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Abstract. The Copernicus Atmosphere Monitoring Service (CAMS) reanalysis is the latest global reanalysis data set of 

atmospheric composition produced by the European Centre for Medium-Range Weather Forecasts (ECMWF), consisting of 

3-dimensional time-consistent atmospheric composition fields, including aerosols and chemical species. The dataset currently 

covers the period 2003-2016 and will be extended in the future by adding one year each year. A reanalysis for greenhouse 15 

gases is being produced separately. The CAMS reanalysis builds on the experience gained during the production of the earlier 

Monitoring Atmospheric Composition and Climate (MACC) reanalysis and CAMS interim reanalysis. Satellite retrievals of 

total column CO, tropospheric column NO2, aerosol optical depth and total column, partial column and profile ozone retrievals 

were assimilated for the CAMS reanalysis with ECMWF’s Integrated Forecasting System. The new reanalysis has an increased 

horizontal resolution of about 80 km and provides more chemical species at a better temporal resolution (3-hourly analysis 20 

fields, 3-hourly forecast fields and hourly surface forecast fields) than the previously produced CAMS interim reanalysis. The 

CAMS reanalysis has smaller biases compared to most of the independent ozone, carbon monoxide, nitrogen dioxide and 

aerosol optical depth observations used for validation in this paper than the previous two reanalyses and is much improved and 

more consistent in time, especially compared to the MACC reanalysis. The CAMS reanalysis is a dataset that can be used to 

compute climatologies, study trends, evaluate models, benchmark other reanalyses or serve as boundary conditions for regional 25 

models for past periods.  

1 Introduction 

 

The European Centre for Medium Range Weather Forecasts (ECMWF) has been producing atmospheric composition (AC) 

forecasts and analyses for over a decade. The model and data assimilation system used for this was developed as a European 30 

effort by a consortium of partners funded by several European Union (EU) projects. It began in 2005, with the EU funded 

Global Monitoring for Environment and Security (GEMS) project (Hollingsworth et al. 2008) that built the capacity for a 

global and regional forecasting and data assimilation system of AC. In GEMS, ECMWF’s Integrated Forecast System (IFS) 

was extended to allow for the data assimilation and modelling of aerosols, chemically reactive gases and greenhouse gases, 

and the first daily forecasts of reactive gases such as carbon monoxide (CO) and tropospheric ozone (O3) were made public in 35 

May 2007 (Flemming et al., 2017a). This was followed a year later, in July 2008, by the real-time data assimilation of aerosol 

optical depth (Benedetti et al., 2009) and selected reactive gases (Inness et al., 2013) in the daily GEMS system.  The AC 

system was further developed in the earlier Monitoring Atmospheric Composition and Climate (MACC) projects (Flemming 

et al., 2015; Inness et al., 2015; Massart et al., 2014; Agusti-Panareda et al., 2014) between 2009 and 2014 and has been 

running fully operationally in the Copernicus Atmosphere Monitoring Service (CAMS), operated by ECMWF, since January 40 
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2015. In the rest of this paper we will refer to the system built in GEMS/MACC/CAMS as the CAMS system and focus on 

reactive gases and aerosols. 

 

While the modelling components for aerosols were included directly in the IFS from the beginning of GEMS (Morcrette et al., 

2009), the initial approach for the reactive gases was to build a ‘coupled system’ where the chemical transport model (CTM) 5 

Model for OZone And Related chemical Tracers (MOZART) 3.5 (Kinnison et al., 2007) was coupled to the IFS using the 

Ocean Atmosphere Sea Ice Soil (OASIS 4) coupling software (Flemming et al., 2009). Later, in the MACC projects, a modified 

version of the Carbon Bond 2005 chemistry scheme (CB05, Huijnen et al. 2010) derived from the CTM Transport Model 5 

(TM5) was integrated in the IFS (referred to as IFS(CB05); Flemming et al., 2015), making the system more computationally 

efficient and improving the system’s ability to represent interactions between meteorology and chemistry. In parallel to the 10 

model system, the use of observations in the data assimilation system also evolved with time as new datasets became available 

and satellite retrievals were improved.  

 

The initial forecasts and analyses in 2007/2008 had a horizontal resolution of T159 (~110 km). This was increased to T255 

(~80 km) in July 2012 and to T511 (~40 km) in June 2016. The vertical resolution has so far always consisted of 60 model 15 

levels in the vertical, with the top level at 0.1 hPa. Details about the different model versions used over time are given in Table 

A1 in the Appendix. The continuing upgrades of the CAMS model and data assimilation system and the changes they brought 

with them made it difficult if not impossible to compare data from a recent period with earlier data in a meaningful way. For 

example, it was not possible to calculate seasonal anomalies or trends with a system that had changed so much over time. 

Therefore, so called reanalyses were produced with the CAMS system where a long time period was re-run with a single 20 

version of the model and data assimilation system, taking care to minimise changes in the versions of the used emissions or 

assimilated satellite retrievals. Such a system gives the temporal consistency needed to deduce trends (e.g. Flemming et al., 

2017b) or to provide maps of annual or seasonal anomalies (e.g. Flemming and Inness, 2018).   

 

Producing long reanalyses with a single model version is a well-known procedure in Numerical Weather Prediction (NWP), 25 

and several weather centres have produced meteorological reanalysis data sets. It has long been an important activity at 

ECMWF (ERA-40, Uppala et al., 2005; ERA interim, Dee et al., 2011; ERA-5, Hersbach et al., 2018), and other meteorological 

centres such as National Centers for Environmental Protection (NCEP) (CFSR; Saha et al., 2010), the Japan Meteorological 

Agency (JRA-55, Kobayashi et al., 2015;  JRA-25, Onogi et al., 2007), NASA-GMAO (Modern-Era Retrospective analysis 

for Research and Applications (MERRA), Rienecker, et al., 2011; MERRA-2, Gelaro et al., 2017) and the  China 30 

Meteorological Administration (CRA-40) have also produced or are producing reanalyses.  

 

In addition to these meteorological reanalyses several reanalyses of atmospheric composition have been produced in recent 

years. The multi-sensor reanalysis of total ozone (van der A et al., 2015) for 1970–2012 used ground-based Brewer 

observations to inter-calibrate satellite retrievals. The MERRA reanalysis (1980 to 2016) included ozone and was used to drive 35 

an offline aerosol reanalysis (MERRAero; Buchard et al. 2014). The MERRA-2 (Gelaro et al., 2017) reanalysis, again from 

1980 onwards, also contained aerosols, assimilated concurrently with the meteorology (Randles et al., 2017; Buchard et al, 

2017). The US Naval Research Laboratory developed the Navy Aerosol Analysis and Prediction System (NAAPS) aerosol 

reanalysis product covering the years 2003-2015 (Lynch et al., 2016). Miyazaki et al. (2015) put together a tropospheric 

chemistry reanalysis for the years 2005–2014 and the Meteorological Research Institute (MRI) of the Japan Meteorological 40 

Agency produced a 5-year aerosol reanalysis product (Japanese Reanalysis for Aerosol, JRAero) for the years 2011-2015 

(Yumimoto et al., 2017).  
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ECMWF produced several AC reanalyses in the GEMS/MACC/CAMS projects (see Table A2 in the Appendix). All these 

reanalyses started in 2003, when a wealth of atmospheric composition retrievals became available after the launch of the 

European Envisat satellite and the American Aqua and Aura satellites. The so-called ‘GEMS reanalysis’ was a 6-year 

reanalysis of reactive gases, aerosols and greenhouse gases covering the period from 2003 to April 2009. This was followed 

by the 10-year ’MACC reanalysis’ for reactive gases and aerosols covering the period 2003 to 2012 (MACCRA, Inness et al., 5 

2013). The GEMS and MACC reanalyses both used the coupled IFS/MOZART 3.5 system. After the change to the integrated 

IFS(CB05) system in September 2014, the model as well as the data assimilation configuration changed considerably, and 

comparing fields from the later years with a climatology based on the MACC reanalysis showed mainly model and 

configuration differences and not a climatologically meaningful signal. Therefore, a new reanalysis run with IFS(CB05) was 

needed. To prepare for this, a test reanalysis for reactive gases and aerosols, the ‘CAMS interim reanalysis’ (CIRA, Flemming 10 

et al., 2017b), was produced with a version of the IFS(CB05) system from 2003 onwards. CIRA was run at lower horizontal 

resolution (T159, ~110km) than the MACC reanalysis (T255, ~80 km) and the number of archived fields was slightly reduced 

to speed up the throughput. This helped to test aspects of the IFS(CB05) system and paved the way for the production of the 

‘CAMS reanalysis’ (CAMSRA), again from 2003 onwards and with the IFS(CB05) system. CAMSRA includes reactive gases 

and aerosols at higher horizontal resolution (T255) and with an increased number and time frequency of archived fields. Further 15 

improvements of CAMSRA relative to CIRA are the assimilation of NO2 retrievals in CAMSRA and a better representation 

of the interannual variability of the biogenic emissions. A reanalysis for the greenhouse gases CO2 and CH4 is being produced 

separately and will be discussed in a different paper.  

 

Figure 1a shows the ‘Figure of Merit in space’ (FMS; Chang and Hanna, 2004) ozone score at the Antarctic Neumayer Station 20 

and Figure 1b the modified normalised mean bias (MNMB) of CO in the lower troposphere from the CAMS daily forecast 

system and CAMSRA to illustrate the advantage a reanalysis has over a continuously evolving operational model system. The 

definitions of the scores are given in the Appendix. The FMS score compares the fit of the model ozone profiles to ozonesonde 

profiles (here calculated from the surface to 3 hPa) and has a score between 1 (perfect fit) and 0. Figure 1 illustrates the 

improvements in the near real-time (NRT) CAMS system with time. In the earlier years the CAMS system did not adequately 25 

reproduce the low values and vertical distribution of the Antarctic ozone hole (Flemming et al., 2011; Inness et al., 2013) 

which is shown by the low FMS scores in austral spring from 2008-2012 (Fig. 1a). The CAMSRA has much improved FMS 

scores during those years and a better consistency in performance between earlier and later years. The timeseries of MNMB 

of CO in the lower troposphere (Fig. 1b) also shows problems of the NRT system in the earlier years in the northern hemisphere 

(NH) during winter, when CO values were strongly underestimated (Inness et al., 2013). There is still an underestimation of 30 

lower tropospheric CO in the CAMSRA, but the MNMB is now considerably smaller, especially during NH winter, and more 

constant in. 

 

The aim of this paper is to document the new CAMSRA dataset for future reference. The paper gives information about the 

model and data assimilation setup used to produce CAMSRA, presents initial validation results and intercompares CAMSRA 35 

with CIRA and MACCRA. Additional validation of CAMSRA can be found in reanalysis validation reports (Eskes et al., 

2018) and in two validation papers that are in preparation (Wagner et al, in preparation; Yang et al., in preparation). 

 

This paper is structured in the following way. Section 2 describes the CAMS model, the data assimilation system and the 

emission datasets used to produce the CAMS reanalysis. Section 3 lists the assimilated AC observations and bias correction 40 

procedure. Section 4 gives validation results for some of the reactive gases and aerosols, and Section 5 presents the conclusions. 
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2 CAMS model and data assimilation system 

An overview of the main differences and commonalities of the three reanalyses MACCRA, CIRA and CAMSRA discussed in 

this paper is given in Table 1. 

2.1 CAMS model system 

The IFS aerosol and chemistry modules applied in CAMSRA were similar to those in CIRA and more details about the modules 5 

are given in Flemming et al. (2015) and references therein. Major updates relative to CIRA are described in the sections 2.1.1 

and 2.1.2 below. The meteorological modelling part of the IFS changed from cycle 40R1 used for CIRA to cycle 42R1 used 

for CAMSRA (see also Table 1). 

2.1.1 Aerosol model updates 

The CAMS aerosol model component of the IFS was previously described in Morcrette et al. (2009). It is a hybrid bulk/bin 10 

scheme with 12 prognostic tracers, consisting of three bins for sea salt depending on size (0.03-0.5, 0.5-5 and 5-20µm), three 

bins for dust (0.030-0.55, 0.55-0.9 and 0.9-20 µm), hydrophilic and hydrophobic organic matter (OM) and black carbon (BC), 

plus sulphate aerosol and a gas-phase sulphur dioxide (SO2) precursor. The different aerosol types are treated as externally 

mixed, i.e. separate particles. Transport by advection, convection and diffusion is handled by the meteorological model 

component of the IFS. The aerosol scheme includes prescribed and online emissions (as described in Section 2.2), dry and wet 15 

deposition, production of sulphate from SO2, and ageing of hydrophobic OM and BC to hydrophilic. Nitrate aerosols are not 

yet included in the aerosol scheme. The missing nitrate aerosol is likely to cause an underestimation of total aerosol in the 

forecast model in regions where nitrate would be a significant component. The total aerosol will be corrected by the 

assimilation of total AOD observations. 

 20 

The aerosol model used in the CAMS reanalysis contains these updates relative to CIRA: 

• Updated aerosol optical properties, especially for organic matter (as described in Bozzo et al., 2017) 

• Bug fixes to sedimentation, which was unreasonably weak for some dust and sea-salt bins, with corresponding re-

tuning of sea-salt scavenging 

• SO2 dry deposition velocities updated to use monthly values computed by Météo-France’s Surface Module of the 25 

MOCAGE model (SUMO, Michou et al., 2004). They now match those used in the chemistry scheme. 

• New parameterisation of anthropogenic Secondary Organic Aerosol (SOA) production, proportional to MACCity 

CO emissions, as suggested in Spracklen et al. (2011) 

• More detailed SO2 to sulphate aerosol conversion with dependence on temperature and relative humidity, and overall 

decrease in the conversion timescale especially at high latitudes 30 

•  Increased sulphate dry deposition velocity over ocean 

• Proportional mass fixer used for chemistry (Diamantakis and Flemming, 2014) extended to aerosol species 

• In CIRA, emissions from the Global Fire Assimilation System (GFAS) of black carbon (BC) were scaled by a 

globally constant factor of 3.4, which had been derived by comparing BC from a 6-month assimilation run with a 

forecast only run. In CAMSRA the same approach was used but comparing 12 years of CIRA data against a control 35 

run without data assimilation. This made it possible to derive a geographically varying (but temporally constant) 

scaling factor for BC GFAS emissions in CAMSRA. 

• The SO2 emissions in CAMSRA are separated between emissions at low level (20% of total emissions, which are 

emitted as part of the diffusion scheme) and high level emissions (80% of total emissions which are released in the 

two lowest model levels). In CIRA all SO2 emissions were released at the surface as part of the diffusion scheme. 40 
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2.1.2 Chemistry module updates 

The chemical mechanism of the IFS is a modified and extended version of the CB05 (Yaarmond et al. 2005) chemical 

mechanism for the troposphere, as implemented in CTM TM5 (Huijnen et al., 2010). CB05 describes tropospheric chemistry 

with 55 species and 126 reactions. Stratospheric ozone chemistry in IFS(CB05) is parameterized by a “Cariolle-scheme” 5 

(Cariolle and Déqué, 1986; Cariolle and Teyssèdre, 2007). Wet deposition is modelled following Jacob (2000), and monthly-

mean gridded dry deposition velocities calculated by the SUMO model of Météo-France (Michou et al. 2004) were used to 

calculate dry deposition. The chemistry module of the IFS is documented in more detail in Flemming et al. (2015) and 

Flemming et al. (2017b). The following updates of the chemistry scheme from the configuration used in CIRA were applied 

to produce CAMSRA: 10 

• Update of heterogeneous rate coefficients for N2O5 and HO2 based on prognostic clouds and aerosol 

• Modification of photolysis rates by prognostic aerosol 

• Dynamic tropopause definition based on the temperature profile for coupling to the Cariolle scheme in the 

stratosphere and for tropospheric mass diagnostics 

• Bugfixes; in particular for the diurnal cycle of dry deposition whose correction has decreased the ozone dry 15 

deposition flux by about 15-20%    

 

It should be noted that the schemes for aerosol and chemistry in IFS(CB05) are largely independent, which means in particular 

that both the aerosol and the chemistry scheme carry their own SO2 variable. The conversion of the aerosol SO2 to sulphate 

aerosol is modelled in the aerosol scheme by prescribed conversion rates (Morcrette et al., 2009), whereas SO2 in the chemistry 20 

scheme is subject to gas-phase and aqueous phase chemistry. The sulphate of the chemistry scheme does not contribute to the 

aerosol optical properties nor is it corrected by data assimilation.  However, the first steps to link chemistry and aerosol schemes 

have been undertaken and the aerosol model affects the chemical composition by using the aerosol surface area density in the 

heterogenous reaction rates of dinitrogen pentoxide (N2O5) and hydroperoxyl (HO2) (Huijnen et al., 2014) as well as by using 

aerosol optical properties for the modification of photolysis rates.  25 

 

A major difference between the production of CIRA and CAMSRA is that the prognostic ozone and aerosol fields have been 

used interactively in the NWP radiation scheme in CAMSRA. For CIRA climatologies of ozone derived from MACCRA 

(Bozzo et al., 2017) and the Tegen et al. (1997) aerosol climatology were used in the radiation scheme. The evaluation of the 

meteorological parameters is beyond the scope of this paper. Nevertheless, little differences were found by introducing 30 

prognostic ozone and aerosol because the meteorological analysis is well constrained by the assimilated observations. 

Furthermore, no change in the evaluation of the AC parameters could be identified when using ozone and aerosol interactively 

in the radiation scheme.   

2.2 Emissions  

Great care has been taken to ensure that the emission datasets are consistent in time and that consistent anthropogenic, biogenic 35 

and biomass burning emissions were used for the aerosol and chemistry fields. The emission datasets are listed in Table 1. The 

emissions are injected at the surface and distributed over the boundary layer by the model’s convection and vertical diffusion 

scheme. The only exception is the aerosol SO2 emissions of which 20% are emitted at the surface as part of the diffusion 

scheme and 80% in the two lowest model levels (see Section 2.1.1). The emissions datasets used in CAMSRA include 

emissions from anthropogenic, biogenic, natural, and biomass burning sources. 40 
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Anthropogenic emissions were from the MACCity inventory (Granier et al., 2011) with modifications to increase winter-time 

road traffic emissions over North America and Europe following the correction of Stein et al. (2014). These emissions were 

also used in CIRA while they were used without the Stein et al. (2014) correction in MACCRA. The MACCity inventory 

covers the period 1960-2010 and is updated for subsequent years using the representative concentration pathway (RCP) version 

8.5. The RCP 8.5 (business as usual) scenario was chosen as it includes information on regional emissions after 2000 (Van 5 

Vuuren et al., 2010; Riahi et al., 2011). The anthropogenic MACCity emissions for CO are shown in Fig. 2 and for NO in Fig. 

3. The CO emissions decrease over Europe and North America in the range of 1 to 5 % per year, but increase over South East 

Asia by a similar amount. The global trend for CO is close to zero. The MACCity NO emissions decrease with time over 

Europe and North America, but increase over East Asia until 2015 which is in contrast to satellite derived emission inventories 

that show a peak over China in 2012 (e.g. Ding et al., 2017). Anthropogenic emissions of black carbon, organic carbon and 10 

SO2 were also taken from MACCity. Emissions of anthropogenic SOA were estimated by applying a scaling factor of 0.2 to 

the MACCity (i.e., non-biomass burning) CO emissions, as suggested in Spracklen et al. (2011). 

 

Monthly mean biogenic emissions of the chemical species were calculated offline by the MEGAN2.1 model (Guenther et al., 

2006) that used meteorological fields from the MERRA-2 reanalysis following Sindelarova et al. (2014) for the full period of 15 

CAMSRA. Natural emissions from soils and oceans for NO2, dimethyl sulphate (DMS) and SO2 were taken from the 

Precursors of ozone and their effects in the Troposphere (POET) database for 2000 (Granier et al., 2005; Olivier et al., 2003). 

 

Daily global biomass burning emissions of reactive gases and aerosols were provided by the Global Fire Assimilation System, 

version 1.2 (GFASv1.2), based on satellite retrievals of fire radiative power (Kaiser et al., 2012). The archive of GFASv1.2 20 

data covers the period 2003-present and was also used in CIRA. In MACCRA early versions of the Global Fire Emissions 

Database (GFED 3.1; van der Werf et al., 2010) were used from 2003 until the end of 2008 and daily GFAS v1.0 data from 

2009 to 2012. GFED 3.1 is on average 20% lower than GFAS v1.2 (Inness et al., 2013). Figure 4 shows the GFASv1.2 

timeseries of monthly mean total carbon wildfire emissions for each of the main continental regions, excluding Antarctica, 

between 2003 and 2016. The emissions from GFEDv3.1 and GFASv1.0 are also shown for comparison. The CO biomass 25 

burning emissions do not show a significant trend but considerable inter-annual variability. Africa is usually the largest source 

of CO biomass burning emissions, but under El Niño conditions Asian emissions (and in particular emissions from maritime 

Southeast Asia) reach similar values. Most notable here are the Asian emissions during the Indonesian fires in September and 

October 2015 that caused by far the highest annual wildfire emissions as well as the highest total monthly CO emissions in the 

whole period covered by GFAS (Huijnen et al., 2016). 30 

 

The aerosol model has additional online parameterisations to calculate sea salt (Monahan et al., 1986) and dust surface fluxes 

based on surface winds and other factors (Ginoux et al., 2001). 

2.3 CAMS data assimilation system 

The IFS uses an incremental 4D-Var data assimilation system (Courtier et al. 1994) for the CAMS reanalysis, with 12-hour 35 

assimilation windows from 09 UTC to 21 UTC and 21 UTC to 09 UTC and two minimisations at spectral truncations T95 

(~210 km) and T159 (~110 km). In the CAMS 4D-Var a cost function that measures the differences between the model’s 

background fields and the observations is minimized in order to obtain the best possible forecast through the length of the 

assimilation window by adjusting the initial conditions. Several atmospheric composition fields (i.e. O3, CO, NO2 and total 

aerosol mass mixing ratio) are included in the control vector and minimized together with the meteorological control variables. 40 

The background errors for the atmospheric composition fields were either calculated with the National Meteorological Center 

(NMC) method (Parrish and Derber 1992) or from an ensemble of forecast differences (Inness et al., 2015). Both methods 
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allow us to calculate differences between pairs of background fields which have the statistical characteristics of the background 

errors. The background errors for the chemical species are univariate; i.e. the error covariance matrix between chemical species 

or between chemical species and dynamical fields is diagonal. Hence each species is assimilated independently from the others. 

More information about the data assimilation system and background errors for the chemical fields can be found in Inness et 

al. (2015). The aerosol assimilation is described in Benedetti et al. (2009) and the background errors used for the aerosol 5 

assimilation in Benedetti and Fisher (2007).  

 

The aerosol assimilation is less constrained than the assimilation of the chemical species because the model has 12 different 

aerosol components (see Section 2.1.1), while the assimilated observations are retrievals of total aerosol optical depth (AOD). 

Therefore, the total aerosol mass mixing ratio, defined as the sum of the aerosol species, is used as control variable and the 10 

analysis increments are repartitioned into the individual aerosol components (the SO2 precursor is excluded from this process, 

as it is not visible in the AOD observations) according to their fractional contribution to the total aerosol mass (Benedetti et 

al., 2009). Flemming et al. (2017b) have shown that this can lead to problems as the relative fraction of the aerosol components 

is not conserved during the whole assimilation procedure because of differences in aerosol lifetime associated with differences 

in their removal processes. Aerosol components with a longer atmospheric lifetime can retain the change imposed by the 15 

increments for longer and may thereby change the relative contributions. Also, if the underlying aerosol model has a bias in 

one aerosol species, e.g. it overestimates the species and thereby contributes a bigger fraction to the total aerosol mass mixing 

ratio than it should do, the assimilation can exacerbate this by attributing a greater proportion of the increment to this species 

and enhancing the bias even further. This was the case in CIRA where it led to an unrealistic overestimation of sulphates 

(Flemming et al., 2017b). Sulphates are reduced in CAMSRA (see Figure 20 below). 20 

2.4 CAMSRA data product 

The spatial resolution of the CAMS reanalysis is a reduced gaussian grid at a spectral truncation of T255, which is equivalent 

to grid spacing of approximately 80 km globally (0.7⁰ x 0.7° grid). The vertical model resolution consists of 60 hybrid 

sigma/pressure (model) levels with a model top at 0.1 hPa. The data are available as 3-hourly analyses and 48 hour forecasts, 

initialised daily from analyses at 00 UTC. Three-dimensional model level forecast fields are available every 3 hours from 25 

forecast hour 0 to 48, and surface forecast fields are available at hourly intervals. Monthly mean fields are also provided. 

Atmospheric data are archived on 60 model levels and are also interpolated to 25 pressure, 10 potential temperature and 1 

potential vorticity level(s). Surface and total column diagnostics are also available 

(https://software.ecmwf.int/wiki/display/CKB/CAMS+Reanalysis+data+documentation#CAMSReanalysisdatadocumentatio

n-Parameterlistings). An inventory of the available model fields can be found here: http://apps.ecmwf.int/data-30 

catalogues/cams-reanalysis/?class=mc&expver=eac4, and more information at https://atmosphere.copernicus.eu/copernicus-

releases-new-global-reanalysis-data-set-atmospheric-composition. The data will become available from the Copernicus 

Atmosphere Data Store. 

3 Observations and bias correction 

3.1 Observations 35 

The atmospheric composition satellite retrievals of O3, CO, NO2 and AOD that were assimilated to produce CAMSRA are 

shown in Fig. 5 and listed in Table 2. The table also shows the blacklist criteria applied to the data, i.e. the criteria that determine 

when data were not used. 

 



8 

 

Retrievals from a range of instruments were used for O3. These included total column O3 (TCO3) retrievals from the SCanning 

Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) instrument, the Ozone Monitoring 

Instrument (OMI) and the Global Ozone Monitoring Experiment-2 (GOME-2), O3 profile data from the Michelson 

Interferometer for Passive Atmospheric Sounding (MIPAS) and Microwave Limb Sounder (MLS, used down to 215 hPa) and 

O3 partial columns from Solar Backscatter ULTra-Violet (SBUV/2). For SBUV/2 the v8.6 data record (McPeters et al. 2013) 5 

was used until July 2013 and NRT V8 data afterwards. The V8.6 data are available at 21 vertical layers but were converted 

into a 13-layer product by CAMS to reduce smoothing errors, by combining the layers between 16 hPa and the surface. The 

NRT SBUV/2 data were the same data used in the CAMS real-time analysis and used at the 21L resolution. Changing to the 

NRT data was necessary as the reprocessed data were not available after July 2013. We do not notice a change in the ozone 

analysis field at this time because the analysis is well constrained by the other assimilated O3 data, in particular the MLS 10 

profiles. 

 

For CO, Measurement of Pollution in the Troposphere (MOPITT) thermal infra-red (TIR) V6 total column CO (TCCO) 

retrievals were assimilated in CAMSRA. These retrievals are most sensitive to CO in the mid and upper troposphere (Deeter 

et al, 2013) and are retrieved from the TIR band near 4.7 µm. The main improvements compared to the older MOPITT versions 15 

used in CIRA (MOPITT V5) and MACC (MOPITT V4) are a correction of a bias in geolocation, improved meteorological 

data based on the MERRA reanalysis and updated CO a-priori profiles (Deeter et al., 2014). In contrast to MACCRA no IASI 

CO retrievals (George et al., 2009; Clerbaux et al., 2009) were assimilated in CAMSRA because using them led to a 

discontinuity in MACCRA (Inness et al., 2013; Flemming et al., 2017b). 

 20 

For NO2, tropospheric column retrievals from SCIAMACHY, OMI and GOME-2 were assimilated in CAMSRA. This is an 

improvement over CIRA (where no NO2 data were assimilated) and MACCRA (where only SCIAMACHY NO2 data were 

assimilated). Where possible, new reprocessed data sets were used in CAMSRA. However, due to time constraints it was not 

possible to acquire and process new observations for all the instruments and for NO2 from SCIAMACHY and OMI the data 

that were already available had to be used. The SCIAMACHY NO2 retrievals used in CAMSRA were the same data version 25 

assimilated in MACCRA (KNMI, V1p from 2003-2011, V2 2011-April 2012). The OMI NO2 data were also produced by 

KNMI (Boersma et al. 2007 and 2011) and consisted of offline DOMINO (V1.0.2) data from October 2004 until 2010, the 

offline DOMINO (V2) retrieval for 2011-2012 and NRT DOMINO retrievals (V2) from 2013 onwards. The GOME-2 data 

were the offline GDP4.8 data produced by the ACSAF/DLR (Valks et al., 2011) until the end of 2016. GOME-2 NO2 retrievals 

from Metop-A were assimilated from April 2007 onwards and retrievals from Metop-B from January 2013.  In previous studies 30 

(Inness et al., 2015) the impact of the assimilation was shown to be small for short lived species like NO2 because at least some 

of the changes applied to the initial conditions by the analysis were frequently insignificant compared to the prevalent 

emissions of nitrogen oxides (NOx=NO2+NO) and were lost again in the subsequent forecasts. By assimilating NO2 retrievals 

from satellites with different overpass times (9:30 local time for GOME-2, 10:00 for SCIAMACHY, 13:30 for OMI) the 

impact of the assimilation is expected to be increased and the diurnal cycle of NO2 to be better represented. The discontinuity 35 

in the assimilated NO2 products could influence the long-term ozone analysis. Unfortunately, as there is no additional 

experiment where O3 data but no NO2 data were assimilated, it is not possible to infer this information from the CAMS 

reanalysis. We have seen in the past (Inness et al., 2015) that the impact of the NO2 assimilation is generally small, so we do 

not expect this to lead to problems in the ozone analysis. 

 40 

For aerosols, Collection 6 retrievals of total AOD at 550 nm from the Moderate Resolution Imaging Spectroradiometers 

(MODIS, Levy et al., 2018) on board the Aqua and Terra satellites that were produced with the Enhanced Deep Blue (DB) 

and Dark Target (DT) algorithms over land and a DT over water algorithm over ocean, were used in CAMSRA. The main 
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scientific improvement in the algorithm of Collection 6, compared to the Collection 5 observations used in MACCRA and 

CIRA, is the introduction of a wind speed dependence over oceans. This addressed the known bias in Collection 5 over mid-

latitude oceans, particularly in the Southern Hemisphere.  Various minor changes to the processing were also made in 

Collection 6 for maintenance, giving modest improvements (Levy et al. 2013). The data preparation stage for the MODIS 

observations prioritises Dark Target and will only use Deep Blue data if no Dark Target observations are available. In addition 5 

to MODIS, CAMSRA used retrievals from the Advanced Along-Track Scanning Radiometer (AATSR, Popp et al. 2016) 

onboard Envisat from 2003 till March 2012. The AATSR and MODIS AOD observations may potentially be coincident but 

this is dealt with by the data assimilation system. Solving the cost function balances mismatches to both the model and all 

observations taking into account both model and individual observation errors. 

 10 

Averaging kernels were used in the observation operator for the calculation of the model’s first-guess fields for CO and NO2 

retrievals as described in Inness et al. (2013). 

3.2 Bias correction 

A variational bias correction (VarBC) scheme (Dee and Uppala, 2009) where biases are estimated during the analysis by 

including bias parameters in the control vector was used for several of the AC data sets. In this scheme, the bias corrections 15 

are continuously adjusted to optimize the consistency with all information used in the analysis. VarBC was applied to the 

TCO3 retrievals from OMI, SCIAMACHY and GOME-2, with a global constant and solar elevation as predictors, while the 

partial column SBUV/2, and profile MLS and MIPAS data were used to anchor the bias correction, i.e. were assimilated 

without correction. Experience from MACCRA had shown that it was important to have an anchor for the O3 bias correction, 

to avoid drifts in the fields (Inness et al., 2013). The SBUV/2 data were chosen as anchor because they are a high quality 20 

reprocessed dataset that covers the whole period of CAMSRA. The MLS and MIPAS profile data were not bias corrected 

because experience in MACCRA had shown that the SBUV/2 data could not anchor all the layers of the higher resolved profile 

data and that drifts in individual layers could lead to problems in the vertical O3 distribution (Inness et al. 2013). Variational 

bias correction was also applied to OMI NO2 retrievals, again with a global constant and solar elevation as predictors, while 

SCIAMACHY and GOME-2 NO2 retrievals were used to anchor the bias correction for NO2. This choice was made because 25 

SCIAMACHY and GOME-2 generally agree better with the CAMS NO2 fields, while OMI has a larger bias (see Figures S5 

and S6 in the supplement) and also suffers from a row anomaly (see supplement) that reduces the number of good data with 

time. A validation of the diurnal cycle of NO2 is needed in the future to assess if using GOME-2 as anchor and applying bias 

correction to OMI could introduce spurious biases into the OMI NO2 data, leading to inaccurate diurnal NO2 variations in the 

model. However, as the NO2 bias correction is part of the control vector and is continuously adjusted to optimize the 30 

consistency with all parameters used in the analysis and as the assimilation of NO2 usually only has a small impact in the 

CAMS system because of its short life time (Inness et al. 2015) we do not expect this to be a problem. Hopefully a validation 

of the diurnal cycle of NO2 will be included in the validation paper that is under preparation. For CO, no bias correction was 

applied in CAMSRA because data from only one instrument were assimilated and it was not possible to anchor the VarBC. 

For AOD, experience had shown that it was not necessary to anchor the bias correction for the aerosol data and VarBC was 35 

applied to both MODIS retrievals and to AATSR. The predictors for AOD were a global constant and the 2-metre wind speed 

over sea. 

 

The bias correction helps to ensure good time consistency when blending various datasets and adapts to changing biases of the 

data. An example is shown in Fig. 6 which shows timeseries of monthly mean analysis departures (i.e. observations minus 40 

analysis fields) and first-guess departures (i.e. observations minus model first guess) for the four TCO3 retrievals 

(SCIAMACHY, OMI, GOME-2A & GOME-2B) as well as the applied bias correction. For all four TCO3 data sets the analysis 
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is drawing to the observations and the standard deviations of the analysis departures are reduced compared to those of the first-

guess departures. The plots show that the bias correction (black lines) is different for all instruments, successfully adapts to 

changes in the data and removes the biases between total column data and the model. OMI data (Fig. 6b) between 2009-2011, 

for example, show a different behaviour than during the rest of the timeseries with larger departures (due to larger observation 

values, not shown) and the need for larger bias correction. However, the bias correction successfully accounts for this and the 5 

bias corrected departures are small and stable. The reason for this change is a deterioration in the OMI row anomalies (Torres 

et al. 2018, see their Figure 1; Schenkeveld et al. 2017). More information about this can be found in the supplement. Thanks 

to the bias correction such biases are removed, and the bias corrected departures (dotted lines) are small and stable for all four 

instruments. 

 10 

Monitoring timeseries for all the atmospheric composition datasets assimilated in CAMSRA are shown in the supplement. 

One important feature to note from the supplement is that SCIAMACHY NO2 (Fig. S5 in the supplement) has much larger 

positive departures during 2003 than during the rest of the period. This affects the quality of the NO2 analysis during 2003 (see 

Figure 18 in section 4.3 below). 

4 Results 15 

In this section, analysis fields for O3, CO, NO2 and AOD from CAMSRA are compared with fields from CIRA and MACCRA 

to highlight some of the improvements in CAMSRA and to point out some of the problems potential users should be aware of. 

We concentrate on these four species because they were the ones assimilated in CAMSRA and validation data are available. 

There are, of course, a lot more species available from CAMSRA that are not covered in this paper. A more thorough validation 

of the CAMS reanalysis is beyond the scope of this paper and given in validation reports available from the CAMS website 20 

(Eskes et al., 2018; available at https://atmosphere.copernicus.eu/sites/default/files/2018-

09/CAMS84_2015SC2_D84.7.1.4_Y14_v1.pdf). 

4.1 Ozone 

We start by looking at TCO3 which is dominated by stratospheric O3 and then look at tropospheric and surface O3 which are 

more relevant for air quality users. Figure 7 shows the seasonally averaged TCO3 from CAMSRA and the differences between 25 

this data set and CIRA and MACCRA. The TCO3 differences between CAMSRA and CIRA are very small (below 2DU, 

<1%) with slightly larger differences (5 DU, <3%) in June, July, August (JJA) over Antarctica. CAMSRA TCO3 is slightly 

higher than CIRA over the Tropical Atlantic in all seasons and in NH midlatitudes in JJA, lower over NH midlatitudes during 

December, January, February (DJF) and March, April, May (MAM), and lower over SH midlatitudes in MAM and JJA. The 

differences between CAMSRA and MACCRA are larger, with CAMSRA lower than MACCRA everywhere (up to -10 DU, 30 

<5%). 

 

To assess if the differences seen between CAMSRA and the older reanalyses are an improvement we compare TCO3 from the 

reanalyses with independent, i.e. not used in the analysis, Dobson sun photometer measurements (Fig. 8) obtained from the 

World Ozone and Ultraviolet Radiation Data Centre (WOUDC). The Dobson data are well calibrated with a precision of 1% 35 

(Basher, 1982). The mean biases and their standard deviations for the three reanalyses against the Dobson data are given in 

Table 3. Figure 8 shows that MACCRA has the largest (positive) biases relative to these data and that CAMSRA agrees better 

with the independent observations in all areas. CAMSRA has smaller biases than the other two reanalyses in all areas, except 

in the Tropics after 2013 when CIRA has a smaller bias. CAMSRA and CIRA are very close from 2003-2012, but diverge 

more from 2013 onwards, when the version of the MLS profiles used in CIRA changed from V2 to NRT V3.4 (Flemming et 40 
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al., 2017b). In these later years, CAMSRA is generally better than CIRA except in the Tropics. The largest biases for CAMSRA 

(up to 25 DU) are found over Antarctica during the ozone hole season after 2013. Figure 8 shows that there is no noticeable 

impact during 2009-2011 when degraded OMI observations were assimilated (Fig. 6), illustrating the success of the variational 

bias correction (Section 3) for the TCO3 data. Table 3 confirms that CAMSRA has the smallest mean biases of the three 

reanalyses when averaged over the period 2003-2012 and also smaller biases than CIRA for the period 2003-2016 in all areas 5 

except the Arctic. The average global mean biases for the period 2003-2012 are 2.9 ±10.2 DU for CAMSRA, 3.2 ± 10.5 DU 

for CIRA and 7.6 ± 13.0 DU for MACCRA. The biases for the other areas can be found in Table 3. We see that for TCO3 

CAMSRA is clearly a better product than the older reanalyses. 

 

While it is relatively easy to reproduce a good TCO3 field by assimilating TCO3 data, reproducing the vertical structure of the 10 

O3 field is more difficult and the CAMS system had problems with this in the past (Flemming et al., 2011). We therefore also 

carry out a comparison against independent ozone sondes to evaluate the vertical structure of model biases in the troposphere 

and stratosphere. The ozone sonde data used for the validation were acquired from a variety of data centres: WOUDC, Southern 

Hemisphere ADditional OZonesondes (SHADOZ), Network for the Detection of Atmospheric Composition Change 

(NDACC), and campaigns for the Determination of Stratospheric Polar Ozone Losses (MATCH). The precision of 15 

electrochemical concentration cell (ECC) ozone sondes is on the order of ±5% in the range between 200 and 10 hPa, between 

−14% and +6% above 10 hPa, and between −7% and +17% below 200 hPa (Komhyr et al., 1995). Larger errors are found in 

the presence of steep gradients and where the ozone amount is low. The same order of precision was found by Steinbrecht et 

al. (1998) for Brewer–Mast sondes. Mean relative difference between the three reanalyses and ozone sondes and the standard 

deviations of the biases are shown in Fig. 9 for the Globe, Arctic, NH midlatitudes, Tropics, SH midlatitudes and Antarctic. 20 

For MACCRA the average is only for the period 2003-2012. In general, CAMSRA agrees to with 10% with the sondes. The 

best agreement between the reanalyses and the sondes is found in the stratosphere where the assimilated O3 data constrain the 

analyses well. Differences between the reanalyses are larger in the troposphere where the impact of the assimilation is smaller 

(Inness et al., 2015) and differences in the chemistry schemes, emissions and transport become more important. CAMSRA 

and CIRA agree well above about 200-100 hPa, while MACCRA overestimates O3 in all areas above about 15 hPa. While this 25 

overestimation of upper stratospheric and mesospheric O3 in MACCRA will not affect the TCO3 bias, ozone in this region is 

important for radiative transfer and the associated heating rates. A smaller bias in this region will make CAMSRA a better 

dataset to be used as climatology in e.g. radiation schemes or radiance observation operators. CAMSRA has larger O3 values 

than CIRA in the troposphere which leads to an increased bias with respect to the sondes in the Tropics, but smaller biases in 

the other areas. Near the surface, CAMSRA has a positive bias. The largest differences between the reanalyses in the 30 

troposphere are found in the Tropics. Here MACCRA underestimates O3 in the mid and upper troposphere with mean biases 

up to -30%, but absolute differences are small because O3 values in the tropical upper troposphere and lower stratosphere are 

low. MACCRA also has a large negative bias near the surface in the Arctic and Antarctic. Here, improvements to the 

background error statistics (Inness et al., 2015), in particular to the vertical correlations of the background errors, led to big 

improvements in CIRA and CAMSRA compared to MACCRA. 35 

 

The profile plots have shown that the largest relative differences between the three reanalyses are found in the troposphere. 

Therefore, Fig. 10 looks at timeseries of the modified normalized mean bias (MNMB) of reanalysis O3 minus ozone sondes in 

the free troposphere (layer between 750-300 hPa) to assess these differences in more detail. Figure 10 confirms that MACCRA 

has the largest bias with respect to the sondes and shows a different behaviour between mid-2004 and the end of 2007 than 40 

during the other years, particularly noticeable in the Arctic, NH midlatitudes and Antarctic. This was documented in Inness et 

al. (2013) and was the result of using VarBC for MLS data in MACCRA during the period August 2004 till December 2007. 
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CAMSRA is a much improved and temporally more consistent dataset than MACCRA. CAMSRA also has a smaller bias than 

CIRA in all areas, apart from the NH midlatitudes during 2005-2009. CAMSRA has larger O3 values than CIRA in the free 

troposphere, so that CAMSRA shows a small positive bias and CIRA a small negative bias, which was also seen in the O3 

profile plots (Figure 9). CIRA and MACCRA have larger biases than CAMSRA in 2003 which could be the result of 

assimilating GOME O3 profiles during the first 5 months of 2003 in CIRA and MACCRA, but not in CAMSRA (because it 5 

was found to lead to a degradation in the CAMS O3 analysis, not shown). It was shown previously (Inness et al., 2013; 

Flemming et al., 2011; Lefever et al., 2015) that it is important in the CAMS system to assimilate height resolved O3 data, like 

MLS profiles, to obtain a good vertical structure of the O3 analysis and this is confirmed by Fig. 10 as all areas apart from the 

NH midlatitudes show larger biases from the end of March to the beginning of August 2004 when no O3 profile data were 

assimilated (Figure 5). The biases in the Arctic and Antarctic regions are larger during 2003 than during the other years. This 10 

seems to be related to the degraded quality of the NRT SCIAMACHY and MIPAS data used during 2003 (Figures 5 and S1 

in the supplement). The user should be aware of these problem periods. 

There is a change in the bias behaviour from January 2013 onwards in CAMSRA and CIRA, particularly in the Antarctic and 

Arctic, where biases increase compared to the earlier years and show a seasonally varying behaviour. This must be the result 

of changes in the observing system, as the model does not change and is currently under investigation. The same seasonally 15 

varying biases are also found in the CAMS real-time system (not shown) from 2013 onwards.  

To finish the O3 validation we look at surface ozone data. Figure 11 shows timeseries of MNMB of the reanalyses with respect 

to ground-based surface observations from the WMO’s Global Atmosphere Watch (GAW) programme (e.g., Oltmans and 

Levy, 1994; Novelli and Masarie, 2014) averaged globally and for Europe. The GAW observations represent the global 

background away from the main polluted areas. Detailed information on GAW can be found in GAW reports No. 209 (2013) 20 

(http://www.wmo.int/pages/prog/arep/gaw/gaw_home_en.html).  GAW O3 data have a precision of ±1 ppbv (Novelli and 

Masarie; 2014). Table 4 shows the global and Europe mean biases and their standard deviations from all 3 reanalyses averaged 

over the periods 2003-2012 and 2003-2016 for CAMSRA and CIRA.  In the global mean CAMSRA agrees with the surface 

data to within 10% for most years. The biases are generally negative during the first half of the year and positive during the 

second. MACCRA has larger negative biases after 2008, and CIRA larger negative biases from 2003-2012. Surface O3 in 25 

CAMSRA is higher than in CIRA so that the global mean biases during boreal spring are smaller, but the positive global mean 

biases during boreal summer larger. After spring 2013 CAMSRA and CIRA are very close. During 2003 CIRA and MACCRA 

have a considerably larger bias than CAMSRA. This is also seen over Europe and North America and was also seen in ozone 

in the free troposphere (Figure 9). In Europe CAMSRA has biases between -40 and +10%. All three reanalyses show an 

underestimation of surface O3 during boreal spring and better agreement with the observations during summer when the bias 30 

is positive. The negative spring time bias is a known problem in the CAMS system and is generally smaller in CAMSRA than 

CIRA. The largest negative bias in CAMSRA is seen during 2004 (when no O3 profile data were assimilated). CAMSRA has 

the smallest global mean bias against GAW data of the three reanalyses averaged over the period 2003-2012 (0.51 ± 6.95 ppb 

for CAMSRA, -2.7 ± 8.7 ppb for CIRA, -2.3 ± 9.4 ppb for MACCRA) and also smaller biases than CIRA for the period 2003-

2016 (see Table 4). The mean bias for Europe (2003-2012) is -1.9 ± 9.3 ppb for MACCRA, -4.4 ± 8.7 ppb for CIRA and -2.3 35 

± 7.7 ppb for CAMSRA. 

 

In summary, it can be said that for O3 CAMSRA is temporally more consistent than the older reanalyses and has smaller biases 

compared to independent observations (see Tables 3 and 4). The comparisons also show that it is not advisable to concatenate 

the older reanalyses with more recent years from CAMSRA, because the datasets are too different, and that users should use 40 

only data from CAMSRA if they are interested in the complete period from 2003-2016. There are some periods with slightly 

degraded quality (bigger biases) that the user should be aware of. These include the Arctic and Antarctic free troposphere 
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during 2003 because MIPAS and SCIAMACHY data or poorer quality were assimilated, the period between the end of March 

and the beginning of August 2004 when no profile data were available for assimilation, and a change in bias after 2013 that is 

still under investigation. The underestimation of surface O3 seen in the CAMS system in the NH during boreal spring is reduced 

in CAMSRA compared to the older reanalyses. 

 5 

4.2 Carbon Monoxide 

Next, we look at CO fields from the reanalyses and compare them with independent observations. Figure 12 shows the 

seasonally averaged TCCO fields from CAMSRA and the differences between this data set and CIRA and MACCRA. The 

TCCO differences between CAMSRA and CIRA are small (below 0.1 x1018 molec/cm2, <5%) with CAMSRA generally lower 

than CIRA, apart from African biomass burning areas south of the equator in JJA and parts of SE Asia in DJF and MAM. The 10 

largest relative differences (of up to 15%, not shown) are found over the tropical oceans where background values are small. 

The differences between CAMSRA and MACCRA are larger. CAMSRA is lower than MACCRA over the oceans (0.1-0.2 

x1018 molec/cm2, relative differences mainly < 15%) and much higher over biomass burning areas, e.g. South America, Africa, 

South-East Asia, Indonesia, Australia in DJF and boreal fires in Siberia in MAM and JJA with differences up to 0.5 x1018 

molec/cm2 (corresponding to maximum relative differences of up to 30% over Indonesia). These difference plots show that 15 

the choice of fire emissions used in the reanalysis has a large impact on the TCCO field. In MACCRA these came from GFED 

(van der Werf et al., 2010) for the period 2003-2008 and GFAS v1.0 from 2008-2012 (Kaiser et al., 2012), while in CAMSRA 

and CIRA GFAS V1.2 was used throughout from 2003-2016 (see Table 1 and Fig. 4). As for O3, the differences between the 

reanalyses are too large to allow the user to concatenate recent years from CAMSRA with earlier years from the other 

reanalyses. 20 

 

To validate CO from the reanalysis with independent observations, in Fig. 13 we first compare our data with observations from 

Total Carbon Column Observing Network stations (TCCON, GGG2014 data, Wunch et al., 2011, see www.tccon.caltech.edu) 

at six sites covering latitudes from the Arctic to Australia (see Table 5). The TCCON stations measure the column-averaged 

dry molar fraction CO amount (XCO) and have an absolute accuracy of about 4% (Wunch et al., 2010). Figure 13 shows very 25 

good agreement of CAMSRA with the independent observations, in particular for the year-to-year variability. The mean bias 

and standard deviations of the three reanalyses against the TCCON data are given in Table 5 and show that the mean biases of 

CAMSRA are reduced at all stations compared to MACCRA. CAMSRA is slightly lower than CIRA with smaller biases and 

standard deviation at all stations except Bremen and Sodankyla. Particularly in the tropics and SH, the biases and standard 

deviations are much reduced in CAMSRA. CAMSRA captures the seasonal cycle well at all stations. Especially the summer 30 

minimum (e.g. boreal summer in NH, austral summer in SH) is better captured in CAMSRA than in CIRA. CAMSRA 

underestimates XCO at the NH stations Ny-Ålesund, Sodankyla, Bremen and Park Falls (biases < -2 ppb) and overestimates 

it in the Tropics (Izaña, < 5 ppb; Darwin, < 2 ppb) and in the SH (Lauder, <1 ppb). CIRA slightly overestimates XCO in the 

NH (< 3ppb) and has a larger positive bias than CAMSRA in the Tropics and SH (up to 8 ppb). 

 35 

To also assess the vertical structure of the CO analysis fields, in Fig. 14 we compare model fields with CO profiles from 

MOZAIC (Measurements of OZone, water vapour, carbon monoxide and nitrogen oxides by in-service AIrbus aircraft) and 

IAGOS (In-service Aircraft for a Global Observing System) observations from instruments mounted on commercial aircraft.  

The MOZAIC/ IAGOS CO data have an accuracy of ± 5 ppbv, a precision of ± 5 % and a detection limit of 10 ppbv (Nédélec 

et al, 2003).  We use CO profiles obtained during take-off and landing to evaluate the CO reanalysis fields. The profiles at the 40 

NH mid latitude airports (Frankfurt, Eastern US, Japan) show that all three reanalyses underestimate CO in the free 

troposphere, but agree to within 10% with the aircraft data. A larger underestimation is found in the boundary layer. Here, 
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MACCRA has the largest negative bias. This underestimation in MACCRA was noted previously (Inness et al., 2013) and led 

to a modification of increased winter time road traffic emissions over North America and Europe in the MACCity emissions 

(Stein et al., 2014). These modified emissions are used in CAMSRA and CIRA. CAMSRA and CIRA are generally closer to 

each other in the lower troposphere than to MACCRA. This area is less impacted by the assimilated MOPITT TIR retrievals 

that have the largest sensitivity to CO in the mid troposphere (Deeter et al., 2013) and more by emissions and differences in 5 

the chemistry schemes, which are more similar in CAMSRA and CIRA than in MACCRA. In the upper troposphere CAMSRA 

has the lowest mean bias while CIRA and MACCRA overestimate CO above about 300 hPa. At Windhoek, all reanalyses 

underestimate the aircraft data. Here CAMSRA and MACCRA have a smaller bias than CIRA below 650 hPa, but CIRA has 

a smaller bias above 500 hPa.  Over SE Asia all reanalyses show a large underestimation in the boundary layer with MACCRA 

having the largest bias of up to -35%. In the free troposphere all reanalyses underestimate CO, but have a smaller bias than 10 

near the surface. MACCRA has the smallest bias in the free troposphere (biases of less than -5% between 650-400 hPa). This 

could be the result of assimilating IASI TCCO data (George et al.; 2009; Clerbaux et al.; 2009) in MACCRA in addition to 

MOPITT. Like MOPITT, IASI CO retrievals are most sensitive to CO in the mid troposphere and could add an extra constraint 

on CO here when more observations are being assimilated, as IASI has a better coverage than MOPITT (e.g. Barré et al., 

2015). Over Indonesia CAMSRA and CIRA have smaller biases than MACCRA below 700 hPa. This is likely due to 15 

differences in the fire emissions. At Windhoek, SE Asia and Indonesia CAMSRA and CIRA overestimate surface CO. This 

overestimation is also seen in comparison with GAW surface CO data at Cape Point (not shown). 

 

Next, we look at surface CO data. Figure 15 shows maps of mean biases of surface CO against GAW observation. The data 

are averaged over the period 2003-2016 for CAMSRA and CIRA and 2003-2012 for MACCRA. The uncertainty of GAW CO 20 

data is between 2 ppbv for marine boundary layer sites and 5 ppbv for continental sites that are influenced by regional pollution 

(WMO, 2010).  The biases in CAMSRA and CIRA are less than 10% for many stations, with slightly larger positive biases 

for some North American and slightly larger negative biases for some European stations. MACCRA has larger negative biases 

over North America and Europe. CAMSRA shows a larger positive bias than the other two reanalyses at the Indonesian station 

of Bukit Koto Tabang. Looking at a timeseries at this location (Figure 16d) we see that the station is strongly influenced by 25 

high CO events during years with intense biomass burning (2004, 2006, 2014, 2015) with the largest peaks in 2014 and 2015 

when CAMSRA is higher than CIRA. This is after the end of MACCRA which only covered the period from 2003-2012. It 

has to be assessed if this overestimation is the result of too large GFAS emission factors for CO. 

 

Figure 16 shows timeseries of monthly mean CO surface biases of the reanalyses with respect to GAW observations averaged 30 

over the Globe and Europe as well as timeseries of absolute surface CO values at the Arctic Alert station and the Indonesian 

Bukit Koto Tabang station. Table 6 shows the corresponding mean biases of the three reanalyses and their standard deviations. 

The agreement of MACCRA with GAW CO data over Europe (Fig. 16ba) is worse than for the other two reanalyses with a 

large underestimation during boreal winter. This bias was already documented in Inness et al. (2013) and Flemming et al. 

(2017b). The negative bias of MACCRA increases after April 2008 when the assimilation of IASI CO retrievals started in 35 

MACCRA (see Inness et al., 2013) and is particularly pronounced at high northern latitudes (e.g. timeseries at Alert, Fig. 16c) 

where the mean bias for 2003-2012 is -19.2 ± 17.5 ppb for MACCRA, -6.0 ± 12.5 ppb for CIRA and -6.2 ±12.2 ppb for 

CAMSRA.  The mean bias for MACCRA over Europe for the period 2003-2012 is -16.6 ± 48.8 ppb, while CAMSRA (10.7 ± 

54.0 ppb) and CIRA (7.5 ± 54.7 ppb) both have smaller positive biases. The average global mean bias for the period 2003-

2012 is negative for MACCRA (-6.3 ± 38.5 ppb). Larger and positive global mean biases for 2003-2012 are found for CIRA 40 

(13.6 ± 52.1 ppb) and CAMSRA (17.9 ± 71.7 ppb). The larger global mean bias for CAMSRA is dominated by the large 

overestimation of surface CO over Indonesia during years with high biomass burning activity (see Fig.16d). The differences 

between MACCRA and the other reanalyses are likely to be the result of using GFED instead of GFAS fire emissions.  
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In summary, CO from CAMSRA has a good seasonal cycle and captures the interannual variability observed by TCCON data 

well. CAMSRA has smaller biases relative to TCCON data than the older reanalyses at most stations. There is a low bias with 

respect to IAGOS aircraft data in the lower troposphere over NH midlatitudes, SE Asia and Indonesia. This is a persistent 

feature of the CAMS system and more work is needed to assess if it is a model problem or due to problems with the emissions. 5 

CAMSRA generally agrees better with GAW surface observations than MACCRA over much of the globe (e.g. Europe, North 

America), but has larger biases relative to GAW over Indonesia which lead to larger global mean biases when averaged over 

2003-2012 or 2003-2016. CAMSRA is more similar to CIRA than MACCRA because of differences in the emissions, 

chemistry schemes and assimilated data. It is therefore not possible to use a climatology based on the MACCRA data and 

recent years from CCAMSRA to e.g.  calculate anomalies. 10 

 

4.3 Nitrogen Dioxide 

The final reactive gases species discussed in this paper is NO2. Validation of NO2 with independent observations, especially 

surface observations, is difficult because of the short lifetime and large, orders of magnitude, variability of the concentrations. 

First, we compare the seasonally averaged tropospheric column NOx (TRCNOx) fields from CAMSRA, CIRA and MACCRA 15 

in Fig. 17. Figure 17 shows that CAMSRA has a realistic TRCNOx distribution with high NOx columns in the NH in areas 

affected by anthropogenic emissions and also in boreal and tropical biomass burning areas. The largest TRCNOx values are 

found in DJF in the NH when emissions are largest and the NOx lifetime longest. In Africa, a realistic seasonal cycle is found 

with a maximum in the Sahel in DJF and maximum values south of the equator in JJA related to the seasonality of biomass 

burning. NOx columns over South America are smaller than over Africa, with the largest values found in JJA and SON because 20 

deforestation fires and agricultural fires mainly occur south of 10°S during August-October with peak in September.  

 

Differences between CAMSRA and CIRA are due to model changes, but also due to the assimilation of the tropospheric 

column NO2 retrievals from SCIAMACHY, OMI and GOME-2 in CAMSRA (see Table 2). No NO2 retrievals were assimilated 

in CIRA. Over large parts of the world the differences are small. The largest positive differences are seen over SE Asia, 25 

particularly during DJF. Over Europe and the Eastern US, CAMSRA has lower TRCNOx values than CIRA during DJF. The 

fact that the largest differences in the NH are seen during DJF suggests that this is at least partly due to the impact of the 

assimilation of the satellite data. While the impact of the NO2 assimilation is generally small because of the short lifetime of 

NO2, it was found to have a larger impact during winter and spring when the lifetime is longer than during summer (see 

supplement Fig. S5 and S6 and Inness et al., 2015). Furthermore, by assimilating NO2 retrievals from satellites with different 30 

overpass times (9:30 local time for GOME-2, 10:00 for SCIAMACHY, 13:30 for OMI) the impact of the assimilation is likely 

to be increased. CAMSRA has much lower values than CIRA over the Arabian Peninsula with the largest differences found 

in JJA. This reduction is not due to the assimilated data, but due to model changes, i.e. the coupling with aerosol in the 

chemistry scheme (see section 2.1) that leads to faster NOx removal and reduces the positive bias noted before in the CAMS 

system in this area when evaluating against satellite NO2 observations (not shown). The differences between CAMSRA and 35 

MACCRA are mainly negative over land in the Tropics and positive over areas of anthropogenic emissions apart from the 

Eastern US and parts of China in DJF. These differences are a result of the different chemistry schemes and biomass burning 

emissions used in CAMSRA and MACCRA as well as the assimilation of NO2 retrievals from different instruments (only 

SCIAMACHY assimilated in MACCRA). 

 40 

It is difficult to find independent NO2 data for validation which are representative for the grid box size of the CAMSRA global 

reanalysis. We use the following two datasets for validation. (1) A satellite based tropospheric column NO2 dataset and (2) 
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surface NO2 measurements from selected GAW stations in Europe. GAW stations aim to have an uncertainty of about 3% for 

monthly mean data (Penkett et al., 2011). As the number of GAW stations measuring NO2 is small and drops considerably 

with time during the period of interest, it is not meaningful to look at timeseries of area means. We therefore restrict our 

validation to four European GAW stations that have observations for most of the period from 2003-2016. The dataset (1) is 

produced by the University of Bremen based on SCIAMACHY/Envisat NO2 satellite retrievals (IUP-UB v0.7, before April 5 

2012) (Richter et al., 2005) and GOME-2/MetOp-A NO2 satellite retrievals (IUP-UB v1.0, from April 2012 until the end of 

2016) (Richter et al., 2011).  The retrieval product used for validation is different to the SCIAMACHY and GOME-2 NO2 

retrievals that are assimilated in CAMSRA (which are produced by the ACSAF, see Table 2). Despite the retrievals being 

based on the same level 1 spectral irradiance data, the retrieval procedures are completely independent, from the spectral fit to 

the assumptions made on the a-priori used for the air mass factor calculations. In the absence of other independent validation 10 

data for tropospheric NO2 columns, they can still provide a critical evaluation of the model performance on a global scale. The 

satellite data are always taken at the same local time, roughly 10:00 LT for SCIAMACHY and 09:30 LT for GOME-2, and at 

clear sky only. Model data are vertically integrated, interpolated linearly in time to the observation time of SCIAMACHY 

(which is expected to lead to minor uncertainties when comparing to GOME-2 observations in Figure 18 below) and then 

sampled spatially to match the satellite data. Model data were treated with the same reference sector subtraction approach as 15 

the satellite data. Uncertainties in NO2 satellite retrievals are large and depend on the region and season. Winter values in mid 

and high latitudes are usually associated with larger error margins. As a rough estimate, systematic uncertainties in regions 

with significant pollution are on the order of 20% – 30%.  

 

Figure 18 shows timeseries of tropospheric column NO2 from the Bremen satellite data set (0.5⁰ x 0.5⁰), CAMSRA, CIRA and 20 

MACCRA averaged over Europe and East-Asia for the period from 2003 to 2016. The figure illustrates that, while the 

seasonality of NO2 (with low values during summer and high values during winter) is captured in both areas, there is generally 

an underestimation of the seasonal cycle, mainly due to an underestimation of the winter time maximum. This underestimation 

could be related to an underestimation of anthropogenic emissions or uncertainties in the photochemistry of the models and is 

particularly pronounced over East Asia. Over Europe the differences between the three reanalyses are small; over East Asia 25 

they are larger. Over East Asia in 2003, the CAMS reanalysis shows a strong variation of values from one month to the next 

and fails to reproduce the observed seasonality. This is due to assimilating SCIMACHY NO2 data of degraded quality during 

2003 in CAMSRA (see supplement Fig. S5a). The Bremen data set shows an increase of the wintertime maximum NO2 values 

over East Asia until 2012-2014 and a decrease in the later years. This behaviour is reproduced better in CAMSRA than in 

CIRA and MACCRA, though the maximum values are still underestimated. This improvement is the result of assimilating 30 

more NO2 satellite data, in particular data from satellites with different overpass times, in CAMSRA. It is not seen in a control 

run without data assimilation (not shown). However, the magnitude of the positive trend up to 2012 and of the negative trend 

in the recent years is still underestimated by CAMSRA and the observed decrease after 2014 is not reproduced by the three 

reanalyses. 

 35 

Figure 19 shows timeseries of surface NO2 from CAMS, CIRA and MACCRA with GAW surface observations at four 

European stations and Table 7 lists the corresponding mean biases and their standard deviations. Overall, the reanalyses 

reproduce the observed mean values and the seasonal variability well. At Leba (at the Baltic coast) all three reanalyses capture 

the annual cycle well with high NO2 concentrations during the winter and lower concentrations during the summer. MACCRA 

underestimates the summertime minimum more than the other two reanalyses. Averaged over the years 2003-2012 CAMSRA 40 

has the smallest bias of 0.0 ± 0.6 ppb compared to -0.2 ± 0.6 ppb for MACCRA and 0.1 ± 0.6 ppb for CIRA. At Jarczew 

(Poland) both CAMSRA and MACCRA capture the low summertime NO2 values better than CIRA which has a positive bias 

during summer, while the wintertime NO2 maxima are more similar in the three reanalyses. Overall, CAMSRA agrees best 
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with the GAW data here with the smallest mean bias and standard deviation (see Table 7). At Hohenpeissenberg in Southern 

Germany all reanalyses underestimate the summer minimum and struggle to capture some of the high winter values between 

2008-2012. CIRA underestimates the winter maximum values most while CAMSRA and MACCRA agree better with the 

observations during winter, especially during the first half of the timeseries. MACCRA has the smallest mean bias (-0.6 ± 0.7 

ppb), followed by CAMSRA (-0.7 ± 0.7 ppb) and CIRA (-1.1 ± 0.7 ppb) for the period 2003-2012. At Payerne (Switzerland), 5 

MACCRA strongly underestimates the GAW observations (mean bias of -4.7 ± 2.2 ppb), while CAMSRA (mean bias of -1.2 

± 1.4 ppb) and CIRA (mean bias of -1.1 ± 1.6 ppb) capture the annual cycle reasonably well, in particular the summer 

minimum.  

 

In summary, we find that CAMSRA shows some improvements in the tropospheric NO2 column (relative to a dataset based 10 

on SCIMACHY and GOME-2A data) compared to the older two reanalyses, especially over East Asia where the assimilation 

of (more) NO2 retrievals reduces the bias between the reanalysis and the data. However, the tropospheric NO2 columns are 

still underestimated in CAMSRA over East Asia and Europe, particularly the wintertime maxima. This is a longstanding 

problem of the CAMS system and it is hoped that work which has started to include an emission inversion capability in the 

CAMS system will improve this in the future. We find changes in NO2 compared to CIRA (particularly over the Arabian 15 

Peninsula), which are the result of coupling with aerosol in the CAMSRA chemistry scheme that leads to faster NOx removes 

and a reduced positive bias in those areas. Compared to GAW surface NO2 observations at 4 European stations CAMSRA 

reproduces the monthly mean values and the seasonal variability well with some underestimation of wintertime maximum 

values.  

 20 

4.4 Aerosols  

The final validation section looks at aerosol fields from the three reanalyses. Several model changes were included in the 

version of the IFS used to produce CAMSRA to address issues identified in CIRA, and this has a large impact on the aerosol 

speciation. Figure 20 shows the mean AOD over the period from 2003 to 2016 from CAMSRA and the differences between 

this dataset and CIRA and MACCRA (only for 2003-2012). Also shown are the mean and differences for the individual aerosol 25 

components (sea salt, desert dust, sulphate, organic matter and black carbon). There is a considerable change in the aerosol 

composition in CAMSRA. Relative to CIRA, CAMSRA shows a reduction in desert dust, sulphates and black carbon in the 

SH, compensated by an increase in sea salt, organic matter and black carbon in the NH. Compared to MACCRA there is a 

reduction in sea salt, desert dust, sulphate and black carbon in the SH, and an increase in organic matter and black carbon in 

the NH. Too much sulphate was a known problem of CIRA, where it was the dominant species contributing to AOD in regions 30 

away from the main aerosol emissions (Flemming et al., 2017b). This resulted partly from the mis-speciation of analysis 

increments mentioned in Section 2.3. This is significantly improved in CAMSRA by model changes, accompanied by a large 

increase in organic matter in polluted regions from the introduction of a representation of anthropogenic SOA as described in 

Section 2.1.1, which was missing from the earlier reanalyses. 

 35 

Total AOD in CAMSRA is reduced over most land areas and the Arctic Ocean (Fig. 20); however, there are increases over 

most of the tropical oceans and non-desert tropical land regions, in particular SE-Asia, India, Indonesia and parts of tropical 

South America and Africa. The largest absolute reduction is found in desert areas (North Africa, Middle East, Gobi) where 

CAMSRA is up to 0.2 lower than CIRA, where model changes led to a reduction in desert dust. The reduction of AOD seen 

in the NH comes from the reduction in sulphate. Differences of the total AOD between CAMSRA and MACCRA are larger 40 

than between CAMSRA and CIRA with CAMSRA considerably lower than MACCRA everywhere except the Sahara, tropical 

South America and parts of SE Asia.  
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The AOD at 550 nm from the reanalyses is evaluated with observations of the AErosol RObotic NETwork (AERONET, 

Figures 21-23) Version 3 Level 2 data. AERONET is a network of about 400 stations measuring spectral AOD with ground-

based sun photometers (Holben et al., 1998). The stations are mostly located over land, with a high number of stations situated 

in North America and Europe. The global number of stations contributing observations for the evaluation increased from about 5 

60 in 2003 to about 300 in 2016. Figure 21 shows maps of the mean biases from the three reanalyses against AERONET. 

CAMSRA has the smallest mean bias at most locations, while CIRA shows larger positive biases over North America, 

Australia and desert areas (North Africa, Middle East, Gobi) and a larger underestimation in India and SE Asia. MACCRA 

has even larger positive biases in North America and larger positive biases in Europe and the Mediterranean. Figure 21 shows 

that in CAMSRA there are some hot spots around outgassing volcanoes (in particular Mauna Loa and Mexico City) with high 10 

analysis AOD values that degrade the global average bias. These hotspots are dominated by sulphate, and are a side effect of 

possibly erroneous model treatment of diffuse volcanic emissions, i.e. the model-resolution orography not resolving the height 

of the volcanoes and therefore not being representative of the measurement sites with respect to the volcanic plumes. It is also 

possible that there are errors on how quickly aerosol is formed from diffuse outgassing sources. The volcanic emissions have 

been unmasked by recent enhancements to the aerosol SO2 oxidation scheme which improve aerosol on the global scale. When 15 

calculating global mean statistics, it is advisable to exclude those two stations as unrepresentative. 

 

Figure 22 shows timeseries of monthly mean biases from the three reanalyses against AERONET for several areas and Table 

8 the corresponding mean biases and their standard deviations. Figure 23 shows global correlation coefficients with 

AERONET. As explained above, Mauna Loa and Mexico City were excluded from these statistics. As already seen in Figure 20 

21, CAMSRA has the smallest bias with respect to the AERONET data in most areas (see also Table 8) and the largest 

correlation coefficient (Figure 23). It shows a good consistency throughout the time period from 2003-2016 while MACCRA 

shows an increasing positive bias with time in Europe and North America. CIRA also shows increasing positive biases with 

time in North America, particularly from 2013 onwards, and a change in biases in Europe, from negative at the beginning of 

the timeseries, to positive at the end. It still has to be assessed if this improvement is due to model changes or a better 25 

representation of the emissions in CAMSRA. There is a change to slightly higher AOD in CAMSRA (biases more positive in 

the global mean and in particular over Europe and North America) that seems to coincide with the loss of AATSR data in 

April 2012. Over SE-Asia all reanalyses have a negative bias with CAMSRA having the smallest and CIRA the largest (see 

Table 8). In the NH, the bias changes with season and is largest (positive) during the summer months.  

 30 

We do not have observations to validate the individual aerosol components, but the simulated aerosol size distribution and 

implicitly the aerosol composition may be validated to first order by using the wavelength dependent variation in AOD. It is 

expressed as Ångström exponent (AE), with higher Ångström exponents indicative of smaller particles and dominance of 

sulphate and organic aerosols. AE is little dependent on wavelength itself. We compute it here from AOD@440 and AOD@870 

nm, except in CIRA, where only AOD@550 and AOD@670 nm were available. Figure 24 shows the temporal evolution of 35 

simulated and observed mean AE, as well as the correlation. CAMSRA and CIRA show less variability compared to the 

observations, overestimating mostly the Ångström exponent (5-20%). Overestimation appears mainly in late spring, indicating 

possibly too little coarse dust. The bias is, however, considerably smaller than for MACCRA, the latter having a significant 

low bias. Total AOD is composed of less dust in CAMSRA and CIRA compared to MACCRA. This may explain the higher 

overall Ångström values in the CAMS reanalysis. Temporal-spatial correlation in Fig. 24 is higher in winter in the CAMSRA 40 

and indicates partially better tracing of aerosol size and implicitly composition variability than in both CIRA and MACCRA 

reanalysis. 
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In summary, there has been a large change in aerosol composition in CAMSRA compared to the previous reanalysis, making 

it impossible to compare aerosol species from CAMSRA with climatologies built from CIRA or MACCRA. There is a 

pronounced reduction in sulphate in CAMSRA which was too high in CIRA. More work is needed to validate the individual 

aerosol components against independent observations. CAMSRA total AOD shows reduced biases against AERONET 

observations and a better temporal consistency, while the older reanalyses show biases that increase with time over North 5 

America and Europe. CAMSRA shows too high AOD values around outgasing volcanoes (Mauna Loa, Mexico) and we 

recommend excluding those locations as unrepresentative when calculating global mean statistics. 

5 Conclusions 

The Copernicus Atmosphere Monitoring Service (CAMS) has produced a new reanalysis dataset of atmospheric composition, 

referred to as CAMSRA in this paper. This reanalysis currently covers the years 2003-2016 and will be extended in the future 10 

by adding one year each year. It was produced by assimilating satellite retrievals of O3, CO, NO2 and AOD from various 

sensors in ECMWF’s Integrated Forecast System (IFS). The new CAMS reanalysis builds on the experience gained during the 

production of the earlier MACC reanalysis (MACCRA) and CAMS interim reanalysis (CIRA). Great care has been taken to 

ensure that the emission datasets used in CAMSRA were consistent in time and that consistent anthropogenic, biogenic and 

biomass burning emissions were used in the aerosol and chemistry modules. Furthermore, a newer (and therefore better) 15 

version of the IFS was used and new, reprocessed data sets for assimilation were acquired as far as possible. Variational bias 

correction was applied to some of the O3, CO, NO2 and AOD data to ensure good temporal consistency when blending the 

various datasets. Known problems from earlier reanalyses were avoided, e.g. issues with the bias correction of MLS data in 

MACCRA that led to drifts in the ozone field, and a better time consistency in the CO field of CAMSRA than of MACCRA 

was obtained by assimilating data from only one instrument, i.e. MOPITT. CAMSRA therefore shows a more temporally 20 

consistent performance than the previous two reanalyses and has mostly smaller biases with respect to independent 

observations in most areas for O3, CO, NO2 and AOD.  

 

The validation results presented in this paper have shown that mean TCO3 fields from CAMSRA and CIRA are similar and 

agree to within 1% when averaged over the period 2003-2016. The differences between CAMSRA and MACCRA are larger, 25 

but still within 5%. All reanalyses have small positive biases with respect to Dobson TCO3 observations, with MACCRA 

having the largest global mean bias and CAMSRA the smallest (see Table 3). Agreement with ozone sondes is within 10% in 

the long term global mean. The reanalyses agree well in the stratosphere and have larger differences in the troposphere. 

CAMSRA agrees better with ozone sondes above 15 hPa than MACCRA which overestimates O3 there. This makes CAMSRA 

a better dataset to be used as climatology in e.g. radiation schemes or radiance observation operators. CAMSRA and CIRA 30 

agree better with ozone sondes in the tropical mid to upper troposphere than MACCRA which shows a large underestimation 

here (-30%). O3 from CAMSRA is more consistent in time than MACCRA because the variational bias correction applied to 

MLS O3 retrievals during some of MACCRA led to drifts in the O3 field, particularly noticeable in the troposphere in 

MACCRA (Inness et al., 2013). CAMSRA shows a smaller underestimation of surface O3 in the NH during boreal spring than 

the previous reanalyses. We note, that there is an increased seasonally varying tropospheric ozone bias in CAMSRA after 35 

2013, particularly in the Antarctic and Arctic. The reason for this bias is still being investigated and the same bias is also found 

in the CAMS real-time ozone analysis. There are larger ozone biases in all three reanalyses between March and August 2004 

when no O3 profile data were available for assimilation than during the rest of the period, and larger biases during 2003 when 

MIPAS and SCIAMACHY O3 data of poorer quality were assimilated. 

 40 
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For CO, CAMSRA shows good agreement with TCCON observations with small biases and a good representation of the 

seasonal cycle and inter-annual variability. CAMSRA has the smallest bias out of the three reanalyses with respect to most of 

the TCCON stations looked at in this paper, with a small negative bias in the NH and a small positive bias in the Tropics and 

SH (Table 5). Especially in the Tropics and SH the biases in CAMSRA are much reduced compared to CIRA and MACCRA. 

Comparisons with IAGOS aircraft data show an underestimation of CO in the free troposphere in the NH (<10%) with larger 5 

underestimation in the lower troposphere. This underestimation is similar in CAMSRA and CIRA, while MACCRA has larger 

negative biases in the NH lower troposphere. CAMSRA also has smaller biases with respect to GAW surface CO than 

MACCRA over Europe and North America, but surface CO values are overestimated over Indonesia in CAMSRA leading to 

larger global mean CO biases relative to GAW (Table 6). The choice of fire emissions has a large impact on the TCCO field, 

and the largest differences between CAMSRA and MACCRA are seen in biomass burning areas, because different fire 10 

emission datasets were used in these reanalyses. CO from CAMSRA is more consistent in time than MACCRA, which showed 

some changes in the CO field because the assimilation of IASI CO was started in MACCRA in 2008 (Inness et al., 2013), 

while in CAMSRA and CIRA only TCCO from MOPITT was assimilated. 

 

For NO2, data from more instruments were assimilated in CAMSRA (SCIAMACHMY, OMI & GOME-2) than in CIRA 15 

(none) and MACCRA (SCIAMACHY only). This led to differences between the reanalyses but the limited amount of 

independent validation observations for NO2 made it difficult to assess these differences. The seasonal cycle of the tropospheric 

NO2 columns is underestimated over East Asia and to a smaller extent over Europe by all three reanalyses compared to a 

tropospheric column NO2 dataset based on SCIAMACHY and GOME-2A data. CAMSRA shows the smallest bias out of the 

three reanalyses over East Asia, suggesting that the assimilation of several NO2 satellite retrievals improves the NO2 analysis. 20 

However, the comparison also showed that the quality of the NO2 analysis in CAMSRA was degraded during 2003 because 

of the reduced quality of the assimilated SCHIAMACHY NO2 data (Fig. S5a in the supplement) during that time. Compared 

to European GAW NO2 surface observations, the reanalyses reproduced the observed mean values and the seasonal variability 

well, but again showed an underestimation of high winter time values. CAMSRA generally had the smallest biases (Table 7). 

More work is needed to validate the NO2 fields from CAMSRA thoroughly and to assess if the wintertime underestimation is 25 

due to shortcomings of the model or the emissions. 

 

Total AOD values in CAMSRA are reduced compared to CIRA and MACCRA in many areas, but increased over India and 

SE Asia and agree better with AERONET total AOD with reduced biases in most areas (Table 8). AOD in CAMSRA is more 

consistent in time than in CIRA and MACCRA, especially over Europe and North America where CIRA and MACCRA show 30 

an increasingly positive bias with time. There are large differences in aerosol speciation (which is less constrained by the 

assimilated AOD observations) between CAMSRA, CIRA and MACCRA. Relative to both the earlier reanalyses, CAMSRA 

shows a reduction in desert dust, sulphates and black carbon in the SH, compensated by an increase in organic matter and 

black carbon in the NH. The reduction in sulphate globally is particularly strong relative to CIRA, where its contribution was 

overestimated (Flemming et al., 2017b), suggesting this is a clear improvement of CAMSRA. CAMSRA shares the lower sea 35 

salt of CIRA in the SH, but is closer to the higher values of MACCRA in the NH. The larger role played by organic matter in 

CAMSRA reflects the inclusion of a proxy for anthropogenic SOA added to organic matter, which was missing from the earlier 

reanalyses. Timeseries and correlation of the Ångström exponent indicate partially better tracing of aerosol size and implicitly 

of composition variability of CAMSRA than in both CIRA and MACCRA. Validation of AOD with AERONET data shows 

there are some hot spots around outgassing volcanoes (in particular Mauna Loa and Mexico City) with high analysis AOD 40 

values in CAMSRA that degrade the global average bias. This is a side effect of possibly erroneous model treatment of diffuse 

volcanic emissions, i.e. the model-resolution orography not resolving the height of the volcanoes and therefore not being 
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representative of the measurement sites with respect to the volcanic plumes. When calculating global mean statistics, it is 

advisable to exclude these two stations as unrepresentative. 

 

In addition to being a dataset of better quality and better temporal consistency, CAMSRA has the advantage that it provides 

more chemical species than CIRA (where only a limited subset was archived) and that data are available at a higher temporal 5 

and spatial resolution. In total 56 tropospheric chemical species of the CB05 chemical mechanism, 12 aerosol components and 

many additional diagnostics such as total columns and extinction coefficients can be obtained from CAMSRA.  An inventory 

of the available model fields can be found at http://apps.ecmwf.int/data-catalogues/cams-reanalysis/?class=mc&expver=eac4.  

Users who previously used the MACCRA or CIRA data should note that because of the differences seen between CAMSRA 

and the older reanalyses, it is not advisable to concatenate data from the older reanalyses with CAMSRA data from more recent 10 

years, but that CAMSRA data should be used for the whole period of interest. 

 

The CAMSRA data are freely available (http://atmosphere.copernicus.eu/copernicus-releases-new-global-reanalysis-data-set-

atmospheric-composition) and will become available from the Copernicus Atmosphere Data Store. The data can serve a 

multitude of users from application developers to scientists and policy makers. They can be used to analyse the state of the 15 

atmosphere or to look at trends that have developed over the past years or decades. Furthermore, the CAMS reanalysis can be 

used to compute climatologies, evaluate models, benchmark other reanalyses or serve as boundary conditions for regional 

models for past periods. 

 

One limitation of CAMSRA is that it does not use a stratospheric chemistry scheme (apart form a Cariolle-type parametrization 20 

for stratospheric ozone) and the stratospheric concentrations apart from ozone need to be considered with caution. For any 

future reanalysis, we plan to implement a full stratospheric chemistry scheme and to increase the vertical resolution to bring it 

in line with the vertical resolution used in ECMWF’s NWP system (currently 137 levels, model top at 0.01 hPa). It might also 

be beneficial to include the chemistry in the adjoint and tangent linear model of the IFS and to re-calculate the background 

error statistics for the atmospheric composition variables with the latest version of the model. More time should be spent on 25 

acquiring and assessing new observations so that problems like the OMI row anomaly are addressed properly and the quality 

of the reanalysis is not degraded at times when lower quality data are assimilated (e.g. degraded NO2 analysis during 2003 

because of worse quality SCIAMACHY data). It would also be advisable to explore thoroughly the use of reprocessed datasets, 

e.g. datasets processed by ESA’s CCI and the Seventh Framework Programme (FP7) Quality Assurance for Essential Climate 

Variables (QA4ECV) project. It could also be investigated if enough atmospheric composition data sets are available prior to 30 

2003 to start a future reanalysis before 2003. Furthermore, work has started to look at emission inversion with the CAMS 

system and we hope the next reanalysis will include some inversion capability to update the emissions during the assimilation 

according to the satellite observations. 
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Appendix 

1 List of GEMS/MACC/CAMS real-time and reanalysis experiments 

 

Period EXP CLASS IFS CYCLE Resolution Model 

20080706-

20090901 

f1kd RD 32R3 T159/L60 IFS/MOZART 3.5 

coupled system 

20090901-

20120705 

f93i RD CY36R1 T159/L60 IFS/MOZART 3.5 

coupled system 

20120705-

20131007 

fnyp RD CY37R3 T255/L60 IFS/MOZART 3.5 

coupled system 

20131007-

20140224 

fnyp RD CY38R2 T255/L60 IFS/MOZART 3.5 

coupled system 

20140224-

20140918 

fnyp RD CY40R1 T255/L60 IFS/MOZART 3.5 

coupled system 

20140918-

20150903 

g4e2 RD CY40R2 T255/L60 IFS(CB05) 

20150903-

20160621 

0001 MC CY41R1 T255/L60 IFS(CB05) 

20160621-

20170124 

0001 MC CY41R1 T511/L60 IFS(CB05) 

20170124-

20170926 

0001 MC CY43R1 T511/L60 IFS(CB05) 

20170926- 0001 MC CY43R3 T511/L60 IFS(CB05) 

Table A1: List of GEMS/MACC/CAMS model versions showing the time evolution of the real-time CAMS system since July 2008. 

 15 

Period Name EXP CLASS IFS CYCLE Resolution Model Production Period 

20030101-

20090524 

GEMS 

reanalysis 

eac1 MC 32R3 T159/L60 IFS/MOZART 3.5 

coupled system 

March 2008 – 

September 2009 
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20030101-

20121231 

MACC 

reanalysis 

rean MC CY36R1 T159/L60 IFS/MOZART 3.5 

coupled system 

March 2010 – 

February 2012 

20030101-

NRT 

CAMS 

interim 

reanalysis  

eac3 MC CY40R2/41R1 T159/L60 IFS(CB05) December 2014 - 

December 2016, 

then continued in 

NRT 

20030101-

NRT 

CAMS 

reanalysis 

eac4 MC CY42R1 T255/L60 IFS(CB05) January 2017 

onwards 

Table A2: Reanalyses of atmospheric composition produced with the GEMS/MACC/CAMS system. 

 

2 Formulae for calculation of Figure of Merit in space score and Modified normalised mean bias 

The Figure of Merit in space (FMS; Chang and Hanna, 2004) score compares the fit of the model ozone profiles to observation 

profiles (e.g. ozone sondes) given in partial pressure (milli Pascal), has a score between 1 (perfect fit) and 0 and is defined as 5 

𝐶𝐴𝐹 =
∫ min(𝑀, 𝑂)
ln(𝑝𝑡𝑜𝑝)

ln(𝑝𝑏𝑜𝑡)

∫ max(𝑀, 𝑂)
ln(𝑝𝑡𝑜𝑝)

ln(𝑝𝑏𝑜𝑡)

(1) 

where M is the model profile, O the observation profile and ptop and pbot the top and bottom pressure values of the layer 

considered. For Fig. 1 we used ptop = 3 hPa and pbot = 1000 hPa. 

The Modified Normalized Mean Bias (MNMB) is defined as  

𝑀𝑁𝑀𝐵 =
2

𝑁
∑

𝑚𝑖 − 𝑜𝑖
𝑚𝑖 + 𝑜𝑖

(2)

𝑁

𝑖=1

 10 

with N the number of observations, m the model and o the observed values. 

 

3 Known issues 

We summarize here some issues that might affect the quality of the CAMS reanalysis which were known at the time of 

publication. This list is also available from 15 

https://confluence.ecmwf.int/display/CKB/CAMS+Reanalysis+data+documentation where it will be maintained and updated. 

Ozone:  

• 2003: Degraded quality (bigger biases with respect to observations) in Arctic and Antarctic free troposphere because 

MIPAS and SCIAMACHY data of poorer quality were assimilated 

• March-August 2004: No profile data were available for the assimilation. This affects the vertical structure of the 20 

ozone analysis and we see larger biases compared to ozone sondes 

• 2013-2016: Larger seasonally varying bias from 2013 onwards in the free troposphere, particularly in the Arctic and 

Antarctic. This must be due to a change in the observing system and is still under investigation. It is also found in the 

CAMS NRT analyses. 

• Technical comment: CAMS data users please use the 'GEMS Ozone' (grib parameter 210203) and 'Total Column 25 

GEMS Ozone' (grib parameter 210206) fields. These are produced specifically for CAMS using the full tropospheric 

chemistry scheme and are the fields described in this paper. 

CO: 
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• CAMSRA has larger surface CO values than the other two reanalyses over Indonesia, especially during years with 

high biomass burning activity, leading to increased overestimation relative to GAW CO surface observations. 

NO2: 

• During 2003 the seasonal cycle of tropospheric NO2 is not well represented because of assimilating SCIAMACHY 

NO2 retrievals of poorer quality 5 

AOD: 

• Validation of AOD with AERONET data has shown that there are some hot spots around outgassing volcanoes (in 

particular Mauna Loa and Mexico City) with high analysis AOD values that degrade the global average bias. When 

calculating global mean statistics, it is advisable to exclude those two stations as unrepresentative. This is a side effect 

of model-resolution orography not resolving the height of the volcanoes that has been unmasked by recent 10 

enhancements to the SO2 oxidation scheme which improve aerosol on the global scale. 

• There is a change to slightly higher AOD in CAMSRA (biases more positive in the global mean and in particular over 

Europe and North America) that seems to coincide with the loss of AATSR data in April 2012. 
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 MACCRA CIRA CAMSRA 

Period covered 2003 - 2012 2003 - 2018 2003 - 2016 (will be extended) 

Assimilation system IFS Cycle 36r1 4D-Var IFS Cycle 40r2 (2003-2015) 4D-Var 

IFS Cycle 41r1 (2016 - 2018) 4D-Var 

IFS Cycle 42r1 4D-Var 

Horizontal resolution 80 km globally (T255) 110 km globally (T159) 80 km globally (T255) 

Temporal resolution 

(Output frequency)  

6-hourly analysis fields 

3-hourly forecast fields from 0 

UTC up to 24 hours 

6-hourly analysis fields 

3-hourly forecast fields from 6 and 18 UTC 

up to 12 hours 

3-hourly analysis fields 

3-hourly forecast fields from 0 UTC up to 

48 hours 

1-hourly surface forecast fields from 0 

UTC up to 48 hours 

Anthropogenic 

missions 

Chemistry species: MACCity 

(trend: ACCMIP + RCP8.5), 

Aerosols: AEROCOM 

MACCity (trend: ACCMIP + RCP8.5) & 

CO emission upgrade Stein et al. (2014) for 

chemistry and aerosols 

MACCity (trend: ACCMIP + RCP8.5) & 

CO emission upgrade Stein et al. (2014) 

Biomass burning 

emissions 

GFED (2003–2008) and 

GFAS v0 (2009–2012) 

GFAS v 1.2 GFAS v 1.2 

Biogenic emissions Monthly mean VOC emissions 

for the year 2003 calculated by 

the MEGAN2.1 model (Guenther 

et al., 2006) used for the whole 

period. No interannual 

variability. 

 

Monthly mean VOC emissions calculated 

by the MEGAN2.1 model (Guenther et al., 

2006) using MERRA reanalysed 

meteorology (Sindelarova et al., 2014) for 

the period 2003-2010. For the remaining 

years 2011–2017 a climatology of the 

MEGAN-MACC data was used. 

Monthly mean VOC emissions calculated 

by the MEGAN model using MERRA 

reanalysed meteorology (Sindelarova et 

al., 2014) for 2003-2016. 

Chemistry modules CTM MOZART3 coupled to the 

IFS (see Flemming et al. 2009) 

IFS(CB05) (Flemming et al. 2015) & 

Cariolle ozone parametrisation in 

stratosphere 

CHEM_VER=ver14wd 

IFS(CB05) (Flemming et al. 2015, with 

updates documented in Section 2.1.2) & 

Cariolle ozone parametrisation in 

stratosphere 

CHEM_VER=ver15 

Aerosol modules Mocrette et al. (2009) Mocrette et al. (2009) plus changes 

described in Flemming et al. (2017) 

 

Mocrette et al. (2009) with changes 

documented in Section 2.1.1. 

Input meteorological 

observations 

ECMWF NWP (stream=DA) ECMWF NWP (stream=DCDA) As in ERA5 (2003-2016) 

 

Assimilated O3 

retrievals 

GOME, SCIAMACHY, MIPAS, 

MLS, OMI, SBUV/2 

GOME, SCIAMACHY, MIPAS, MLS, 

OMI, GOME-2, SBUV/2 

SCIAMACHY, MIPAS, MLS, OMI, 

GOME-2, SBUV/2 

Assimilated CO 

retrievals 

MOPITT, IASI MOPITT MOPITT 

Assimilated NO2 

retrievals 

SCIAMACHY --- SCIAMACHY, OMI, GOME-2 

Aerosol used in 

radiation scheme 

Tegen climatology Tegen climatology Interactive aerosols, i.e. aerosol fields from 

CAMSRA used in radiation scheme 

Ozone used in radiation 

scheme 

GEMS climatology GEMS climatology (2003-2015) 

MACCRA climatology (2016 - 2018) 

Interactive ozone, i.e. ozone field from 

CAMSRA used in radiation scheme 

Stratospheric chemistry Yes No, but Cariolle ozone parametrisation in 

stratosphere and stratospheric O3 available. 

No, but Cariolle ozone parametrisation in 

stratosphere and stratospheric O3 available. 

Table 1: Important commonalities and differences between CAMSRA, CIRA and MACCRA. 

 5 

 

https://www.atmos-chem-phys.net/14/9295/2014/
https://www.atmos-chem-phys.net/14/9295/2014/
https://www.atmos-chem-phys.net/14/9317/2014/acp-14-9317-2014.pdf
https://www.atmos-chem-phys.net/14/9317/2014/acp-14-9317-2014.pdf
https://www.atmos-chem-phys.net/14/9317/2014/acp-14-9317-2014.pdf
https://www.geosci-model-dev.net/2/253/2009/gmd-2-253-2009.html
https://www.geosci-model-dev.net/8/975/2015/
https://www.geosci-model-dev.net/8/975/2015/
http://onlinelibrary.wiley.com/doi/10.1029/2008JD011235/abstract
http://onlinelibrary.wiley.com/doi/10.1029/2008JD011235/abstract
https://www.atmos-chem-phys.net/17/1945/2017/
http://onlinelibrary.wiley.com/doi/10.1029/2008JD011235/abstract


36 

 

Parameter/ 

Product 

Instrument/ 

Satellite 

Period Data provider/version Blacklist criteria Averaging 

kernels used 

Reference 

O3/ 

TC 

SCIAMACHY/ 

Envisat 

20020803-20120408 ESA,  

CCI (BIRA) 

QR>0 

SOE<6 

no Lerot et al. (2009) 

O3/ 

PROF 

MIPAS/ 

Envisat 

20030127- 20040326 

20050127-20120331 

ESA, NRT 

 

ESA, CCI (KIT) 

 

 

QR> 0 

no Von Clarmann et al. (2003, 

2009) 

O3/ 

PROF 

MLS/ 

Aura 

20040803-20161231 

 

NASA, V4 

 

QR>0 no Schwartz et al. (2015) 

O3/ 

TC 

OMI/ 

Aura 

20041001-20150531 

20160101-20161231 

KNMI/NASA, V003 

NRT 

QR>0 

SOE<10 

no Liu et al. (2010) 

O3/ 

TC 

GOME-2/ 

Metop-A 

20070123-20121231 

201301-201612 

ESA, CCI (BIRA) fv0100 

ESA, CCI (BIRA) fv0300 

QR>0 

SOE<10 

No Hao et al. (2014) 

O3/ 

TC 

GOME-2/ 

Metop-B 

201301-201612 

 

ESA, CCI (BIRA) fv0300 

 

QR>0 

SOE<10 

no Hao et al. (2014) 

O3/ 

PC 13L 

SBUV/2/ 

NOAA-14 

200407-200609 NASA, v8.6 QR>0 

SOE<6 

(SOE<15  between 

200407-200409) 

MODORO > 1000. & 

PRESS_RL > 450. 

No Bhartia et al. (1996), McPeters 

et al. (2013) 

O3/ 

PC 13L 

PC 21L 

SBUV/2/ 

NOAA-16 

200301-200706 

20111201-20130708 

20130709-20161231 

NASA, v8.6 

NASA, v8.6 

NRT 

QR>0 

SOE<6 

(SOE<15  between 

200404-200409) 

MODORO > 1000. & 

PRESS_RL > 450. 

No Bhartia et al. (1996), McPeters 

et al. (2013) 

O3/ 

PC 13L 

SBUV/2/ 

NOAA-17 

200301-201108 NASA, v8.6 QR>0 

SOE<6 

MODORO > 1000. & 

PRESS_RL > 450. 

No Bhartia et al. (1996), McPeters 

et al. (2013) 

O3/ 

PC 13L 

SBUV/2/ 

NOAA-18 

200507-201211 NASA, v8.6 QR>0 

SOE<6 

(SOE<15  from 

200404-200409) 

MODORO > 1000. & 

PRESS_RL > 450. 

No Bhartia et al. (1996), McPeters 

et al. (2013) 

O3/ PC13 L 

PC 21L 

SBUV/2/ 

NOAA-19 

200903-20130708 

20130709-20161231 

NASA, v8.6 

NRT 

QR>0 

SOE<6 

MODORO > 1000. & 

PRESS_RL > 450. 

No Bhartia et al. (1996); 

McPeters et al. (2013) 

CO/ 

TC 

MOPITT/ 

Terra 

20020101-20161231 

 

NCAR, V6 (TIR) 

 

LAT>65. 

LAT< -65 

QR>0 

Night time data over 

Greenland 

yes Deeter et al. (2014) 

NO2/ 

TRC 

SCIAMACHY/ 

Envisat 

20030101-20101231 

20110101-20120409 

KNMI V1p 

KNMI V2 

QR>0 

SOE<6 

LAT>60 

LAT< -60 

yes Boersma et al. (2004); 

http://www.temis.nl 

; 

Wang et al. (2008) 

NO2/ 

TRC 

OMI/ 

Aura 

20041001-20101231 

20110101-20121231 

20130101 -20161231 

KNMI, Domino V1.02 

KNMI, Domino V2 

KNMI NRT Domino V2 

QR>0 

SOE<6 

LAT>60 

LAT< -60 

yes Boersma et al. (2006) 

NO2/ 

TRC 

GOME-2/ 

Metop-A 

20070418-20161231 

 

AC SAF, GDP4.8 

 

QR>0 

SAA 

Yes Valks et al. (2011) 

NO2/ 

TRC 

GOME-2/ 

Metop-B 

201301-20161231 

 

AC SAF, GDP4.8 

 

QR>0 

SAA 

yes Valks et al. (2011) 

AOD/ 

TC 

AATSR/ 

Envisat 

20021201-20120331 ESA, CCI (Swansea) abs(LAT)> 70 no Popp et al. (2016) 

AOD/ MODIS/ 20021001-20151231 NASA, COl6 abs(LAT)> 70 no Levy et al. (2018) 
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TC Terra 20160101-20161231 NRT 

AOD/TC MODIS/ 

Aqua 

20021001-20151231 

20160101-20161231 

NASA, COl6 

NRT 

abs(LAT)> 70 no Levy et al. (2018) 

Table 2: Satellite retrievals of atmospheric composition that were assimilated in the CAMS reanalysis. TC: Total column, TRC: 

Tropospheric column, PROF: profiles, PC: Partial columns, QR= quality flag given by data providers, SOE: Solar elevation, 

MODORO: Model orography, PRESS_RL= pressure at bottom of layer, LAT: Latitude, SAA: area of the South Atlantic Anomaly. 

 

Area MACCRA 

Bias ± stdv 

CIRA 

Bias ± stdv  

CAMSRA 

Bias ± stdv 

Globe 7.6 ± 13.0 3.2 ± 10.5 (3.8 ± 10.7) 2.9 ± 10.2 (2.4 ± 10.0) 

Arctic 2.5 ± 14.7 -1.2 ± 13.7 (0.4 ± 13.4) -1.0 ± 13.6 (-0.9 ± 13.2) 

NH midlatitudes 7.8 ± 13.7 3.4 ± 11.6 (4.5 ± 11.8) 3.2 ± 11.3 (3.0 ± 14.7) 

Tropics 7.9 ± 11.4 2.6 ± 7.9 (2.2 ± 7.8) 2.5 ± 7.7 (1.2 ± 7.6) 

SH midlatitudes 8.0 ± 10.8 5.1 ± 8.0 (5.8 ± 8.4) 4.4 ± 7.4 (4.1 ± 7.1) 

Antarctic 7.1 ± 16.6 3.7 ± 14.2 (5.7 ± 14.9) 3.0 ± 13.9 (3.3 ± 13.5) 

Table 3: Mean biases and standard deviations from MACCRA, CIRA and CAMSRA relative to WOUDC Dobson data (shown in 5 
Figure 8) in DU. The values are calculated for the period 2003-2012, the values in brackets for CIRA and CAMSRA for the period 

2003-2016. Red numbers mark where MACCRA or CIRA have larger biases or standard deviation than CAMSRA, green where 

their values are smaller. 

 

 10 

Area MACCRA 

Bias ± stdv 

CIRA 

Bias ± stdv 

CAMSRA 

Bias ± stdv 

Globe -2.3 ± 9.4  -2.7 ± 7.8 (-2.0 ± 7.8) 0.5 ± 7.0 (-0.2 ± 7.0) 

Europe -1.9 ± 9.3  -4.4 ± 8.7 (-4.2 ± 8.8) -2.3 ± 7.7 (-2.1 ± 7.7) 

Table 4: Mean biases and standard deviations from MACCRA, CIRA and CAMSRA relative to GAW surface O3 data (shown in 

Figure 11) in ppb. The values are calculated for the period 2003-2012, the values in brackets for CIRA and CAMSRA for the period 

2003-2016. Red numbers mark where MACCRA or CIRA have larger biases or standard deviation than CAMSRA, green where 

their values are smaller. 

 15 

 

Station Latitude, longitude Reference  MACCRA 

Bias ± stdv 

CIRA 

Bias ± stdv 

CAMSRA 

Bias ± stdv 

Ny-Ålesund 78.9⁰N,11.9⁰E Notholt et al. (2017a) -8.0 ± 8.0 1.5 ± 4.1 -1.2 ± 3.6 

Sodankyla 67.37⁰N, 26.63⁰E Kivi et al.  (2014) 3.7 ± 7.2 0.9 ± 2.7 -1.4 ± 3.1 

Bremen 53.1⁰N,8.85⁰E Notholt et al. (2017b) 6.0 ± 4.9 0.9 ± 3.3 -1.8 ± 3.1 

Parkfalls 45.94⁰N, 90.27⁰W Wennberg et al. (2014) 4.5 ± 5.0 3.0 ± 3.0 -0.5 ± 3.0 

Izaña 28.3⁰N,16.5⁰W Blumenstock et al. 

(2014) 

12.9 ± 4.6 8.3 ± 3.2 4.5 ± 3.3 

Darwin 12.45⁰S,130.89⁰E Griffith et al. (2014) 4.6 ± 4.5 7.3 ± 4.4 2.0 ± 5.1 

Lauder 45.04⁰S,169.68⁰E Sherlock et al. (2014) 4.3 ± 2.7 

4.5 ± 2.9 

5.5 ± 1.8 

3.9 ± 3.0 

0.6 ± 1.6 

0.7 ± 2.6 

Table 5: TCCON stations used in this paper and mean biases and standard deviations from MACCRA, CIRA and CAMSRA (shown 

in Figure 13) in ppb. The values for CIRA and CAMSRA are calculated for the period 2003-2016, the values for MACCRA for the 

period 2003-2012. Red numbers mark where MACCRA or CIRA have larger biases or standard deviation than CAMSRA, green 

where their values are smaller. 20 
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Area MACCRA 

Bias ± stdv 

CIRA 

Bias ± stdv 

CAMSRA 

Bias ± stdv 

Globe -6.3 ± 38.5  13.6 ± 52.1 (14.3 ± 57.5) 17.9 ± 58.7 (17.7 ± 71.7) 

Europe -16.6±48.8  7.5 ± 54.7 (10.6 ± 54.4) 10.7 ± 54.1 (11.2 ± 51.2) 

Alert -19.2 ± 17.5 -6.0 ± 12.5 (-4.8 ± 13.1) -6.2 ±12.2 (-5.1 ± 12.6) 

Bukit Koto Tabang 24.3 ± 62.0 142.5 ± 85.5 (148.5 ± 98.8) 192.3 ± 97.8 (204.2 ± 168.6) 

Table 6: Mean biases and standard deviations from MACCRA, CIRA and CAMSRA relative to GAW surface CO data (shown in 

Figure 16) in ppb. The values are calculated for the period 2003-2012, the values in brackets for CIRA and CAMSRA for the period 

2003-2016. Red numbers mark where MACCRA or CIRA have larger biases or standard deviation than CAMSRA, green where 

their values are smaller. 10 

 

Area MACCRA 

Bias ± stdv 

CIRA 

Bias ± stdv 

CAMSRA 

Bias ± stdv 

Leba -0.2 ± 0.6 0.1 ± 0.6 (0.2 ± 0.6) 0.0 ± 0.6 (0.1 ± 0.6) 

Jarczew -0.5 ± 1.0 0.6 ± 1.0 (0.7 ± 1.0) -0.4 ± 1.0 (-0.4 ± 1.0) 

Hohenpeissenberg -0.6 ± 0.7 -1.1 ± 0.7 (-1.1 ± 0.7) -0.7 ± 0.7 (-0.6 ±0.7) 

Payerne -4.7 ±2.2 -1.1 ±1.6 (-1.0 ± 1.7) -1.2 ± 1.4 (-1.2 ± 1.4) 

Table 7: Monthly mean surface NO2 biases and standard deviations from MACCRA, CIRA and CAMSRA relative to GAW surface 

NO2 data (shown in Figure 19) in ppb. The values are calculated for the period 2003-2012, the values in brackets for CIRA and 

CAMSRA for the period 2003-2016. Red numbers mark where MACCRA or CIRA have larger biases or standard deviation than 

CAMSRA, green where their values are smaller. 15 

 

 

Area MACCRA 

Bias ± stdv 

CIRA 

Bias ± stdv 

CAMSRA 

Bias ± stdv 

Globe 0.015 ± 0.129  -0.004 ± 0.137 (0.002 ± 0.156) -0.005 ± 0.106 (-0.003 ± 0.110) 

North America 0.043 ± 0.092 0.024 ± 0.092 (0.030 ± 0.099) 0.012 ± 0.075 (0.014 ± 0.070) 

Europe 0.011 ± 0.072 -0.011 ± 0.073 (-0.002 ± 0.070) -0.007 ± 0.064 (-0.003 ± 0.061) 

Africa 0.040 ± 0.097  0.030 ± 0.106 (0.028 ± 0.109) 0.005 ± 0.088 (0.006 ± 0.094) 

SE Asia -0.044 ± 0.212  -0.077 ± 0.233 (-0.072 ± 0.257) -0.013 ± 0.176 (-0.013 ± 0.184) 

South America -0.006 ± 0.128  -0.008 ±0.104 (0.000 ± 0.091) -0.019 ±0.102 (-0.013 ± 0.087) 

Table 8: Mean biases and standard deviations from MACCRA, CIRA and CAMSRA relative to AERONET data (shown in Figure 

22). The values are calculated for the period 2003-2012, the values in brackets for CIRA and CAMSRA for the period 2003-2016. 

Red numbers mark where MACCRA or CIRA have larger biases or standard deviation than CAMSRA, green where their values 20 
are smaller. AOD is unitless and the values are shown in  
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Figure 1: Timeseries from 2003 to 2016 of (a) FMS score of ozone at Neumayer (1000-3 hPa) against ozone sondes (see section 4.1) 

and (b) MNMB of CO in the lower troposphere (1000-700 hPa) at Frankfurt airport against IAGOS aircraft data (see section 4.2) 

from the real-time CAMS system (black) and CAMSRA (red).  

 5 

Figure 2: Monthly CO emissions in Tg/year from anthropogenic sources (MACCITY with correction from Stein et al., 2014) for (a) 

the Globe, (b) East-Asia, (c) Europe and (d) North America for the period 2003-2016. 
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Figure 3: Monthly NO emissions in Tg/year from anthropogenic sources (MACCITY) for (a) the Globe, (b) East-Asia, (c) Europe 

and (d) North America for the period 2003-2016. 

 

 5 
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Figure 4: Time series of monthly total carbon wildfire emissions in Tg/month from GFASv1.2 (2003-2016, black solid line), 

GFASv1.0 (2009-2012, red dashed line) and GFEDv3.1 (2003-2008, green dashed line) for geographical domains covering: (a) Africa, 

(b) Asia, (c) South America, (d) Australia, (e) North America, and (f) Europe. 

 5 

 

Figure 5: AC data assimilated in the CAMS reanalysis between 2003 and 2016. In red are shown retrievals for which no averaging 

kernels were used, in green those where averaging kernels were used.  
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Figure 6: Timeseries of global mean monthly mean TCO3 departures (top plots) and standard deviations of departures (bottom 

plots) of (a) SCIMACHY, (b) OMI, (c) GOME-2A and (d) GOME-2B. The red lines show analysis departures, the blue lines first-

guess departures, black lines bias correction and dotted red and blue lines the bias corrected analysis and first-guess departures, 

respectively. Values are in DU. More information about departures can be found in the supplement. 5 
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Figure 7: Seasonally averaged TCO3 from CAMSRA (2003-2016, left), difference between CAMSRA and CIRA (middle) and 

difference between CAMSRA and MACCRA (right, 2003-2012 only) in DU for the seasons DJF (row 1), MAM (row 2), JJA (row 3) 

and SON (row 4). 

 5 
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Figure 8: Timeseries of monthly mean TCO3 bias in DU from the three reanalyses compared to WOUDC Dobson data for the areas 5 
(a) Globe, (b) Arctic, (c) NH midlatitude, (d) Tropics, (e) SH and (f) Antarctic in DU. About 50-60 stations were available from 2003 

to 2014, dropping to about 40 stations after 2014. CAMSRA is shown in red, CIRA in blue and MACCRA in red. 
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Figure 9: Mean relative O3 bias in % between CAMSRA (red), CIRA (blue), MACCRA (green) and ozone sondes averaged over (a) 

the Globe, (b) Arctic, (c) NH midlatitudes, (d) Tropics, (e) SH midlatitudes and (f) Antarctic. The shaded areas show plus/minus one 

standard deviation. For CAMSRA and CIRA the average is calculated over the period 2003-2016, for MACCRA only for 2003-2012. 
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Figure 10: Timeseries of the modified normalized mean bias (MNMB) in the free troposphere (750-300 hPa) of the reanalyses versus 

ozone sondes for (a) global mean, (b) Arctic, (c) NH midlatitudes, (d) Tropics, (e) SH midlatitudes and (f) Antarctica. CAMSRA is 

in red, CIRA in blue and MACCRA in green.   

 5 
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Figure 11: Timeseries of monthly mean surface ozone MNMB between the three reanalyses and GAW O3 data averaged over (a) the 

Globe and (b) Europe. Globally about 60-70 stations were available from 2003 to 2014, dropping to about40-50 in 2015 and then 

dropping steeply to only a few during 2016. In Europe, the number dropped from 25-35 in 2003-2014 to 17-19 in 2015. CAMSRA is 

shown in red, CIRA in blue and MACCRA in green. 5 
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Figure 12: Seasonally averaged TCCO from CAMSRA (2003-2016, left), difference between CAMSRA and CIRA (middle) and 

difference between CAMSRA and MACCRA (right, 2003-2012 only) in 1018 molec/cm2 for the seasons DJF (row 1), MAM (row 2), 

JJA (row 3) and SON (row 4). 
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Figure 13: Column averaged CO (XCO) in ppb at several TCCON stations. Monthly mean observations are shown by the black 

dots, corresponding monthly mean XCO columns calculated using the TCCON averaging kernels are shows by the red (CAMSRA), 

blue (CIRA) and green (MACCRA) triangles. The continuous lines are the monthly XCO for the 3 reanalyses. Show are data for (a) 

Ny-Ålesund, (b) Sodankyla, (c) Bremen, (d) Parkfalls, (e) Izaña, (f) Darwin, (g) Lauder 2004-2010 and (h) Lauder 2010-2016. 5 
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Figure 14: Mean relative CO bias in % between the reanalyses and IAGOS aircraft data for CAMSRA (red), CIRA (blue) and 

MACCRA (green) at (a) Frankfurt, (b) Eastern US airports, (c) Japanese airports, (d) Windhoek, (e) SE Asian airports and (f) 

Indonesian airports (note the different scale of the axis for (f)). The shaded areas show plus/minus one standard deviation. For 

CAMSRA and CIRA the average is calculated over the period 2003-2016, for MACCRA only for 2003-2012. 5 

 

 

 



51 

 

 

 

 

Figure 15: Mean CO bias in ppb between the three reanalyses and GAW surface observations for (a) CAMSRA, (b) CIRA and (c) 

MACCRA. For CAMSRA and CIRA the average is calculated over the period 2003-2016, for MACCRA only for 2003-2012. 5 
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Figure 16: Top panels: Timeseries of monthly mean surface CO bias in ppb between the three reanalyses and GAW CO data 

averaged over (a) the Globe and (b) Europe. Between 15-30 stations were available between 2003-2016, with largest number between 

2008 and 2014 and smaller numbers in the earlier and later years. Bottom panels: Timeseries of monthly mean CO from GAW (blue 

dots), CAMSRA, CIRA and MACCRA in ppb at (c) Alert and (d) Bukit Koto Tabang. CAMSRA is shown in red, CIRA in blue and 5 
MACCRA in green. 
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Figure 17: Seasonally averaged TRCNOx in 1015 molec/cm2 from CAMSRA (2003-2016, left), the differences between CAMSRA 

and CIRA (middle) and the differences between CAMSRA and MACCRA (right, 2003-2012 only) for the seasons DJF (row 1), MAM 

(row 2), JJA (row 3) and SON (row 4). 
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Figure 18: Timeseries of tropospheric column NO2 from the three reanalyses and IUB tropospheric NO2 retrievals in 1015 molec/cm2 

averaged over (a) Europe and (b) East Asia. CAMSRA is shown in red, CIRA in blue, MACCRA in green and the observations in 

black. 
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Figure 19: Timeseries of monthly mean surface NO2 from CAMSRA (red), CIRA (blue), MACCRA (green) and GAW surface 

observations (blue dots) for (a) Leba, (b) Jarczew, (c) Hohenpeissenberg and (d) Payerne in ppb. The latitude and longitude of the 

stations are given in the plot titles. 
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Figure 20: Annually averaged AOD species from CAMSRA (2003-2016, left), difference between CAMSRA and CIRA (middle) and 

difference between CAMSRA and MACCRA (right, 2003-2012 only) for total AOD (row 1), sea salt (row 2), desert dust (row 3) and 

sulphates (row 4), organic matter (row 5) and black carbon (row 60). AOD is unitless. 
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Figure 21:  Mean Total AOD bias between the three reanalyses and AERONET observations for (a) CAMSRA, (b) CIRA and (c) 

MACCRA. For CAMSRA and CIRA the average is calculated over the period 2003-2016, for MACCRA only for 2003-2012. AOD 

is unitless. 
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Figure 22: Timeseries of monthly mean bias of total AOD from the reanalyses against AERONET observations for the areas: (a) 

Globe, (b) north America, (c) Europe, (d) SE Asia, (e) Africa and (f) South America. CAMSRA is shown in red, CIRA in blue and 5 
MACCRA in green. Mauna Loa and Mexico City were excluded from these timeseries as they are unrepresentative and skew the 

statistics. AOD is unitless. 
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Figure 23: Timeseries of global correlation coefficient with AERONET AOD from the three reanalyses. CAMSRA is shown in red, 

CIRA in blue and MACCRA in green. 
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Figure 24: Evolution of (a) global mean Ångström exponent at AERONET sites based on matching daily data from model and 

AERONET and (b) correlation using daily matching Ångström exponent from model and AERONET (bottom). CAMSRA is shown 10 
in red, CIRA in blue, MACCRA in green and AERONET V3 level 2.0 observations in black. 

 

 

 


