout and added text in the introduction on the equivalence of the
various names used in the literature.

For example, a schematic of the data assimilation process
and the different components would be helpful and could be
referred to when describing the different parts of the system.
This is an idea we have thought about during the preparation of the paper. Unfortu-
nately there seems so little commonality in data flow among the various implemen-
tations of the theory. For example, highly efficient methods for calculating MAP es-
timates might use the adjoint of a cost function derived from some exponential PDF.
They may never calculate a likelihood or probability. Other techniques that map or
sample the posterior PDF may only calculate likelihoods or probabilities. Any form
of the diagram would need so many variants that it would add confusion rather than
clarity.

I also think some concrete examples when describing the
different implementations would help readers to follow the
whole process better. We have already noted that the article forms part of a
special issue. The task of producing a new textbook in this area (essentially updating
the 2000 AGU Monograph) is well beyond our scope here.

2. I think the manuscript would be clearer if the authors
choose one perspective from the outset (e.g. data assimilation)
and present all material from this perspective in a consistent
manner. Currently the manuscript seems to borrow many terms
from data assimilation, but frequently, especially in later
parts, the language switches to that of inverse modelling (e.g.
page 10, line 13: "We need therefore to incorporate these
extra variables into the inversion process"; there are many
other parts where "inverse problem" and "inversion" are mentioned).
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Section 6 is even named "Solving the Inverse Problem". I recommend
to replace all occurrences of "inversion", "inverse problem"
etc. with terms that are more common in data assimilation.
see general comments above.

3. Data assimilation is probably best known for its applications
in numerical weather prediction, where the technique is used
mainly to improve meteorological initial con- ditions to produce
better weather forecasts. In biogeochemistry, on the other
hand, data assimilation (and related techniques) are more commonly
used to constrain parameters. This difference is alluded to
in the manuscript (e.g. page 15, lines 3-10). However, I
think it would be better if this distinction is explicitly
stated in the beginning of the manuscript. This difference
explains e.g. why the manuscript does not focus on the dynamical
model (the dynamical model for the target variables in biogeochemical
applications is often unknown or assumed to be persistence,
while the forecast model is an essential component in atmospheric
data assimilation). A broader discussion about the choice
of assimilation time window would also be helpful. We do not
accept the distinction drawn here between data assimilation as used to estimate dif-
ferent target variables, indeed one purpose of the paper is to demonstrate that the dis-
tinction is superficial. We now argue in an expanded section on future developments
that so-called “dual state” approaches that seek to constrain the state and parameters of
the model should be more widely used in biogeochemical problems. We have added
further commentary on assimilation windows at the end of Section 7.

4. The authors write that "we will not be using mathematically
precise language" (page 2, line 17). I can see where the authors
are coming from, but I think this does a disservice to the
readers. I recommend the authors to remove this sentence and
to be mathematically rigorous to the extent feasible. I understand
a mathematical precise language will take away some of the
simplicity, but I think the benefits outweigh the added complexity;
currently the reader may be left wondering where the language
is imprecise and be less likely to refer back to the text when
e.g. implementing a data assimilation system. See general com-
ments above.

5. The manuscript does not talk much about the issues of
ill-posed problems, which are common in inverse problems, and
the need for regularization (except for under "Historical Overview",
page 19). I consider the use of prior error covariances, e.g.
errors with a specified correlation length scale, to be a form
of regularization. Even if the "true" error correlation length
scales are smaller, a larger correlation length scale may be
necessary for the data assimilation system to converge to a
solution. This constraint will on the other hand lead to larger
aggregation errors. It may also be worth to add a discussion
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about how the number of observations influences the design
of the data assimilation system, e.g. the choice of regularization.
The term “ill-posed” has several meanings in mathematics, here we think the author
means problems that are not numerically well-behaved, e.g. with poor convergence.
We have dealt with the use of other regularisation methods in the historical overview.
We do not know of cases where deliberately incorrect choices were made for prior
uncertainties in order to facilitate convergence.

Specific comments

1. Page 3, lines 23-25: "As a practical example a frequentist
may estimate a mean by averaging his sample while a Bayesian
may calculate an integral over her probabil- ity density."
I do not think this is a good example of the difference between
Bayesian and frequentist statisticians. A better example could
illustrate how Bayesian and fre- quentists interpret probabilities
(e.g., a frequentist may only consider the long-term frequency
of occurrence of a random event, while a Bayesian may draw
from other prior information to assign probabilities, even
for non-repeatable events). The reviewer’s example is correct, this is a
difference between the two approaches but we don’t think it the most important one.
We think the point important enough to defend. It is well-stated in the preface to Jaynes
and Bretthorst (2003) commencing on p.xxii. Jaynes points out here that the machinery
we use allows the use of prior information but its most important distinction is more
fundamental, working with the PDFs themselves rather than estimators pre-derived
from assumed distributions.

2. Page 4, line 2: "we have followed it [the notation
of Ide et al., 1997] here". It would be helpful to the reader
to highlight exactly what is new with the notation introduced
in this manuscript. Is it simply an extension of the Ide et
al. (1997) notation for bio- geochemistry data assimilation?
Is it a generalization? More about this in the next point.
We have added “as closely as possible” to indicate we changed nothing substantial from
Ide et al. (1997).

3.1. Consider adding a "Remarks" column and note when e.g.
a notation differs from the notation in Ide et al. (1997).
We have done this by separating the mathematical definition and textual description and
expanding the latter where necessary.

3.2. For the definition of G, should mu and U be bold to
show that they are a vector and a matrix, respectively? In
that case also change "mean mu and covariance U" to "means
mu and covariances U". We have changed the typeface. The pluralisation is
not correct, the mean of a multivariate distribution is still a mean (singular).

3.3. Descriptions of superscripts "a" and "b": "Posterior
or analysis" and "Background or prior". Change to "Analysis
or posterior" (to be consistent with "Background or prior").
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Done.
3.4 Symbol Q: From my understanding Q is often used to denote

model uncertainty (for the dynamical model). "Forecast uncertainty"
here seems to include uncertainties due to initial conditions
and boundary conditions. This is a good point. Q should refer only to fore-
cast uncertainty. This is too subtle a point to make in the table so we have referred to
the relevant section on the Kalman Filter and spelled this out more clearly there.

3.5. Description of R: Add "(Observation uncertainty)"
or something similar. Added.

3.6. Symbol A: I do not think I have seen "A" used for
"posterior uncertainty covariance" before. Maybe use Pb for
background uncertainty covariance and Pa for analysis uncertainty
covariance. We considered this but it generates other inconsistencies, we should,
for example, use the same superscripts for the MAP as well as the uncertainty etc. We
believe adding one new symbol to Ide et al. (1997) notation is a better solution. This
notation is common throughout NWP (e.g. Desroziers et al., 2005).

4. Page 6, Figure 1: It took some time for me to interpret
this schematic. It may be helpful to mention that the observation
operator in this case is a simple 1:1 mapping to the system
state. An excellent idea, done.

5. Page 10, lines 6-7: "then the dynamical model forms
part of the mapping between the unknowns and the observations
so is properly considered part of the observation operator".
I know that this notation is common in e.g. atmospheric inversion,
but I personally think it is unfortunate and easily leads to
confusion (as the authors also note on page 9, lines 18-19,
data uncertainty or data error may refer to the uncertainty
due to errors in both observations and the observation operator,
which is misleading). In e.g. 4D-Var for atmospheric data
assimilation, I believe the observation operator and dynamical
model are usually kept separate in the formulation of the cost
function. Given that this manuscript focuses on clarity and
fundamentals of data assimilation, I think it would wise to
adopt the notation of atmospheric data assimilation and not
conflate the observation operator and dynamical model. The
reviewer is addressing two different problems here. The first is the role of dynami-
cal models and observation operators. We disagree that the dynamical model error is
treated explicitly in conventional 4dvar for numerical weather prediction. It is usually
embedded in the background error. We wish to emphasise that the distinction is one
of use rather than inherent and we have added a sentence to make this point explicit.
The other question about observation and model errors is a different problem which we
treat elsewhere. The dynamical model applies to the model state variable (see Eq (1)
of Ide et al.). In the case of atmospheric inversion, the dynamical model is sandwiched
between operations that are either upstream (interpolation, multiplication with a flux
pattern, injection, etc.) or downstream (unit changes, spatial sampling) of it because
the target variables x are not the model state variables z. For this application, it is
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then appropriate to call ”observation operator” the full operation chain, including the
dynamical model. It is also important to account for the uncertainty in the dynamical
model in the data error budget.

6. Page 10, lines 12-13: "Frequently we regard these [parameters]
as fixed, which is likely to underestimate the uncertainty
of the estimates. We need therefore to incorporate these extra
variables into the inversion process." I think "need to" is
a bit too strong; maybe say instead that some methods incorporate
these extra variables. Agreed, changed.

7. Page 20, lines 16-19: The authors mention that the
time delay in EnKF may be prob- lematic for tracers that live
longer than the assimilation window. Is this not a common
problem for all implementations? Yes, but it’s particularly severe for the
KF which often uses short, rolling windows. We have clarified.

Technical Corrections

1. Page 1, footnote 1: I find the footnote unnecessary and
suggest to put this informa- tion directly in the text. We
disagree. Footnotes are for text which a reader might use but which would disturb the
flow if included in the body. This seems to fit that description.

2. Page 5, line 11: "by an observation operator". May
be worth mentioning that this operator is sometimes also referred
to as the forward operator., agreed, done.

3. Page 5, line 13: "target variable". Define the term.
Now done in the introductory section.

4. Page 7, line 18: "to find variables to which it is
sensitive". Replace "it" with "the quantity of interest" or
something similar. done.

5. Page 8, line 10: Capitalize "This". done.
6. Page 8, line 10: Fix citation format (no parentheses).

done.
7. Page 13, line 14-15: "These estimates will generally

yield larger variability than that from our most likely flux".
I do not believe "flux" is defined in this context. Maybe
change to "realisation". done.

8. Page 14, line 23: "superscript f indicates the application
of the forward model". I believe the authors are referring
to the dynamical or forecast model here. The forward model
is, from my understanding, often synonymous with the observation
operator. This is indeed potentially confusing, we have replaced ”forward” with
”dynamical” and introduced the mnemonic ”forecast” which is the meaning we intend
for the superscript

9. Page 15, line 4: "For data assimilation our motivation
is to hindcast the state of the system". Consider changing
to "For data assimilation applied to biogeochemistry our motivation

6



is often to hindcast the state of the system", or something
similar. done as suggested.

10. Page 16, line 30: "Another advantage is that, ...".
It is not clear from the previous sentences that the previous
statement (need to run a dynamical model for each reali- sation
of the ensembe) is an advantage. Maybe change to "An advantage
of EnKF is that, ..." The real problem was with the previous sentence where
we had not clarified the advantage of the EnKF, now done.

11. Page 19, line 7: Capitalize "possibilities". done.
12. Page 19, line 26: "(references (e.g. Gloor et al.,

2000;". Remove "(references" or "(e.g.". removed ”references”.
13. Page 20, line 16: Change format of citations (no parentheses).

done.

Reviewer II
We have responded to most of the general comments in our overall response. Some
specific comments are addressed below:

The reviewer remarked that most of the literature cited was from the authors’ own
work. We don’t agree with that critique but also note that, in a small research com-
munity, the authors are three active and longstanding researchers with broad collabora-
tions. A strong representation of work which includes them is unsurprising.

General Comments

1. I was not convinced that that all of the methods in widespread
use within the field are special cases of the underlying Bayesian
formalism. The manuscript often switches between Bayesian methods
not found within biogeochemistry but found within atmo- spheric
sciences more generally (e.g. particle filtering), hybrid
Bayesian methods (e.g. Michalak et al. 2005) and non-Bayesian
methods (e.g. Manning et al. 2011) with little distinction
between them. We acknowledge that there is a trade-off between comprehensive-
ness and methodological purity but think some of the reviewer’s comments here are
misplaced. Particle filters and hierarchical methods are firstly Bayesian (even if not all
implementations are complete) and in growing use within biogeochemistry. To ignore
studies like Manning et al. (2011) risks a false impression of complete methodological
unity which is not the case. We would argue that ”all of the methods in widespread use
...” is an accurate description at the moment.

2. Section 3 has huge potential but does not deliver as
one of the main contributions listed in the abstract. The
notation needs improving rather than simply reiterating. For
example, I do not agree that the notation is sufficient for
most practical cases as it is neither followed throughout or
sufficient for a tutorial. An example is the discussion of
hyperparameters there is no notation available in Table 1
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to represent a vector of hyperparameters (I would suggest a
bold theta). I think that this is a good opportunity for an
explicit notation for the MAP estimate vs the mean. The notation
in Table 1 is not precise enough. For example, some of the
notations are specific to Gaussian distributions. This would
be fine if Table 1 were being used to only discuss a special
case of Gaussian problems, but later in the manuscript, non-Gaussian
formulations are also discussed, which would require a new
notation. The reviewer makes two points here, first that the notation isn’t good
enough and second that we don’t follow it throughout. We reiterate the general point
that inventing our own notation which we thought perfect would be at best wasted effort
and (more likely) add further confusion. The reviewer raises two examples of missing
notation. The vector of hyperparameters and the maximum a posteriori (MAP) esti-
mate. We have added θ to Table 1 and a brief mathematical development in the relevant
section. We resist the idea of a special notation for the MAP. It is a useful quantity to
know but it is often neither a parameter of the PDF and, for sampling approaches, not
generated by the method. We believe referring to it as the mode of the posterior PDF
is both accurate and parsimonious of notation. The reviewer has not cited a case where
we do not follow our own notation. For example, we have a notation for Gaussian
distributions and go on to use it being careful to state it is a special though widely-used
case. The rest of the methodology we develop using the notation for probabilities we
define.

3. Section 4. As this section is fundamental Bayesian
theory and if this is a tutorial, there should be a rudimentary
explanation of the notation of p(A given B) and how (in basic
terms) this forms Bayes theorem. It then worth reserving the
notation p(x) for the prior probability of x. Following Jaynes
and Bretthorst (2003) and Tarantola (2005) we do not believe that Bayes Theorem is
fundamental so do not introduce the topic this way. We do introduce the likelihood
later.

4. Section 5.6. Here is a good place to introduce the
new notation suggested in Sec- tion 3 and to expand the definition
of Bayes theorem from Section 4. The references used as examples
are not conducive to the narrative thus far. The paper Michalak
et al. (2005) does not integrate out the hyper-parameters
and is therefore this is not a hierarchical method but an empirical
hierarchical method (see e.g. Statistics for Spatio- Temporal
Data by Cressie & Wikle). We have now added a brief mathematical devel-
opment using θ as suggested. We already noted that Michalak et al. (2005) was a
stepping stone and have added the classification suggested.

5. Section 6.2. Gibbs samplers always have higher acceptance
rates in that by design, the Gibbs sampler has an acceptance
rate of 1. The real gain is not due to sampling from a univariate
distribution but sampling from distributions where there is
a closed form expression for the conditionals that can be sampled
from directly. The disad- vantage is that for many situations,
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this is not known a priori. It is not clear whether the work
adaptive on page 12, line 3, is meant to refer to Adaptive
MCMC. Adaptive MCMC methods have a particular meaning, which
is not the same as that described here. It would be better
to simply state that improved strategies use gradient informa-
tion while sampling. It is important to note that these methods
maintain ergodicity while sampling. We think this discussion is taking
us too far into implementation details. Our solution is rather to cut back on discus-
sion of different sampling strategies so we have removed the detailed discussion of the
Metropolis-Hastings method and do not discuss other sampling strategies in any detail.

6. Section 7.2. This needs to discuss non-Gaussian problems,
especially given the focus on Bayesian inference. For example,
should this posterior uncertainty represent the highest posterior
density region around the mode or an equal weighted probability
region around the median? This brings to light the difficulties
when quoting the posterior mean for non-Gaussian posteriors.
We have added a sentence to the end of this section.

7. Section 8. The final sentence on future methods could
have much more discussion. At the moment, only one study is
referenced but not really discussed, so it reads more like
an afterthought. We have added a new section based on the drivers identified
earlier. It is necessarily speculative.

8. Section 8 reads like a review paper, but it isnt comprehensive
enough. I would suggest that if this is meant to be a tutorial,
to not try to be a review also, because section 8 could be
a whole paper in and of itself. This section was added at the request of
a previous reviewer who thought that historical context would support the rest of the
paper. We have added a sentence to the opening paragraph explaining this.

Specific Comments

P1 Title: Data and Assimilation should be lower case done.
P1 Line 4: . . .for automating part of the process. i.e.

the choice of prior distribution is not automated. This is prob-
ably line 14. Replaced with ”building and using algorithms for ...”

Page 1 Line 12-14: An idea is introduced here but the readers
are left hanging. Why introduce this example of improving
a model but not testing it, but not provide any explanation
of what is meant here. Explanation added.

Page 2 Line 5: awkward wording demonstration how these
many methods are its implementations changed to ”these methods are
implementations of that theory.”

Page 2 Lines 21-23: Why are only these few papers referenced?
There is a wealth of literature on applications of the theory
to different fields and it is unclear why the authors select
only four to represent their fields. We wanted presentations that
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were extensive and in closely-related fields. This critique risks being open-ended; there
is always one more paper.

P3 Line 7 (Eq. 1): Define xi. ξ plays the role of an integration
variable which are customarily not defined.

Section 2.2 capitalize non-Bayesian done.
Page 3 Line 19: Explain what is meant by the Replicate

Earth Paradigm We believe the explanation would be too long and take us too far
afield, we have deleted the reference.

Section 2.2 should come before Section 2.1? This narrows
the remainder of the discussion to Bayesian. We think the intro-
duction of events and probabilities should precede the bifurcation between Bayesian
and non-Bayesian approaches so have not made this change.

P4 Table 1: This isnt referred to anywhere in the text.
Delete extra brackets in descrip- tion of R.Have added sentence
pointing out that symbols used throughout are defined in Table 1, also removed extra
brackets.

P5 Line 20 (Eq 20): Make clear that the earlier reference
to one variable, one observation has now been expanded into
vectors. done

Figure 1. Put all text into the caption below. Why is
the x axis labelled unknown in the bottom panel? Label panels
(a) and (b). The numbers 1.2 and 0.8, 0.2, -0.2 are not immediately
clear what they are showing. We have repositioned the captions and ex-
plained the values further.

Page 5 Line 26-27: describe what Equation 2 not well applied
means This referred to poor approximations in the solution but this is not the best place
to discuss that so we removed the reference.

Page 7 Line 5: Need to describe what you mean what are
the common misunderstandingsWe explained these below so have combined
the paragraphs and explained the misunderstandings explicitly.

Page 7 Line 10: Reason 1: Why does limiting target variables
underestimate the uncertainty? One might remove an important variable.
We have explained this.

Reason 2: This is just repeating what was said above and
is not a reason. Agree with the repetition, we have reorganised. We have also
added that it is not always easy to guess in advance what will be constrained, especially
in complex models.

Page 7 Line 15: Walking through an example setting up this
ideal world would be much more helpful for a novice reader
than only providing the instructions. We have used an example to
illustrate the points below, this is an excellent suggestion. We also deleted the last
element in the list since that concerns activities after the assimilation.

Page 7 Line 15: Point 1: Explain what this means. How
do you make this decision? The choice is motivated by the science ques-
tion we are addressing. We have added examples.

Point 3: An example would help. have added an example.
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Point 4: What cut-off? We have lengthened the explanation.
Page 8 Line 9: K can be either sign so why would sK be

more likely to increase rather than decrease? i.e. a larger
s means a more negative sK if K were negative. I may be misunderstanding
what is being said here, but isnt it simpler to say that positive
scaling has a minimum of 0 so skewed in one direction while
log(s) can be both positive and negative? Two points here. First
on k the reviewer is correct, we have replaced ”value” with ”magnitude”. We also
adopted the second suggestion.

P8 Line 24: The text does not describe what a uniform prior
is (i.e. a uniform distribution). If this is for a novice,
needs to be explicit. We have introduced this on page 5.

Page 8 Line 19: Discussion about aggregation errors missing.
No reference to methods that try to diagnose these (e.g., Turner
et al., 2015, Lunt et al., 2016) We don’t think this is the right place
to discuss aggregation errors which usually occur with the choice of target variables
rather than prior PDF. We have added some more discussion in Section 5.1 including
these references.

Page 8 Line 26: Another disadvantage is that it is not
fully hierarchical and that hyper- parameters are not integrated
out. This is true, we discuss it explicitly later.

Section 5.2. Need a discussion about the uncertainties
assumed in the prior as this makes a very large impact. In
practice, this is not well known. This could be a practical
note on the application to biogeochemistry. A good point, we have
added a paragraph.

Page 9 Line 11: It is not only resolution that affects
H but model structures such as parameterizations. A good point,
we had assumed it but now added an explicit comment.

Section 5.4. Need much more detail about how uncertainties
are treated in H. We have added a paragraph. We also note this in Section 8
since it is a weakness in current work.

Page 10 Line 25: Need to state that this is not a fully
hierarchical Bayesian method if hyperparameters are not integrated
out, and state that the impact is likely an underestimation
of uncertainties Added.

Page 10 Line 29: This study did integrate hyper-parameters
in a hierarchical sense and propagated these uncertainties
through to fluxes, but requires MCMC calculations with potentially
higher computational cost. comment added.

Page 10 line 32: What is a well-known atmospheric inversion?
TRANSCOM, now described in detail.

Page 11, line 1: If this is a tutorial, then the description
and notation should be included in this paper and not just
referenced to another paper. It’s not clear what the reviewer is referring
to here. If it is Wikle and Berliner (2007) then we have essentially done this in the
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expanded section with the solution for θ sketched. We would also argue that the gen-
eral formalism we have used already embodies the hierarchical method. One simply
augments the target variables with θ, solves for the joint PDF of the augmented target
variables and integrates out whatever one doesn’t want.

Page 11 Line 12: A new altered Figure 2 would help show
this pointWe think the textual description is sufficient and that the space for a new
figure is not warranted.

Page 11 Line 13: Delete various of done.
Page 12 Line 19 Can talk about the role of thinning chains.

Added description.
Page 12 Line 5- Need references using MCMC We have cut back

on the description of various Monte Carlo methods so believe the depth of referencing
is sufficient.

Page 12 Line 5 - Need to discuss limitations of MCMC such
as convergence issues. Again, we have added a comment that one must
watch the sampling properties of whatever method one uses but have avoided technical
detail of any particular method.

P13 Line 3: It isnt clear what the word model means here.
For a tutorial, an example of what is meant would be helpful.
should have been ”observation operator”, now changed.

Page 13 Line 5 typo MCMC? changed.
Page 13 Line 16 Needs more explanation such as? The sen-

tence was meant to point to the section immediately below, we have made this explicit.
P13 Line 27: The notation G(H(x)− yo, R) in this section

is different to that defined in Table 1 and does not appear
Ide et al (1997). We have corrected the form to match the definition of G in
Table 1.

P13 Line 29 (Eq. 5): I would change p(x) to something
else here, e.g., p(x|y), to distinguish it from the prior probability
of x done.

P14 Line 16: Specify where this will be described rather
than simply later. done.

P15 Line 20 (Eq. 7): Is the meaning of J described before
this? What is J? What does it mean? Explain for a beginner.
J is actually defined by that equation, we have now added text ahead explaining this.

Section 8: Reserve the term we for subjective choices made
specifically by the authors rather than the community in general,
as e.g. We can identify..., We now know. . . etc. corrected
throughout.

P 19 Line 23: Capital T needed at start of sentence. cor-
rected.

P21 Line 10: Delete apparently done.

Reviewer III
We refer to our general responses to the reviewer’s overall comments.
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General Comments

1) Section 2.2: Since the paper focuses on Bayesian approach,
I dont think the paper needs to discuss non-Bayesian method.
We don’t discuss it in detail but think readers need to be aware of the difference, espe-
cially since Bayesian methods are still regarded as more obscure.

2) Section 3: It is not clear to me what is the difference
between x (Target variables for assimilation) and z (model
state variable). It is not explained in the paper. Later
on, only x is used in the cost function. We have added a para-
graph in Section 5.1 to clarify this distinction.

3) Section 5: this section has a lot of useful materials.
I would suggest discussing how each element is addressed in
specific examples. Section 5.1 gave a recipe to decide target
variables. It would be easier to understand if this recipe
is discussed within a specific application. Reviewer II also sug-
gested this and we have added an example.

4) Section 6.5: The Kalman filter is discussed in a very
general concept here. How Kalman filter has been used in biogeochemistry,
and what is the challenge? We have addressed the history in Section 7.

5) Section 7 discussed specific Bayesian methods from computation
perspective. Again, I found the description is too general.
The applications of these methods in specific problem could
be very different. For example, in boundary con- dition estimation,
the prior ensembles may not come from the posterior ensemble
of previous step, since there is no dynamical model to propagate
information forward. As a result, step 5 described in section
7.4 is not applicable. If there is no dynamical model for the target variables
one might question whether the KF or any of its derivatives is a good choice for the
assimilation algorithm. As we note later, even algorithms that did not seem to be using
a dynamical model were often assuming a persistence model.
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Abstract. This article lays out the fundamentals of data assimilation as used in biogeochemistry. It demonstrates that all of

the methods in widespread use within the field are special cases of the underlying Bayesian formalism. Methods differ in the

assumptions they make and information they provide on the probability distributions used in Bayesian calculations. It thus

provides a basis for comparison and choice among these methods. It also provides a standardised notation for the various

quantities used in the field.5

1 Introduction

The task of improving current knowledge by the consideration of observed phenomena is a fundamental part of the scientific

process. The mechanics of the process are a matter for historians of science and a matter of fierce debate, while its fundamental

reliability is a matter for philosophers, literally a meta-physical question. Here we are concerned with algorithms for automating

:::::::
building

:::
and

:::::
using

::::::::::
algorithms

:::
for the process. The step by step construction of such algorithms from agreed upon logical10

premises is beyond our scope here but is masterfully presented by Jaynes and Bretthorst (2003).

It is important to note at the outset the generality of the machinery we will present, especially because many of the common

objections to the methods spring from misunderstandings of this generality. For example, it is a common complaint that data

assimilation can improve a model but cannot test it. The methods are, however, capable of considering multiple models
:::
and

::::::::
assigning

::::::::::
probabilities

::
to

:::::
them;

::
a

:::
test

::
of

::::
their

:::::::
relative

::::::::::
performance.15

At the outset we should settle some questions of terminology. The phrases “data assimilation”, “parameter estimation”,

“inverse modelling” and “model-data fusion” are used with overlapping meanings in the literature. Here we will draw no

distinction between them.
:::::::::
“Inversion”

::
is

::::
most

:::::::::
commonly

::::
used

:::
to

:::::::
describe

::::::::
improving

::::::::::
knowledge

::
of

:::
the

:::::
inputs

::
of

:
a
::::::
model

:::::
given

::::::::::
observations

::
of

:::
its

::::::
output.

::::
The

::::
term

:::::
arises

::::
since

:::
the

:::::::::
technique

:::::::
reverses

:::
the

::::::
normal

::::::::
direction

::
of

::::::::
causality

::::::::::::::::
(Enting, 2002, p.10)

:
.

:::::
“Data

:::::::::::
assimilation”

::::
most

:::::::::
commonly

:::::
refers

::
to

:::
the

:::::::::
correction

::
of

:::
the

::::::::
trajectory

::
of

::
a

::::::
running

::::::
model

:::::
given

:::::::::::
observations.

:::::
There

:::
are20

::::
many

:::::::::
exceptions

::
to
::::
this

:::::::::::
categorisation

::::
and

::::
other

::::::::::
distinctions

:::::
could

::
be

::::::
made.

:::
We

:::
will

:::
use

:::
the

:::::
term

:::
data

::::::::::
assimilation

::::::::::
throughout

:::
but

::::::
readers

::::::
should

:::::::
interpret

:::
the

:::::
name

:::::::
broadly.

We are concerned with algorithms to improve the performance of models through the use of data. The improvement will

come via knowledge of the state (quantities the model calculates), boundary conditions (quantities we insert into the model)
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or structure of the model. Performance will be assessed by the model’s ability to reproduce observations, especially those not

included in the data assimilation algorithm.

The application of data assimilation to biogeochemistry has proceeded from informality to formal methods and from small

to larger problems. One can see the study of Fung et al. (1987) as a data assimilation experiment. These authors adjusted

respiration parameters in a simple biosphere model so that the seasonal cycle of atmospheric CO2 concentration better matched5

the observed seasonal cycle at some stations. Fifteen years later, Kaminski et al. (2002) performed a similar study on a similar

model with more stations and a formal algorithm. We see similar developments in the estimation of CO2 fluxes (e.g. Tans et al.

(1990) vs Chevallier et al. (2010)) and ocean productivity (Balkanski et al. (1999) cf Brasseur et al. (2009)).

The flourishing of the general approach has also led to a great diversification of methods, reflecting repeated borrowings

from other fields. This has been extremely fruitful, but can be confusing for a novice. Our aim in this paper is to reintroduce the10

fundamental theory and demonstrate how these many methods are its implementations
:::::::
methods

:::
are

::::::::::::::
implementations

::
of

::::
that

:::::
theory. We will aim to tread a careful path between generality and simplicity. If we succeed, a reader should be well-placed to

understand the relationships among the methods and applications presented later. We will also introduce a consistent notation

that is sufficiently general as to capture the range of possible applications.

The structure of the paper is as follows: In Section 2 we introduce the general theory. There is no new material here, but we15

need a basis for the subsequent discussion. Section 3 introduces a consistent notation. Section 4 presents an overall approach to

the solution to the data assimilation problem through the use of a simple example. Section 5 describes the construction of inputs

to the problem. Section 6 describes solution methods and how they are special cases of the general theory but take advantage

of the circumstances of a particular problem. Section 7 describes some computational aspects related to the solution of data

assimilation problems. Finally, Section 8 introduces a range of example applications which illustrate the historical development20

of the field.

2 Data Assimilation as Statistical Inference

In what follows we will not be using mathematically precise language. We think the trade-off of ambiguity for simplicity

suits our introductory task. Some of the key concepts are introduced in Tarantola and Valette (1982) and elaborated further

in Tarantola (1987). In addition, Evans and Stark (2002) sought to unify the languages of applied mathematics and statistics25

used to describe the methods. Jaynes and Bretthorst (2003) gave a thorough exposition on the underlying ideas while Tarantola

(2005) provided a comprehensive treatment of both motivations and methods. Other presentations that focus on particular

applications include Kalnay (2003) for numerical weather prediction, Rodgers (2000) for atmospheric remote sensing, Enting

(2002) and Bocquet et al. (2015) for atmospheric composition and Carrassi et al. (2018) for the geosciences more generally.

2.1 Events and Probability30

For our purposes, we define an event as a statement about the condition of a system. This is deliberately general; such statements

can take many forms. Examples include categorical or discrete statements (e.g. “including isopycnal mixing improves ocean
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circulation models”), logical propositions (e.g. “increasing soil temperatures lead to increased soil respiration”) or quantitative

statements like “the Amazon forest is a sink of between 1 and 2 PgCy−1”. The choice of the set of events we consider is the

first one we make in setting up any data assimilation problem. We require that any events that are logically incompatible be

disjoint (mutually exclusive) and that the set of events be complete.1

The concept of probability is so simple and universal that it is hard to find a definition that is more than a tautology. It is5

a function mapping the set of events onto the interval [0,1]. Its simplest properties, often called the Kolmogorov axioms (Jaynes

and Bretthorst, 2003, Appendix A) reflect the definition of events, i.e that the probability of the whole domain is 1, and that the

probability of the union of two disjoint events is the sum of their individual probabilities.
:::
The

:::::
most

:::::::
common

::::
case

:::
in

::::::
natural

::::::
science

::
is

:::::::
learning

:::::
about

:::::
some

::::::::
numerical

:::::::
quantity

::::
like

:
a
::::
rate

:::::::
constant

::
or

:
a
:::::
flux.

:::
We

::::
term

:::
the

:::
set

::
of

:::::
these

::::::::
quantities

:::
the

::::::
“target

::::::::
variables”

::
of

:::
the

::::::::
problem.

:::::
They

:::
are

:::
also

::::::
called

:::::::::
unknowns,

:::::::::
parameters

::
or

:::::::
control

::::::::
variables.

::
In

:::
this

::::::::::
continuous

::::
case,

::::::
events

:::
are10

::::::
usually

::::::::::
membership

:::
of

:::::
some

::
set

:::::
(e.g.

:::::::::
x ∈ (2,5)).

:
If our target variables are continuous, we can define a probability density

function p (usually abbreviated PDF) such that the probability P that a quantity
::::
target

:::::::
variable

:
x is in some region R is the

integral of p over R. In one dimension this simplifies to

p(x) = lim
δx→0

P (ξ ∈ (x,x+ δx))

δx
(1)

2.2 Bayesian and non-bayesian
::::::::::::
non-Bayesian inference15

At this point, any discussion of statistics bifurcates into two apparently incompatible methodologies, roughly termed Frequen-

tist and Bayesian. Debate between the two schools has been carried on with surprising vigour. See Salsburg (2001) for a general

history and Jaynes and Bretthorst (2003) for a partisan view. Characterizing the two schools is far beyond our scope here, es-

pecially as we will follow only one of them in much detail, but since even the language of the methods is almost disjoint it is

worth introducing the new reader to the major concepts.20

Frequentists generally pose problems as the quest for some property of a population. The property must be estimated from

a sample of the population. Estimators are functions that compute these estimates from the sample. The design of estimators

with desirable properties (no bias, minimum uncertainty, etc.) is a significant part of the technical apparatus of frequentist

inference. Often we seek a physical parameter. This is not a bulk property but a single value that must be deduced from

imperfect data. Here we treat each experiment as observing a member of a population so that we can use the same apparatus;25

the method is summed up in the phrase "the Replicate Earth Paradigm" (Bishop and Abramowitz, 2013).

Bayesian statisticians concern themselves with the state of knowledge of a system. They regard the task of inference as

improving this state of knowledge. We generate knowledge of some property of the system by applying some mathematical

operation to the state of knowledge of the underlying system. Although we may call this estimating some property of the

system, the calculations involved are quite different from the estimators of frequentist statistics. As a practical example a30

frequentist may estimate a mean by averaging his sample while a Bayesian may calculate an integral over her probability

density. It is also important to note that for a Bayesian the state of knowledge does not necessarily come only from the sample
1This definition of event already takes us down one fork of the major distinction in statistics roughly described as Bayesians vs Frequentists. This is

a Bayesian definition; a Frequentist will usually refer to an event as the outcome of an experiment.
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itself. This use of information external or prior to the data is the most important practical difference between the two methods.

Throughout this paper we will generally follow a Bayesian rather than frequentist approach. This represents the balance of

activity in the field but is not a judgment on their relative merits.

3 Towards a Consistent Notation

The notation in use in this field is as varied as the nomenclature. This is unavoidable where similar techniques have been5

developed independently to answer the needs of many different fields. This diversity complicates the task for novices and

experts alike as they compare literature from different fields. Producing a notation at once compact enough to be usable and

general enough to cover all cases is a difficult task. Ide et al. (1997) made an attempt focused on numerical weather and ocean

prediction. Experience has shown their notation to be sufficient for most practical cases and we have followed it here
::
as

::::::
closely

::
as

:::::::
possible. The notation does have an explicitly Bayesian flavour. For example we eschew the use of hats to describe estimates10

because we regard estimation as an operation on a probability density.
:::
The

:::::::
notation

::::
used

::
in

:::
this

:::::
paper

::::
and

:::
the

:::
rest

::
of

:::
the

:::::
issue

::::::
derives

::::
from

:::::
Table

:
1
::::
and

::::::
readers

::::::
should

::::
refer

::
to

::::
this

::::
table

:::
for

:::::::::
definitions

::
of

::::::::
symbols.

4 Fundamental Bayesian Theory

In this section we will sketch the fundamental solution of the inverse problem. This will motivate a more detailed description

of the various inputs in the following section.15

Tarantola (2005) states at the outset of his book that the state of knowledge of a system can be described by a probability

distribution or corresponding probability density. Our task is to combine knowledge from measurements with pre-existing

knowledge on the system’s state to improve knowledge of the system. 2

The recipe for combining these two sources of knowledge is traditionally introduced via conditional probabilities and ex-

pressed as Bayes’ Theorem (Laplace, 1774).
::::
Here

::
we

::::::
follow

:
Tarantola (2005) and Jaynes and Bretthorst (2003)

:::
who

:
derive the20

machinery directly from the axioms of probability.

We postulate that the true state of the system is consistent with our prior knowledge of it and the measurements we take. The

link between the system’s state and the observations is created by an observation operator
:::::
(often

:::::
called

::
a

:::::::
forward

:::::::
operator).3

Both observations and observation operators are imperfect and we describe the state of knowledge of them both with probability

densities.25

The case for one target variable and one observation is described in Figure 1, slightly adapted from Rayner (2010). The top

panel shows the joint probability distribution for the target variable (blue rectangle) and the measured quantity (red rectangle).

Our imperfect knowledge of the mapping between them is shown by the green rectangle. In this simple case the three PDFs are

uniform so there is no privileged value for the data or target variable
::::::
meaning

:::
all

:::::
values

::::::
within

:::
the

:::::::
interval

:::
are

::::::
equally

:::::
likely.

2Tarantola (2005) uses the term information instead of knowledge. We avoid it here because it has a technical meaning.
3Rayner et al. (2010) refers to this as a model but here we reserve that term for the dynamical evolution of the system.
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Table 1. Table of notation used throughout the issue. Borrows heavily from Ide et al. (1997) Appendix 1.

Basic Notation

Symbol
::::::::
Definition Description

BOLD Matrix

bold Vector

x Target variables for assimilation

z Model state variables

y Vector of observed variables

:
θ
:

::::::::::::
hyperparameters

:::
(see

::::::
Section

:::
5.6)

J Cost function

U(x,xt) Uncertainty covariance of x around some reference point xt

C(x) Uncertainty correlation of x

p(x) Probability density function evaluated at variable x

G(x,µ,U) Multivariate normal (Gaussian) distribution with mean µ and covariance U

H Observation operator mapping target or model variables onto observables

H
::::
∇xy Jacobian of H , often used in its place, especially for linear problems

M Model to evolve state vector from one timestep to the next

M
:::::
∇xx

f Jacobian of M

(·)a Posterior or analysis

::::::
Analysis

::
or

:::::::
posterior

:

(·)b Background or prior

(·)f Forecast

(·)g (First) guess in iteration

(·)t True

(·)o Observed

δ Increment

Some Useful Shortcuts

Symbol
::::::::
Definition Description

d y−H(z) (Innovation)

::::::::
Innovation

U(x) Uncertainty covariance of x about its own mean, i.e. the true uncertainty covariance

B U(xb) ( Prior uncertainty covariance)

Q U(xf ,xt) (Forecast uncertainty

::::::
Forecast

:::::::::
uncertainty

:::
(see

::::::
Section

:::
6.5)

R U((y−H(zt)))
:::::::::::
U(y−H(zt))

:

::::::::
Uncertainty

:::
of

:::::::::
observations

::::::
around

::::::::
prediction

:::::
given

:::
true

::::
state,

:::::
(often

:::::::::
abbreviated

::::::::::
observational

:::::::::
uncertainty)

A U(xa) ( posterior uncertainty covariance)
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The solution of the problem is the intersection or multiplication of the three PDFs. Adding the requirement that the system

state must take a value, we obtain the solution (bottom panel) by projecting the joint PDF onto the x-axis and normalizing it.

We write the multiplication as

p(x,y)∝ p(x|xb)× p(y|yo)× p(y|H(x)) (2)

:::::
where

:::
we

::::
have

::::::::
extended

:::
the

::::
case

::::
with

:::
one

:::::::
variable

:::
and

::::
one

:::::::::
observation

:::
to

::
the

:::::
usual

::::
case

::::::
where

::::
both

:::
are

::::::
vectors.

:
We generate5

the posterior distribution for x by integrating over possible values of the observed quantity

p(x)∝
∫
p(x,y)dy (3)

The constant of proportionality follows from normalisation
∫
p(x)dx= 1. The last term in Equation 2 is the uncertainty

:::::::::
probability of a value y given a value of the target variable x and is often termed the likelihood. We stress that the generated

PDFs are the most complete description of the solution. What we usually think of as the estimated state of the system
:::::
target10

:::::::
variables

:
xa is some derived property of p(x), e.g. its mode or mean. Note that if any PDF is mischaracterizedor if Equation 2

is not well applied, xa can correspond to a very small probability, possibly even smaller than for xb. Such a situation may

remain unnoticed in the absence of independent direct validation data for xa, as is currently the case for global atmospheric

inversions. This issue underlines the necessity to keep a clear link with the statistical framework, despite the possible technical

complexity of data assimilation systems.15

5 The Ingredients

In this section we describe the various inputs to Equation 2 along with some closely related quantities.

5.1 Deciding on Target Variables

:
It
::
is
:::::::::

important
::
at

:::
the

::::::
outset

::
to

::::::::::
distinguish

:::::::
between

:::::
target

::::::::
variables

::
x
::::
and

::::
state

::::::::
variables

::
z.

::::::
Target

::::::::
variables

:::
are

:::
the

:::
set

:::
of

::::::::
quantities

:::
we

::::
wish

::
to

:::::
learn

::::
more

:::::
about

:::
in

:::
the

::::::::::
assimilation.

:::::
State

::::::::
variables

:::
are

:::
the

:::
set

::
of

::::::::
quantities

:::::::::
calculated

::
by

::
a
::::::
model.

:::
As20

::
an

::::::::
example,

:
a
::::::::
chemical

::::::::
transport

:::::
model

::::::::::::::::
(Krol et al., 2005)

:::
may

::::
have

::::::::
specified

:::::
inputs

:::
of

::::::
various

::::::
tracers

:::
and

::::
will

::::::::
calculate

:::
the

:::::::
evolution

:::
of

:::::
those

::::
(and

:::::
other)

::::::
tracers

::::::
subject

::
to
:::::::::::
atmospheric

:::::::
transport

::::
and

::::::::
chemical

:::::::::::::
transformation.

:::
We

::::
will

::::::::
frequently

:::::
wish

::
to

::::
learn

:::::
about

:::
the

::::::
inputs

:::
but

:::
not

:::::
about

:::
the

::::::::::::
concentrations.

:::
In

:::
that

::::
case

:::
the

::::::
inputs

:::
are

:::::
target

:::::::
variables

::::::
while

:::
the

::::::::::::
concentrations

::
are

:::::
state

::::::::
variables.

:::
We

:::::
might

::::
also

::::::
choose

::
to

::::
learn

:::::
about

:::
the

::::::::::::
concentrations

:::
in

::
the

:::::::::::
assimilation

::
in

:::::
which

::::
case

::::
they

:::::::
become

::::
both

::::
state

:::
and

:::::
target

::::::::
variables.

:
25

Although not usually considered part of the problem, the decision on target variables preconditions much of what follows.

It is also the subject of some common misunderstandings and there is some definite guidance for the choice.

In general the target variables should include anything which is important to the behaviour of the system and is not perfectly

known. The choice should not depend on us guessing which target variables can be constrained by the observations. There are

three reasonsfor this
::
A

:::::::
common

:::::::::::::::
misunderstanding

::
is

::
to

:::::
limit

:::
the

:::::
target

:::::::
variables

:::
to

:::
the

:::::::
smallest

:::::::
possible

:::
set.

::::
This

::
is
:::::
risky

:::
for30

::::
three

::::::
reasons:
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::
(A)

:

Joint probability distribution for system state (x-axis) and measurement (y-axis).

The light-blue rectangle (which extends to infinity in the y direction) represents

the prior knowledge of the unknown system state. The light-red rectangle (which

extends to infinity in the x direction) represents the knowledge of the true value

of the measurement. The green rectangle (extending to infinity along the one-to-one

line) represents the state of knowledge of the observation operator. The black triangle

(the intersection of the three PDFs) represents the solution as the joint PDF.

x

probability density
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::
(B)

:

PDF for unknown system state obtained by projecting the black

triangle from the left panel onto the x-axis (i.e. integrating over all

values of the observation) .

Figure 1. Illustration of Bayesian inference for a system with one target variable and one observation. The top panel
:::
Part

:::
(A) shows the

joint probability distribution for
::::
target

:::::::
variable

::::::
(x-axis)

:::
and

::::::::::
measurement

:::::::
(y-axis).

:::
The

::::::::
light-blue

:::::::
rectangle

::::::
(which

::::::
extends

::
to

::::::
infinity

::
in

::
the

::
y

:::::::
direction)

::::::::
represents

:::
the

::::
prior

::::::::
knowledge

::
of the target variable

::::::::
(uniformly

::::::::
distributed

::::::
between

:::::
−0.2 and

::::
0.2).

:::
The

:::::::
light-red

:::::::
rectangle

:::::
(which

::::::
extends

::
to

::::::
infinity

:
in
:::
the

:
x
::::::::

direction)
::::::::
represents

::
the

:::::::::
knowledge

::
of

::
the

::::
true

::::
value

::
of

:::
the

::::::::::
measurement

::::::::
(uniformly

::::::::
distributed

:::::::
between

::
0.8

:::
and

::::
1.2).

:::
The

:::::
green

:::::::
rectangle

::::::::
(extending

::
to

::::::
infinity

::::
along

:::
the

::::::::
one-to-one

::::
line)

:::::::
represents

:::
the

::::
state

::
of

::::::::
knowledge

::
of the observation while

::::::
operator.

::::
The

::::::::
observation

:::::::
operator

:
is
::
a
:::::
simple

::::::::
one-to-one

:::::::
mapping

:::::::::
represented

::
by the bottom panel

::::
heavy

::::
green

::::
line.

:::
The

:::::
black

:::::
triangle

::::
(the

::::::::
intersection

::
of
:::

the
::::
three

::::::
PDFs)

::::::::
represents

::
the

:::::::
solution

::
as

:::
the

::::
joint

::::
PDF.

:::
Part

:::
(B)

:
shows the resulting PDF for the target variable

:::::::
variables

::::::
obtained

::
by

::::::::
projecting

:::
the

::::
black

::::::
triangle

::::
from

:::
(A)

::::
onto

:::
the

:::::
x-axis

:::
(i.e.

::::::::
integrating

::::
over

::
all

:::::
values

::
of

:::
the

:::::::::
observation). Figure modified from

Rayner (2010).
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1. We often wish to calculate the uncertainty in some predicted quantity. Limiting the number of target variables may

underestimate this uncertainty ;
:::
We

::::
may

:::::::::::
inadvertently

::::::::
eliminate

:
a
:::::
target

:::::::
variable

::::::
whose

::::::::::
uncertainty

:::::::::
contributes

::
to

::::
that

::
of

:::
our

:::::::
quantity

::
of

:::::::
interest.

2. We
:::
are

:::
not

::::::
always

:::::::
capable

::
of

::::::::
guessing

::
in

:::::::
advance

:::::
which

:::::
target

::::::::
variables

::::
will

::
be

::::::::::::::
well-constrained

:::
by

:::
the

:::::::::::
assimilation.

:::
We should let the observations determine which variables can be constrained rather than guessing in advance (Wunsch5

and Minster, 1982);

3. If a target variable that should be important for explaining an observation is removed, the information from that observa-

tion may contaminate other target variables (Trampert and Snieder, 1996; Kaminski et al., 2001).
:::
This

:::::::
usually

:::::::
happens

::::
when

:::
we

::::
limit

:::
the

:::::
detail

::
or
:::::::::
resolution

::
in

:::
our

:::::
target

::::::::
variables.

:

:::::
These

::::::::::::
considerations

::::
push

::
us

:::::::
towards

::::::::
complex

:::::
rather

::::
than

:::::
simple

:::::::
models.

::
A

::::::::
common

::::::
critique

::
is
::::
that

:::
we

:::
will

::::::
over-fit

:::
the

:::::
data.10

::::
This

:::
can

:::::::
certainly

:::::::
happen

:::
but

::::
will

::
be

:::::::
revealed

:::
by

::::::
proper

:::::::::::
consideration

::
of

:::
the

::::::::
posterior

::::::::::
uncertainty.

:::
We

::::
can

::::::
always

::::::::
post-treat

::
the

:::::
target

::::::::
variables

::
to

::::
seek

:::::::::::
combinations

::::
with

:::::
lower

::::::::::
uncertainty.

:::
An

:::::::
example

::
is
::::::::::
aggregating

::
a

::::::
gridded

::::
field

::
to

:::::
lower

:::::::::
resolution

:::::
which

::
is

::::
often

:::::
better

::::::::::
constrained

:::
by

:::
the

:::::::::::
observations.

In an ideal world one would
::::
Point

::::
three

::::::
above

:::
has

::::
been

:::
the

::::::
subject

::
of

:::::
much

:::::
work

::
in

:::
the

::::
flux

::::::::
inversion

:::::::::
community

::
in

::::::
which

:::
our

:::::
target

:::::::
variables

:::
are

:::::::
gridded

::::::
surface

::::::
fluxes

::
of

::::
some

:::::::::::
atmospheric

:::::
tracer.

:::::
Often

:::
we

:::::
group

:::
or

::::::::
aggregate

::::
grid

::::
cells

:::
into

:::::::
regions15

:::
and

::::::
assume

:::
the

::::
flux

::::::
pattern

:::::
inside

:::::
these

::::::
regions

::
is
::::::::
perfectly

::::::
known.

::::
Our

:::::
target

::::::::
variables

:::::::
comprise

::::::::
multiples

:::
or

::::::
scaling

::::::
factors

::
for

:::::
these

::::::::
patterns.

:::::::::::::::::::
Kaminski et al. (2001)

::::::
showed

::::
that

::::::::
incorrect

::::::::::
specification

:::
of

:::::
these

:::::::
patterns

:::
led

::
to

::::::
errors

::
in

:::
the

::::::::
retrieved

:::::::::
multipliers.

:::::::::
Following

::::::::::::::::::::::::
Trampert and Snieder (1996)

:::
such

:::::
errors

:::
are

::::::
known

::
as

::::::::::
aggregation

:::::
errors.

:::::::::::::::::::
Kaminski et al. (2001)

::::::::
proposed

::
an

::::::::
algorithm

:::
for

::::::::::
deweighting

:::::::::::
observations

::::
most

:::::::
strongly

:::::::::::
contaminated

:::
by

::::::::::
aggregation

:::::
errors.

::::
The

:::::
more

:::::::
common

:::::::
solution

::
is

::
to

::::
solve

::
at

::::::
higher

::::::::
resolution

::::
(See

:::::::
Section

::::
7.1).

:::::::::::::
Bocquet (2005)

::::::
pointed

:::
out

:::::
some

:::::::::
limitations

::
of

:::
this

::::::::
approach

::::
with

:::
the

::::::::::
information20

::::
from

:::::::::::
observations

:::::
being

::::::
focused

:::::
more

::::::
tightly

::::::
around

:::::::::
observing

::::
sites

::
as

::::::::
resolution

:::::::::
increased.

::::::::::::::::::::::::::
(Rodgers, 2000, Section 3.2.1)

:::
also

:::::
noted

::
an

::::::::
increased

::::::
impact

::
of

:::
the

:::::
prior

::
as

::::
more

:::::
detail

::
in

:::
the

:::::
target

:::::::
variables

::::::
meant

:::
that

:::::
more

::::::::
remained

::::::::::
unobserved.

::::
This

:::
has

::
led

::
to
:::::::
various

:::::::::
approaches

::
to

::::::::
designing

::::::::
structures

:::
for

:::
the

:::::
target

:::::::
variables

:::::::::
consistent

::::
with

:::
the

:::::::::
capabilities

::
of

:::
the

::::::::
observing

:::::::
system.

:::::::::::::::::::::::::::::::::::::::::::::::::
Wu et al. (2011); Turner and Jacob (2015); Lunt et al. (2016)

:::::
chose

:::::::
different

::::::::
methods

:::
for

:::::
doing

::::
this

::::
with

::::::::::::::::
Lunt et al. (2016)

:::::::
showing

::::
how

::
to

::::::
include

:::
the

::::::::::
uncertainty

::
in

:::
the

:::::
choice

::
in

::::
their

:::::::::::
assimilation.

:
25

:::
We

:::
use

:::
an

:::::::
example

::
to

::::::::
illustrate

:::
the

:::::::
process.

::::::::::::::::::
Bodman et al. (2013)

::::
used

:::
the

::::::
simple

:::::::::::::::::
carbon-cycle/climate

::::::
model

:::::::::
MAGICC

::::::::::::::::::::::
(Meinshausen et al., 2008)

:::
and

::::::::
historical

:::::::::::
observations

::
of

:::::::::::
temperature

:::
and

:::::
CO2::::::::::::

concentration
::
to

:::::::
estimate

::::
the

::::::
global

:::::
mean

::::::::::
temperature

:::
and

:::::::::
integrated

::::::
carbon

::::::
uptake

:::
for

:::::
2100.

::::
The

:::::
steps

::::::::
involved

::
in

::::::::
choosing

:::::
which

::::::::::
parameters

::
of

:::::::::
MAGICC

::
to

::::
use

::
as

:::::
target

:::::::
variables

::::
was:

1. Decide on a quantity of interest. This need
:::
will

:::
be

:::::
driven

:::
by

:::
the

:::::::
science

:::::::
question

:::
we

::::
are

:::::::::
addressing,

::::
e.g.

:::
the

::::::
global30

::::
mean

::::::::::
temperature

::
in
:::::
2100

::
or

:::
the

:::::::::
biospheric

::::::
carbon

:::::
uptake

:::
of

:::::
North

::::::::
America.

:::::
Often

:
it
::::
will not be atarget variable for the

assimilation; frequently it is aforecast from the model. It is a function of the target variables for the assimilation
:::::
target

::::::
variable

:::
but

:::
the

:::::
result

::
of

::
a
:::::::
forecast

::
or

:::::::::
diagnostic

:::::::::
calculation.
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2. Use sensitivity analysis to find variables to which it
::
the

:::::::
quantity

:::
of

::::::
interest

:
is sensitive (e.g. Moore et al., 2012). This

may often include forcings that are usually neglected.
:
It

::
is

:::::
often

:
a
:::::
brute

:::::
force

:::::::::
calculation

:::::::::
performed

:::
by

::::::::
changing

:::
the

::::::
variable

::
a
:::::
small

::::::
amount

::::::
though

:::
the

::::::
adjoint

:::::::
analysis

::::::::
discussed

::
in

:::::::
Section

:::
7.1

:::
can

::::
also

::
be

:::::
used.5

3. Generate prior PDFs for the most sensitive variables and, with these, calculate the prior PDF in the quantity of interest

generated by each potential target variable. These two
:::
This

::::
and

:::
the

:::::::
previous

:
steps should never be separated; the sensi-

tivity to a given target variable is best expressed in uncertainty units for that variable. This provides a common basis for

comparing sensitivities of different variables in different units.
:::
For

::::::::
example,

::::::::::::::::::
Bodman et al. (2013)

::::
used

:::::::::
realisations

:::
of

::
the

::::::
simple

:::::::
climate

:::::
model

:::::::::
MAGICC

::
to

::::::::
calculate

:::
the

::::::::::
contribution

::
of

:::::::::::
uncertainties

::
in

::::::
model

:::::::::
parameters

:::::
(such

::
as

:::::::
climate10

::::::::
sensitivity

::
or

:::::::::::
carbon-cycle

::::::::
feedback

::::::::::
parameters)

::
to

:::::::::
uncertainty

::
in
::::::::::
temperature

:::
in

:::::
2100.

4. Target the most sensitive variables
::::::::
important

:::::::
variables

:::
for

:::
our

:::::::
quantity

::
of

:::::::
interest with the cut-off being computationally

driven.

5. Calculate the posterior PDF for the quantity of interest. This PDF is generated by propagating the PDFs for the target

variablesthrough the function mapping them onto the quantity of interest
::::
This

:::
led

::::::::::::::::::
Bodman et al. (2013)

:
to

::::::
choose

::
a
:::
set15

::
of

:::::
eleven

:::::
target

::::::::
variables.

It is noteworthy how much calculation may be required before we start an assimilation.

5.2 Possible Prior Information

The PDF for the prior
::::::
p(x|xb)

:
should reflect whatever information we have about the quantity before a measurement is made.

This is not always easy given that science is in continual dialogue between existing knowledge and new measurements and it20

is likely that measurements quite similar to the ones we are about to use have already informed the prior. We should also use

any information we have, even if this is only obvious constraints such as positivity. Some of the reluctance to use Bayesian

methods comes from the possible impact of the prior PDF on the posterior. This influence can be subtle. For example, if we

wish to constrain some physical value K and we approach this by solving for a scaling factor s so that sK appears in our

physical problem. We can reasonably expect that s is positive. Choosing a random positive s is far more likely to increase25

rather than decrease the value
:::::::::
magnitude of sK compared to K. Choosing a uniform distribution for log(s) makes

::::::
Solving

:::
for

:::::
log(s)

::
as

::
a
:::::
target

:::::::
variable

:::::
means

:::
we

:::
can

:::::
make

:
increase or decrease equally likely. this

:::
This

:
was first noted by Jeffreys (1939)

and is explained in more detail in (Jaynes and Bretthorst, 2003, Section 6.15)
:::::::::::::::::::::::
Jaynes and Bretthorst (2003)

::::::
Section

::::
6.15.

In practice, prior information is most often taken from a model providing a mechanistic or process-based representation of

the system (e.g. Gurney et al., 2002). The advantage of this approach is that it explicitly incorporates scientific understanding30

of the functioning of the system into the data assimilation process. Further, model outputs can easily be tailored to the inversion

problems, with data being provided for a wide range of temporal or spatial resolutions
::::
data

::::::::::
assimilation

:::
we

::
are

::::::::::
performing,

::::
e.g.

::::
prior

::::::::::
information

:::
can

:::
be

::::::::
provided

::
at

::::::::
whatever

::::
time

::::
and

:::::
space

:::::::::
resolution

:::
we

::::
need. The disadvantage is that many alternate

representations often exist, and that the choice among them can have a major and scale-dependent influence on the final PDFs
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(e.g. Lauvaux et al., 2012; Carouge et al., 2010a), while the relative merits of such alternate priors is difficult to objectively

and quantitatively determine when no ground truth is available. The availability of ground truth allows drawing the statistics

of model performance, but not necessarily directly at the spatial and temporal scales of the prior information. In this case, one5

needs to study how the uncertainties of the fluxes change as they are aggregated or disaggregated. These scaling properties

are controlled by uncertainty correlations (e.g. Chevallier et al., 2012). The parameters that encapsulate this prior information

(such as uncertainty magnitudes or correlation lengths) are also imperfectly known and Section 5.6 describes how they can be

incorporated into the formalism. Michalak et al. (2017) describes how they may be diagnosed from the assimilation system.

Alternatives that reduce the reliance on potentially subjective prior information do exist, where less restrictive prior assump-10

tions are made. The case of uniform priors described above is one such example. One practical example in biogeochemical

data assimilation is the "geostatistical" approach (e.g. Michalak et al., 2004), where the prior is described as a function of

unknown hyperparameters that link ancillary datasets to the state, and where the prior uncertainty covariance is formally de-

scribed through spatial and temporal correlation analysis that is based as strongly as possible on available observations. The

advantage here is the replacement of possibly subjective prior with empirical information (e.g. Gourdji et al., 2012; Miller15

et al., 2013), while the disadvantage is a more limited formal link to scientific process-based prior understanding of the system.

It is important to note that the various approaches used to construct the prior in data assimilation problems are not disjoint

options, but rather can be thought of as points along a continuum of options that reflect different choices about the assumptions

that a researcher is willing to make about the system (e.g. Fang et al., 2014; Fang and Michalak, 2015). The choice of prior is

an expression of a choice of assumptions. With a careful framing of the specific question to be addressed, and with an explicit20

examination of the assumptions inherent to different possible approaches, one can design a set of priors that optimally blends

existing approaches for a given application.

:::
We

:::
also

::::
note

::::
that

:::::
often

:::::
much

::::
more

::::::::
attention

::
is

::::
paid

::
to

:::
the

:::::::::
parameters

:::
that

::::::
define

:::
the

:::::::
location

::
of

:::
the

::::
prior

:::::
PDF

:::::
(such

::
as

:::
the

:::::
mode)

:::::
while

::::
less

:::::::
attention

::
is
::::
paid

:::
to

::
its

::::::
spread

::::
(e.g.

:::
the

::::::::
variance

::
in

:::
the

::::
case

::
of

::::::::
Gaussian

::::::::::::
distributions).

::::
The

:::
two

:::
are

:::::::
equally

::::::::
important

::
as

::::
they

::::
both

::::::
control

:::
the

::::::::::
intersection

::
of

:::::
PDFS

::
in
::::::
Figure

::
1.

:
25

5.3 Observations

The PDF for the observation
:::::::::::::
p(y|mathbfyo) represents our knowledge of the true value of the measured quantity given the

measurement. The characterization of this PDF is the task of metrology discussed by Scholze et al. (2017). An important point

to make at this stage is that verification of a measurement means, for our purposes, verification of the PDF (including its mean,

i.e. studying possible systematic errors in measurements). That is, it is more important that the PDF we use properly represent30

::::::::
represents

:
the state of knowledge of the true value, than that the value is as precise as possible.

5.4 Observation Operators

The PDF for the observation operator
:::::::::
p(y|H(x))

:
represents our state of knowledge of the true value of a modelled quantity

that arises from a given state of the system. It includes any artifact caused by the resolution of the target variables (Kaminski

et al., 2001; Bocquet, 2005).
:
It
::::
also

:::::::
includes

::::::::
uncertain

:::::::
choices

:::::
about

::::::
model

:::::::
structure

::::
and

::::::::
numerical

:::::::::::::
implementation

:::
as

::::
well

10



::
as

:::::
model

::::::::::
parameters

::::
that

:::
are

:::
not

::::::::
included

::::::
among

:::
the

:::::
target

:::::::::
variables.

:
This PDF

:::
The

:::::
PDF

:::
for

:::
the

::::::::::
observation

::::::::
operator is

often hard to verify because there are few cases where we know precisely the relevant values of the system state. Without this

knowledge it is hard to ascribe a difference between the simulated and true value to an error in the observation operator or an5

error in the prior. Frequently we must abstract the observation operator and run it under controlled conditions. An example is

deliberate tracer release experiments (e.g. van Dop et al., 1998). Absent such direct verification, calculations like sensitivity

analyses or ensemble experiments (e.g. Law et al., 1996) give incomplete guidance. It is important to note that if the PDFs are

Gaussian then the errors due to observations and observation operators may be added by adding their covariances (Tarantola,

2005, Eq. 1.101). We frequently shorthand this as the data uncertainty (or worse data error) when it is usually dominated10

by the observation operator. The resulting PDF describes the difference we might expect between the simulated result of the

observation operator and the measured value. Thus analysis of the residuals (observation − simulated quantity) can help test

the assumed errors
:::::::::::::::::::::::::::::::::::::::
(e.g. Desroziers et al., 2005; Kuppel et al., 2013). This forms part of the diagnostics of data assimilation

treated in Michalak et al. (2017) and touched on in Section 5.6.

::
In

:::::
some

::::
cases

::
it
::::
may

:::
be

:::::::
possible

::
to

::::::::
calculate

:::::::::
uncertainty

:::
in

:::
the

::::::::::
observation

:::::::
operator

::
in

:::::::
advance

::::::
rather

::::
than

:::::::::
diagnosing

::
it15

::::
from

:::
the

::::::::::
assimilation.

::
If

::::
there

::
is
:::
an

:::::::
ensemble

:::
of

:::::::::
observation

::::::::
operators

::::::::
available

:::::::::::::::::::::
(e.g. Gurney et al., 2002)

::
we

:::
can

:::
use

:::
the

::::::
spread

:::::
among

:::::
their

::::::
outputs

:::
as

:
a
:::::::
measure

:::
of

::::::
spread,

::::::::
including

:::::
likely

:::::::::
consistent

::
or

:::::::::
systematic

::::::
errors

::::::
arising

::::
from

::::::
shared

::::::
history

::::
and

::::::::::
components

::::::::::::::::::::::::::
(Bishop and Abramowitz, 2013)

:
.
:::
We

::::
may

::::
also

::::::
perturb

::::::::::
parameters

::
in

:::
the

::::::::::
observation

:::::::
operator

:::
to

:::::::
calculate

:::::
their

::::::::::
contribution

::
to

::::::::::
uncertainty.

5.5 Dynamical Models20

Although they are not one of the ingredients in Figure 1, dynamical models are so common in this field that we include them

here. Many of the systems studied are dynamical, in that they involve the evolution of the system state through time. We reserve

the term dynamical model (often shorthanded to model) for the mathematical function or computer system that performs this

evolution. We frequently consider the dynamical model to be deterministic, in which case the set of system states as a function

of time are a unique function of the boundary and initial conditions. Some formulations relax this condition, in which case25

we need a PDF for the model. In the most common case of a first-order model, the PDF represents our state of knowledge

of the true state of the system at timestep i+1 given its state at timestep i and perfect knowledge of all relevant boundary

conditions. As with observation operators this is hard to generate in practice since we rarely know the preexisting state or

boundary conditions perfectly. In repeated assimilation cases like numerical weather prediction the statistics of many cases can

give guidance. The PDF can also be deduced from the analysis of the model-data misfits when the statistics of the uncertainty30

of the model inputs and of the measurement errors are known (Kuppel et al., 2013).

The boundary between the observation operator and the dynamical model depends on our choice of target variables. If we

consider only the initial state and assimilate observations over a time-window (the classic case of 4-dimensional variational

data assimilation, 4D-Var) then the dynamical model forms part of the mapping between the unknowns and the observations

so is properly considered part of the observation operator. If we include the system state from the assimilation window (weak-

constraint 4D-Var) then the dynamical model enters as a separate object with its own PDF. We will see shortly how this can be

11



incorporated explicitly into the statistical framework.
::::
One

::::::::
confusing

:::::::
outcome

:::
of

:::
this

:::::::::
distinction

::
is

::::
that

:::
the

::::
same

::::::
model

:::::
could

:::
play

:::
the

::::
role

::
of

:::
an

:::::::::
observation

:::::::
operator

:::
or

:
a
:::::::::
dynamical

:::::
model

:::::::::
depending

:::
on

::::
how

:
it
::
is

:::::
used.

5.6 Hierarchical Methods and Hyperparameters5

The solution to the inverse
::::
data

::::::::::
assimilation

:
problem depends on many inputs that are themselves uncertain. These include

parameters of the input PDFs such as variances or choices of observation operators. Frequently we regard these as fixed, which

is likely to underestimate the uncertainty of the estimates. We need therefore
:::
One

:::::::
solution

::
is to incorporate these extra variables

into the inversion
:::
data

::::::::::
assimilation

:
process. The problem is to deal with the complex relationships such as the dependence of

the likelihood p(y|H(x)) on H as well as x. An explanation and evaluation of methods for such problems is given by Cressie10

et al. (2009), here we sketch the problem and note some applications in the field.

The chain rule of probabilities (Jaynes and Bretthorst, 2003, Eq. 14.5) can be stated as: For two events A and B

P (A,B) = P (A|B)P (B) (4)

If the events are regions in parameter space we can develop similar relations with PDFs. We can go further if there are more

than two parameters involved, building a hierarchy in which we construct the joint PDF from a base probability and a cascading15

set of conditional probabilities. For this reason the approach is described as hierarchical.

We can substitute
::
In

:::
our

:::::
case

:::
we

::::::
extend

:::
our

:::::
target

::::::::
variables

::
x
:::

by
::
a
::::
new

:::
set

::
of

:::::::::
unknowns

::
θ.

::
θ
:::::::
contains

:::::::::
quantities

::::
that

:::
may

::::::
affect

:::
our

::::
data

:::::::::::
assimilation

:::::::
problem

:::
but

:::
are

::::
not

:::::::::
themselves

::::::
target

::::::::
variables.

:::::::::
Examples

::::::
include

::::::::::
parameters

:::::::::
describing

::::
PDFs

::::::::::
(variances,

:::::::::
correlation

::::::
lenghts

::::
etc)

::::::
choices

::
of

:::::::::
dynamical

:::::::
models

::
or

::::::::::
observation

::::::::
operators

::
or

::::
even

:::
the

::::::::::
complexity

::
of

:::
the

:::::
target

:::::::
variables

::::::::::
themselves.

::::::
Some

:::::::
elements

:::
in

:
θ
:::::

may
:::
not

::::
even

:::::::
concern

::
x
:::::
such

::
as

:::
the

:::::::::::
observational

:::::::::::
uncertainties

::::::
treated

:::
in20

::::::::::::::::::
Michalak et al. (2005).

:

:::
For

:::
our

::::
case Equation 4 into

:::::::
becomes

:

P (x,θ) = P (x|θ)P (θ)
::::::::::::::::::

(5)

:::
We

:::
can

::::
then

:::::
solve Equation 2 and proceed as normal. This substitution may occur

:::
for

:::
the

::::::::
extended

::
set

::
of

::::::
target

:::::::
variables

::::
x,θ

::
to

:::::
obtain

:::::::
P (x,θ)

:::
and

::::
then

::
if

:::
we

:::
are

:::
not

::::::::
interested

::
in
::
θ
::::
may

:::::::
integrate

::::::::
Equation

::
5

::
to

::::::
remove

:::
it.

:
θ
::::
may

::::::
appear in several places25

::::
with

:::::::
Equation

::
2. For example if we are unsure of the uncertainty we should attach to the prior, we may include parameters

describing the uncertainty in the first term on the right of Equation 2. The same holds for the measurement process and the

second term on the right. Finally if we have more than one potential observation operator we can include a collection of these

into the third term on the right.

A prototype of this approach was given by Michalak et al. (2005). They included parameters describing R (often called30

hyperparameters) in an atmospheric flux inversion
::::::::::
assimilation. While they did not solve for the PDF of these hyperparameters

they did calculate the mode of their distribution and recalculated the distributions of fluxes accordingly. This calculation did

not include the impact of uncertainties in the hyperparameters on uncertainties in the fluxes. Michalak et al. (2005) and Wu

et al. (2013) used the same approach to solve for correlation length scales among fluxes in their inversion
:::
flux

:::::
errors

::
in
:::::

their

12



::::::::::
assimilation. Ganesan et al. (2014) took account of uncertainties in diagonal elements of B and R and temporal autocorrelations

in R.
::::::::::::::::::
(Ganesan et al., 2014)

::
did

::::::::
consider

::
the

::::::
impact

::
of
:::::::::::
uncertainties

::
in

::
θ

::
on

::::::::
estimated

:::::
fluxes

:::
but

::
at
:::::::::::
considerable

::::::::::::
computational

::::
cost. Finally Rayner (2017a) considered the uncertainty introduced by an ensemble of observation operators in a well-known5

atmospheric inversion
::
the

::::::::
Transport

::::::
Model

::::::::::
Comparison

:::::::::::::
(TRANSCOM)

::::::::
described

::
in
:::::::::::::::::
Gurney et al. (2002).

Finally we should note that the hierarchical approach outlined here subsumes the description in Section 4. For this reason,

and as a continual reminder of the assumptions implicit in selecting models and other inputs, Wikle and Berliner (2007) write

the whole methodology in hierarchical form.

6 Solving the Inverse
::::::::::
Assimilation

:
Problem10

6.1 General Principles

We saw in Section 4 that the solution of the assimilation problem consisted of the multiplication of three PDFs to generate

the posterior PDF. Before describing solution methods applicable in various circumstances we point out some general conse-

quences of Equation 2. We begin by stressing that the posterior PDF generated in Equation 2 is the most general form of the

solution. Derived quantities are generated by operations on this PDF.15

Second, we see that the only physical model involved is the observation operator. All the sophisticated machinery of assim-

ilation is not fundamental to the problem although we need it to derive most of the summary statistics.

Third there is no requirement that a solution exists or, if it does, it can have vanishingly low probability. In Figure 1 this would

occur if various of the prior
:::
the PDFs were made tighter (smaller rectangles for example) so that they did not overlap. This is a

critical scientific discovery because it tells us our understanding of the problem is not consistent with the data, notwithstanding20

all the uncertainties of the inputs. It points out a boundary of "normal science" as defined by Kuhn (1962).4 Michalak et al.

(2017) focus on diagnosing such inconsistencies.

6.2 Sampling Methods

A general approach for characterizing the posterior probability distribution of the target variables is to devise an approach for

generating a large number of samples, or realizations, from this multivariate posterior distribution. We briefly describe a few25

example approaches that fall under this umbrella.

One approach to solving Equation 2 is direct calculation of the product for a large number of realizations drawn from the

constituent PDFs. Most simply, one can treat the PDF like any other scalar function and map it. This is often achieved by graphs

or contour plots of a transformation of the PDF such as the least squares cost function (e.g. Kaminski et al., 2002, Fig. 12). This

mapping approach requires one computation of the forward model for each parameter set, so is infeasible for even moderately

dimensioned problems. In addition, most of these parameter sets will lie in very low probability regions.

4We thank Ian Enting for pointing this out.
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A range of more sophisticated Monte Carlo sampling approaches exist for multi-dimensional problems. The most straight-

forward of these is direct sampling of the posterior PDF, feasible for the case where this posterior PDF is sufficiently simple to

allow sampling from the distribution. This would be the case, for example, for multivariate Gaussian or lognormal distributions.5

In cases where direct sampling is not feasible, the strategy often becomes one of sequentially sampling from a surrogate

distribution (often termed the proposal distribution) in such a way that the ensemble of samples ultimately represents a sample

from the more complex target distribution. Arguably, the simplest of the approaches falling under this umbrella is rejection

sampling. In this approach, a sample is generated from a proposal distribution that is simple enough to be sampled directly,

and that sample is accepted or rejected with a probability equal to the ratio between the likelihood of the sampled value based10

on the target versus the proposal distribution, normalized by a constant (e.g. Robert and Casella, 2004).

A particularly useful class of Monte Carlo sampling strategies are Markov chain Monte Carlo (MCMC) approaches. In these

approaches, the samples form a Markov chain, such that each sample is not obtained independently, but rather as a perturbation

of the last previously accepted sample. More formally, a Markov Chain is a Stochastic traversal of some manifold in which the

current state is dependent only on the immediately preceding state. The various MCMC approaches differ in how the candidate15

samples are generated based on the last accepted sample. Usually we construct the new state by adding a random perturbation

to the previous state. For example, Metropolis et al. (1953) proposed and Hastings (1970) proved that a Markov chain based

on the following algorithm samples an underlying PDF:

1. At iteration i we have state xi with probability p(xi) and a set of accepted samples S = (x1,x2 . . .xi);

2. Generate a new candidate point x∗i+1 by adding a random perturbation to xi;20

3. Choose a uniformly distributed random number u ∈ [0,1];

4. If p(x∗i+1)/p(xi)> u we accept x∗i+1, append it to S and return to step 1, otherwise reject it and return to step 2.

The critical step is step 4 which is known as the Metropolis rule, and the algorithm overall is known as the Metropolis-Hastings

algorithm. This algorithm produces samples with high serial correlation because successive points in the Markov Chain are

likely to be close to each other in parameter space. The degree of correlation depends on the size and type of the perturbation25

applied in Step 2.

Rather than sampling the posterior PDF directly, one can also sample each of three PDFs sequentially (Figure 1). For this

we can use
:
,
:::
e.g.

::::
with

:
the cascaded Metropolis algorithm (see Tarantola, 2005, Section 6.11). Once we have an accepted point

from step 4 above we proceed to apply the Metropolis rule to the other probability distributions in the problem. In practice,

if we are solving simultaneously for unknowns and data (the case in Figure 1) then we find a point acceptable to the first two30

PDFs on the right-hand side of Equation 2 and only then go on to apply the rule to the third PDF. This is convenient since the

third PDF is the only one requiring the observation operator and is hence the most expensive part of the algorithm.

Another commonly-used MCMC algorithm, the Gibbs sampler, can be seen as a special case of the Metropolis Hastings

algorithm where the target variables are sampled individually and sequentially, rather than sampling the full multi-variate PDF

of target variables as a single step (e.g. Casella and George, 1992). An advantage of the Gibbs sampler is that it can lead

14



to higher rates of acceptance, because defining strategic approaches for generating perturbations is more straightforward for

univariate distributions. A disadvantage is that the overall computational cost can still be higher due to the need to perform

sampling multiple times for each overall realisation.5

The most important implementation detail for applying MCMC approaches is the choice of the perturbation (Step 2 in the

case of the Metropolis Hastings algorithm) because this determines how the PDF is sampled. Good strategies are adaptive,

lengthening the step size to escape from improbable regions of the parameter space and shortening it to sample probable parts

(noting the comments on independence above).

Note that it takes at least one forward run for every accepted point, meaning only inexpensive models
:::::::::
observation

::::::::
operators10

can be treated this way. Furthermore the original algorithm cannot be parallelized because each calculation requires the previous

one. Some related techniques are amenable to parallel computation (e.g. Jacob et al., 2011). On the other hand MCMH
:::::::
MCMC

makes few assumptions about the posterior PDF, can handle a wide variety of input PDFs and requires no modification to the

forward model.

6.3 Summary Statistics15

We often describe the solution of the inverse
::::::::::
assimilation

:
problem using summary statistics of the posterior PDF. This can

be because we assume that the posterior PDF has an analytic form with a few parameters that can describe it (e.g. the mean

and standard deviation of the Gaussian) or because we need a numerical representation for later processing or comparison.

This nearly universal practice is valuable but requires care. For example, consider a target variable in the form of a timeseries.

We can represent the mode of the posterior PDF as a line graph and the posterior uncertainty as a band around this line. The20

true timeseries is a realisation drawn from within this band. Any statements about the temporal standard deviation of the true

timeseries must be based on PDFs generated from these realisations. These estimates will generally yield larger variability than

that from our most likely flux
::::::::
realisation.

There are some cases that are
:::
The

:::::
linear

::::::::
Gaussian

::::
case

::
is
:

so common that they deserve
::
it

:::::::
deserves

:
explicit treatment,

however, provided the caveat above is borne in mind.25

6.4 The Linear Gaussian Case

If H is linear and the PDFs of the prior, data and model are Gaussian then the posterior PDF consists of the multiplication

of three Gaussians. We multiply exponentials by adding their exponents so it follows that the exponent of the posterior has

a quadratic form and hence the posterior is Gaussian.

The Gaussian form for the inputs allows one important simplification without approximation. We noted in Section 4 that the30

solution to the inverse
::::::::::
assimilation

:
problem consists of finding the joint posterior PDF for unknowns and observed quantities

then projecting this into the subspace of the unknowns. As we saw in section 4 we also calculate the posterior PDF for y the

observed quantity. If there are very large numbers of observations this is computationally prohibitive and usually uninteresting.

If the PDFs are Gaussian, Tarantola (2005, Section 6.21) showed that the last two terms of Equation 2 can be combined into

a single PDFG(H(x)−yo,R) where R=U(H(x)−y)+U(yo−y), i.e. by adding the two variances. The PDF now includes

15



only the unknowns x and the posterior PDF can be written

p(x|y
:
)∝G(x−,xb,B)×G(H(x)−,yo,R) (6)

this generates a Gaussian for x whose mean and variance can be calculated by a range of methods (Rodgers, 2000, ch.1). The5

posterior covariance A does not depend on xb or yo so that one can calculate posterior uncertainties before measurements are

taken (Hardt and Scherbaum, 1994). This is the basis of the quantitative network design approaches described in Krause et al.

(2008); Kaminski and Rayner (2016).

The largest computation in this method is usually the calculation of H which includes the response of every observation

to every unknown. This may involve many runs of the forward model. Once completed, H is the Green’s function for the10

problem and instantiates the complete knowledge of the resolved dynamics. It enables a range of other statistical apparatus e.g.

Michalak et al. (2005) or Rayner (2017a).

Following the introduction of formal Bayesian methods to atmospheric inversions
:::::::::::
assimilations by Enting et al. (1993, 1995)

these analytical methods became the most common method for this field. Rayner et al. (1999); Bousquet et al. (2000); Roy

et al. (2003); Patra et al. (2005, 2006) used repeated forward runs of a single transport model while the series of papers from the15

Transport Model Intercomparison Project (TransCom) (Gurney et al., 2002, 2003; Law et al., 2003; Gurney et al., 2004; Baker

et al., 2006) used repeated runs of an ensemble of models. Meanwhile Kaminski et al. (1999a, b); Rödenbeck et al. (2003);

Peylin et al. (2005); Gerbig et al. (2009); Lauvaux et al. (2009); Turnbull et al. (2011); Gourdji et al. (2012); Fang et al. (2014);

Fang and Michalak (2015); Lauvaux et al. (2012); Schuh et al. (2013) (among many others) used various forms of transport

model in reverse mode. These calculate the same Jacobian but require one run per observation rather than per unknown. The20

advent of more atmospheric data (especially satellite measurements of concentration) and the need for higher resolution of

unknowns has seen these methods largely replaced by the matrix-free methods described later
:::::::::
matrix-light

::::::::
methods

::::::::
described

::
in

::::::
Section

:::
7.1.

6.5 Dynamically Informed Priors: the Kalman Filter

A common case in physical systems has the state of the system evolving according to some dynamical modelM . This is usually25

(though not necessarily) some form of first-order differential equation. In such a case a natural algorithm for constraining the

evolution of the system with data is

1. At any time step n our knowledge of the system is contained in the probability distribution p(xn);

2. Calculate a probability distribution for the new state of the system p(xf,n+1) using the dynamical model M where the

superscript f
:::::::
(forecast)

:
indicates the application of the forward

::::::::
dynamical model;30

3. Use p(xf,n+1) as the prior PDF for the assimilation step described in Section 4;

4. This yields a posterior PDF p(xn+1) which we use as the input for the next iteration of step 1.
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For the simplest case of linear M and H with Gaussian PDFs the algorithm was derived by Kalman (1960). The most

difficult step is the generation of p(xf,n). For the original Gaussian case where p(xn) =G(xn,Bn) this is given by

p(xf,n) =G(M(xn),MBnMT +Q) (7)5

where Q, the forecast error covariance, represents the uncertainty added to the state of the system by the model itself
:
,
:::
i.e.

:::
not

::::::::
including

::::::::::
uncertainties

::
in

:::
the

::::
state. The matrix product in Equation 7 makes this approach computationally intractable for large

numbers of unknowns and various approaches have been tried using a well-chosen subspace. The ensemble methods discussed

in Section 7.3 have generally supplanted these. This also holds for nonlinear variants of the system.

The original conception of the Kalman Filter was for dynamical control in which the state of the system is continually ad-10

justed in accordance with arriving observations. For data assimilation
::::::
applied

::
to

::::::::::::::
biogeochemistry our motivation is to hindcast

the state of the system and, optionally, infer some underlying constants (e.g. Trudinger et al., 2007, 2008). A consequence of

making inferences at each time separately is that the system may be forced to follow an erroneous observation. For a hindcast

we can counter this by expanding our set of unknowns to include not only the current state but the state for several timesteps

into the past, and therefore to smooth their previous analyses. This technique is known as the Kalman Smoother (Jazwinski,15

1970) and also exists in ensemble variants (Evensen, 2009) and in variational ones (see Section 7.1). Evensen (2009) also

showed that the Kalman Filter described above is a special case of the Kalman Smoother with only one time-level considered.

::::
Note

::::
that

::
by

:::::::
default,

:::
the

:::::
time

:::::
series

::
of
::::

the
:::::::::
maximum

:
a
:::::::::
posteriori

::::::::
estimates

::
is

:::
not

:::::::::
physically

:::::::::
consistent,

:::
eg

::
it
::::
does

::::
not

:::::::
conserve

:::::
tracer

:::::
mass

::::
from

:::
one

:::::::::::
assimilation

:::
step

::
to

:::::::
another.

::::::::
However,

:::
the

::::
time

:::::
series

:::
of

::
the

::::
full

:::::
PDFs

:::::::
includes

:::::::::
trajectories

::::
that

::
are

:::::::::
physically

:::::::::
consistent.

:
20

7 Computational Aspects

Much of the computational machinery of data assimilation aims to calculate various summary statistics of the posterior PDF.

The utility of this approach depends on whether these parameters summarize accurately the posterior PDF. It is best to choose

the target summary statistic based on knowledge of the posterior PDF; there is no point estimating two parameters if the

posterior distribution is described by only one (e.g. the Poisson Distribution). Here we limit ourselves to discussions of the two25

most common parameters: the maximum a posteriori estimate and the posterior covariance. Solving for these parameters does

not itself assume a Gaussian posterior but we often do assume such normality.

7.1 Iterative Solution for the Mode: Variational Methods

The mode of the posterior PDF is the value of the unknowns that maximizes the posterior probability. If
:
It
::
is

:::::
often

::::::::::
summarised

::
as

:::
the

::::::::
maximum

::
a

::::::::
posteriori

::
or

:::::
MAP

:::::::
estimate.

::
If
::
p

::
is

:
a
:::::::
product

::
of

::::::::::
exponentials

::::
then

:
we can write

p(x)∝ e−J(x) (8)
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then maximizing p is equivalent to minimizing J .5 In the linear Gaussian case J is quadratic so minimizing it is termed a least

squares solution. It is perhaps unfortunate that many treatments of data assimilation start from the discussion of a least squares

problem and thus hide many of the assumptions needed to get there.5

The minimization of J takes us into the realm of numerical methods, beyond our scope. From the numerical viewpoint J is

a scalar function of the unknowns x. Minimizing J is a problem in the calculus of variations and so the methods are commonly

termed variational.

The quadratic form is sufficiently common to warrant more development. From Equation 6, J takes the form

J(x) =
1

2

[
(x−xb)TB−1(x−xb)+ (H(x)−yo)TR−1(H(x)−yo)

]
(9)10

Most efficient minimization algorithms require the gradient of J(x) (∇xJ). In general these gradients are precisely calculated

by the use of adjoint methods (Griewank, 2000), but they involve the analytical derivation of each line of code ofH beforehand.

:::
The

::::
only

:::::::
matrices

::::
left

:::
that

:::
are

:::::::::
potentially

:::::
large

::
in

:::
this

::::::::
approach

:::
are

::
B

:::
and

:::
R.

:

7.2 Calculation of Posterior Uncertainty

Any reasonable summary of a posterior PDF will involve a parameter describing its spread as well as location. This spread15

almost always has a higher dimension than the mode because it must describe the joint probabilities of parameters. This

immediately raises a problem of storage and computation because even moderate assimilation problems may include 100,000

unknowns for which representation of the joint PDF is intractable. In purely Gaussian problems it can be shown that the Hessian

or second derivative ∇2
xJ evaluated at the minimum is the inverse covariance of the posterior PDF. This is promising given

that many gradient-based algorithms for minimization calculate low-rank approximations of the Hessian (Meirink et al., 2008;20

Bousserez et al., 2015). Unfortunately they usually commence with the largest eigen-values of the Hessian corresponding to

the lowest eigen-values (best-constrained parts) of the covariance. When convergence is achieved we are left with a subspace of

the unknowns for which we can comment on the posterior uncertainty and ignorance beyond this. Properly we should restrict

analysis of the results to this limited subspace but it usually does not map conveniently onto the physical problem we are

studying (Chevallier et al., 2005).25

An alternative approach is to generate an ensemble of modes using realizations of the prior and data PDFs (Fisher, 2003;

Chevallier et al., 2007). The resulting realizations of the posterior PDF can be used as a sample for estimating population

statistics. For Gaussian problems it can be shown that the sample covariance so generated is an unbiased estimator of the

posterior covariance.
:::
For

:::::::::::
non-Gaussian

::::::::
problems

:::
we

:::
can

::::
use

:::
the

::::::::
ensemble

::
of

:::::::::
realisations

::
to

:::::::
estimate

::
a
::::::::
parameter

:::::::::::
representing

::
the

::::::
spread

::
of

:::
the

::::::::::
distribution

::
or

::::::::
calculate

::
an

::::::::
empirical

:::::::
measure

::::::::::
(commonly

:::
the

::::::::
ensemble

:::::::
standard

:::::::::
deviation).

:
30

7.3 The Ensemble Kalman Filter

The main limitations of the traditional Kalman Filter for data assimilation are its assumption of Gaussian PDFs, the requirement

for linear M and H and the difficulty of projecting the state covariance matrix forward in time. The ensemble approach
5We cannot always write the PDFs this way, e.g. the uniform PDFs in Figure 1. In such cases the mode may not be defined.
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described in Section 7.2 can also be used to circumvent these problems. The hierarchy of approaches is reviewed in Chen

(2003). The most prominent (and most closely related to the original) is the Ensemble Kalman Filter (EnKF) (Evensen, 2003,

2009). Instead of representing exactly the PDF by its mean and covariance we generate an ensemble of realisations. We replace5

Equation 7 by advancing each realisation with the dynamical model then perturbing the result with noise generated from Q. We

then update each ensemble member using the Gaussian theory described in Section 6.4. Equation 6 shows that, as well as a prior

estimate (for which we use the ensemble member), we need observations, an observational covariance and a prior covariance.

The prior covariance we calculate from the ensemble itself. The observational covariance we assume. In the simplest version

of the EnKF we do not use the observations directly but rather perturb these with the observational noise. More recent versions10

(e.g. Tippett et al., 2003) avoid perturbing the observations but produce the same posterior uncertainty.

Computationally we need to run a dynamical model for each realisation of the ensemble. This differs from Equation 7 where

the propagation of the uncertainty scales with the number of unknowns
::
for

::::::
which

:::
we

::::
need

::
a

:::
run

::
of

:::
the

:::::::::
dynamical

::::::
model

:::
for

::::
every

::::::::
unknown. Another advantage is that, while Equation 7 is exact only for linear models, the ensemble method may capture

nonlinear impacts on the state covariance. The biggest disadvantage is the sampling problem for the posterior PDF. The limited15

ensemble size introduces errors in the magnitudes of the variances and spurious correlations among state variables. Often the

covariance must be inflated ad hoc to prevent the ensemble from collapsing to an artificially small variance. Similarly the

spurious correlations between, for example, spatially separated points, mean that observations can artificially influence target

variables at long distances. This is handled by limiting the range of influence of observations (see Houtekamer and Zhang, 2016,

for a review of these techniques for numerical weather prediction), but this fix has also unwanted effects at short distances and20

is questionable for long-lived tracers (e.g. Miyazaki et al., 2011).

7.4 Combining Filtering and Sampling: the Particle Filter

Particle Filters or Sequential Monte Carlo methods relax the assumptions inherent in the EnKF. Like the EnKF, the Particle

Filter samples the underlying PDFs with a series of realisations rather than propagating the mean and variance of the PDF.

There are steps in the EnKF that assume Gaussian probability distributions and the Particle Filter avoids these, seeking to fit25

the true underlying PDF. We parallel the description of the Kalman Filter algorithm (Section 6.5) to highlight the differences.

1. At any time step n our knowledge of the system is contained in the probability distribution p(xn). Generate a set of

realisations (usually called particles) xni drawn from p(xn);

2. Propagate each realisation forward in time using the dynamical model M to generate realisations of the forecast state

xM,n+1
i ;30

3. Account for the uncertainty in the dynamical model by perturbing xM,n+1
i according to the model PDF to generate

realisations xf,n+1
i consistent with the dynamical model and its uncertainty;

4. For each xf,n+1
i , generate the simulated observations yi using the observation operator H then evaluate the PDF for the

observations p(y) at the point yi, these probabilities act as weights for xf,n+1
i ;
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5. Using some numerical procedure with inputs of xf,n+1
i and p(yi) generate a posterior PDF p(xn+1) which we use as

the prior PDF for the next iteration.5

We see that the last three steps mirror the multiplication of PDFs described in Equation 2. Also the difference between the

EnKF and Particle Filter lies chiefly in how we generate the posterior PDF from the ensemble of forecast states; the EnKF uses

the linear Gaussian approximation while the Particle filter uses some kind of sampling. Thus the Particle Filter is a hybrid of

the Kalman Filter and sampling approaches.

The relaxation of the Gaussian assumption is at once a strength and weakness of the Particle Filter. It can handle more10

complex PDFs than the EnKF but it also requires many more samples because it samples the posterior PDF rather blindly

while the EnKF is guided by the Kalman update step into regions of high probability. This difference has meant that, while

the EnKF has been used successfully on some very large problems (such as numerical weather prediction) the Particle Filter

has been limited to the same problem sizes as the approaches described in Section 6.2. More recent developments such as the

Marginal Particle Filter (Klaas et al., 2005) or the Equivalent Weights Particle Filter (Ades and van Leeuwen, 2015) try to15

overcome the sampling problem by introducing additional steps for the resampling of the particles.

An overview of the principal ideas of particle filtering and improvements upon the basic filter is given by Doucet et al.

(2001) while van Leeuwen (2009) reviews its application in geophysical systems. Stordal et al. (2011) points to some further

generalisations which may combine advantages of the EnKF and Particle Filter.

7.5
:::
time

:::::::
window20

:
A
::::::::

common
::::::
feature

:::
of

:::::::::::::
biogeochemical

:::::::
systems

::
is

::
a

::::
large

:::::
range

:::
of

::::::::::
time-scales.

:::
For

::::::::
example,

:::::::::
terrestrial

::::::
models

::::
may

:::::::
include

::::
both

::::::::::::
photosynthesis

::::::::::::
(sub-seconds)

:::
to

:::::
forest

:::::::::
succession

::::::::::
(centuries).

:::::
Slow

:::::::::
processes

:::::
often

::::::
couple

:::::::
weakly

::
to

::::::::::::
instantaneous

::::::::::
observations

::
so

::::
they

:::::
must

::
be

::::::::::
constrained

::
by

::::
long

:::::::::::
observational

::::::
series.

::::
This

:::
can

:::::
make

:::
the

:::::::
problem

:::::::::::::
computationally

::::::::::
intractable.

:
A
::::::::

common
:::::::
solution

::
is
::
to

:::::
break

::::
the

:::::::
problem

::::
into

::::::
shorter

::::::::::
assimilation

::::::::
windows.

:::::
This

::
is

:::::::
different

:::::
from

:::
the

::::
case

::
of

:::::::::
numerical

::::::
weather

:::::::::
prediction

::::::
where

:::
the

::::
main

::::::::::::
consideration

::
is

:::
the

::::
need

:::
for

::
a
::::
new

:::::::
forecast

:::::
every

:::
few

::::::
hours

:::
and

:::
the

:::::::::
advantage

::::
that

:::
the25

::::::::
dynamical

::::::
model

:::
can

::
be

::::::::::
considered

::::::
perfect

:::
for

::::
short

::::::
enough

::::::
times.

:::
The

::::::
choice

::
of

::::::::::
assimilation

:::::::
window

:::
for

:::::::::::::
biogeochemical

::::::::::
applications

::
is

::::::
guided

::
by

:::::::
several

::::::
factors.

:

1.
::::::::::::
Computational

::::
cost:

::
If

:::
our

:::::
target

::::::::
variables

::::::
change

::::
with

::::
time

::::
then

::::::
longer

::::::::::
assimilation

:::::::
windows

::::::
imply

:::::
higher

::::::::::
dimensions

::
for

::
x
:::::
with

::::::::::::
corresponding

:::::
space

::::::::::::
requirements.

::::
Any

::::::
scheme

::::
that

:::::::
requires

::::::::
multiple

::::
runs

::::
over

:::
the

:::::::::::
assimilation

:::::::
window

::::
(such

::
as
:::
the

::::::
EnKF

::
or

:::::::
iterative

::::::::
methods)

:::
will

::::
also

::::
take

::::::
longer.30

2.
:::::::::
Sensitivity

::
of

::::::::::
observations

::
to

:::::
target

::::::::
variables:

:::::
These

:::::
often

:::::::
decrease

::::
with

:::::
time,

::::::::
especially

:::
for

:::::
initial

:::::::::
conditions.

:::::
Once

::::
they

::::::
become

:::::
either

:::
too

:::::
small

::
or

:::
too

::::::::
unreliable

::::::::
(because

::
of

:::::::::::
accumulating

::::::
model

::::
error)

:::::
there

::
is

::::
little

:::::
added

:::::
value

::
in

::::::::::
assimilating

::::::::::
observations

::::::
further

::::
into

:::
the

:::::
future.

:::
We

::::
may

::::
thus

:::::
break

:::
the

:::::::
problem

::::
into

::::::
several

::::::
parallel

::::::::::::
assimilations.

::
(1)

::::::
above

:::::
means

:::
the

::::::::::
assimilation

:::::::
window

:::::
must

:::
also

::::::::
consider

:::
the

::::
time

::::::::
resolution

:::
for

:::::
which

:::
we

:::::
wish

::
to

:::::
solve.

::
If

:::
we

::::::
believe

:::
the

::::
value

:::
of

::::
some

::::::::
physical

::::::::
parameter

:::::
only

:::::
holds

:::
for

:
a
:::::
finite

::::
time

::::
(e.g.

::
a
::::::
month)

:::::
there

::
is

::::
little

:::::
point

::::::::
exposing

::
it

::
to

:::::::::::
observations
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::::::
several

::::
years

:::::
later.

::
In

:::::::
practice

:::
the

::::::::::
assimilation

:::::::
window

::
is

::::::
usually

:::
set

::
by

::
a

:::::::
trade-off

:::::::
between

::::::::::::
computational

:::::::::
constraints

::::
and

:::
the

::::::::
time-scale

::
of

:::
the

:::::::
slowest

::::::::
processes

:::::::
studied.5

8 Historical Overview

Throughout this paper we have adopted a thematic structure. Here we switch views to a narrative description. This is partly to

situate the various methods we have described but also to give some signposts for the future. We cannot hope to be exhaustive,

nor to trace the rise and fall of each method. Rather we will identify drivers for these developments and show examples of how

they have guided the field.
:::
Our

:::::::
intention

::
is

::
to

:::::::
support

:::
the

:::
rest

::
of

:::
the

:::::
paper

:::::
rather

::::
than

:::::::
provide

:
a
:::::::::::::
comprehensive

::::::
review.10

We can identify four major drivers for the development of biogeochemical data assimilation:

1. Development of the underlying methods and their percolation into the field;

2. rise in the scale and complexity of models and data sets;

3. rise in computational power;

4. diversifying needs within and beyond science.15

These drivers do not always pull in the same direction, e.g. increases in scale may require simplification of techniques while

computational power may allow more sophistication. Different practitioners will also make different choices faced with the

same trade-offs so our narrative is not a single thread but some large-scale patterns are evident.

One of the first, clearly recognisable applications of data assimilation to biogeochemistry (Bolin and Keeling, 1963) used

a set of measurements of CO2 concentrations to estimate the meridional diffusion of this gas and the distribution of its sources.20

We now know
:
It
::
is

::::
now

::::
clear

:
that the assumptions of Bolin and Keeling (1963) were wrong but, to quote Keeling (1998) “ Our

results could not be seriously challenged, however, until digital computers, atmospheric circulation models, and considerably

more CO2 data all became available two decades later.”

Bolin and Keeling (1963) confronted the problem that information is generally lost in the transformation of the inputs we

seek to the outputs we observe. Approaches to this problem have guided the field since. Other fields face the same problem.25

Atmospheric remote sensing (Rodgers and Walshaw, 1966) and seismic studies (Backus and Gilbert, 1968) addressed it in

related fields and their approaches, refracted through later developments, would eventually enter biogeochemistry. Approaches

can be roughly divided into two classes: identifying and limiting the solution to those parts constrained by the data or the

addition of ancillary information. The former approach is exemplified by the studies of Brown (1993, 1995) who used the

singular value decomposition to establish flux patterns most strongly projected onto the data and limited her analysis to those30

components. We can also regard later
:::::
Later studies which intentionally limited the number of unknowns (e.g. Fan et al., 1998;

Gloor et al., 2000),
:::
can

:::
be

:::::::
regarded

:
as less formal examples of this approach while bearing in mind the caution of Wunsch and

Minster (1982) about allowing the data to choose the subspace of unknowns we constrain. Other approaches considered the

observability of target variables by the available data. Target variables could be aggregated where they were not individually
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constrained sufficiently. Manning et al. (2011) aggregated pixels in their flux inversion
::::::::::
assimilation until they reached some

threshold of observability while Wu et al. (2011) included observability as a design criterion for their choice of target variables.5

The addition of ancillary information is frequently termed regularisation since its practical purpose is to limit implausible

solutions in poorly-constrained parts of parameter space. For most problems, solving inverse problems meant solving a version

of Equation 9 which ignored the first term on the right-hand side. Regularisation consisted of adding some other term which

penalised undesirable solutions. possibilities
::::::::::
Possibilities included “shrinkage estimators” which penalised the overall size

of the solution (Krakauer et al., 2004)
::::::::::::::::::::
(Shaby and Field, 2006) or smoothing operators which penalised rapid variations in the10

solution (e.g. Enting, 1987; McIntosh and Veronis, 1993).

The importation of the explicit Bayesian methods which we have reviewed here largely supplanted the alternative regularisa-

tion methods though some studies (e.g. Issartel, 2005; Manning et al., 2011)
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g. Krakauer et al., 2004; Issartel, 2005; Manning et al., 2011; Vanoye and Mendoza, 2014)

followed other approaches. Also the geostatistical methods introduced into the field by Michalak et al. (2004) remain in use

(e.g. Gourdji et al., 2008; Miller et al., 2013). Bayesian methods entered biogeochemistry through atmospheric inverse studies15

(Enting et al., 1993, 1995). Most work since has elaborated different methods of solution or forms of prior knowledge. Almost

all methods described in Section 6 have found some application. Often a method will be tried and left until an algorithmic

advance or computational improvement makes it feasible.

Classical analytical methods (Section 6.4) were the first workhorse for flux inversions
:::::::::::
assimilations of inert tracers like CO2

where the problem is linear. They are still widely used (e.g., Fang et al., 2014; Fang and Michalak, 2015; Henne et al., 2016;20

Saeki and Patra, 2017; Chen et al., 2017; Shiga et al., 2018; Wang et al., 2018). Originally Jacobians were generated with

multiple forward runs, each run corresponding to a desired source component. The development of adjoint transport models

allowed one run per observation (e.g. Kaminski et al., 1999a, b; Rödenbeck et al., 2003; Carouge et al., 2010a, b; Thompson

et al., 2011; Gourdji et al., 2012; Fang et al., 2014; Fang and Michalak, 2015). This is more efficient in the usual case of more

unknowns than observations. the
::::
The task of generating Jacobians is inherently parallel so the ultimate limitation on these25

methods is the storage and manipulation of large matrices. These limitations recede with increasing computational power and

recent algorithmic advances (e.g. Yadav and Michalak, 2013) have also expanded their domain. Analytical methods are prized

for exact calculation of posterior covariance and so are widely used in network design (references (e.g. Gloor et al., 2000;

Patra et al., 2003; Hungershoefer et al., 2010; Kaminski and Rayner, 2016). Matrix methods also are also often used where

more sophisticated statistics require more complex calculations such as the hierarchical calculations of Michalak et al. (2004);30

Ganesan et al. (2014); Rayner (2017b). They may also be used in weakly nonlinear forms where dimensionality is low enough

to permit finite difference sensitivity calculations for each unknown (e.g. Kuppel et al., 2012; Bacour et al., 2015; MacBean

et al., 2018; Norton et al., 2018).

Once the number of both observations and target variables renders computation of Jacobians unfeasible, variational methods

(section 7.1) are a natural extension of the matrix methods. This evolution is particularly evident in atmospheric problems,35

driven by increases in satellite data and a drive for higher resolution. Several groups have developed similar systems around

adjoints of atmospheric transport models: (e.g. Rödenbeck, 2005; Chevallier et al., 2005; Henze et al., 2007; Bergamaschi

et al., 2007; Liu et al., 2014; Wilson et al., 2014) for global models and Brioude et al. (2011); Broquet et al. (2011); Guerrette
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and Henze (2015); Zheng et al. (2018b) for regional models. Most of the effort has centred on improving our knowledge of

sources and sinks (e.g. Basu et al., 2013; Escribano et al., 2016; Lu et al., 2016; Zheng et al., 2018a) but some have focused5

on improving state estimation for forecasting (e.g. Elbern and Schmidt, 2001; Wang et al., 2011; Soon-Young et al., 2016).

To achieve high resolution while maintaining global consistency, some authors also combine methods, using one for the large-

scale and, potentially, a different method for a nested domain. This approach was introduced by Rödenbeck et al. (2009) and

has been recently used by Kountouris et al. (2018).

Versions of the Kalman Filter are some of the natural choices whenever the dynamical evolution of the model state is10

explicitly included. Few atmospheric studies have exploited this capability though Miyazaki et al. (2011) solved for both fluxes

and concentrations. More common is a random walk or persistence model in which state variables evolve without dynamical

guidance. This was implemented for atmospheric flux inversion
:::::::::
assimilation

:
by Mulquiney et al. (1995); Mulquiney and Norton

(1998); Mulquiney et al. (1998). Trudinger et al. (2002a, b) later used the Kalman smoother to estimate global fluxes from ice

core concentration and isotopic measurements. Peters et al. (2005) introduced the CarbonTracker system using a simplified15

version of the EnKF and the global atmospheric model TM5 (Krol et al., 2005). TM5’s global nested capability has allowed

a large suite of global and regional applications for CarbonTracker (e.g. Peters et al., 2010) for Europe or Kim et al. (2014)

for Asia. Other applications of the EnKF to the estimation of surface sources include (Zupanski et al., 2007; Feng et al., 2009)

:::::::::::::::::::::::::::::::::
Zupanski et al. (2007); Feng et al. (2009). One problem common to all these models was a potential time delay between target

variables and observations. This does not fit immediately into the original formalism of Kalman (1960). A solution was to20

keep several time periods
::::
steps

:
in a moving assimilation window but is still problematic for tracers that live longer than the

length of an assimilation window
:::
one

::::
may

::::
need

:::::
many

:::::
steps

:
if
:::
the

::::
time

:::::
delay

::
is

::::
long.

::::
This

::::
can

:::::
vitiate

:::::
some

::
of

:::
the

::::::::::::
computational

:::::::::
advantages

::
of

:::
the

:::::
EnKF.

Kalman Filters were frequently limited by the need to calculate Jacobians for each target variable. This was circumvented by

the introduction of the EnKF. Provided one accounts for the problems of ensemble size the EnKF’s combination of efficiency25

and simplicity has led it to supplant other KF approaches.

The movement towards inclusion of explicit dynamics in biogeochemical inverse problems has increased the use of EnKF

and variational methods since both handle the nonlinear formulations common in biogeochemical models. In terrestrial models,

Williams et al. (2005); Quaife et al. (2008) included state variables of a simple terrestrial model in an ensemble system

while Dutta et al. (2018) solved for parameters. Trudinger et al. (2008) considered the joint estimation of parameters and30

state variables using an EnKF and pseudo-observations at a site. Barrett (2002) and Braswell et al. (2005) used variational

approaches to optimise parameters of simple biosphere models against various site data. Rayner et al. (2005) and the papers

that followed it (e.g. Scholze et al., 2007; Knorr et al., 2010; Kaminski et al., 2012; Scholze et al., 2016) used an adjoint

of a more comprehensive (though incomplete) biosphere model coupled to various observation operators in their variational

approach.

There have been some attempts to compare the strengths and weaknesses of the various approaches above. Meirink et al.

(2008) or Kopacz et al. (2009) illustrated the equivalence of the variational and the analytical approaches for a given definition5

of x, while Liu et al. (2016) showed some convergence of the variational approach and of the ensemble Kalman filter for
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increasing observation coverage. Trudinger et al. (2007) used a simplified terrestrial model and a fairly rigorous protocol to test

the efficiency and robustness of several estimation methods. They found no clear differences among methods but did note the

importance of careful analysis of assimilation performance (e.g. do the differences between posterior simulation and data agree

with the assumed PDF). Chatterjee and Michalak (2013) compared the variational and EnKF approaches to estimating surface10

fluxes and also noticed that each had comparative strengths and weaknesses. We have described how each of these methods

is an alternative algorithm for the same underlying problem. Trudinger et al. (2007) suggests that any of these algorithms is

capable of performing well if well handled and analysed.

9
::::::
Future

::::::::::::
Developments

::
In

:::::::
previous

::::::::
sections,

:::
we

::::
have

::::::::
described

::::
how

::::::
many

::::::::::
assimilation

:::::::
methods

:::
are

:::::::::
alternative

::::::::::
algorithms

:::
for

:::
the

::::
same

::::::::::
underlying15

:::::::
problem.

::::::::
Different

::::::::
methods

::::
have

:::::
risen

:::
to

::::::::::
prominence

::
in

::::::::
response

::
to
::::::::::::

combinations
:::
of

:::
the

::::
four

::::::
drivers

::::::::::
mentioned

::::::
above.

:::::::::
Discussion

::
of

::::::
future

::::::::
directions

::
is

::::::::::
necessarily

:::::::::
speculative

:::
but

:::
we

::::
can

:::::::
suggest

::::
how

:::::
some

::
of

:::
the

::::::
drivers

::::
will

::::::
evolve

:::
and

:::::
their

:::::::::::
corresponding

:::::::::
influence.

::::::::::::
Computational

:::::::::
constraints

:::
are

::::
less

:::::
active

::::
now

::::
and

:::::
likely

::
to

::::::
remain

:::
so.

:::
this

::
is
::::
true

::::
even

:::::
when

:::
we

::::::::
consider

:::
the

::::::::
increases

::
in

:::
data

::::
size

:::
and

::::::::::
complexity.

::::
The

::::::::
increased

:::::::::
availability

::
of

::::
large

::::::::
numbers

::
of

:::::::::
processors

:::::
rather

::::
than

::::
their

::::::::
individual

:::::
speed

::::
will

:::::
likely20

:::::::
privilege

::::::::
naturally

::::::
parallel

:::::::::
algorithms

::::
such

:::
as

::::::::
ensemble

:::::::
methods.

:

:::
The

:::::
rising

:::::::::
complexity

::::
and

:::::::
diversity

::
of

::::::
models

::::
will

::::
also

:::::::
promote

::::::::
ensemble

::::::::::
approaches.

:::
The

::::::::
strongest

:::::::
analogy

:
is
::::
with

:::::::
climate

::::::::
prediction

::::
and

:::::::
seasonal

:::::::::
forecasting

::::::
where

:::::::::
ensembles

::::::::
frequently

:::::::
include

:::::::
different

:::::::::
dynamical

:::::::::::
formulations

::
as

::::
well

::
as

::::::::
different

::::::::
parameter

:::::::
settings.

:::
As

:::
yet

:::::
there

::::
have

::::
been

::::
few

:::::::
attempts

::
at
:::::::::::

multi-model
::::::::
ensemble

::::
data

::::::::::
assimilation

:::
in

::::::::::::::
biogeochemistry

::::
with

::
the

::::::::::
TransCom

::::::
project

:::
the

::::::
highest

::::::
profile

::::::::
example.

::::
One

::::::
reason

:::
for

::::
this

::
is

:::
the

:::::::
scarcity

:::
of

:::::::::::::
biogeochemical

::::::
models

:::::
with

::::
data25

::::::::::
assimilation

::::::::
capability.

:::::::
Another

:::::::::
advantage

::
of

::::::::
ensemble

::::::::
methods

:
is
::
a
:::::::
reduced

::::
entry

::::::
barrier.

:

:
A
:::::

more
::::::

likely
:::::
brake

:::
on

:::
the

::::::::
evolution

:::
of

::::
data

::::::::::
assimilation

:::
in

::::::::::::::
biogeochemistry

::
is

:::
the

::::::
quality

:::
of

:::
the

:::::::
models

::::::::::
themselves.

:
A
:::::::::::

precondition
:::

for
::::

the
:::::
utility

:::
of

::::
data

::::::::::
assimilation

::
is
::::

that
::::::::::
information

:::::::
learned

::
in
::::

one
:::::::::::
environment

::
or

:::::::
regime

::
is

:::::::::
applicable

::::::::
elsewhere,

:::
or

::::
that

::
a

:::::
model

::::
can

:::::
make

::::::::
coherent

:::::::::
inferences

:::::
from

:::::::
different

:::::::::::
observations

:::
of

:::
the

:::::
same

:::::::
system.

:::
As

:::::::::
examples,

::::::::::::::::::
Medvigy et al. (2009)

:::::
found

:
it
:::::::
difficult

::
to

:::::::
transfer

::::::::
inferences

:::::
made

::
at

:::
one

:::::::::
ecosystem

:::
site

::
to
:::::::
another

:::::
while

:::::::::::::::::
Bacour et al. (2015)

:::::
found

:
it
:::::::
difficult

::
to

::
fit

:::::::
multiple

:::::::
streams

::
of

::::
data

::::
with

:
a
:::::
single

:::
set

::
of

::::::::::
parameters.

:::
We

:::::
would

::::::::::
recommend

::::::
tighter

:::::::::
integration

::
of

::::
data

::::::::::
assimilation

::::
with

:::::
model

:::::::::::
development

::
so

::::
that

::::::::::
components

:::
can

:::
be

:::::
tested

::
as

::::
they

:::
are

:::::::::
developed.

::::::
Finally,

:::
the

::::::::::
distinctions

::
we

::::
have

::::::
drawn

:::::::
between

:::::::
methods

::::
here

::::::::
represent

:
a
::::::::
snapshot

:
in
:::::
time.

:::::::
Methods

:::
are

:::::
likely

::
to

:::
be

:::::::
matched

:::
and

::::::::
combined

:::::::::
differently

::
in
::::::

future.
:
Merging the various approaches, for instance by constructing optimal low-rank solutions

even for high-dimensional problems in new systems is
:::::
seems a promising way forward (Bousserez and Henze, 2018).
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10 Conclusions5

There are an apparently
::
is

:
a
:
wide range of techniques available for assimilating data into models such as those used in biogeo-

chemistry. All
::::
Most

:
of these, however, inherit the basic formalism of Bayesian inference in which posterior probabilities are

constructed as conjunctions or multiplications of probability distributions describing prior knowledge, measured quantities and

models relating the two. The methods differ in the information they assume or adopt on the various components. In general the

more restrictive the assumptions the more powerful is the statistical apparatus available to analyze the system.10
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