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Abstract. The interactions between organic and inorganic aerosol chemical components are integral to understanding and 10 

modelling climate and health-relevant aerosol physicochemical properties, such as volatility, hygroscopicity, light scattering 

and toxicity. This study presents a synthesis analysis for eight data sets, of non-refractory aerosol composition, measured at a 

boreal forest site. The measurements, performed with an aerosol mass spectrometer, cover in total around 9 months over the 

course of 3 years. In our statistical analysis, we use the complete organic and inorganic unit-resolution mass spectra, as opposed 

to the more common approach of only including the organic fraction. The analysis is based on iterative, combined use of (1) 15 

data reduction, (2) classification and (3) scaling tools, producing a data-driven chemical mass balance type of model capable 

of describing site-specific aerosol composition. The receptor model we constructed was able to explain 83 ± 8 % of variation 

in data, increased to 96 ± 3 % when signals from low signal-to-noise variables were not considered. The resulting interpretation 

of an extensive set of aerosol mass spectrometric data infers seven distinct aerosol chemical components for a rural boreal 

forest site: ammonium sulphate (35 ± 7 % of mass), low and semi-volatile oxidised organic aerosols (27 ± 8 % and 12 ± 7 %), 20 

biomass burning organic aerosol (11 ± 7 %), a nitrate containing organic aerosol type (7 ± 2 %), ammonium nitrate (5 ± 2 %), 

and hydrocarbon-like organic aerosol (3 ± 1%). Some of the additionally observed, rare outlier aerosol types likely emerge 

due to surface ionisation effects, and likely represent amine compounds from an unknown source and alkaline metals from 

emissions of a nearby district heating plant. Compared to traditional, ion balance based inorganics apportionment schemes for 

aerosol mass spectrometer data, our statistics-based method provides an improved, more robust approach, yielding readily 25 

useful information for the modelling of submicron atmospheric aerosols physical and chemical properties. The results also 

shed light on the division between organic and inorganic aerosol types and dynamics of salt formation in aerosol. Equally 

importantly, the combined methodology exemplifies an iterative analysis, using consequent analysis steps by a combination 

of statistical methods. Such an approach offers new ways to home in on physicochemically sensible solutions with minimal 

need for a priori information or analyst interference. We therefore suggest that similar statistics-based approaches offer 30 
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significant potential for un/semi supervised machine-learning applications in future analyses of aerosol mass spectrometric 

data. 

1 Introduction 

Along with particle size, aerosol chemical composition is fundamental in understanding aerosol physicochemical properties 

such as hygroscopicity, volatility, optics and toxicity (Bilde et al., 2015; Swietlicki et al., 2008; Zimmermann, 2015). In the 5 

past decade aerosol mass spectrometry has provided a way to quantitatively resolve basic chemical composition of aerosol in 

near real-time. This not only enables basic chemical speciation into organic and common inorganic ion species, but also 

produces a wealth of complex mass spectrometric data. It has since become clear that these data sets, although superficially 

hard-to-interpret, are rich in chemical information and their statistical analysis yields considerable new knowledge. However, 

tapping into this information source requires use of advanced analysis tools and chemometric methods (i.e. “using 10 

mathematical and statistical methods to provide maximum chemical information by analyzing chemical data”; Kowalski, 

1975). Consequently, advanced statistical methods for data reduction have quickly gained traction in aerosol mass 

spectrometry, and are presently widely used for deconvolution of complex, organic mass spectra into their underlying 

components. Specifically, the Positive Matrix Factorization algorithm (PMF; Paatero and Tapper, 1994) has achieved a 

predominant status as the state-of-the-art analysis tool for deconvolving aerosol mass spectrometric data. Factorisation 15 

methods such as PMF notably allow for the condensation of information found in high-dimension data matrices into a 

manageable number of factors, corresponding to e.g. aerosol chemical species, sources or processes. Data reduction often 

additionally allows for improved visualisation, aiding in interpretation of the underlying aerosol chemical phenomena.    

In exploratory factor analysis, the principal difficulties often relate to deciding the optimal number of factors, choosing between 

multiple solutions of mathematically similar quality, and estimating the reliability and uncertainty of the results. Lacking robust 20 

but easy-to-use mathematical tools, the selection and interpretation of factorisation solutions remains prone to subjective bias 

by the analyst. Specifically, while analyst imposed additional constraints in factorisation may sometimes be required to reduce 

rotational uncertainty and extract minor factors in data (e.g. Canonaco et al., 2013; Crippa et al., 2014) such procedures are 

especially prone to analyst subjective decisions. Evaluation and verification of a factorisation solution thus generally requires 

meticulous study and understanding of e.g. correlations with auxiliary data, temporal changes and cycles and spectral 25 

references. While statistics-driven methods for spectra comparison and classification as of yet remain marginal in aerosol mass 

spectrometry, they do show promise in their capability to automatically group similar spectra based on their chemically relevant 

features, producing comparable classifications to those performed manually by expert analysts (Äijälä et al., 2017; Rebotier 

and Prather, 2007; Freutel et al., 2013).  

The overwhelming majority of PMF analyses to date from AMS have been performed on the organic fraction alone (Zhang et 30 

al., 2011). Contrary to popular belief, there exists no tenable reasons to limiting chemometric analysis to organic signals, as 

exemplified by the analyses of Sun et al. (2012) and Hao et al. (2014). Although it requires some additional data preparation 
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and processing, inclusion of inorganics provides additional insight into e.g. salt formation in aerosol. In this work, we apply 

data reduction and classification methods for analysing organic and inorganic aerosol mass spectral data from several 

measurement campaigns in the boreal forest. We then derive a comprehensive receptor model resolving the dominant aerosol 

categories at the site. In addition, by presenting an example of a semi-supervised, statistics-driven analysis of large mass 

spectral data sets, we hope to pave the way for machine learning based data analysis approaches, reducing the need for expert 5 

analyst input and subjective judgement at each step. 

2 Methods 

Our instrumentation, data processing, measurement site and analysis algorithms have been conscientiously described in 

previous literature, to which we refer in the corresponding sections. Thus, we focus on the new aspects of this work, showing 

how the individual methods can be connected to form an analysis chain, and to exemplify how chemometric information can 10 

be propagated through it. In short, we will first cover the measurement site, SMEAR II and the sets of data available to us 

(Section 2.1). We then describe our mass spectrometer instrument and preparation of data (Sect. 2.2). In Section 2.3, we will 

briefly go through the various statistical tools and algorithms, covering the basics of data factorisation, classification of spectra 

using a clustering algorithm, clustering solution evaluation, and detail the pre and post-weighting involved. Section 2.4 

describes typical reference methods for inorganics and nitrate apportionment: an ion balance scheme and a separate 15 

parametrisation for estimating organonitrate loading, to provide a comparison for the inorganic speciation from our statistics-

based receptor model. Finally, in Section 2.5, we present a summarised, step-by-step description of how the methods were 

combined to produce a receptor model for aerosol composition at the measurement site.  

2.1 Measurement site and collection of data 

2.1.1. The SMEAR II site 20 

The AMS data of this study was collected at the SMEAR II site (Station for Measuring Ecosystem-Atmosphere-Relationships) 

in Hyytiälä, Southern Finland (61°50’40”N, 24°17’013”E). The site is a well-known and equipped atmospheric research 

station, representing rural, background atmosphere in the boreal forest biome. The site and earlier measurements therein have 

been extensively described and reported in literature (e.g. Hari and Kulmala, 2005; Williams et al., 2011; Äijälä et al., 2017). 

The environment consists mostly of Scots pine (Pinus Sylvestris) dominated forests - 90 % of land in the nearest 50 km, and 25 

94 % in the nearest 5 km is forested (Williams et al., 2011).  

A large part of the aerosol loading at SMEAR II is attributable to regional biogenic secondary organic aerosol (SOA; Corrigan 

et al., 2013; Crippa et al., 2014; Allan et al., 2006) and long-range transport from industrial regions in Southern Finland, 

Western Russia and Central Europe (Kulmala et al., 2000; Patokoski et al., 2015; Niemi et al., 2009; Sogacheva et al., 2005). 

Regional anthropogenic aerosol sources include the towns Orivesi (pop. 9500; 19 km south) and Tampere (pop. 213 000; 48 30 

km south-west), as well as two sawmills and a pellet factory in the village of Korkeakoski, Juupajoki (7 km east-south-east of 
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the station). The surrounding countryside is sparsely populated (5 to 10 inhabitants / km2), and although emissions from 

agriculture, traffic, domestic heating, and cooking and other combustion sources (saunas, barbeques, agricultural machinery 

etc.) are limited, they are clearly observable at the station, and may increase aerosol loading in often plume-type pollution 

events. The anthropogenic organic aerosols were further analysed previously (Äijälä et al., 2017).  

2.1.2 Data sets 5 

In this study, the aerosol composition was monitored by an AMS between 2008 and 2011, during several short  measurement 

campaigns. Notable larger, intensive campaigns at the time were the EUCAARI project (2008-2009; Kulmala et al., 2009; 

Kulmala et al., 2011) and HUMPPA-COPEC (2010; Williams et al., 2011; Corrigan et al., 2013). The sets of data used along 

with their timeframes are shown in Table 1. Data availability by year and month is presented in Table 2.  

Table 1. Data sets used in this study and their timeframes. 10 

Data set 
number Data set name Campaign Start time End time 

I "May 2008" EUCAARI 29.4.2008 8.6.2008 

II "Sep 2008" EUCAARI 10.9.2008 15.10.2008 

III "Mar 2009" EUCAARI 4.3.2009 6.4.2009 

IV "May 2009"  29.4.2009 28.5.2009 

V "Jun 2009"  12.6.2009 8.8.2009 

VI "Aug 2009"  13.8.2009 19.9.2009 

VII "Summer 2010" HUMPPA-COPEC 9.7.2010 7.8.2010 

VIII "Winter 2010"  10.11.2010 7.1.2011 
 

Table 2. Data availability. Months when AMS data was available are shown in green. Percentages indicate the fraction of days with 

at least one data point. 

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

2008 - - - - 65 % 20 % - - 70 % 48 % - - 

2009 - - 94 % 23 % 90 % 63 % 81 % 87 % 63 % - - - 

2010 - - - - - - 74 % 68 % - - 47 % 100 % 

2011 23 % - - - - - - - - - - - 

 

2.2 Instrumentation, data processing and preparation 15 

2.2.1 The aerosol mass spectrometer (AMS) instrument and basic data processing 

The mass spectrometric data for this study was acquired with a Time-of-Flight Aerosol Mass Spectrometer (ToF-AMS), 

developed by Aerodyne Research Inc. (Billerica, MA, U.S.). AMS instruments in general have been described by Canagaratna 
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et al. (2007), and the compact ToF analyser version (CToF) used in this study by Drewnick et al. (2005). Additional, more 

specific details related to the specific instrument we used are available in our previous study (Äijälä et al., 2017).  

In brief, the AMS instrument sucks sample aerosol from atmospheric pressure to vacuum conditions through an inlet system 

consisting of a critical orifice and a particle concentrating aerodynamic lens (Liu et al., 2007). The sample aerosol beam is 

directed at a vaporizer operated at 600 degrees Celsius, whereby flash vapourisation of non-refractory aerosol components 5 

occurs. The resulting vapour is ionized using 70 eV electron impact ionisation – a well-characterised hard ionisation technique, 

resulting in rather universal and predictable but highly fragmenting ionisation. Finally, the ions are led to an orthogonal 

extraction reflectron time-of-flight mass analyser, where the ions’ mass-to-charge (m/z) ratios are measured. 

The per-amu (atomic mass unit) analyser signal is subsequently quantified based on instrument response calibrations and 

corrections (among others the correction for relative ionisation efficiency between the species; RIE; Allan et al., 2004);  10 

supplementary information Sect S.4). Individual, unit-mass-resolution amu signals are then chemically speciated, based on 

chemical information on fragmentation and air composition (see Allan et al., 2003b), for details). Additional, specific minor 

modifications to our instrument have been discussed in our previous work (Äijälä et al., 2017). 

2.2.2 Data preparation and down-weighting 

After basic processing, the data was further prepared, to serve as input for factorisation (described in following Section, 2.3). 15 

The organic and inorganic data and related uncertainties were extracted, and down-weighting of signals performed. The 

procedure for extraction and preparation of AMS organic signal and related error matrices has been described by Allan et al. 

(2003b) and Ulbrich and co-workers (2009). 

In short, measurement points or variables with missing data were omitted and error matrices calculated, based on a function 

accounting for both counting statistics induced uncertainty as well as background noise from the detector and electronics. The 20 

signals were then down-weighted by multiplying the error matrix conveyed uncertainty values for low signal-to-noise ratio 

(SNR) variables with a scalar: “weak” variables (SNR < 3) were down-weighted by a factor of 2 and “bad” variables (SNR < 

1) by 10. The procedure for inorganics (SO4, NO3, NH4, Chl; i.e. sulphates, nitrates, ammonia and chloride species) was similar 

to that used for the organics (“org”), including for the down-weighting of signals derived from fragmentation calculations. 

Analogous to the basic procedure of down-weighting “duplicate information” organic signals, e.g. those derived from m/z 44 25 

Th (mainly CO2
+), similarly derived inorganic signal weights were normalized so that their weight of the original plus 

“duplicate” signals equalled that of the original signal. Finally, the matrices for all the ion species (org, SO4, NO3, NH4, Chl; 

in nitrate equivalent mass), were combined to form the final input matrices for factorisation, while retaining speciation 

information in the ion indexing.  
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2.3 Statistical methods and algorithms 

2.3.1 Positive matrix factorixation 

For factorisation, we used the Positive Matrix Factorisation (PMF) model developed by P. Paatero and colleagues (Paatero, 

1997, 1999; Paatero and Tapper, 1994), and widely used for analysis of AMS data since 2007 (Lanz et al., 2007b; Zhang et 

al., 2011). In brief, PMF is a statistical  model, typically resolving a bilinear linear combination of factor profiles (G) and time 5 

series (F) best describing the measured data matrix (X; Equation 1). The residual matrix E then denotes the portion of data left 

unexplained by the model (i.e. residual). PMF model is thus formulated: 

 

𝑿(𝒕 ×𝒗) = 𝑮(𝒕 × 𝒇) × 𝑭(𝒇 × 𝒗) + 𝑬(𝒕 × 𝒗).          (1)

       10 

The brackets indicate matrix dimensions, with v denoting number of variables, t the number of time points, and f the number 

of factors. As shown in Equation 1, the model can be solved for any f (< v, t), requiring it to be selected by the analyst.  

The main features setting PMF apart of other similar factorisation models, and making it particularly suitable for atmospheric 

aerosol models, are on one hand the limitation of  factor profiles and time series to positive values and hence drastically 

reducing the amount of rotational ambiguity. On the other hand, the improved error model where the quantity to minimise is 15 

the weighted (typically the measurement uncertainty) residual, resulting in higher weight for the variables with better SNR. In 

PMF, the minimum weighted residual is solved using one of the related algorithms, i.e. PMF2 or Multilinear Engine 2 (ME2; 

Paatero, 1999). Of the two algorithms, ME2 can take in additional equations defined by the user, i.e. constraints the solutions 

need to adhere to. In this study, when ME-2 constraints were applied the factor profiles, we set upper and lower bounds for the 

allowed profile solutions. The bounds were based on variability estimates obtained from earlier analysis, as explained later, in 20 

Sect. 2.5. Variability estimate of the final model is available in S.I (Figure S.13). For running the PMF and ME2 algorithms, 

we used the Igor Pro (Wavemetrics Inc.) based SoFi (v. 4.8) user interface developed by F. Canonaco and co-workers at Paul 

Scherrer Institute (PSI). The interface allows input of the pre-processed data and user selected parameters, and calls on the 

solver algorithms (PMF2 or ME2, depending on assignment) to return a solution to be displayed and analysed in SoFi 

(Canonaco et al., 2013). 25 

When PMF is used as a standalone method for source attribution, the selection of solution needs to be carefully validated. 

Sensitivities towards different number of factors, rotations and initialisation seeds are meticulously analysed, and correlations 

with auxiliary data computed. A case is then made for why the selection is the best possible. Contrarily, in our analysis 

approach, we do not claim to arrive at optimum solutions for individual PMF/ME-2 runs. Instead, we rely on multitude of data 

de-convolution runs to uncover the main structures in the ensemble of all data sets, and use statistical classification methods 30 

to evaluate the general outlook and commonalities between PMF/ME-2 factors at each analysis phase. As discussed in Section 

2.5, this trade-off instead enables us to concentrate on best modelling the entirety of all data sets.  
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2.3.2 Relaxed chemical mass balance model 

To harmonise the description of aerosol components, we constructed a constrained receptor model, where all the profile 

components were constrained. For this purpose we applied a ME-2 based, chemical mass balance (CMB) type of model. CMB 

models are typically used as receptor models for cases where source profiles are known, and only the mass loading information 

needs resolving (Friedlander, 1973; Gordon, 1988; Hopke, 1991; Miller et al., 1972;Hopke, 2016). In such mass conservation-5 

based models, the observed loadings are modelled as a sum of multiple individual sources. Although CMB is mathematically 

often presented as sum of loadings (supplementary information, hereafter also S.I; Sect S.1, Eq. S.1), it can also be thought of 

as a special case of the bi-linear model described in Equation 1. Only now the profile matrix (F) is assumed fixed, simplifying 

the problem to resolving the loading matrix (G) which minimises the residual (E). CMB can be run using the SoFi interface, 

using the same ME-2 solver as for PMF and ME-2 applications (Canonaco et al., 2013).   10 

In this work, we use a relaxed CMB–like bilinear model (henceforth abbreviated as r-CMB), where all the source profiles are 

constrained, but allowed to vary within narrow limits (derived from variability estimates; see Sect 2.5; S.I. Figure S.13). In 

strict technical terms this approach could be labelled “an extremely constrained ME-2 model”, but we choose to use the term 

“relaxed CMB” to differentiate between the typical use of ME-2 or constraining only part of the profiles, which allows the 

model considerably more freedom. We regard our use of the model is much closer to the idea of constraining all profiles than 15 

(semi-)exploratory factorisation typical for ME-2. The naming also serves to better highlight the conceptual differences 

between models in the different analysis phases. 

Generally, the biggest problems of the CMB models relate to the selection of source profiles, typically from spectral libraries, 

and handling of their uncertainty. In our use, the anchor spectra as well as the limits for their allowed variabilities are 

experimentally derived from data, alleviating some of these typical concerns. 20 

2.3.3 k-means clustering 

For spectra classification, we selected the k-means algorithm, specifically because in our previous tests it was successful in 

classifying similar spectral data. The earlier tests additionally yielded of useful information on selection of the dissimilarity 

metric, as well as algorithm initialisation types and data weighting (Äijälä et al., 2017). K-means (e.g. Ball and Hall, 1965; 

MacQueen, 1967; Steinhaus, 1956; Jain, 2010)) is a rather simple, iterative algorithm that partitions a group of objects to a 25 

predesignated number of groups or ‘clusters’ based on their relative distances (i.e. dissimilarities). For each iteration, the 

algorithm assigns all objects to their closest centroids, which are then re-calculated from the mean variable values of the objects 

in the updated cluster. The aim is to minimize the within-cluster sum of distance (variance) (J) between the objects’ (Cn) 

locations (xi) and the cluster centroid µn they are assigned to (Eq. 2): 

 30 

𝑱(𝑪𝒏) = ∑ ‖𝒙𝒊 − µ𝒏‖
𝟐

𝒙∈𝑪𝒏
.           (2) 

 



8 
 

The k-means algorithm iteratively converges on (any) minimum of total J (C) obtained by summing over all objects Cn- To 

increase chances of finding a global minimum, repetitions using different initialisations are used. Specifically, we used the 

improved stepwise initialisation ‘kmeans++’ (Arthur and Vassilvitskii, 2007); available in e.g. Matlab v. 2017a; Math Works 

Inc., Natick, MA. U.S.).  

2.3.4 Spectral similarity and mass scaling 5 

Based on our earlier metric comparison (Äijälä et al., 2017), we used (Pearson) correlation as a metric for spectral dissimilarity 

(or “distance”, d; Fortier and Solomon, 1966;Mcquitty, 1966): 

 

𝒅(𝒖, 𝒗) = 𝟏 − 
∑ (𝒖𝒊−�̅�)(𝒗𝒊−�̅�)
𝒏
𝒊=𝟏

√(∑ (𝒖𝒊−�̅�)
𝟐𝒏

𝒊=𝟏 √(∑ (𝒗𝒊−�̅�)
𝟐𝒏

𝒊=𝟏

,           (3) 

 10 

where u and v are the spectra in vector form, with m/z variables as vector components. �̅� and �̅� are the arithmetic mean values 

of u and v.  

In clustering mass spectra, data weighting is often applied. Based on previous tests (Äijälä et al., 2017), we applied mass 

scaling of variables, advocated by Stein and Scott and others (Stein and Scott, 1994; Kim et al., 2012; Horai et al., 2010), 

giving additional emphasis to higher mass signals. This common practice is based on the idea that higher mass fragment ions 15 

are more indicative of their parent ions, and thus the original characteristic composition, while smaller fragments can be 

produced from a wider variety of molecular fragmentation events. In mass scaling the weighted variables (𝑥) are calculated by 

multiplying the original variables (x) by mass-to-charge-specific weights (w), as presented in Equation 4.  

 

𝑥 𝑚/𝑧 = 𝑥 𝑚/𝑧 × 𝑤 𝑚/𝑧  ;  𝑤 𝑚/𝑧  = (𝑚/𝑧)
𝐬𝐦,        (4)20 

        

where the scaling factor sm was optimised for each classification separately (SI; Sect. S.2).  

2.3.5 Silhouette metric and post-weighting 

The optimisation of mass scaling was based on silhouette metric (later also abbreviated as “silh”; (Rousseeuw, 1987), ranging 

between -1 to 1 and providing a straightforward, quantitative way to evaluate performance of the classification algorithm. The 25 

object-specific silhouette value si, defined as 
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 si = 

{
 

 
1 −

ai  

bi
;  for ai < bi

0;  for ai = bi
b(i)

a(i)
− 1 for ai > bi

,          (5) 

where ai corresponds to the mean distance to other objects in the same cluster, and bi similarly to the mean distance to objects 

in the nearest neighbouring cluster. A silhouette value close to unity indicates the object is well clustered, while a value close 

to zero indicates the classification is uncertain, and the point is likely situated in-between two possible centroids. A negative 

cluster value is indicatory of possible misclassification. Silhouette values can be calculated for any single cluster as the 5 

arithmetic mean of the cluster members’ silhouettes, or similarly as a mean over all objects, to evaluate the quality of the 

clustering solution as a whole.  

In order to mitigate the k-means algorithm’s known sensitivity to outliers, and to improve handling of between-cluster samples, 

we applied a simple post-processing to all cluster centroids and variability calculations: the centroid spectra and variabilities 

were calculated as weighted averages μ [note to copy-editor: please add a circumflex symbol to this μ, same as shown in Eq. 10 

6.], and weighted standard deviations (�̂�2; Eq. 6) respectively, instead of the normal unweighted values (similar to Äijälä et 

al., 2017). As weights, we used the object specific silhouette values si > 0 (Eq. 5): 

 

�̂� =  
∑ 𝑠𝑖𝑣𝑖
𝑁
𝑖=1

∑ 𝑠𝑖
𝑁
𝑖=1

;   �̂�2 = 
∑ 𝑠(𝑣−𝜇)2𝑁
𝑖=1

∑ 𝑠𝑖
𝑁
𝑖=1

;   𝑠𝑖 = max  (𝑠𝑖 , 0),        (6) 

 15 

where vi are the cluster member objects (spectra) This procedure down-weights likely misclassified objects (silhouette < 0) to 

zero, and penalises the more uncertain or questionable assignations (low silhouette) compared to the decidedly well-clustered 

objects (silhouette close to unity). Singleton clusters were omitted from this calculation, and their variability thus left 

undefined.  

2.4 Standard approximations for aerosol inorganic speciation and organonitrate 20 

2.4.1 Ion balance model for inorganics 

Aerosol inorganic chemical speciation is better understood than the organic speciation, due to much lower diversity of the 

chemical compounds involved. A variety of aerosol inorganic equilibrium models exist, and are typically used as modules in 

atmospheric meteorological and air quality models. However, performing thermodynamic equilibrium calculations is 

computationally demanding (e.g. Fountoukis and Nenes, 2007), and requires a good deal of auxiliary data on thermodynamic 25 

conditions and chemical activities. Due to the complexity of the models and increased data needs, simpler approximations are 

often used in connection to AMS inorganic speciation. In the following ion-balance-scheme description, we denote the 

respective AMS ion species molar concentrations in square brackets (e.g. [NH4
+], [NO3

-], [SO4
2-]) 
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A typical salt formation approximation used for AMS results is the Hong et al. (2017) ion pairing scheme, used in e.g. aerosol 

volatility and light scattering models (Hong et al., 2017; Zieger et al., 2015). The Hong et al (2017) scheme is based on similar 

approximation of Gysel et al. (2007), which in turn is a simplification of the more extensive model by Reilly and Wood (1969). 

We modified the Hong et al. scheme to additionally allow organonitrate (orgNO3) and speciate any leftover [NH4
+] as its own 

class (“excess NH4
+”). The full scheme is available in supplementary material (Section S.3), and a schematic description is 5 

presented in Figure 1. 

Briefly, in the scheme we apply, NH4
+ is first combined with SO4

2- to form ammonium bisulphate and/or ammonium sulphate 

depending on the relative concentrations of [NH4
+] and [SO4

2-]. Any leftover [NH4
+] then combines with [NO3

-], until all of 

[SO4
2-] and [NO3

-] is fully consumed in forming (NH4)2SO4 and NH4NO3. After this point, any leftover [NH4
+] is considered 

“excess” and assigned to a separate class. For comparability with other models, any nitrate not in NH4NO3 is labelled organic. 10 

Despite the label, we note this class not only encompasses organonitrates, but also any NO+ fragment signal from amines, N-

containing organics and may even contain influences of other inorganic nitrate species, such as KNO3, which are not considered 

separately in this simple model. Finally, since chloride loadings at the measurement site are generally negligible, neutralisation 

of hydrochloric acid (H2O:HCl) was not included to keep this scheme rather simple. We note ion balance schemes depending 

on relative ion abundances, such as the one described here, can be sensitive to measurement uncertainties (e.g. errors in RIE 15 

values) of these ratios. The topic is further discussed in supplementary information (Sect S.4)  
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Figure 1. Schematic representation of the inorganic apportionment scheme. The scheme is divided into three cases according to the 

ratio of [NH4
+] to [SO4

2-]. [NH4
+] first combines with [SO4] to form NH4HSO4 (Case 1), then further to (NH4)2SO4 (Case 2). In these 

cases, any nitrate observed is considered organic. In Case 3 leftover [NH4
+] then associates with [NO3

- ] until all the norganic anions 

are neutralised. Any leftover [NH4
+] is labelled as “excess NH4

+”. Full description of the scheme is given in supplementary material 5 
(Sect S.3). 

2.4.2 Kiendler-Scharr parameterisation for organonitrate 

Organic nitrate estimate in the above model is very sensitive to calibration parameters (see S.I Sect S.4). Therefore, in addition 

to the ion-balance based scheme above, we additionally calculated a particulate organonitrate mass estimate (orgNO3 mass), 

based on the nitrate fragmentation ratio-based parameterisation of Kiendler-Scharr et al. (Kiendler‐Scharr et al., 2016; Farmer 10 

et al., 2010): 
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𝑜𝑟𝑔𝑁𝑂3𝑚𝑎𝑠𝑠 = 𝑁𝑂3𝑡𝑜𝑡𝑎𝑙
(1+𝑅𝑜𝑟𝑔𝑁𝑂3)𝑥 (𝑅𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑−𝑅𝑐𝑎𝑙𝑖𝑏)

(1+𝑅𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑)𝑥 (𝑅𝑜𝑟𝑔𝑁𝑂3−𝑅𝑐𝑎𝑙𝑖𝑏)
,      (6) 

 

where R refers to the ratio of nitrate signals at 46 and 30 Th, i.e. R = NO3 (m/z 46 Th) : NO3 (m/z 30 Th), for organonitrate 

(“orgNO3”), NH4NO3 calibration (“calib”), and ambient measurement (“measured”), respectively. For the parameterisation, 

we applied an ion ratio Rcalib = 0.42, taken as the average of mass spectrum based AN calibrations (S.I Sect S.6). RorgNO3 value 5 

of 0.1 was used, based on the estimate by Kiendler-Scharr and co-workers for their observations on organonitrate spectral 

properties (Kiendler‐Scharr et al., 2016).  

2.5 Constructing a data-driven r-CMB receptor model 

As stated in the Introduction, one of the aims of our work was to derive a robust, harmonised receptor model for the 

measurement site via explorative analysis. Considering the large amount of campaigns during different seasons, resulting in 10 

changing aerosol source contributions and mass spectral profiles, factorisation needed to be performed on a per-campaign (data 

set) basis. However, instead of performing traditional PMF complete with correlation analysis, source validation and the 

various sensitivity analyses separately, which would be an arduous task even for a single measurement set, we used the large 

amount of data sets to our advantage. Instead of optimising individual factorisations, we constructed an r-CMB model 

applicable to all data sets. A similar task of constructing a semi-exploratory synthesis aerosol model, albeit applying a different 15 

methodology, was undertaken and reported by Sofowote et al. (2015). 

To derive the anchors and constraints for a synthesis r-CMB model, we analysed the data in three phases (P-I to P-III; Figure 

2), each consisting of factorisation, classification and silhouette-based post-weighting of anchor spectra and their allowed 

variabilities. The allowed variabilities were constrained by setting upper and lower bounds (the estimated variability ranges 

from the previous phase) for factor profiles. In Phases I and II, a fixed number of 10 factors were resolved. This amount of 20 

factors was semi arbitrarily chosen, and in our case likely to be somewhat above the optimal amount for most data sets, leading 

to over-resolved factor solutions. However, unlike in traditional PMF analysis, we can use additional statistical diagnostics 

and post-processing options available to deal with potential fallout of unrealistic factor splitting (i.e. classification for 

identifying outliers and post-processing down-weighting or nullifying their influence). Sensitivity to initialisation seed was 

examined by performing all runs using 10 initialisation seeds, and generally selecting the solution with lowest normalised 25 

residual. In rare cases of a physically unrealistic solutions as the one with lowest residual (e.g. only NH4 species in a factor), 

a higher residual solution was chosen instead. We conclude the solutions were generally insensitive to seed selection, especially 

for the factors with non-negligible mass contribution. 

2.5.1 Phase I: anthropogenic aerosols 

In phase I, we performed unconstrained factorisation for all the 8 data sets. With 10 factors this resulted in a total of 80 factor 30 

mass spectra. We then determined the dominant spectra classes using k-means clustering. To that purpose, we applied 
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optimised mass scaling for improved data structure, and used silhouette diagnostics to evaluate the optimal number of clusters. 

We identified the known, common anthropogenic aerosol classes from the silhouette-weighted cluster centroids. This is also 

an approach advocated by Crippa et al. (2014) in their similar work on a synthesis analyses of several data sets. 

For a cluster centroid to qualify as an anchor for further phases of our analysis, we applied the following two criteria: (1) The 

spectra forming the cluster were present in multiple (≥ 3) the data sets, (2) The spectra were interpretable chemically, and had 5 

adequate support from previous studies in form of literature and/or calibrations. We note that defining what constitutes as 

”interpretable” or “adequate support” is inevitably an analyst (subjective) decision, so we endeavour to make our reasoning 

transparent in the respective discussion sections. Adhering to criterion (1) also means that factors showing up only for 1 to 2 

campaigns, due to special conditions (emission, meteorology etc.), are omitted from the final r-CMB model. We will briefly 

cover some of the more interesting “outlier observations” in Section 3.4. At the end of Phase I, a number of constrained anchor 10 

spectra and within-cluster-variabilities were obtained. In this case, these corresponded to four anthropogenic classes, which 

will be discussed in more details in the results section. 

2.5.2 Phase II: biogenic, secondary organic aerosols 

Using the anchors and within-cluster-variabilities, we re-ran factorisation as in P-I, except now partly constrained (ME2; 4 of 

10 factors constrained using anchors from P-I). In phase II, we focused on analysing the remaining free factors, likely 15 

corresponding to the biogenic, and assumedly more variable factors (Canonaco et al., 2015;Crippa et al., 2014). The procedure 

for classification, and the selection criteria for the (assumedly) biogenic SOA in this phase was same as in phase I. 

Due to the data-driven analysis approach, specifically the constrained factors being selected from phase I, we do not expect 

major changes between phase I and phase II results. While arguably the methodology could be further developed to constrain 

the r-CMB components directly from phase I result, phase II of our analysis currently serves several purposes: 1) it should 20 

narrow down the solution space for improved description of the various SOA types, by constraining the anthropogenic, 

assumedly primary aerosols. 2) Compared to P-I, the allowed solutions are more similar for all data sets in P-II, which reduces 

the scatter of the factorisation solutions. This reduces the spectral variability (uncertainty) arising from the analysis process 

itself, allowing us to iteratively converge on more realistic limit values for the constraints. Ultimately, the limits should reflect 

the actual, natural chemical variabilities within the aerosol types. 3) Similarity of results between successive, un/semi-25 

constrained phases allows evaluation of stability, reliability and repeatability of the method, so that it is not e.g. overly sensitive 

to rotational ambiguity or initialisation parameters of algorithms. This is important since the method described here is new,  

and its robustness needs to be demonstrated, but less so in potential later use. 

2.5.3 Phase III: final, constrained receptor model 

In phase III, we constructed the r-CMB receptor model. In this phase, all the factors were constrained using anchors and 30 

variabilities from the previous phase result. The number of components in the final r-CMB model, in our case 7, was equal to 

the total number of selected aerosol types in phase II. With these model constraints, we performed runs for each of the 8 data 
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sets separately. Using the resulting 8×7 factor profiles, we determined the likely range of variability for the aerosol types, and 

calculated final, silhouette weighted reference spectra for the components by performing a final round of clustering. 

 

Figure 2. A flowchart illustrating the analysis using combined methodology. After initial data collection and preparation, statistical 

analysis is performed in three phases (P-I to P-III). Each phase limits the freedom given to factorisation from completely free (PMF) 5 
to nearly fully constrained (r-CMB). Finally, we evaluate and interpret the r-CMB model from an aerosol chemical perspective.  

3. Results and discussion 

In Section 3.1, we briefly describe the results from analysis phases I to III (P-I to P-III; corresponding to Sections 3.1.1 to 

3.1.3), but concentrate more on the receptor model results and their interpretation (Sections 3.2). Finally we will compare our 

results with reference methods (Section 3.3). Comparison results are available in literature for organic aerosol components 10 

(Sect 3.3.1), and in Sect. 3.2 we will compare inorganic speciation with the alternative inorganic attribution methods, described 

in Methods (Sect 2.4). Finally, we briefly describe some of the outlier observations which contain potentially interesting 

chemical information (Section 3.4).  

When interpreting and identifying aerosol components, we evaluate spectral similarity using the same similarity metric (mass 

scaled correlation) as for the clustering (Equations 3 and 4). We thus report mass scaled squared correlation coefficients (rs
2) 15 

between reference spectra and our corresponding final spectrum for the class (P-III silhouette-weighted centroids; sm=1.81). 

For easier comparability, all ratios and fractions of signals presented in the following sections are similarly calculated from 

the corresponding final spectra (P-III). 
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3.1 Receptor model construction steps 

3.1.1 Phase I: identification of anthropogenic aerosol components 

In phase I, we performed unconstrained PMF runs using 10 factors for all 8 datasets separately. The resulting 80 factor spectra 

were subsequently clustered. Maximal data structure (silhouette 0.56) was achieved at mass scaling sm = 2.12 for 17 clusters 

(for details on silhouette analysis, see supplementary material, Sect. S.2 ). The eight clusters with largest population for the 5 

phase I solution are shown in Figure 3, and the rest in Section 3.4, where outlier observations are further discussed. Generally, 

the solutions agreed closely on the largest clusters, lending credibility to the robustness of the approach. The solutions differed 

mainly regarding outlier classification, which is of secondary importance for our r-CMB model, since outliers are discarded 

from the model. 

 10 

 

Figure 3. The 8 largest clusters for P-I classification of factorisation results. Cluster centroids (coloured bars) and variabilities (error 

bars)  are silhouette-weighted averages and standard deviations for the cluster members. The main anthopogenic aerosol types were 

identified as Clusters #2 (‘Ammonium sulfate’, AS), #4 (‘Hydrocarbon-like organic aerosol’, HOA), #5 (‘Biomass burning organic 

aerosol’, BBOA) and #8 (‘Ammonium nitrate’, AN). Cluster number, silhouette and population (n) are shown in panel titles.  15 

Unsurprisingly, the classification returns two large clusters of organic resembling the ubiquitous low-volatile oxidised organic 

aerosols (#1; “LV-OOA) and semi-volatile oxidized organic aerosol (“SV-OOA”; e.g. Aiken et al., 2007; Jimenez et al., 2009; 
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Zhang et al., 2011). Comparing to library spectra, the m/z 44 Th (CO2
+) dominated aerosol type (#1) best matches with LV-

OOA and OOA-I (Oxidised Organic Aerosol; a historical label corresponding to LV-OOA; (Aiken et al., 2008; Zhang et al., 

2011) spectra from Paris (rs
2 = 0.97; Crippa et al., 2013), Zurich (0.96; Lanz et al., 2007a; Crippa et al., 2013) and Borneo 

rainforest (0.99; Robinson et al., 2011) as well as the average LV-OOA calculated from 15 Northern Hemisphere datasets 

(0.94; Ng et al., 2010). Cluster #3 is characterized by high m/z 43 Th signal (C2H3O+; Aiken et al., 2008), and correlates with 5 

SV-OOA and OOA-II (Aiken et al., 2008) spectra from Pasadena (0.74; Hersey et al., 2011), Borneo (0.86; Robinson et al., 

2011) and the 15 data set average (0.76; Ng et al., 2010) as well as the laboratory generated SOA spectra generated from 

typical pine forest emitted volatile organic compounds (e.g. a-pinene, 0.81; a-terpinene, 0.83; terpinolene, 0.84; (Bahreini et 

al., 2005)). Abiding by the typical naming convention of AMS derived aerosol types, we label these species LV-OOA (cluster 

#1) and SV-OOA (#3).  10 

The solution also contains a large cluster (#2) with spectra dominated by ammonium and sulphate ion species. This is in 

agreement with ammonium sulphate being a main component of ambient aerosols. Although it contains also trace amounts of 

other species, we name the (NH4)2SO4 –dominated aerosol class (#2) ammonium sulphate (“AS”) for brevity.  

The main nitrate-containing spectra are divided into two clusters (#6 and #8). The divisive feature seems to be the ratio of m/z 

46 to 30 Th signals (i.e. Rmeasured in Equation 7), which is much higher in cluster type #8 (0.44 ± 0.11) versus for #6 (0.08 ± 15 

0.07; P-III; see S.I. Sect S.5 for error estimate). We note once more that these characteristic values for clusters are from the 

final model (P-III; Figure 4), as outlined before. Based on literature we interpret the split to correspond to the division between 

nitrogen in form of inorganic (ammonium) nitrate (AN), and organic nitrogen, matching with previous AMS observations 

(Hao et al., 2014; Farmer et al., 2010; Kiendler‐Scharr et al., 2016). The interpretation of cluster #8 as AN is additionally 

corroborated by its similarity to spectra from pure ammonium nitrate calibration for the instrument, available in supplementary 20 

material (Sect S.6). On average, the (Brute-Force Single Particle, BFSP; Drewnick et al., 2015) AN calibrations performed for 

the instrument yielded an Rcalib (Equation 7) ratio of 0.49 ± 0.05 (mean ± standard deviation), while an MS mode calibration 

returned an Rcalib of 0.42. Similarly to naming of the AS class, we use labels organic nitrogen (“ON”; cluster #6) and ammonium 

nitrate (AN; cluster #8) for the nitrate-dominated aerosol types. The ON cluster is further discussed in Section 3.3.2. The label 

ON was chosen to differentiate between the (presumably) organic nitrogen dominated aerosol class (ON), and the part of NO3 25 

ion species deemed likely to be organonitrate (orgNO3). 

A fraction of the organic signal observed at m/z 44 Th for inorganic salt classes (AS and AN) may be explained by an CO2
+ 

artefact induced by thermal decomposition of inorganic salts (Pieber et al., 2016). For ammonium nitrate, the ratio of organic 

signal at m/z 44 Th to total nitrate signal is 2.9% (P-III). Pieber et al. (2016) estimate a contribution of 3.4 %, suggesting most 

of the organic signal observed in AN may arise from this artefact. This proposition is further discussed in supplementary 30 

information (Sect. S.6)  

Two of the clusters (#4 and #5) seem related to anthropogenic (primary) organic aerosol types. Cluster #4 has a similar 

spectrum as the hydrocarbon-like-organic aerosol (“HOA”) spectra from the AMS spectral database (Ulbrich et al., 2009), and 

closely matches, among others, HOA reported by Zhang et al. (Zhang et al., 2005) for Pittsburgh (rs
2 = 0.91) and the average 
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of de-convolved 15 HOA spectra reported by Ng et al (2010; rs
2 = 0.89). The spectra also exhibits high similarity with traffic 

emission spectra of diesel bus exhaust (0.86), lubricating oil (0.82) and fuel (0.75), reported by Canagaratna et al. (2004).  

Cluster (#5) features high signals for ions typical of biomass burning organic aerosol (“BBOA”; e.g. Alfarra et al., 2007) and 

cooking organic aerosol (“COA”; e.g. Mohr et al., 2012). The spectra features the marker signals of levoglucosan (Cubison et 

al., 2011; Schneider et al., 2006) at m/z 60 (C2H4O2
+) and 73 Th (C3H5O2

+) along with chloride ions (at m/z 35 and 36 Th) and 5 

high fraction of signal at m/z 55 Th (C3H3O+; Mohr et al., 2012), pointing to cooking and/or biomass burning emissions. 

Highest similarities to library spectra (de-convolved via PMF) are found with COA (Mohr et al., 2012; Barcelona; rs
2 = 0.70 

and Crippa et al., 2013; Paris; rs
2 = 0.59) and BBOA (e.g. 15 dataset average reported by Ng et al. (2010; rs

2 = 0.51) and BBOA 

de-convolved by Crippa et al. (2013; for Paris; rs
2 = 0.50). Similarity to SV-OOA library samples are also moderately high 

(e.g. Ng et al., 2010; 15 dataset average; rs
2 = 0.59). 10 

The differentiation between HOA versus BBOA or COA can often be resolved even from unit resolution spectra, using the 

f55 to f57 ratio (Mohr et al., 2012), and the differences in mass spectral fingerprints higher up on the m/z axis (resolvable using 

mass scaling; Äijälä et al., 2017). However, the distinction between COA and BBOA aerosol types is much more delicate due 

to very high UMR spectral similarity also for higher m/z variables, (e.g. rs
2 = 0.79 for COA and BBOA reported by Mohr et 

al., (2012). The main difference between the COA and BBOA aerosol types is the absolute level signals from levoglocosan 15 

fragments, the quantitative interpretation of which is difficult due to (1) levoglucosan production being determined by 

combustion temperature (Shafizadeh, 1984), (2) levoglucosan originating both from BBOA and COA (Mohr et al., 2012) and 

(3) levoglucosan sinks may be considerable in the atmosphere (Hoffmann et al., 2009), which affects especially transported 

aerosol. Due to the remote location of the measurement site and general prevalence of BBOA over COA in urban aerosol 

loadings (e.g. Daellenbach et al., 2017) we conclude BBOA is more likely the dominant component for this aerosol type, so 20 

we will use the class label “BBOA” for brevity. Due to high spectral similarity, we find it extremely likely any COA 

contribution would be apportioned to this class, but without the benefit of high mass resolution data, the convolution seems 

insolvable at this time. 

Cluster 7 spectrum offers little in terms of unique spectral features, and it appears as it could be represented as a combination 

of the more distinct AS (#2), LV-OOA #1) and ON (#6) aerosol types. It is unclear if this class represents an actual aerosol 25 

chemical type, or if it is due to incomplete resolving of the aforementioned species in the PMF model. We note the organics 

part of AS, LV-OOA and ON are all highly oxidised, which may imply similar level of aging, thus similar origins for these 

species. Organic spectral component are further analysed and discussed in Sect. 3.2.2.  

Based on this interpretation and evaluation of criteria outlined in Sect. 2.5, we decided to select as the main representative 

anthropogenic aerosol types the following: ammonium sulfate (AS, cluster #2, n = 10, silhouette = 0.91) ammonium nitrate 30 

(AN, #8, n = 5, silh = 0.48), hydrocarbon-like organic aerosol, (HOA, #2, n = 6, silh = 0.65) and biomass burning organic 

aerosol (BBOA, #5, n = 6, silh = 0.36). The silhouette values can be taken to represent separation distance from neighbouring 

aerosol types. For comparison, silhouette values for some of the anthropogenic organic aerosol types are available in Äijälä et 
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al. (2017), but to our knowledge no precedent exists for mixed or inorganic aerosols. Generally, the more ‘unique’ the spectra 

of a group and the higher within-cluster-cohesion, the higher the silhouette. 

3.1.2 Phase II: classification of biogenic, secondary organic aerosols 

In the second phase of our analysis, ME-2 factorisations were run for ten factors for all the data sets. We constrained 4 out of 

the 10 factors with the anchors and variabilities for anthropogenic aerosol types, derived from previous phase (AS, AN, HOA, 5 

BBOA).  The resulting 80 factor profiles were again extracted and classified. The classification solutions featured generally 

higher silhouette value than in the first phase, which is at least partly explained by constrained spectra being forced to conform 

to their set limits. The highest total silhouette (0.66) was obtained for 15 clusters (at sm = 2.41). Again, the inter-solution 

variability for the solutions inspected was low for the main classes. The phase II solution is available in S.I (Figure S.4). 

Overall, the solution very closely resembles the result from phase I (Figure 3).  10 

The expected LV-OOA (#1; n = 14; silh 0.64) and SV-OOA (#3; n = 9; silh 0.44) aerosol types again rank among the most 

typical classifications. Their moderate silhouettes reflect higher variability within these classes, corresponding to results from 

earlier studies (e.g. Canonaco et al., 2015), and/or closer proximity to neighbouring aerosol types, than for the AN, AS or HOA 

types. The result may suggest seasonal or other dataset-specific variability for SOA, which supports partitioning the data on a 

per-campaign basis. In accordance with typical AMS organic aerosol classification conventions laid out by e.g. Aiken et al. 15 

(2008), we opt for two classes of oxidised aerosols. We thus select clusters #1 and #3 (P-II) to represent LV-OOA and SV-

OOA (Aiken et al., 2008; Jimenez et al., 2009) respectively. 

For P-III of our analysis, we additionally fix the organic nitrogen class, (ON, P-II cluster #8). Irrespective of the exact chemical 

composition and label of this aerosol component, we assess there is enough literature support (among others Kiendler‐Scharr 

et al., 2016; Farmer et al., 2010; Drewnick et al., 2015; Murphy et al., 2007; Hao et al., 2014) for inclusion of nitrogen 20 

containing aerosol types other than AN, to warrant the inclusion of this class. In any case, the classification of nitrate signal at 

m/z 30 Th to a distinct class seems statistically robust, as exhibited by its emergence as a free factor in both P-I and P-II 

solutions. Due to the importance of nitrogen containing species in SOA composition and formation (e.g. (Kiendler‐Scharr et 

al., 2016; Berkemeier et al., 2016) we find it an important aerosol class to include, examine and further interpret. The mixed 

cluster #7 also emerges for 4 data sets, but with notably low silhouette (0.18), suggestive of low within-cluster cohesion. As 25 

we still lack a distinct chemical interpretation for this class, beyond the hypothesis of incomplete resolution of aged aerosol 

species in factorisation, we will not include the mixed class (#7) in our final receptor model. 

3.1.3 Phase III: Final r-CMB receptor model 

In the final phase (P-III) of constructing our r-CMB receptor model, we used 7 factors which were all constrained with the 

profiles and allowed variabilities from the previous phase (P-II, AS, LV-OOA, SV-OOA, BBOA, ON, HOA, AN). The ME-30 

2 algorithm was tasked to resolve the factors’ temporal behaviour.  
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To derive final characteristic spectra for the model components, as well as to study the variability of spectra in the solutions, 

we once more applied the same clustering procedure and silhouette analysis as for previous phases. The maximal structure 

(silh 0.85) was achieved for the seven cluster solution (sm = 1.81), which was to be expected considering ME-2 was run with 

7 rather strictly constrained factors in this phase. With silhouette weighting applied, we obtain the final spectra and variabilities 

(Figure 4). We note this final clustering and weighting step mainly serves to provide an estimate of variability within each 5 

aerosol type, but also yields final spectra to be used as library references for the outcome of this work. Details of the solution 

of the r-CMB model are discussed in following sections, from the perspective of mass attribution (Section 3.2.1) and spectral 

characteristics (Section 3.2.2). Diurnal cycles of the components for the entirety of data are available in S.I (Figure S.12). Due 

to the rural setting of the site and the generally long transport times of aerosol before reaching the site, diurnal cycles for the 

various aerosol types are not as characteristic as they would be for urban measurements (for e.g. temporal trends of HOA and 10 

BBOA). Also due to seasonal differences, the variability between data sets is considerable, resulting in high uncertainty in 

interpretation. The daily cycles are likely a mixed product of source emissions, boundary layer dynamics and aerosol 

temperature response. While of interest, disentangling these processes is beyond the topic of this study. 

 

Figure 4. Final silhouette-weighted reference spectra (coloured bars) and variabilities (error bars) for the r-CMB model components. 15 
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3.2 Overview of r-CMB model results 

3.2.1 Mass attribution and “default” AMS chemical speciation for r-CMB components 

Tabulation of final explained variations (EV; Paatero, 2000; Canonaco et al., 2013) for the r-CMB model are shown in Table 

3. The seven-component r-CMB model, explains 83 ± 8 % of the variation in loadings, when variation from low SNR variables 

is included, and 97 ± 3 %  when only residuals of variables with SNR > 2 are considered. The components with lowest loadings 5 

(ON, HOA, AN) explain around 4 to 5 % of variation, which seems to roughly match the general rule of thumb, of PMF / ME2 

being able to extract components of around 5 % of contribution (Ulbrich et al., 2009).  

Model results for campaign VIII, especially regarding BBOA, are very different from other data sets, including the other cold 

season results available in e.g. data set III (Figure S.5.). Upon closer examination, we attribute the VIII anomaly at least partly 

to pronounced surface ionisation effects, discussed more in Section 3.4. While we consider the r-CMB results for campaign 10 

VIII too unreliable for use in models or further studies, we decided not to omit data set VIII, since other AMS data is likely 

also affected by the same processes, albeit to a lesser degree. The attribution of anomalies to exact processes is very difficult, 

and surface ionisation effects remain hard to quantify. We hope that reporting our results in full also furthers the discussion on 

surface ionisation in the AMS, and potentially helps other AMS users observing similar observations. 

The composition of our r-CMB components is shown in Figure 5, panel (b), and the same in absolute in mass units in panel (a). The 15 
opposite visualisation, i.e. attribution of default species into r-CMB components, is similarly given for absolute mass concentration 
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and relative units in 

 

Figure 5, panels (c) and (d). Unlike mass spectral variables and estimated EV, where signals at m/z are in units “nitrate 

equivalent mass” (RIE not applied), all mass concentrations reported are corrected for relative ionisation efficiency (see S.I., 

Sect S.4). 5 

 

Table 3. Explained variations (EV, in percent) for the r-CMB-like model.  

Data set   r-CMB component      Residual   Rate of explanation 

nb name AS LV SV BB ON HOA AN low SNR high SNR all high SNR 

I May 2008 29 % 15 % 15 % 3 % 5 % 5 % 3 % 21 % 4 % 75 % 94 % 

II Sep 2008 34 % 12 % 14 % 11 % 5 % 5 % 3 % 14 % 3 % 84 % 97 % 

III Mar 2009 40 % 19 % 8 % 8 % 5 % 2 % 8 % 9 % 1 % 90 % 99 % 

IV May 2009 25 % 16 % 19 % 14 % 6 % 5 % 3 % 10 % 2 % 88 % 98 % 
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V Jun 2009 18 % 28 % 23 % 11 % 4 % 6 % 2 % 7 % 1 % 92 % 99 % 

VI Aug 209 22 % 26 % 19 % 9 % 4 % 5 % 4 % 10 % 1 % 89 % 99 % 

VII Summer 2010 21 % 25 % 10 % 7 % 4 % 4 % 2 % 21 % 6 % 73 % 93 % 

VIII Winter 2010 25 % 5 % 1 % 29 % 7 % 2 % 4 % 17 % 9 % 74 % 89 % 

mean   27 % 18 % 14 % 12 % 5 % 4 % 4 % 14 % 3 % 83 % 96 % 

st.dev.   7 % 8 % 7 % 8 % 1 % 1 % 2 % 5 % 3 % 8 % 3 % 

 

 

 

 

Figure 5. “Default” chemical speciation for r-CMB components; mass loadings (upper left) and relative contributions (upper right) 5 
of default species in components. Apportionment of default species to r-CMB components by mass (lower left) and relative 

contribution (lower right). 
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Generally, the separation between the inorganics r-CMB components (AS, AN) and organics (LV-OOA, SV-OOA, BBOA, 

HOA) seems clear (Figure 5). Ammonium nitrate and sulphate components consist primarily of inorganic ion species (81 to 

84 %), while for organic components the inorganic ion species contribution is small (LV-OOA: 8%, SV-OOA: 8%, BBOA: 

6%, HOA: 3%). However, extensive oxidation of organics in aerosol typically results in formation of organic acids (Yatavelli 

et al., 2015; Vogel et al., 2013; Duplissy et al., 2011) and we hypothesise organic salt formation with [NH4+] could account 5 

for the notable 5 % mass contribution of ammonium to this aerosol type.  

Explanations for the observed mixing of ion species can include (1) mixed emission profiles at sources, variabilities within a 

source type, as well as collocation of sources. (2) Atmospheric processes, such as mass transfer between the species by 

evaporation, condensation (e.g. Ye et al., 2016) as well as coagulation. (3) PMF / r-CMB modelling uncertainties. We will 

discuss the relative ratios and neutralisation balances of inorganic ion species in Section 3.3.2, in relation to inorganic salt 10 

formation scheme. The interesting exception to the rather clear-cut ion species separation is the ON component, which contains 

40 % of NO3 species ions, and 41 % ions defined as organic. The possible interpretations for this distribution are further 

discussed in Section 3.3.2 

As for the organics-inorganics division, the two speciations (default vs r-CMB) give similar results (Figure 6). For all the data 

sets combined, the default organic ion species (“org”) explains an average 57 % of total aerosol mass at the site. Similarly, 15 

combining the mass of all organic-dominated components (LV-OOA, SV-OOA, BBOA, HOA and ON) results in 60 % mass 

fraction versus 40 % explained by ammonium nitrate (5 %) and ammonium sulphate (35 %) salts. The per-data set mass 

apportionment is presented in supplementary information (Figure S.9). 
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Figure 6. Mass attribution in the default AMS speciation scheme (left) and by r-CMB components (right) for all the 8 data sets 

combined. Values are (data set length-weighted) averages for all data combined. Absolute mass concentrations are in units (μg/m3). 

3.2.2 Spectral characteristics of organic components  

As discussed above, despite the mixing observed, the inorganic aerosol classes generally seem separate from organic aerosols. 

The scaled correlation values between inorganic and organic spectra are extremely low (S.I Sect S.8, Tables S.1 and S.2), 5 

indicating near-zero similarity and clear-cut separation between the inorganic and organic aerosol types by the clustering 

algorithm. For inter-correlations between the organics-dominated aerosol classes, the picture is somewhat more complex.  

To understand the drivers for the separation of the organic aerosol types, we visualised the phase I (unconstrained PMF) and 

phase III (r-CMB) classification results with a projection of the clustering solutions onto a plane defined by an axis 

corresponding to estimated oxidation level and another connected to source type (P-III in Figue 7; P-I available in S.I, Fig. 10 

S.6.). Similar to Äijälä et al. (2017), we describe the oxidation level of the organic fraction of each component using the 

oxygen-to-carbon ratio (O:C) parametrisation of Aiken et al. (2008), and use the ratio of f57:f57 to imply source type. The 

O:C generally separates LV-OOA and SV-OOA species from each other and from the fresher aerosol classes. The f55:f57 

ratio is typically used for differentiation between HOA and COA/BBOA (Mohr et al., 2012), but equally seems to set apart the 

biogenic SOA types from the anthropogenic aerosols (Äijälä et al., 2017). This is due to the low signal of m/z 57 Th, a typical 15 

anthropogenic spectral marker, originating from C4H9
+ and C3H5O+ compounds (Mohr et al., 2012; Zhang et al., 2005). 

 

  

Figure 7. (Left panel:) P-III (r-CMB) solution - cluster projections onto a f55/f57 (Mohr et al., 2012), O:C (estimated, Aiken et al., 

2008) plane. Circles correspond to the members of the cluster and the cross markers to cluster centroids. The text markers indicate 20 
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respective positions of anthropogenic organic aerosol types from Äijälä et al. (2017). Marker size indicates organic mass fraction in 

spectra. Axes are truncated. (Right panel:) P-III solution, projected onto f44, f43 plane (i.e. the ‘Sally’s triangle’ plot; Ng et al., 2011). 

Circles correspond to objects in cluster and the cross markers to cluster centroids. Marker size indicates organic mass fraction in 

spectra. Dotted line marks the area where most laboratory data for organic aerosol falls (Ng et al., 2010). 

The LV-OOA aerosol type, characterised by the dominant m/z 44 and 28 Th signals is usually considered a highly oxidised 5 

aerosol type that results from oxidation of SV-OOA and various fresh emissions (among others Canonaco et al., 2015)). The 

f55:f57 ratio of LV-OOA is considerably lower than for SV-OOA in both solutions, indicating inclusion of other sources 

beyond the f57-poor biogenic SOA contribution. SV-OOA, on the other hand, has the highest f55:f57 ratio of the classes, 

hinting to the predominantly biogenic origin of the SV-OOA at the site. The difference is further amplified for phase II and III 

solutions compared to the unconstrained PMF. We hypothesise this change can result from improved differentiation between 10 

SV-OOA and the BBOA species (in P-II), as these aerosol types may be difficult to separate initially due to similar oxidation 

level and features of the spectra (rs
2 = 0.34; Table S.3). The SV-OOA is characterised by the non-oxygen-containing ions at 

m/z 29, 43 and 55 Th (Mohr et al., 2009), as well as mass-to-charge m/z 53 Th signal (C4H5
+) typical of boreal forest biogenic 

background (e.g. Corrigan et al., 2013). The NO2
+/NO+

 ratio of 0.10 for nitrate-containing SV-OOA reported by Hao et al 

(2014) matches our observations for the nitrates in SV-OOA (NO2
+/NO+

 of 0.11 ± 0.15; Equations 7 and S.5). This may indicate 15 

presence of organonitrate species in the SV-OOA factor.    

We also projected the P-I and P-III solutions to the (f44, f43) plane (P-III in Figure 7; P-I in S.I, Fig S.6), to produce a result 

comparable to the triangle plot by Ng et al. (2010). The result indicates a clear separation between the low and semi volatile 

aerosol types, as well as the primary combustion aerosols (HOA, BBOA), and the spectral shifts from phase 1 “bulk PMF” 

results to the final r-CMB model. 20 

As stated in Section 3.1., the spectra of BBOA and HOA aerosol types match the previously published observations. The HOA 

spectrum is characterised by the ion series CnH2n+1 (m/z 29, 43, 57, 71, 85, 99 Th etc.) and CnH2n-1 (m/z 41, 55, 69, 83, 97 Th 

etc.) resulting from alkanes and aromatics from traffic emissions (diesel exhaust, lubricating oil; Chirico et al., 2010; Mohr et 

al., 2009; Canagaratna et al., 2004). The biomass burning organic aerosol levoglucosan marker signals at m/z 60 (C2H4O2
+) 

and 73 Th (C3H5O2
+) (Cubison et al., 2011; Schneider et al., 2006; Elsasser et al., 2012) are clearly identifiable in the BBOA 25 

spectra (Figure 3; Figure 4), and set this class apart from HOA and SV-OOA with some similar features. The contribution of 

often biogenic signal at m/z 53 Th is also lower for BBOA than for the biogenic, semi-volatile SOA. The pronounced signal 

from aromatic ring (tropyllium cation C7H7
+) at m/z 91 Th is a typical result of fragmentation of aromatic hydrocarbon 

compounds (Lindon et al., 2016). As stated previously, we presume the BBOA class also encompasses any COA contributions, 

which are likely unresolvable as a separate class due to high spectral similarity (0.79; Sect 3.1.1). 30 

In terms of spectral characteristics, the organic contributions of AS and AN classes fall somewhere between the distinct organic 

classes and offer little in terms of significant organic markers. Notably, the organics in the ON class exhibit some of the 

characteristics of LV-OOA and feature generally high f44. This may indicate high degree of oxidation of the organics for this 

aerosol type (Aiken et al., 2008). However, alternative plausible interpretations exist: AMS response from oxidation products 

of amine compounds and amine-nitrate salts feature similarly high f44 (Murphy et al., 2007) as does a typical amine fragment 35 
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ion C2H6N+ (McLafferty and Turecek, 1993). Furthermore, as discussed in Section 3.3.2, an equally plausible explanation 

would be inorganic nitrate salts such as KNO3 (from e.g. biomass burning; Li et al., 2003) contributing to this class in form of 

the Pieber et al (2016) thermal decomposition artefact. The contribution of m/z 55 and 57 Th signals to the ON species are 

both low and the ratio 1.37 of f55:f57 is much lower than for the biogenic aerosol species. Without more detailed analysis, and 

due to the uncertainties surrounding the origins of this aerosol type (Section 3.3.2), it is difficult to say with any certainty if 5 

this is due to anthropogenic nature of this aerosol, or e.g. due to fragmentation pattern of characteristic organic compounds in 

this aerosol type.  

3.3 Comparisons with reference methods 

3.3.1 Comparison with “traditional” ME-2 analysis for aerosol organic component 

In order to evaluate the performance of the source apportionment approach presented in this study for organic aerosol, we 10 

compare our results to results only relying on the organic mass spectral fingerprints. Specifically, two data sets covered in this 

study (data sets II and III; Table 1) were also included in the Crippa et al. (2014) analysis, which allows us to compared 

factorisation results directly. We chose to compare the Crippa et al. results to ours from data set II. We note that while there 

are minor differences in the pre-processing and corrections for data covered in Crippa et al (2014), the factorisation input is 

very similar in both cases. The ME2 model used by Crippa and co-workers included only the organic spectra and apportioned 15 

its mass to four factors: LV-OOA, SV-OOA, BBOA and HOA. The latter two components were constrained using a HOA 

profile from an urban aerosol study in Paris (Crippa et al., 2013) and an average BBOA of those extracted for Mexico City, 

Mexico, and Houston, U.S (Ng et al., 2011). The allowed variability around these anchors for all variables (m/z), were 5 % 

(HOA) and 30 % (BBOA). 

We compared the solutions for Crippa et al. factorisation to our r-CMB model solution data set II, both for loadings (Figure 8) 20 

and profiles (Figure 9). Generally the solutions correlated highly – the loadings (F) and profiles (G) for LV-OOA (F: r2=0.92; 

G: rs
2= 0.96) and SV-OOA (F: 0.94; G: 0.99) agreed the closest, whilst the HOA also had high similarities (F: 0.85; G: 88). 

The BBOA factor / component correlated markedly less (F: 0.63; G: 0.42), which we hypothesise to be due to differences in 

the anchors used, COA likely attributed to this class, high spectral similarity between SV-OOA and BBOA and the generally 

low loadings of BBOA observed at SMEAR II. 25 

The discrepancy in distribution of absolute mass for the LV-OOA and SV-OOA components, indicated by the sub-unity slope, 

suggests the r-CMB model attributes a part of the organic mass from the SOA factors into BBOA, AS, AN and ON components, 

while HOA is represented rather identically in both models. A difference in  mass distribution between the results is to be expected, 

considering the r-CMB model allows for organics in 7 components, while the model of Crippa et al. model only comprises 4 

components. Generally, we take the similar results of the methods, as shown by the high correlation values, to indicate that inclusion 30 
of inorganics in the model does not significantly perturb modelling of the organics. We also note the r-CMB components included 
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(HOA BBOA, LV-OOA, SV-OOA) are predominantly composed of organics (92 to 97 %; 

 

Figure 5), and the 4 components presented comprise 82 % of total organics.  
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Figure 8. Time series comparison of aerosol organic component with Crippa et al. (2014) for the September 2008 campaign (data set 

II). For comparability, only the organic part of r-CMB model components are considered. Data from this work has been averaged 

to 1 hr resolution. Organics in other r-CMB components (AS, AN, ON) are taken into account for the total amount but not shown 

separately. Discrepancy in total organics loading is due to differences in pre-processing values (e.g. ionisation efficiency, collection 5 
efficiency) 
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Figure 9. Comparison of organic part of spectra with Crippa et al. (2014) for data set II. The r-CMB model results from this study 

are shown in colour, and the Crippa et al. spectra in black. For comparability, the Crippa et al. spectra were corrected for a 

difference in fragmentation tables used (included m/z 28 Th, updated to modern calculation of m/z 16, 17 and 18 Th organic signals) 5 
and total signal subsequently re-normalised to unity. Spectra similarity is evaluated using Pearson’s squared correlation coefficients; 

unscaled (r2) and with mass scaling (rs
2). 
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3.3.2 Comparison of inorganic salt and organic nitrogen results with reference methods  

To evaluate the inorganic mass apportionment result, we compared the loadings from the r-CMB solution against the result 

from the inorganics apportionment scheme (Section 2.4.1). The comparison, again performed for data set II, is presented in 

Figure 10. We additionally compared the r-CMB ON component loadings with orgNO3 mass estimate from the Kiendler-

Scharr parameterisation (Equation 7; Section 2.4.2). 5 

The loadings for the (r-CMB) AS component compare well with the combined NH4HSO4 + (NH4)2SO4 + H2SO4 loading, 

indicating ammonium(bi)sulphate is described similarly by both models (r2=0.92). We assume the r-CMB AS component to 

comprise of both NH4HSO4 and (NH4)2SO4, which would very likely be classified together in PMF / clustering due to their 

high spectral similarity. For ammonium nitrate the correlation between loadings is very low (r2 =0.16). Looking at the time 

series, the reason seems to be that the speciation scheme–based model often predicts total absence of AN, due to high amount 10 

of sulphate in aerosol. While the r-CMB model also generally estimates loadings to be low, they are clearly non-zero in the r-

CMB model. We take the result to reflect the assumption of complete and instantaneous, internal and external mixing of aerosol 

in the speciation scheme (Section 2.4.1).  

The loading prediction for organic nitrogen by the speciation scheme model is similarly event-driven and the model results do 

not correlate. This is caused by the nitrate assignment to organonitrate class when not explained by NH4NO3. Same can be said 15 

for the excess NH4 class, which corresponds to the NH4 species in the other, mostly organic r-CMB factors, principally the 

LV-OOA; the ion balance scheme predicts zero concentration for many of the data points, an estimate not matching with the 

r-CMB-based result. 

On these differences between the models, we note that the ion balance-based apportionment scheme is sensitive towards small 

changes in NH4 concentrations, especially for data with generally low NH4 concentrations, such as ours. A simple sensitivity 20 

estimate, available in supporting material (Sect. S.4) was performed for data set III. The result indicates that a 33 % change in 

RIENH4 changes the component mass concentrations on average 5% for AS; 56 % for AN, 66 % for orgNO3 and 164 % for 

excess_NH4 components. On the other hand, the r-CMB model is rather insensitive to error in RIE estimate, since (1) the 

spectra in factorisation and clustering have the variables’ signals in “NO3 equivalent mass concentration” units, which is not 

(yet) corrected for RIE of different species, (2) mass scaling causes low mass signals such as NH4 fragments (m/z 15 to 17 Th) 25 

to weight less (relative to higher m/z variables) for determining the solution, and (3) NH4 seem not to be an unique marker of 

any of the classes. We therefore suggest a factorisation-based model such as the r-CMB model presented here is much more 

robust for resolving speciation of inorganic aerosol components. The sensitivity test (S.I, Sect S.4) also indicates that the 

temporal differences between the ion balance scheme and r-CMB are not explained by a difference in RIENH4. Thus, the reasons 

for the discrepancies are more likely related to the unrealistic assumptions of the inorganics apportionment model.  30 
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Figure 10. Comparison of Inorganics apportionment methods (r-CMB and ion balance scheme. The estimates from the ion balance 

scheme (Section 2.4.1) are shown in black, and the r-CMB model results in colour. The linear fits (right panels) represent the data 

poorly due to high amount of zero-value points and outliers. 5 
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In addition to deriving organic nitrogen mass from the ion balance scheme, we compared the r-CMB-derived ON loading with 

the Kiendler-Scharr method for estimating the orgNO3 mass loading (Equation 6). The comparison, shown in Figure 11, 

indicates that the two methods produce a very similar result for organic nitrogen mass (r2 = 0.94). The discrepancy in absolute 

mass is likely explained by the difference in the ratio values (R) used for Equation 6 parameterisation, and those featured in 

the r-CMB AN and ON components (RAN = 0.44 ± 0.11; RON = 0.08 ± 0.07; P-III, Equation S.5). 5 

The similarity to Kiendler-Scharr parameterisation result does seem to support the interpretation of nitrogen component in ON 

as organonitrate (orgNO3). Some similarities in temporal behaviour between the ON component and (non-quantitative) K+ 

ions were observed, potentially suggesting thermal ionisation of Potassium salts (e.g. KNO3) might contribute an unknown 

fraction to ON (S.I, Sect S.11). Also, 63% of chloride ions species associate with the ON component. The reason is unclear, 

and although chloride signals were very low in general, we cannot rule out that some of the ON component could still be 10 

explained by other chemical compositions than organonitrate. 

 

 

Figure 11. Comparison of Kiendler-Scharr parametrisation (Kiendler‐Scharr et al., 2016; black line; moving median filter for 11 

points window applied; Rcalib = 0.42, RorgNO3 = 0.1) for organonitrate  with NO3 ion species in ON factor from our r-CMB model (in 15 
colour). 

 

The NO3 : org ratio of our ON factor is close to unity (Figure 5), while e.g. Farmer et al. (2010) report a nitrogen-to-carbon 

ratio of 0.04, and oxygen-to-carbon of 0.25 for AMS spectra of organonitrate standards. However, several factors are likely to 

affect the NO3 : org ratio observable in atmospheric ON factorisations. Firstly, two different pathways for organonitrates exist: 20 

i) the primarily daytime reactions of organic peroxy radicals with NO (Orlando and Tyndall, 2012), and ii) the NO3-radical 

initiated oxidation of unsaturated compounds during night-time (Peräkylä et al., 2014). While the nitrate functionality in all 

these reactions are identical, the organic part can be vastly different, as peroxy radicals are formed in almost all atmospheric 

oxidation reactions, irrespective of oxidant (e.g. OH or ozone) or VOC (biogenic or anthropogenic). Therefore, it is not to be 

expected that a specific organic spectrum should be linked to the organic nitrate functionality. Secondly, as described by e.g. 25 

Lee et al. (2016), the particle phase lifetime of organonitrates is of the order of hours with respect to hydrolysis. This reaction 

will convert the nitrate functionality to nitric acid, while the organic part remains intact, except for the conversion of the -
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ONO2 group to -OH. This conversion will only have a small impact on the volatility of the organic molecule (e.g. Kroll and 

Seinfeld, 2008), while the nitric acid may well evaporate in the fairly low-ammonia boreal forest environment. Taken together, 

the diverse formation pathways as well as the atmospheric processing are likely to cause ON spectra retrieved from ambient 

air factorisations to look different from e.g. freshly formed organic aerosol from organonitrate standards, such as those used 

by Farmer et al. (2010). We therefore avoid putting too much emphasis on the organic parts observed in our ON factor. 5 

3.4 Outlier observations  

During the course of our analysis we encountered some anomalous observations likely stemming from surface ionisation 

effects, i.e. molecules being thermally ionised at the heater surface rather than at the ionisation region by electron impact. A 

thorough review and discussion on AMS related surface ionisation effects was recently published by Drewnick and colleagues 

(2015). Drewnick et al. emphasise that the division between refractory and non-refractory aerosol is not binary, and there exist 10 

a number of semi-refractory compounds, that the AMS can measure, albeit non-quantitatively. 

 Our observations on extracted “outlier” PMF factors from the different phases of analysis match well with the finding and 

calculations of Drewnick et al (2015), as well as other similar AMS observations published. In Figure 12, we present the outlier 

clusters from phase I classification solution that were excluded from further analysis due to low number of occurrences or/and 

questionable interpretability. The emergence of most of these spectra are likely attributable to over-resolution or questionable 15 

separation of main PMF factors, due to setting the number of PMF factors to 10. Despite their questionable value for the main 

analysis, we find they contain many potentially interesting mass spectral features, and seem not to emerge by chance. Below 

we will present some hypotheses on their possible interpretation. 
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Figure 12. Spectra of outlier clusters (#9 to #17) for P-I. The spectra for these outlier classes were omitted from our analysis due to 

not meeting the criteria of (1) occurrence or/and (2) interpretability (on an acceptable level). Despite their mostly speculative value, 

many of them feature some chemically interesting characteristics, potentially pointing to presence of amines (signals at m/z  58, 86 

and 100 Th; clusters #9, #11 and #17), alkali metals (85Rb, 87Rb; #10), cycloalkanes (signals at series m/z  69, 79, 81, 95, 107 and 109 5 
Th; #16), and organic sulphate (signal at m/z  80, 81 Th; #13, #17), as well as effects of surface ionisation (41K+; 39K+++; #10, #17) and 

a likely artefact from poor airbeam correction (signal at m/z 29 Th; #12). (red: SO4: blue NO3; orange: NH4; magenta: chlorides; 

green: org) 

3.4.1 Surface ionisation and data correction artefacts 

Drewnick et al. (2015) note that the main semi-refractory elements eligible for ionisation in the AMS are Cd (m/z 112 Th), Cs 10 

(132 Th), Hg (200 Th), K (39 Th), Na (23 Th), Rb (85 Th) and Se (79 Th). The proneness of potassium (K) and sodium (Na) 

for non-quantitative thermal ionisation effects in the AMS is well known (e.g. Allan et al., 2003a), which is also why they are 

excluded from AMS (quantitative) data analysis. Although the main potassium isotope omitted, the 41K isotope (with 6,7 % 

relative abundance; Haynes, 2014), is not, and a correction applied in fragmentation table instead. The K-derived signals were 

especially prominent in data set VIII (see S.I Fig S.7), with contributions of 1 to 2 order of magnitudes higher than highest 15 

well-behaving signals such as m/z 44 Th or 48 Th. We hypothesise the strong signals at m/z 41 Th observable in many of the 

outlier spectra (cluster #10, #15, and #17) may be due to insufficient accuracy of the 41K isotope correction. 

A similar data processing/correction artefact is likely seen in cluster #12 with a lone, dominant signal at m/z 29 Th. This mass-

to-charge is a problematic one for lower-resolution AMS data due to contribution of 29N2 isotopic peak, and location on the 
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slope of the enormous N2 peak at m/z 28 Th. Although the signal at m/z 29 Th is corrected for the (measured) isotope 

contribution, even a slight mismatch in the correction results in notable error in the estimation of the organic signal fraction at 

m/z 29 Th. We attribute this problem specifically to the scarce availability of filters for the earliest sets of data. 

3.4.2 Alkali metals 

The prominent signals at m/z 85 and 87 Th for cluster #10 correspond to Rubidium alkali metal ions, and their respective ratios 5 

(m/z 85 Th signal : m/z 87 Th signal = 73.2 : 26.8 ) to what we would expect based on isotopic distribution of Rb observed in 

nature (85Rb : 87Rb 72.2 % : 27.8 %; Haynes, 2014)). Examination of the raw mass spectrum, available in Sect S.12, also 

supports Rubidium as a likely candidate. Unlike for the potassium signal, the temporal behaviour of the factors corresponding 

to cluster #10 is highly plume-like. Preliminary analysis of wind direction shows the plume direction to correspond to the 

arrival direction from the district heating plant (co-located with a sawmill and a pellet factory) at Juupajoki, 5 km due south-10 

east (Supplementary information, Sect S.12). Similar observations of Rubidium from coal burning are previously published 

by Irei et al. (2014). It seems likely that this aerosol class would originate from the heating plant. 

3.4.3 Organic nitrogen and sulphur 

As for the signals often attributed to amines at 86 and 100 Th, (Mclafferty, 1959), featured in cluster #11, in absence of 

alternative explanation for the 100 and 86 signals, we are inclined to believe they actually represent atmospheric amines. The 15 

cluster spectrum corresponds also to the spectra of pollution plumes, extracted for data sets I to III in our previous study on 

pollution events (Äijälä et al., 2017). We note amines are also reported to be prone to surface ionisation, and e.g. 

trimethylamine is thermally ionised above temperatures 300°C, with high thermal ionisation efficiency at 600°C  (50% of the 

maximum efficiency observed at around 350°C; Rasulev and Zandberg, 1988)). It thus seems plausible surface ionisation 

effects could contribute to the amine observations as well. In our earlier work (Äijälä et al., 2017), we also attributed similar 20 

spectral signal at m/z 58 Th to amines (C3H8N+). However, in light of the recent results of Drewnick et al (2015) on surface 

ionisation of NaCl, and the detachment of m/z 58 Th signal from the class of other amine-attributed signals at 86 and 100 Th,  

another plausible explanation for the m/z 58 Th signal observed in clusters #9, #11, #16 and #17 exists. Namely, we find it 

plausible such a spectrum would arise from surface ionisation of sodium chloride and thus represent atmospheric NaCl+. 

Clusters #13, #15 and 16 are interesting from the viewpoint of organonitrates and sulphates. Nitrate signal in clusters #15 and 25 

#16 is composed mostly of m/z 30 Th signal, with negligible m/z 46 Th contribution. With the high organic contribution, this 

would make these classes potential candidates for containing organonitrates. However, an equally plausible explanation is the 

surface ionisation of KNO3, discussed previously. The pronounced signals at m/z 80 and/or 81 Th featured in cluster #13, #14 

and #17 are likely explained by humidity-induced fragmentation changes in ionisation of sulphate species, (particularly H2SO4 

and SO3; Drewnick et al., 2015). We do note organosulphur-containing samples characterised by Farmer at al. (2010) also 30 

feature increased ratio of m/z 80 and 81 Th signals compared to (NH4)2SO4, so we can not rule out organic sulphate 

contribution. 
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3.4.4 Cycloalkanes 

Finally, we wish to draw attention to the ion series of cluster #16, with prominent organic signals at (69), 79, 81, 95, 107 and 

109 Th, which have been connected to cycloalkanes (McLafferty and Turecek, 1993; Alfarra et al., 2004). Cycloalkanes are 

common in e.g. lubricating oils (Liang et al., 2018), which are an important, even dominant, component in traffic emissions 

(Worton et al., 2014). The closest literature match on ambient observations we found was the study of Takami and colleagues 5 

(2007), where they observed similar high concentrations of mass-to-charge 95, 107, 109 Th, as well as 58 and 85 Th, but were 

unable to attribute the observation to a specific source. 

4. Conclusions 

We performed a synthesis analysis on eight AMS data sets from a boreal forest site, and constructed a data-driven chemical 

mass balance type of receptor model, with relaxed constraints on the component profiles (r-CMB). Notably, the data comprised 10 

both inorganic and organic aerosol components. The resulting 7-component model explained 83 ± 8 % of variability in data 

(96 ± 3 % with low-SNR variables excluded). The model components for the SMEAR II boreal forest site were, in order of 

average aerosol mass contribution: Ammonium sulphate (35 ± 7 %; mean mass fraction ± standard deviation over data sets), 

LV-OOA (27 ± 8 %), SV-OOA (12 ± 7 %), BBOA (11 ± 7 %) Organic nitrogen (7 ± 2 %) Ammonium nitrate (5 ± 2 %) and 

HOA (3 ± 1 %).  15 

Remarkably, organic nitrogen seems a larger component than ammonium nitrate for the site. However, ambiguity remains on 

the interpretation of the organic nitrogen class as organonitrate, prompting caution against casual use of NO2
+:NO+ 

fragmentation ratio as a sole organonitrate proxy. COA was not resolved separately, presumably due to high spectral similarity 

with BBOA and low mass contribution to SMEAR II aerosol, and is most likely included to the BBOA component. Other, 

minor aerosol groups that were not included in the model feature characteristics potentially indicative of amine-dominated 20 

aerosols, coal combustion aerosol with alkali metals (Rubidium, Cesium), as well as hints of cycloalkanes and organosulphates. 

We presume many of these observations may arise from by surface ionisation processes, and as such they may not be currently 

quantifiable in mass. Their corroboration, quantification, and connection to emission sources or thermal ionisation effects 

require for further study. 

We suggest inorganics should be routinely included in factorisation of AMS data due to the high demand of such data in 25 

aerosol models. We wish specifically to point out that adding the inorganic information is easy and only requires applying the 

same tried-and-tested data processing and uses the same error model as for organics. While inclusion of inorganics does 

diminish the relative weight organics carry in the analysis, and thus may hinder extraction organic factors comprising very low 

fraction (<5 %) of total mass (Ulbrich et al., 2009), we argue that the added information value of inorganic speciation makes 

up for this. Compared to organics only analyses, inclusion of inorganic data increases direct usability of AMS data for 30 

physicochemical aerosol models. We also demonstrate factorisation-based speciation provide a more realistic and robust, less 

assumption-dependant and calibration-sensitive, speciation than simplistic ion balance schemes. 
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The classification methods presented here for evaluating factor analysis output can also have direct use in applications that 

produce large quantities of discrete aerosol spectral data, such as deriving factorisation error estimates via bootstrapping 

analysis (Osborne et al., 2014; Brown et al., 2015). With further development, we find it likely a two-step analysis (exploratory 

factorisation + classification → r-CMB) would be a viable option for increasingly unsupervised and less analyst biased AMS 

data analysis.  5 

We would also encourage further development of combined statistical methods for improved mass spectral feature extraction 

and parametrisations for mass spectra, as they will enable future machine learning applications for data analysis. Drawing from 

the comprehensive information available in current size-resolved aerosol mass spectrometric data, it seems likely that advanced 

machine learning methods (such as data reduction combined with predictive neural networking (e.g. Burns and Whitesides, 

1993; Gasteiger and Zupan, 1993) will likely provide new, improved ways to model aerosol physicochemical properties like 10 

hygroscopicity, volatility and optics in the near future. 
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