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Abstract: Our previous study found that the observed rainfall diurnal variation over Beijing-Tianjin-Hebei 36	  

shows distinct signature of the effects of pollutants. Here we used the hourly rainfall data together with 37	  

satellite-based daily information of aerosols and clouds to further investigate changes in heavy rainfall and 38	  

clouds associated with aerosol changes. Because of the strong coupling effects, we also examined the 39	  

sensitivity of these changes to moisture (specific humidity) variations. For heavy rainfall, three distinguished 40	  

characteristics are identified: earlier start time, earlier peak time, and longer duration; and the signals are 41	  

robust using aerosol indicators based on both aerosol optical depth and cloud droplet number concentration. 42	  

In-depth analysis reveals that the first two characteristics occur in the presence of (absorbing) black carbon 43	  

aerosols and that the third is related to more (scattering) sulfate aerosols and sensitive to moisture abundance. 44	  

Cloud changes are also evident, showing increases in cloud fraction, cloud top pressure, the liquid/ice cloud 45	  

optical thickness and cloud water path, and decrease in ice cloud effective radius; and these changes are 46	  

insensitive to moisture. Finally, the mechanisms for heavy rainfall characteristics are discussed and 47	  

hypothesized.   48	  

Key words: aerosol, heavy rainfall, diurnal variation, cloud, Beijing-Tianjin-Hebei, observational study 49	  

 50	  

1. Introduction 51	  

Aerosols modify the hydrologic cycle through direct radiative and indirect cloud adjustment effects (IPCC, 52	  

2013). The direct effect, through absorbing and scattering solar radiation, leads to heating in the atmosphere 53	  

(e.g. Jacobson 2001; Lau et al. 2006) and cooling on the surface (Lelieveld and Heintzenberg 1992; Guo et al. 54	  

2013; Yang et al., 2018), causing changes in atmospheric vertical static stability and subsequently modulation 55	  

of rainfall (e.g. Rosenfeld et al. 2008). On the other hand, water-soluble aerosols serving as cloud 56	  

condensation nuclei (CCN) affect the warm-rain and cold-rain processes through influencing the cloud droplet 57	  

size distributions, cloud top heights and other cloud properties (Jiang et al., 2002; Givati and Rosenfeld 2004; 58	  

Chen et al., 2011; Lim and Hong 2012; Tao et al., 2012). For Beijing-Tianjin-Hebei (BTH) the significant 59	  

increase in pollution in recent decades has raised issues concerning aerosol-radiation-cloud-precipitation 60	  

interactions. While the impact of aerosols on light rainfall or warm-rain processes is in general agreement 61	  

among studies for this region (e.g., Qian et al., 2009), the uncertainties of the effects on heavy convective 62	  

rainfall are still large (Guo et al., 2014; Wang et al., 2016). 63	  

  The clouds that can generate heavy convective rainfall in BTH region usually contain warm clouds, cold 64	  

clouds and mixed-phase clouds (e.g. Guo et al., 2015). Because the aerosol-cloud interactions in different 65	  

types of clouds are distinct (Gryspeerdt et al., 2014b), aerosol indirect effect during heavy rainfall is more 66	  

complicated than its direct effect (Sassen et al., 1995; Sherwood, 2002; Jiang et al., 2008, Tao et al., 2012). 67	  

For warm clouds, by serving as CCN that nucleates more cloud droplets, aerosols can increase cloud albedo so 68	  

called albedo effect or Twomey effect (Twomey, 1977), lengthen the cloud lifetime so called lifetime effect 69	  
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(Albrecht, 1989), and enhance thin cloud thermal emissivity so called thermal emissivity effect (Garrett and 70	  

Zhao, 2006). The above effects tend to increase the cloud microphysical stability and suppress warm-rain 71	  

processes (Albrecht 1989; Rosenfeld et al. 2014). For cold clouds and mixed-phase clouds, many studies 72	  

reported that the cloud liquid accumulated by aerosols is converted to ice hydrometeors above the freezing 73	  

level, which invigorates deep convective clouds and intensifies heavy precipitation so called invigoration 74	  

effect (Rosenfeld and Woodley, 2000; Rosenfeld et al., 2008; Lee et al. 2009; Guo et al. 2014). The Twomey 75	  

effect infers that aerosols serving as CCN that increase the cloud droplets could reduce cloud droplet size 76	  

within a constant liquid water path (Twomey, 1977). However, the opposite results of relationship between 77	  

aerosols and cloud droplet effective radius were reported in observations (Yuan et al., 2008; Panicker et al., 78	  

2010; Jung et al., 2013; Harikishan et al., 2016; Qiu et al., 2017), which might be related with the moisture 79	  

supply near the cloud base (Yuan et al., 2008; Qiu et al., 2017). Besides, the influence of aerosols on ice 80	  

clouds also depends upon the amount of moisture supply (Jiang et al., 2008). Therefore, how the aerosols 81	  

modify the heavy convective rainfall and associated cloud changes does not reach a consensus, particularly if 82	  

considering the different moisture conditions. 83	  

  Heavy convective rainfall over BTH region usually occurs within a few hours, thus studying on the 84	  

relationship between aerosols and rainfall diurnal variation could deepen our understanding of aerosol effects 85	  

on heavy rainfall. Several previous studies have found that aerosols are related to the changes of the rainfall 86	  

diurnal variation in other regions (Kim et al., 2010; Gryspeerdt et al., 2014b; Fan et al., 2015; Guo et al., 2016; 87	  

Lee et al., 2016). However, the above studies do not address the change of cloud properties and its sensitivity 88	  

to different conditions of moisture supply. Although our recent work over BTH region (Zhou et al. 2018) 89	  

attempted to remove the meteorological effect including circulation and moisture and found that the peak of 90	  

heavy rainfall shifts earlier on the polluted condition, it only excluded the extreme moisture conditions and 91	  

focused on aerosol radiative effect on the rainfall diurnal variation. Therefore, this study aims to deepen the 92	  

previous study (Zhou et al., 2018) through investigating the following questions: (1) how do aerosols 93	  

(including absorbing aerosols and scattering aerosols) modify the behaviors of the heavy rainfall diurnal 94	  

variation (start time, peak time, duration and intensity)? And what is the role of moisture in them? (2) how do 95	  

aerosols influence the associated cloud properties with inclusion of moisture? To solve above questions, we 96	  

used aerosol optical depth (AOD) as a macro indicator of aerosol pollution and cloud droplet number 97	  

concentration (CDNC) as a micro indicator of CCN served by aerosols respectively to compare the 98	  

characteristics of heavy rainfall diurnal variation and associated cloud properties between clean and polluted 99	  

conditions, and applied aerosol index (AI) to distinguish the different effects of absorbing aerosols and 100	  

scattering aerosols. In addition, we used the specific humidity (SH) at 850 hPa as an indicator of moisture 101	  

condition to investigate the possible role of moisture in the relationship between aerosols and rainfall or 102	  

clouds. The paper is organized as following: The data and methodology are introduced in Sect. 2. Section 3 103	  

addresses the relationship between aerosol pollution and diurnal variation of heavy rainfall, covering the 104	  

distinct characteristics of heavy rainfall on clean/polluted condition; the different behaviors of heavy rainfall 105	  
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diurnal variation along with different types of aerosols, and the influence of moisture on the relationship 114	  

between aerosols and heavy rainfall. Section 4 describes the concurrent changes of cloud properties associated 115	  

with aerosols and compares the possible influences of CCN (represented by CDNC) and moisture (represented 116	  

by SH) on the cloud properties. Section 5 gives the hypothesis about the mechanisms of aerosol effects on the 117	  

heavy rainfall. Discussion and conclusions will be given in Sect. 6.  118	  

 119	  

2. Approach 120	  

2.1 Data 121	  

Four types of datasets from the year 2002 to 2012 (11 years) are used in this study, which include (1) 122	  

precipitation, (2) aerosols, (3) clouds, and (4) other meteorological fields.  123	  

2.1.1 Precipitation 124	  

To study the diurnal variation of heavy rainfall, the gauge-based hourly precipitation datasets are used, which 125	  

were obtained from the National Meteorological Information Center (NMIC) of the China Meteorological 126	  

Administration (CMA) (Yu et al., 2007) at 2420 stations in China from 1951 to 2012. The quality control 127	  

made by CMA/NMIC includes the check for extreme values (the value exceeding the monthly maximum in 128	  

daily precipitation was rejected), the internal consistency check (wiping off the erroneous records caused by 129	  

incorrect units, reading, or coding) and spatial consistency check (comparing the time series of hourly 130	  

precipitation with nearby stations) [Shen et al., 2010]. Here we chose 176 stations in the plain area of BTH 131	  

region that are below the topography of 100 meter above sea level as shown in Fig.1, because we purposely 132	  

removed the probable orographic influence on the rainfall diurnal variation, which is consistent with our 133	  

previous work (Zhou et al., 2018). The record analyzed here is the period of 2002 to 2012. We selected heavy 134	  

rainfall days when the hourly precipitation amount is more than 8.0 mm/hour (defined by Atmospheric 135	  

Sciences Thesaurus, 1994). Here “a day” is counted from 8 LST to 8 LST next day (0 UTC to 24 UTC). 136	  

2.1.2 Aerosols 137	  

In this study, we used two satellite data and one reanalysis data to investigate the aerosol optical amount and 138	  

distinguish the different aerosol types. 139	  

  AOD is a proxy for the optical amount of aerosol particles in a column of the atmosphere and serves as the 140	  

macro indicator for the division of aerosol pollution condition in this study, which was obtained from MODIS 141	  

(Moderate Resolution Imaging Spectroradiometer) Collection 6 Level-3 aerosol product with the horizontal 142	  

resolution of 1°x1° onboard the Terra satellite (Tao et al., 2015). The quality assurance of marginal or higher 143	  

confidence is used in this study. The reported uncertainty in MODIS AOD data is on the order of (-0.02-10%), 144	  

(+0.04+10%) (Levy et al., 2013). The Terra satellite overpass time at the equator is around 10:30 local solar 145	  

time (LST) in the daytime, and the satellite data is almost missing when it is rainy during the overpass time. 146	  
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As shown in Fig.3, the occurrence of selected heavy rainfall events in this study is mainly later than the 155	  

satellite overpass time. Therefore, the AOD used here represents the situation of the air quality in advance of 156	  

heavy rainfall appearance. Many studies have indicated the value of AOD is influenced by moisture condition, 157	  

which is aerosol humidification effect (Twohy et al., 2009; Altaratz et al., 2013). Hence, we comprehensively 158	  

analyzed the moisture effect on the rainfall and tried to remove the moisture effect from the relationship 159	  

between aerosols and rainfall/clouds.  160	  

  The ultraviolet AI from Ozone Monitoring Instrument (OMI) on board the Aura satellite which was 161	  

launched in July 2004, is used for detecting the different types of aerosols in this study. The OMI ultraviolet 162	  

AI is a method of detecting absorbing aerosols from satellite measurements in the near-ultraviolet wavelength 163	  

region (Torres et al., 1998). The positive values of ultraviolet AI are attributed to the absorbing aerosols such 164	  

as smoke and dust while the negative values of AI stand for the non-absorbing aerosols (scattering aerosols) 165	  

such as sulfate and sea salt (Tariq and Ali, 2015). The near-zero values of AI occur when clouds and Rayleigh 166	  

scattering dominate (Hammer et al., 2018). Considering the near-zero values have more uncertainties, we only 167	  

compare the extreme circumstances of absorbing aerosols and scattering aerosols in this study. The horizontal 168	  

resolution of AI data is 1°×1° and it covers the period of 2005 to 2012. 169	  

  MACC-II (Monitoring Atmospheric Composition and Climate Interim Implementation) reanalysis product 170	  

produced by ECMWF (the European Centre for Medium-Range Weather Forecasts), provided the AOD 171	  

datasets for different kinds of aerosols (BC, sulfate, organic matter, mineral dust and sea salt). MACC-II 172	  

reanalysis products are observationally-based within a model framework, which can offer a more complete 173	  

temporal and spatial coverage than observation and reduce the shortcomings of simulation that fail in 174	  

simulating the complexity of real aerosol distributions (Benedetti et al., 2009). The horizontal resolution of 175	  

MACC-II is also 1°×1° with the time interval of six-hour covering the period of 2003 to 2012, and the daily 176	  

mean values are used in this study in order to be consistent with other datasets. 177	  

2.1.3 Clouds 178	  

Daily cloud variables, including cloud fraction (CF), cloud top pressure (CTP), cloud optical thickness (COT, 179	  

liquid and ice), cloud water path (CWP, liquid and ice) and cloud effective radius (CER, liquid and ice), were 180	  

obtained from MODIS Collection 6 Level-3 cloud product onboard the Terra satellite. The MODIS cloud 181	  

product combines infrared emission and solar reflectance techniques to determine both physical and radiative 182	  

cloud properties (Platnick et al., 2017). The validation of cloud top properties in this product has been 183	  

conducted through comparisons with CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) data and 184	  

other lidar observations (Holz et al., 2008; Menzel et al., 2008), and the validation and quality control of cloud 185	  

optical products is performed primarily using in situ measurements obtained during field campaigns as well as 186	  

the MODIS Airborne Simulator instrument (https://modis-atmos.gsfc.nasa.gov/products/cloud). Consistent 187	  

with AOD, the measure of above cloud variables is before the occurrence of heavy rainfall.  188	  
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  In addition to the variables in MODIS cloud product, we also calculated CDNC using the joint histogram of 196	  

liquid COT and CER from the MODIS Collection 6 Level-3 cloud product. CDNC is retrieved as the proxy 197	  

for CCN and also the micro indicator for separating different aerosol conditions in this study. Currently, most 198	  

derivations of CDNC assume that the clouds are adiabatic and horizontally homogeneous; CDNC is constant 199	  

throughout the cloud’s vertical extent, and cloud liquid water content varies linearly with altitude adiabatically 200	  

(Min et al., 2012; Bennartz and Rausch, 2017). According to Boers et al. (2006) and Bennartz (2007), we 201	  

calculated CDNC (unit: cm-3) through: 202	  

  CDNC = !!
!/!

!
!"!/!

!!!!!/!
!!/!

!!!/!
                                                         (1) 203	  

  Where 𝐶! is the moist adiabatic condensate coefficient, and its value depends slightly on the temperature 204	  

of the cloud layer, ranging from 1 to 2. 5 x 10−3 gm−4 for a temperature between 0 ℃ and 40 ℃ (Brenguier, 205	  

1991). In this study, we calculated the 𝐶! through the function of the temperature (see Fig.1 in Zhu et al., 206	  

2018) at a given pressure that is 850 hPa. And we have tested the sensitivity of CDNC to the amount of 𝐶! 207	  

and found it almost keeps the same when the 𝐶! changes from 1 to 2. 5 x 10−3 gm−4. The coefficient k is the 208	  

ratio between the volume mean radius and the effective radius, and varies between 0.5 and 1 (Brenguier et al., 209	  

2000). Here we used k = 1 for that we cannot get the accurate value of k and the value of k does not influence 210	  

the rank of CDNC for the division of aerosol condition in this study. 𝜌! is cloud water density. 𝜏 and Re are 211	  

the liquid COT and CER with twelve and nine bins respectively in the joint histogram, and we calculated the 212	  

CDNC of each bin and get the grid mean CDNC based on the probability distribution of the bin counts from 213	  

the joint histogram. To reduce the uncertainty of CDNC retrieval caused by the heterogeneity effect from thin 214	  

clouds (Nakajima and King, 1990; Quaas et al., 2008; Grandey and Stier, 2010; Grosvenor et al., 2018), we 215	  

selected the CF more than 80%, the liquid COT more than 4 and the liquid CER more than 4 μm when 216	  

calculating the CDNC (Quaas et al., 2008).  217	  

2.1.4 Other meteorological data 218	  

In this study, wind, temperature, pressure and SH data, were obtained from the ERA-Interim reanalysis 219	  

datasets with 1°x1°horizontal resolution and 37 vertical levels at six-hour intervals. The daily mean values of 220	  

these variables are used in the study. ERA-Interim is a global atmospheric reanalysis produced by ECMWF, 221	  

which covers the period from 1979 to near-real time (Dee et al., 2011).  222	  

 223	  

2.2 Methodology 224	  

We used both station data of gauge-based precipitation and gridded data including aerosols, clouds and other 225	  

meteorological variables. Gridded datasets in this study were downloaded with the horizontal resolution of 226	  

1°×1°, which are consistent with the resolution of MODIS Level-3 products. To unify the datasets, we 227	  

interpolated all the gridded datasets onto the selected 176 rainfall stations using the average value in a 1°×1° 228	  
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grid as the background condition of each rainfall station, i.e., the stations in the same 1°×1° grid have the same 241	  

aerosol, cloud and meteorological conditions. 242	  

2.2.1 Selection of sub-season and circulation 243	  

Consistent with our previous work, we focused on the early summer period (1 June to 20 July) which is before 244	  

the large-scale rainy season start, in order to remove the large-scale circulation influence and identify the effect 245	  

of aerosols on local convective precipitation because BTH rainfall during this period is mostly convective 246	  

rainfall (Yu et al., 2007) with heavy pollution (Zhou et al., 2018). And to unify the background atmospheric 247	  

circulation, we only selected the rainfall days with southwesterly flow, which is the dominant circulation 248	  

accounting for 40% of total circulation patterns over the BTH region during early summer (Zhou et al., 2018). 249	  

2.2.2 Classification of clean/polluted cases and moisture conditions 250	  

With the circulation of southwesterly, we used two indicators to distinguish the clean and polluted conditions 251	  

from macro and micro perspectives, which are AOD and CDNC. The 25th and 75th percentiles of AOD/CDNC 252	  

of the whole rainfall days are used as the thresholds of clean and polluted conditions, and the values are 253	  

shown in Tab.1. There are 514 cases of heavy rainfall on the polluted days and 406 cases of that on the clean 254	  

days when using AOD, and 805/812 cases on the polluted/clean condition when using CDNC (Fig. 3).  255	  

  The absorbing aerosols are detected using the positive values of AI that is named as absorbing aerosol index 256	  

(AAI) here, and we can retrieve the scattering aerosol index (SAI) using the negative values of AI. AAI and 257	  

SAI are also divided into two groups using the threshold of 25th/75th percentile as shown in Tab.1. We used 258	  

AAI/SAI more than 75th percentile as the extreme circumstances of absorbing/scattering aerosols to compare 259	  

their impacts on the heavy rainfall. The sample numbers are 375 and 550 respectively for the extreme AAI 260	  

and SAI cases. Using the same method, we chose cases with more BC/sulfate when the AOD of BC/sulfate is 261	  

larger than the 75th percentile of itself in all rainy days, and cases with less BC/sulfate when that is less than 262	  

the 25th percentile of itself in the same situation. Accordingly, we selected 459 heavy rainfall cases with more 263	  

BC and 274 cases with less BC. Similarly, 361 cases with more sulfate and 419 cases with less sulfate were 264	  

selected (Fig. 6). 265	  

The SH at 850 hPa is used as the indicator of moisture condition under the cloud base. We chose wet cases 266	  

when the SH on that day is larger than 75th percentile of the whole rainy days, and chose dry cases when SH 267	  

on that day is less than the 25th percentile of the whole rainy days (the thresholds are shown in Tab. 1). 268	  

2.2.3 Statistical analysis 269	  

We adopted the probability distribution function (PDF) to compare the features of heavy rainfall and cloud 270	  

variables on different conditions of aerosols, through which we can understand the changes of rainfall/cloud 271	  

properties more comprehensively. The numbers of bins we selected in the study have been all tested for better 272	  

representing the PDF distribution. Student’s t-test is used to examine the statistical significance level of the 273	  
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differences or correlations between the different groups variables.  276	  

 277	  

3. Changes of heavy rainfall 278	  

In this study, we applied two indicators (AOD and CDNC) to identify the aerosol pollution. AOD is usually 279	  

used as the macro indicator of aerosol pollution, which represents the optical feature of aerosol particles rather 280	  

than the micro CCN (Shinozuka et al., 2015). To better identify the aerosol-cloud interaction, we intentionally 281	  

applied the CDNC as the indicator of CCN (Zeng et al., 2014; Zhu et al., 2018).  282	  

  We first investigated the value distribution of AOD and CDNC over the BTH region. Figure 2a&b shows 283	  

the PDFs of AOD and CDNC on the non-rainfall days, rainfall days and heavy rainfall days respectively. We 284	  

found that the ranges of AOD values under the above three conditions are almost similar that is between 0-5 285	  

and their probability peaks all occur at around 1.2 (Fig. 2a). In contrast, CDNC shows different ranges among 286	  

the three conditions, which ranges from around 30 cm-3 to 600 cm-3 on the rainfall days and heavy rainfall 287	  

days while from around 50 cm-3 to 800 cm-3 on the non-rainfall days. Besides, the proportion of low CDNC is 288	  

relatively high on the non-rainfall days (Fig. 2b). Accordingly, the range of AOD remains similar while the 289	  

range of CDNC is shortened on the rainfall days, probably because the cloud droplets become larger on 290	  

rainfall days, which could cause the reduction of number concentration. Therefore, to obtain comparable 291	  

samples, we use percentile method to select respective clean and polluted cases based on above two indicators 292	  

in order to better compare the characteristics of heavy rainfall. Hence the heavier pollution corresponds to 293	  

larger optical amount of aerosols measured by AOD, and more amount of aerosols that could serve as CCN 294	  

measured by CDNC. 295	  

3.1 Characteristics  296	  

Our previous study (Zhou et al. 2018) has reported the distinct peak shifts of rainfall diurnal variation between 297	  

clean and polluted days using the indicator of AOD over the BTH region during early summer. Similar with 298	  

our previous study, the PDF of the heavy rainfall peak time shows that the maximum of rainfall peak is about 299	  

two hours earlier on the polluted days (20:00 LST) than that on the clean days (22:00 LST) (Fig. 3a). To 300	  

comprehensively recognize the changes of rainfall diurnal variation associated with air qualities, here we 301	  

examined the PDF of the start time, the duration and the intensity besides the peak time of heavy rainfall.  302	  

As shown in Fig. 3a, the start time of heavy rainfall exhibits a significant advance on the polluted days. The 303	  

secondary peak on the early morning is ignored here because the early-morning rainfall is usually associated 304	  

with the mountain winds (Wolyn et al., 1994; Li et al., 2016) and the nighttime low-level jet (Higgins et al., 1997; 305	  

Liu et al., 2012) that is beyond the scope of this study. The time for the maximum frequency of heavy rainfall 306	  

initiation is around 6 hours earlier on the polluted days, shifting from around 0:00 LST on the clean days to 307	  

the 18:00 LST (Fig. 3a). Regarding the rainfall durations, the average persistence of heavy rainfall on polluted 308	  

days is 0.8 hours longer than that on clean days (Tab. 2). According to the PDF shown as in Fig. 3a, the 309	  
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occurrence of short-term precipitation (≤6 hours, Yuan et al., 2010) decreases while that of long-term 358	  

precipitation (>6 hours, Yuan et al., 2010) increases. The intensity of hourly rainfall exhibits a non-significant 359	  

increase on the polluted days. 360	  

The distinct behaviors of heavy rainfall diurnal variation between clean and polluted days have been well 361	  

demonstrated using the indicator of AOD. Using CDNC as the indicator of CCN, the above-mentioned results 362	  

are also significant, as shown in Fig. 3b. The start time and peak time of heavy rainfall on the polluted 363	  

condition also show significant advances compared with that on the clean condition, with the average 364	  

advances of 2.2 hours and 2.6 hours respectively (Tab. 2). The duration of heavy rainfall on the polluted 365	  

condition is also prolonged, which is 0.5 hours longer in average (Tab. 2). Similar with the results based on 366	  

AOD, the difference of rainfall intensity between clean and polluted conditions using CDNC does not pass the 367	  

95% statistical confidence level as well.  368	  

Hence, the results using either AOD or CDNC show that the start and peak time of heavy rainfall occur 369	  

earlier and the duration becomes longer under pollution. We found the AOD and CDNC only have a 370	  

non-significant positive correlation, which denotes that the selected cases could be different between using 371	  

AOD and CDNC. The differences between the two indicators might be attributed to the non-linear 372	  

relationship between CCN and aerosol pollution (e.g., Jiang et al., 2016), the misdetection of AOD when the 373	  

humidity is high (Boucher and Quaas, 2012), the calculation uncertainty of CDNC, and the sampling 374	  

differences between AOD and CDNC. Since the two indicators represent aerosols from the different 375	  

perspectives, we cannot identify which one is more reliable. Because the change of rainfall intensity is not 376	  

significant based on either AOD or CDNC, the following analysis only focuses on studying the changes of 377	  

start time, peak time and duration of heavy rainfall along with aerosol pollution. 378	  

3.2 Sensitivities to aerosol types 379	  

Using the indicator of AI, we further investigated the distinct behaviors of heavy rainfall diurnal variation 380	  

related to absorbing aerosols and scattering aerosols respectively. The PDF of start time, peak time and 381	  

duration of heavy rainfall under the extreme circumstances of absorbing aerosols and scattering aerosols are 382	  

compared in Fig. 4. Here, we briefly named the days with extreme large amount of absorbing aerosols as 383	  

absorbing aerosol days and with more scattering aerosols as scattering aerosol days. The start time of heavy 384	  

rainfall on absorbing aerosol days shows a significant earlier compared with that on scattering aerosol days 385	  

(Fig. 4a), with 0.7 hours advance in average (Tab. 3). Similarly, the rainfall peak time also shows earlier on 386	  

absorbing aerosol days (Fig. 4b), with an average advance of 1.6 hours (Tab. 3). The rainfall duration on 387	  

scattering aerosol days shows longer than that on absorbing aerosol days, which are 6.0 hours and 5.0 hours 388	  

respectively in average (Tab. 3). All the above-mentioned differences between the two groups have passed 95% 389	  

statistical confidence level. The results indicate that the absorbing aerosols and scattering aerosols may have 390	  

different or inverse effects on the heavy rainfall that absorbing aerosols may generate the heavy rainfall in 391	  

advance while the scattering aerosols may delay and prolong the heavy rainfall. 392	  
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  To further verify the different behaviors of heavy rainfall diurnal variation associated with two different 404	  

types of aerosols, we purposely re-examine the above-mentioned phenomena using BC/sulfate that can 405	  

represent typical absorbing/scattering aerosols over the BTH region. BC has its maximum center over BTH 406	  

region (Fig. 5a) and our previous study has indicated that the radiative effect of BC low-level warming may 407	  

facilitate the convective rainfall generation (Zhou et al., 2018). The percentage of sulfate is also large over the 408	  

BTH region (Fig. 5b) and sulfate is one of the most effective CCN that influences the precipitation in this 409	  

region (Gunthe et al., 2011). Accordingly, we selected the cases with different amounts of BC and sulfate 410	  

AOD to compare their roles on the diurnal variation of heavy rainfall. The methods have been described in 411	  

Sect. 2.2.2. The PDF of the start time, peak time and duration of heavy rainfall in the cases with more/less 412	  

amount of BC are shown in Fig. 6a, respectively. The most striking result is that the maximum frequency of 413	  

rainfall start time in the more BC cases evidently shifts earlier (Fig. 6a). Meanwhile, the mean peak time in 414	  

the more BC cases shows 1.1 hour earlier than that in the less BC cases (Tab. 3). And the duration of heavy 415	  

rainfall is slightly shortened by the averaged 0.2 hours in the more BC cases. The features in more BC cases 416	  

are consistent with the above results of absorbing aerosols. In contrast, when the sulfate has larger amount, the 417	  

mean start time of rainfall is delayed by 0.5 hours, while the duration shows a significant increase by 1.5 418	  

hours in average (Tab. 3). The behaviors in the more sulfate cases also exhibit similar with the above results 419	  

of scattering aerosols, except for the peak time that shows later in the scattering aerosol cases but a little 420	  

earlier in the more sulfate cases (Tab. 3).  421	  

3.3 Influence of moisture  422	  

Moisture supply is an indispensable factor for the precipitation formation, and it also has an important impact 423	  

on AOD (Boucher and Quaas, 2012). Since the southwesterly circulation can not only transport pollutants but 424	  

also plenty of moisture to the BTH region (Wu et al., 2017), more pollution usually corresponds to more 425	  

moisture for the BTH region (Sun et al., 2015) so that it is hard to completely remove the moisture effect on 426	  

the above results in a pure observational study. Here we attempt to recognize the moisture effect on the heavy 427	  

rainfall to further understand the above aerosol-associated changes. Because the moisture supply for BTH is 428	  

mainly transported via low-level southwesterly circulation, we purposely used the SH at 850 hPa as the 429	  

indicator of moisture condition.  430	  

  Using the similar percentile method with polluted/clean days, we compared the heavy rainfall 431	  

characteristics in the more humid (more than 75th percentile) and the less humid (less than 25th percentile) 432	  

environments regardless of the aerosol condition, as shown in Fig. 7a. The results show that the start time of 433	  

heavy rainfall is delayed by 0.9 hours, the peak time is 0.6 hours earlier and the duration is prolonged by 2.0 434	  

hours in average in the more humid environment, which is similar with the results of the more sulfate cases. 435	  

Besides, the same results are obtained using different moisture indicator, e.g. the 850 hPa absolute humidity. 436	  

These results indicate the advance of heavy rainfall start time on the polluted days is not caused by more 437	  

moisture supply, while the longer duration and earlier peak in the more sulfate cases might be related to the 438	  
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increased moisture supply. To further identify the role of sulfate, we examined the sensitivities of the results 442	  

associated with sulfate under different moisture condition. In the dry (SH less than 25th percentile) and 443	  

intermediate cases (SH between 25th - 75th percentiles), the heavy rainfall still shows later start time, earlier 444	  

peak and significant longer duration with the increase of sulfate, while the change of peak time is not 445	  

significant in the dry cases; in the high moisture cases (SH more than 75th percentile), it shows earlier peak 446	  

and shorter duration in the more sulfate cases while the change of start time is not significant. Therefore, we 447	  

suppose that the impact of sulfate aerosols on the heavy rainfall is sensitive to moisture, and notably the 448	  

sulfate could contribute to the longer duration in the polluted cases when it is relatively dry.   449	  

  We also investigate the distributions of moisture and rainfall behaviors in the clean and polluted cases 450	  

respectively using AOD and CDNC (Fig. 7 b&c). The results show that the relationship between moisture and 451	  

rainfall start time/peak time/duration is not linear. The distribution of SH exhibits a slight increase with 452	  

pollution in the AOD cases, indicating that the polluted cases selected by AOD are accompanied with more 453	  

moisture than the clean cases. However, when fixing the moisture at a certain range especially at the relative 454	  

dry condition (for example, the SH between 8-12 g/kg), we can detect the similar phenomena of earlier 455	  

start/peak time and longer duration in the polluted cases based on either AOD or CDNC. To further clarify the 456	  

characteristics of heavy rainfall associated with pollution, we removed the samples with high SH (SH more 457	  

than 75th percentile) and found that the results in section 3.1 remain, that is the start/peak time of heavy 458	  

rainfall is in advance and the duration is prolonged with the increase of AOD/CDNC when SH is less than 459	  

12.95 g/kg (75th percentile) (Fig. 8). 460	  

  The above results indicate that the advance of heavy rainfall start in the polluted cases is independent of 461	  

moisture condition, while the advance of peak time and longer duration could be influenced by the moisture 462	  

effect. For the earlier peak time of heavy rainfall, we suppose the role of BC (absorbing aerosols) might be 463	  

dominant because the change of peak time in the former analysis is more significant (Tab. 3) although the 464	  

sulfate and moisture also have positive contribution. The increased sulfate (scattering aerosols) contributes to 465	  

the longer duration of heavy rainfall (Fig. 6b), but the role of sulfate is kind of sensitive to the moisture 466	  

condition. With the increase of sulfate, the duration is longer when the moisture condition is relatively dry 467	  

while becomes shorter when it is extremely wet. Overall, when removing the extremely high moisture cases, 468	  

the earlier start/peak time and longer duration of heavy rainfall associated with aerosol pollution are 469	  

significant. 470	  

 471	  

4. Changes of clouds 472	  

To understand the cloud effect of aerosols during heavy rainfall diurnal variation, we need to recognize the 473	  

associated cloud characteristics on the clean and polluted conditions. The cloud properties we used were 474	  

obtained from satellite product that was measured at the same time with aerosols before the occurrence of 475	  
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heavy rainfall. The differences of cloud features were examined in both macroscopic (including CF, CTP, 521	  

COT and CWP) and microscopic properties (including CER) on the clean and polluted conditions based on 522	  

AOD and CDNC respectively.  523	  

4.1 Characteristics 524	  

Using AOD as the macro aerosol indicator, as shown in Fig. 9, the PDF distribution shows that the CF on the 525	  

polluted condition is evidently larger than that on the clean condition. The average CF is 62.8% on the clean 526	  

condition, and 89.3% on the polluted condition (Tab. 4). The average CTP on the polluted condition is 487.3 527	  

hPa, which is larger than 442.3 hPa on the clean condition, indicating that the cloud top height is lower on the 528	  

polluted days. The COT, CWP and CER were further analyzed for the liquid and ice portions of clouds as 529	  

shown in Fig. 9. Both liquid and ice COT on the polluted condition exhibit significant increases compared 530	  

with that on the clean condition. The mean amount of liquid COT is increased by 3.1 and ice COT increases 531	  

by 6.2 (Tab. 4). Similar with COT, the amounts of liquid and ice CWP also increase under pollution, which 532	  

increase by 33.6 g/m2 and 88.2 g/m2 respectively. In addition, the liquid CER is increased by 0.8 μm and the 533	  

ice CER is decreased by 2.8 μm on the polluted days. The differences of above cloud properties between clean 534	  

and polluted cases have all passed the 95% statistical confidence level. 535	  

  Using CDNC as the micro aerosol indicator, the above-mentioned changes of cloud properties are 536	  

consistent with that using AOD, except for liquid CER (Fig. 9). Since the calculation method of CDNC is not 537	  

independent on the liquid COT and liquid CER, we would not directly compare the results of liquid COT and 538	  

CER based on CDNC with those based on AOD here. But according to other variables that are independent of 539	  

the CDNC calculation, we found the cases with more CDNC are accompanied with the increase of CTP, ice 540	  

COT and liquid & ice CWP, which increase by 90.2 hPa, 24.4, 112.4 g/m2 and 224.1 g/m2 respectively (Tab. 4) 541	  

and all of which are consistent with the results based on AOD. The CER of ice clouds also shows a consistent 542	  

decrease by 9.5 μm on the polluted condition based on CDNC. We noticed that the changes of 543	  

COT/CWP/CER for both liquid and ice based on CDNC are much larger than that based on AOD, which 544	  

indicates that these cloud properties might be more sensitive to the indicator of CDNC rather than AOD.  545	  

According to the above comparison, the concurrent changes of cloud properties along with heavy rainfall 546	  

diurnal variation show consistent results using the two aerosol indicators (AOD and CDNC). The pollution 547	  

corresponds to the increase of CF, ice COT, liquid and ice CWP, but the decrease of cloud top height (the 548	  

increase of CTP corresponds to the decrease of cloud top height) and ice CER. The liquid COT and liquid 549	  

CER are also increased with the enhanced pollution in the AOD analysis. Besides, the above-mentioned 550	  

results exhibit significant when we limited the moisture to the dryer condition (SH less than 25th percentile) or 551	  

intermediate condition (SH between 25th - 75th percentile). When the moisture is higher (SH more than 75th 552	  

percentile), the change of CTP become not significant based on CDNC. 553	  

According to these results, we made the following speculation: First, the CF, liquid & ice COT and CWP 554	  
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increase with pollution, because the aerosols serving as CCN can nucleate a larger number of cloud droplets 568	  

which in a moisture sufficient environment can hold more liquid water in the cloud. Second, the CTP 569	  

increases (the cloud top height decreases) under pollution using both AOD and CDNC, because the earlier 570	  

start of the precipitation process (Fig. 3) inhibits the vertical growth of clouds. Third, the ice CER decreases 571	  

under pollution using either AOD or CDNC, because the increased cloud droplet number leads to more cloud 572	  

droplets transforming into ice crystals and causes the decrease of ice CER (Chylek et al., 2006; Zhao et al., 573	  

2018; Gryspeerdt et al., 2018). However, the results of liquid CER might have uncertainties. The liquid CER 574	  

is increased when AOD increases (Fig. 9), which might be related to the aerosol humidification effect, the 575	  

misdetection of AOD and cloud water, and the earlier formation of the clouds and precipitation on the polluted 576	  

days. Since we cannot distinguish the liquid part of mix-phased clouds from liquid (warm) clouds in the 577	  

observation, the above-mentioned change of liquid cloud properties might come from that of both the liquid 578	  

(warm) clouds and the liquid part of mixed-phase clouds. Likewise, the above-mentioned change of ice cloud 579	  

properties might come from that of both ice (cold) clouds and the ice part of mixed-phase clouds. Currently 580	  

the physical processes of cold clouds and mixed-phase clouds have been not clarified yet, including the 581	  

diffusional growth, accretion, riming and melting process of ice precipitation (Cheng et al., 2010), which 582	  

needs numerical model simulations to be further explored. 583	  

4.2 Sensitivities to CCN (represented by CDNC) and moisture 584	  

Section 3.3 has shown that the diurnal variation of heavy rainfall with more moisture supply is similar with 585	  

the changes of heavy rainfall with more sulfate aerosols. We assume that the moisture under the cloud base 586	  

and the sulfate serving as CCN both influence the cloud properties (Yuan et al., 2008; Jiang et al., 2008; Jung 587	  

et al., 2013; Qiu et al., 2017). To identify the effect of CCN on clouds and its sensitivity to moisture, using 588	  

CDNC to represent CCN, we purposely investigated the changes of above cloud properties on the different 589	  

conditions of the CDNC and the low-level moisture (850hPa SH) respectively.  590	  

  We categorized all cases of heavy rainfall into four groups, which are (1) clean and dry, (2) polluted and 591	  

dry, (3) clean and wet, (4) polluted and wet, and checked the changes of above cloud properties, as shown in 592	  

Tab. 5. To retrieve the comparable samples, here “clean/polluted” refers to the CDNC on that day less/more 593	  

than 25th/75th percentile of the CDNC among the heavy rainfall days, and similarly, the “dry/wet” refers to the 594	  

SH on that day less/more than 25th/75th percentile of itself among the heavy rainfall days. The average CDNC 595	  

is 125.54 cm-3 on the dry condition and 120.71 cm-3 on the wet condition, and the average SH is 11.62 g/kg 596	  

and 11.73 g/kg on the clean and polluted conditions respectively, thus we consider the CDNC or SH remain 597	  

almost the same when the other condition changes. We tested the significance of differences between group 1 598	  

and 2, group 1 and 3, group 2 and 4, group 3 and 4. Because the CF is fixed above 80% when calculating the 599	  

CDNC (see in Sect. 2.1.3), here the selected groups all belong to the condition of higher CF. 600	  

Comparing the results of group 1 and 2, which are both on the dry condition, we can identify the influence 601	  

of CDNC on the cloud properties, which represents the effect of CCN. The changes of these cloud variables 602	  
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are the same as that in Sect. 4.1, that the CF, ice COT and liquid & ice CWP are increased on the polluted 625	  

condition, while the cloud top height and ice CER are decreased based on CDNC. Among these variables, the 626	  

ice COT and liquid & ice CWP are especially larger on the polluted condition, which are 3-4 times larger than 627	  

that on the clean condition (Tab. 5). On the wet condition, comparing the group 3 and 4, the changes are 628	  

similar that the CF, ice COT and liquid & ice CWP are increased and the ice CER are decreased but the 629	  

change of CTP becomes not significant. However, the changes of these variables on the dry condition are 630	  

evidently enhanced than that on the wet condition, which indicates these cloud properties might be more 631	  

sensitive to CDNC on the dry condition. The above comparisons indicate that with the increase of CDNC 632	  

(CCN), the CF, ice COT and liquid & ice CWP are increased while the ice CER is decreased regardless of the 633	  

moisture amount.  634	  

Comparing the results of group 1 and 3, we can get the changes of cloud properties related only to moisture 635	  

on the same clean condition. A common feature is that CF, CTP, COT and CWP both for liquid and ice exhibit 636	  

increases along with the increase of moisture. Compared with the CTP on the clean and dry condition, it 637	  

increases on both polluted & dry condition (group 2) and clean & wet condition (group 3), but on the former 638	  

condition its increase is larger, which indicates the influence of moisture on CTP might be secondary 639	  

compared to the CDNC (CCN) effect. Similarly, comparing the COT/CWP in group 2 and 3, the increases of 640	  

COT and CWP both for liquid and ice in group 2 are much larger than that in group 3, which indicates that the 641	  

influences of moisture on COT and CWP may not overcome the influence of CCN. With the increase of 642	  

moisture, the change of liquid CER is not significant on the same clean condition, but the ice CER is 643	  

significantly decreased. On the polluted condition, comparing group 2 and 4, we found the COT and CWP 644	  

both for liquid and ice on the wet condition are evidently smaller than that on the dry condition, which 645	  

indicates that increasing the moisture might partly compensate for the influence of CDNC (CCN) on 646	  

COT/CWP. Besides, the liquid CER exhibits a slight increase with increased moisture in the same polluted 647	  

environment, which may further support the idea that the increased CCN could nucleate more cloud water 648	  

with increased moisture. 649	  

The results above indicate that both CDNC (CCN) and moisture have impacts on cloud properties. They 650	  

both contribute to the increase of CF, CTP, COT and CWP, in which the influence of CDNC (CCN) on COT 651	  

and CWP are significantly larger than moisture. Both CDNC and moisture correspond to the significant 652	  

decrease of ice CER, while only CDNC corresponds to the decrease of liquid CER and that might be ascribed 653	  

to the calculation method of CDNC. To reduce uncertainties, we have tested the SH at different levels (e.g., 654	  

700 hPa and 800 hPa) and different moisture indicator (e.g. absolute humidity) to verify these results, and 655	  

found most cloud variables show the similar changes with above except for the CTP and the liquid CER, 656	  

which indicates the changes of CTP and liquid CER are more sensitive and have larger uncertainties. Since 657	  

the behaviors of cloud changes are similar along with the increase of either CDNC (CCN) or moisture but 658	  

more sensitive to the former, the results in Sect. 4.1 might actually reflect the combined effect of CCN and 659	  

moisture, and the aerosol (CCN) effect on these cloud properties might be dominant on the polluted days. 660	  
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Therefore, considering the results from this subsection and Sect. 3.3 that the changes of cloud features 675	  

become smaller in the higher moisture environment than that in the dryer environment and the duration of 676	  

heavy rainfall is relatively shortened with pollution when it is extremely wet (Sect. 3.3), we speculate that the 677	  

sulfate (CCN) effect might be suppressed in a relatively wet environment. Due to the limitations of 678	  

observational study, we currently cannot figure out the respective roles of aerosols and moisture. 679	  

 680	  

5. Hypothesis 681	  

According to all the above results, we have made hypotheses about the aerosol effects on the heavy rainfall 682	  

over the BTH region. In Sect. 3.1 we found that the heavy rainfall has earlier start and peak time, and longer 683	  

duration on the polluted condition. And afterwards, the earlier start of rainfall under pollution was found 684	  

related to absorbing aerosols mainly referring to BC (Fig. 4a&6a). We also compared the effect of BC on the 685	  

associated clouds. Figure 10a shows the CF larger than 90% rarely occurs in the more BC environment, which 686	  

might be associated with the semi-direct effect of BC (Ackerman, 2000) or estimated inversion strength and 687	  

BC co-vary. This result indicates the influence of BC on the heavy rainfall in Fig. 6a is mainly due to the 688	  

radiative effect rather than the cloud effect. The mechanism of BC effect on the heavy rainfall can be 689	  

interpreted by our previous study (Zhou et al., 2018) as: BC absorbs shortwave radiation during the daytime 690	  

and warms the lower troposphere at around 850 hPa, and then increases the instability of the lower to middle 691	  

atmosphere (850-500 hPa) so that enhances the local upward motion and moisture convergence. As a result, 692	  

the BC-induced thermodynamic instability of the atmosphere triggers the occurrence of heavy rainfall in 693	  

advance. Thus, the low-level heating effect of BC might play a dominant role in the beginning of rainfall 694	  

especially before the formation of clouds during the daytime. 695	  

The delayed start of heavy rainfall with scattering aerosols in Fig. 4a and more sulfate in Fig. 6b is 696	  

consistent with many studies that both the radiative effect and cloud effect of sulfate-like aerosols could delay 697	  

or suppress the occurrence of rainfall (Guo et al., 2013; Wang et al., 2016; Rosenfeld et al. 2014). Sulfate-like 698	  

aerosols as scattering aerosols could prevent the shortwave radiation from arriving at the surface thus cool the 699	  

surface and stabilize the atmosphere, which suppresses the rainfall formation (Guo et al., 2013; Wang et al., 700	  

2016). Sulfate-like aerosols serving as CCN can also suppress the rainfall by cloud effect through reducing the 701	  

cloud droplet size and thus suppressing the collision-coalescence process of cloud droplets (Albrecht 1989; 702	  

Rosenfeld et al. 2014). Figure 10b does shows that in contrast with BC, the CF larger than 90% is 703	  

significantly increased in the more sulfate environment, which indicates the sulfate-like aerosols might have 704	  

more evident influence on the clouds and subsequently the rainfall changes associated with sulfate are 705	  

probably due to the cloud effects. Another significant feature is the longer duration of heavy rainfall in the 706	  

scattering aerosol cases, more sulfate cases and high moisture cases (Fig 4c, 6b&7a). We speculate that the 707	  

longer duration is caused by both the cloud effect of sulfate-like aerosols and the increased moisture supply, 708	  

because increasing either CCN or the moisture supply can increase cloud water (Sect. 4.2), which could lead 709	  
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to the longer rainfall duration. To further investigate the mechanism of longer duration, we need the assistance 726	  

of numerical model simulations in the future work. 727	  

  Accordingly, we speculate that the earlier start time of heavy rainfall related to absorbing aerosols (BC) is 728	  

due to the radiative heating of absorbing aerosols, while the longer rainfall duration is probably caused by 729	  

both the cloud effect of sulfate-like aerosols and the increased moisture supply. As a summary we use a 730	  

schematic diagram (Fig. 11) to illustrate how aerosols modify the heavy rainfall in the meteorological 731	  

background of southwesterly over the BTH region. On one hand, BC heats the lower troposphere, changing 732	  

the thermodynamic condition of atmosphere, which increases the upward motion and accelerates the 733	  

formation of clouds and rainfall. On the other hand, the increased upward motion transports more sulfate-like 734	  

particles and moisture into the clouds so that the increased aerosols serving as CCN could nucleate more cloud 735	  

water, thus prolong the duration of rainfall. As a result, the earlier start and peak time, and longer duration of 736	  

heavy rainfall over BTH region might due to the combined effect of aerosol radiative effect, aerosol cloud 737	  

effect. To further verify the individual effect, we need to conduct numerical model simulations in our future 738	  

study. 739	  

 740	  

6. Discussion and conclusions 741	  

6.1 Discussion 742	  

In this study we used two aerosol indicators, AOD and CDNC, which discriminates the pollution levels for 743	  

different purposes. AOD is a good proxy for the large-scale pollution level, but it stands for the optical feature 744	  

of aerosols and cannot well represent CCN when we focused on the aerosol-cloud interaction (Shinozuka et al., 745	  

2015). CDNC is a better proxy for CCN compared with AOD, which facilitates the study on the cloud changes 746	  

associated with aerosol pollution. But the retrieved CDNC has larger uncertainties. First, the assumptions in 747	  

the calculation of CDNC are idealized that CDNC is constant with height in a cloud and cloud liquid water 748	  

increases monotonically at an adiabatic environment (Grosvenor et al., 2018), but the target of this study is the 749	  

convective clouds with rainfall that may be not consistent with the adiabatic assumption. Second, as indicated 750	  

by Grosvenor et al. (2018), the uncertainties in the pixel-level retrievals of CDNC from MODIS with 1°x1° 751	  

spatial resolution can be above 54%, which come from the uncertainties of parameters and the original COT 752	  

and CER data using in the calculation, and also the influence of heterogeneity effect from thin clouds. To 753	  

reduce the influence of heterogeneity effect as much as possible, we have attempted to limit the conditions of 754	  

CF, liquid COT and CER when calculating CDNC in the study. Besides, this study primarily focuses on the 755	  

relative changes of CDNC, which may be also influenced by the potential systematic biases in the CDNC 756	  

calculation, but actually reduced the uncertainties of absolute values. Another problem about CDNC in this 757	  

study is that the CDNC could be influenced by updraft velocity because both increased CCN and updraft 758	  

velocity could enhance aerosol activation and increase CDNC (Reutter et al., 2009). Since we cannot get any 759	  
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in-cloud long-term updraft data, we used the vertical velocity at 850 hPa obtained from ERA-interim 788	  

reanalysis data to roughly represent the cloud base updraft and investigated the possible relationship between 789	  

CDNC and updraft. The results show that there is no significant correlation between CDNC and vertical 790	  

velocity, although the updraft is relatively intensified in the polluted cases. We also examined the change of 791	  

rainfall based on CDNC under three certain ranges of vertical velocity (less than 25th percentile, between 25th 792	  

-75th percentile and more than 75th percentile), and found the primary results are similar. 793	  

  In addition to AOD and CDNC, we also applied ultraviolet AI and AOD of BC/sulfate to identify different 794	  

types of aerosols. We found that the AI has a weak positive correlation with AOD from MODIS, which 795	  

indicates the results on absorbing aerosol days might represent the results on polluted days if identified by 796	  

AOD. To avoid the uncertainty, we re-examined the results using AI when removing the polluted cases 797	  

identified by AOD, and found the major results remain. The comparisons of BC/sulfate AOD cases also have 798	  

uncertainties because they are retrieved from MACC reanalysis data. Although the above four indicators have 799	  

their own uncertainties, currently we cannot find more reliable datasets in a long-term observational record. 800	  

The major findings using these four indices could well identify the changes of rainfall and clouds 801	  

accompanied with aerosols, but are insufficient to clarify the aerosol effect on clouds and precipitation.  802	  

  This study has clearly identified the relationship of the aerosol pollution and the diurnal changes of heavy 803	  

rainfall and associated clouds in the BTH region. However, although this work has attempted to exclude the 804	  

impacts from the meteorological background particularly circulation and moisture, the observation study still 805	  

has its limitations on studying aerosol effects on rainfall and clouds: first, the observational datasets have their 806	  

noise and uncertainty, including the misdetection of CF in the satellite product when AOD is large (Brennan et 807	  

al., 2005; Levy et al., 2013) and the mutual interference between liquid and ice clouds (Holz et al., 2008; 808	  

Platnick et al., 2017); Second, the meteorological co-variations cannot be completely removed thus bring the 809	  

uncertainties of the results, e.g., the meteorology might affect the relationship between AOD and CF (Quaas et 810	  

al., 2010; Grandey et al., 2013) and the relationship between AOD and CTP (Gryspeerdt et al., 2014a); Third, 811	  

the different types of aerosols cannot be completely well separated, although we used AI index and AOD of 812	  

BC/sulfate to identify the respective effects of absorbing aerosols and scattering aerosols. In addition, we 813	  

selected the extreme ranges of AOD/CDNC to compare the characteristics of heavy rainfall and associated 814	  

clouds, which could bring such uncertainties that these extreme conditions might be related with distinct 815	  

microphysical process or meteorological background. We further examined the results using the middle range 816	  

of AOD and CDNC such as 25th – 50th percentile versus 50th -75th percentile. The results are basically the same 817	  

except that the peak time change is not significant based on AOD. Numerical model simulations are 818	  

necessarily applied to further study the specific impact of aerosols on the heavy rainfall. And the detailed 819	  

processes of aerosol effect on the precipitation formation of mix-phased and cold clouds also needs further 820	  

exploration in our future study. 821	  

6.2 Conclusions 822	  
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Using the gauge-based hourly rainfall records, aerosol and cloud satellite products and high temporal 871	  

resolution reanalysis datasets during 2002-2012, this study investigated the different characteristics of heavy 872	  

rainfall in the diurnal time scale on the clean and polluted conditions respectively. Based on the macro and 873	  

micro aerosol indicators including AOD from MODIS aerosol product and calculated CDNC from MODIS 874	  

cloud product, three significant features of heavy rainfall diurnal change associated with aerosols are found, 875	  

that is the rainfall start and peak time occur earlier and the duration becomes longer under pollution.  876	  

The different relationships of absorbing and scattering aerosols with the heavy rainfall diurnal shift were 877	  

distinguishable using ultraviolet AI from OMI and reanalysis AOD of two aerosol types (BC and sulfate). The 878	  

absorbing aerosols (BC) correspond to the earlier start and peak time of heavy rainfall, while the scattering 879	  

aerosols (sulfate) correspond to the delayed start time and the longer duration. Considering the plausible effect 880	  

of moisture, further analysis indicates the duration of heavy rainfall is prolonged in the presence of more 881	  

sulfate on the relatively dry condition but is shortened on the extremely wet condition.  882	  

By comparing the characteristics of cloud macrophysics and microphysics variables, using both AOD and 883	  

CDNC we found the CF, ice COT, liquid and ice CWP are increased on the polluted condition, but the cloud 884	  

top height and the ice CER are reduced. Liquid COT and liquid CER are also increased in AOD analysis. 885	  

Comparing the influences of CDNC which represents CCN and SH at 850 hPa which represents moisture 886	  

condition respectively on these cloud variables, the cloud properties show similar changes with the increase of 887	  

CDNC and moisture, but seem more sensitive to the CDNC (CCN), e.g., the liquid & ice COT and CWP are 888	  

increased more significantly in high CDNC than in high SH.  889	  

  According to these results, we speculate that both aerosol radiative effect and cloud effect have impacts on 890	  

the diurnal variation of heavy rainfall in the BTH region. The heating effect of absorbing aerosols especially 891	  

BC increases the instability of the lower to middle atmosphere so that generates the heavy rainfall occurrence 892	  

in advance. And the increased moisture supply and increased aerosols which could nucleate more cloud water 893	  

in the cloud, leading to the longer duration of heavy rainfall. 894	  
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Table 2. The mean values of start time (units: LST), peak time (units: LST), duration (units: hours) and 1178	  

intensity (units: 0.1mm/hour) of heavy rainfall respectively on the clean and polluted conditions using two 1179	  

indicators of AOD and CDNC, and their differences (polluted minus clean) and significances. The numbers in 1180	  

the brackets stand for the standard deviations on the means. “P<0.05” stands for the difference has passed the 1181	  

significance test of 95%, and “P>0.1” stands for the difference did not pass the significance test of 90%. 1182	  
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Table 3. The mean values of start time (units: LST), peak time (units: LST) and duration (units: hours) of 1186	  

heavy rainfall respectively on the conditions with more absorbing aerosols (AAI more than 75th percentile, 1187	  

from OMI), more scattering aerosols (SAI more than 75th percentile, from OMI), less or more BC (AOD of 1188	  

BC less than 25th or more than 75th percentile, from MACC), less or more sulfate (AOD of sulfate less than 1189	  

25th or more than 75th percentile, from MACC), and their differences. Numbers in the brackets stand for the 1190	  

standard deviations on the means. All differences have passed the significant test of 95%. 1191	  
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Table 4. The mean values of CF (units: %), CTP (units: hPa), COT (liquid and ice, units: none), CWP (liquid 1198	  

and ice, units: g/m2) and CER (liquid and ice, units: μm) from MODIS C6 cloud product on the clean 1199	  

condition (less than 25th percentile) and polluted condition (more than 75th percentile) using two indicators of 1200	  

AOD and CDNC. Numbers in the brackets stand for the standard deviations on the means. Numbers in grey 1201	  

indicate the results of liquid COT & CER are related to the calculation of CDNC. The differences between 1202	  

clean and polluted conditions have all passed the significant test of 95%. 1203	  
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 1205	  

 1206	  

 1207	  

 1208	  

Table 5. The mean values of CF (units: %), CTP (units: hPa), COT (liquid and ice, units: none), CWP (liquid 1209	  

and ice, units: g/m2) and CER (liquid and ice, units: μm) in four groups. Numbers in the brackets stand for the 1210	  

standard deviations on the means. Italic numbers in grey represent that the differences are not significant, in 1211	  

which “P>0.05” stands for the difference did not pass the significance test of 95%. 1212	  
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Figures 1242	  

 1243	  

 1244	  

Figure 1. Selected rainfall stations (blue dots) and topography (shading, units: m) in the BTH region (red box, 1245	  

36–41° N, 114–119° E). 1246	  
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 1248	  

 1249	  

Figure 2. PDF of (a) AOD and (b) CDNC (cm-3) (data from MODIS) on non-rainfall days (black lines), 1250	  

rainfall days (blue lines) and heavy rainfall days (red lines) in southwesterly during early summers from 2002 1251	  

to 2012. Numbers in the legends denote the sample number. 1252	  

 1253	  
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 1255	  

 1256	  

Figure 3. PDF of start time (units: LST), peak time (units: LST), duration (units: hours) and intensity (units: 1257	  
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0.1mm/hour) of heavy rainfall (data from CMA) on selected clean (blue lines) and polluted (red lines) 1260	  

conditions, respectively using indicator of (a) AOD and (b) CDNC (cm-3), during early summers from 2002 to 1261	  

2012.  1262	  

 1263	  

 1264	  

Figure 4. PDF of (a) start time (units: LST), (b) peak time (units: LST), and (c) duration (units: hours) of 1265	  

heavy rainfall on the days with SAI more than 75th percentile (blue lines, data from OMI) and days with AAI 1266	  

more than 75th percentile (red lines, data from OMI), during early summers from 2005 to 2012.  1267	  

 1268	  

 1269	  

 1270	  

Figure 5. Percentages of AOD for (a) BC and (b) sulfate from MACC reanalysis data in summers (June – 1271	  

August) during 2002 to 2012. 1272	  
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 1276	  

Figure 6. PDF of start time (units: LST), peak time (units: LST) and duration (units: hours) of heavy rainfall 1277	  

on the different conditions of (a) BC and (b) sulfate. Blue/red lines stand for the condition of less/more BC or 1278	  

sulfate (AOD of BC or sulfate less than 25th /more than 75th percentile, data from MACC) during early 1279	  

summers from 2003 to 2012.  1280	  

 1281	  

 1282	  
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 1283	  

Figure 7. (a) PDF of start time (units: LST), peak time (units: LST), and duration (units: hours) of heavy 1284	  

rainfall with less moisture (blue lines, SH at 850 hPa less than 25th percentile, data form ERA-interim) and 1285	  

more moisture (red lines, SH at 850 hPa more than 75th percentile, data form ERA-interim). (b) and (c) are 1286	  

scatter distributions of SH-start time/peak time/duration for clean cases (blue points) and polluted cases (red 1287	  

points) respectively using AOD and CDNC. Green lines stands for the start/peak time at 8:00 LST or the 1288	  

duration is 0 hours. Positive (negative) values stand for the hours away from 8:00 LST or 0 hours in clean 1289	  

(polluted) cases. Blue (red) lines stand for the mean values of rainfall characteristics at each integer of SH in 1290	  

clean (polluted) cases. 1291	  

 1292	  
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 1295	  

 1296	  

Figure 8. PDF of start time (units: LST), peak time (units: LST), and duration (units: hours) of heavy rainfall 1297	  

on selected clean (blue lines) and polluted (red lines) conditions with SH at 850 hPa (from ERA-interim) less 1298	  

than 75th percentile, respectively using indicator of (a) AOD and (b) CDNC (cm-3), during early summers from 1299	  

2002 to 2012.  1300	  

 1301	  
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 1307	  

Figure 9. PDF of CF (units: %), CTP (units: hPa), COT (liquid and ice, units: none), CWP (liquid and ice, 1308	  

units: g/m2) and CER (liquid and ice, units: μm) on selected clean (blue dash lines: AOD<25th percentile; blue 1309	  

solid lines: CDNC<25th percentile) and polluted (red dash lines: AOD>75th percentile; red solid lines: 1310	  

CDNC>75th percentile) heavy rainfall days. All cloud variables are obtained from MODIS C6 cloud product. 1311	  

 1312	  

 1313	  

 1314	  

 1315	  

 1316	  

Figure 10. PDF of CF (units: %, data from MODIS) respectively for the conditions of less BC/sulfate (blue 1317	  

lines, AOD of BC/sulfate less than 25th percentile, data from MACC) and more BC/sulfate (red lines, AOD of 1318	  

BC/sulfate more than 75th percentile, data from MACC) cases with heavy rainfall during 10 early summers 1319	  

(2003-2012). 1320	  
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 1322	  

 1323	  

 1324	  

 1325	  

Figure 11. A schematic diagram for aerosol impacts on heavy rainfall over Beijing-Tianjin-Hebei region.  1326	  

 1327	  

 1328	  

 1329	  


