Supplementary material.

S.1. Comparison of TAC CO in situ observations (blue circles) on the CSIRO-98 scale with flask measurements (light green) on the WMO-2014 scale

Sector	$\delta^{13}C$ / ‰	Δ ¹⁴ C / ‰	Comments		
Combustion	-28.4	-1000	(Ciais et al., 1995)		
manufacturing	-31.4 to -25.4	-1000 to -950	Mean fossil 1990-1992		
EDGAR 2010					
Aviation	-28.4	-1000	(Ciais et al., 1995)		
EDGAR 2010	-31.4 to -25.4	-1000 to -950	Mean fossil 1990-1992		
Mineral processes	0	-1000	(Sharp, 2007)		
EDGAR 2010	-10 to 10	-1000 to -950	Mostly CaCO ₃ from		
			limestone		
Fugitive solid	-24.1	-1000	(Ciais et al., 1995)		
EDGAR 2010	-27.1 to -21.1	-1000 to -950	Coal		
Residential	-44	-1000	(Andres et al., 1994)		
EDGAR 2010	-49 to -39	-1000 to -950	Natural gas		
Solid Waste	-40	150	(Andres et al., 1994)		
EDGAR 2010	-45 to -30	0 to 300	δ^{13} C: flaring, Δ^{14} C: variable		
			depends on the mean age		
Chemical processes	-28.4	-1000	(Ciais et al., 1995)		
EDGAR 2010	-31.4 to -25.4	-1000 to -950	Mean fossil 1990-1992		

Ground Transport	-28.4	-1000	(Ciais et al., 1995)	
EDGAR 2010	-31.4 to -25.4	-1000 to -950	Mean fossil 1990-1992	
Non-energy	-28.4	-1000	(Ciais et al., 1995)	
transformation	-31.4 to -25.4	-1000 to -950	Mean fossil 1990-1992	
EDGAR 2010				
Oil Production	-28.4	-1000	(Ciais et al., 1995)	
EDGAR 2010	-31.4 to -25.4	-1000 to -950	Mean fossil 1990-1992	
Biomass burning	-24	110	(Sharp, 2007)	
EDGAR 2010	-29 to -19	110 to 120	δ^{13} C: C3 plants -33 to -23,	
			Δ^{14} C: average biomass	
Energy industry	-28.4	-1000	(Ciais et al., 1995)	
EDGAR 2010	-38.4 to -18.4	-1000 to -950	Mean fossil 1990-1992	
Fossil fire	-28.4	-1000	(Ciais et al., 1995)	
EDGAR 2010	-33.4 to -23.4	-1000 to -950	Mean fossil 1990-1992	
Shipping	-28.4	-1000	(Ciais et al., 1995)	
EDGAR 2010	-31.4 to -25.4	-1000 to -950	Mean fossil 1990-1992	
Metal processes	-24.1	-1000	(Andres et al., 1994)	
EDGAR 2010	-27.1 to -21.1	-1000 to -950	Coal	
Agricultural Soils	-24	110	(Sharp, 2007)	
EDGAR 2010	-29 to -19	80 to 140	δ^{13} C: C3 plants -33 to -23	
Road transport	-28.4	-1000	(Ciais et al., 1995)	
EDGAR 2010	-31.4 to -25.4	-1000 to -950	Mean fossil 1990-1992	
Net ecosystem exchange	-24	18	(Sharp, 2007)	
NASA-CASA	-27 to -21	15 to 21	Climatology	
Net ocean exchange	0	50	(Sharp, 2007), GLODAP	
(Takahashi et al., 2002)	-3 to 3	47 to 53	V2 extrapolated	
			climatology	
Hetrotrophic respiration	-24	110	NASA CASA simulations	
NASA-CASA	-27 to -21	107 to 113	available at: https://nacp-	
			files.nacarbon.org/nacp-	
			kawa-01/	

Month	Monthly	Month	Monthly	Month	Monthly
	emission / Bq		emission / Bq		emission / Bq
01/2014	0.548E+12	09/2014	1.207E+12	05/2015	1.989E+12
02/2014	2.386E+12	10/2014	1.300E+12	06/2015	1.318E+12
03/2014	2.389E+12	11/2014	2.204E+12	07/2015	2.063E+12
04/2014	2.600E+12	12/2014	1.248E+12	08/2015	2.056E+12
05/2014	2.739E+12	01/2015	0.984E+12	09/2015	1.67E+12
06/2014	2.048E+12	02/2015	1.197E+12	10/2015	6.55E+11
07/2014	1.401E+12	03/2015	1.527E+12	11/2015	1.73E+12
08/2014	1.882E+12	04/2015	2.069E+12	12/2015	2.14E+12

S.3. Emissions from La Hague used for the nuclear correction for each month over the sample collection period. Monthly emissions are shown in Becquerels.

S.4. Modelled sector specific influence on each isotope sample taken during the experiment. Sectors are details in the key and are as follows, displayed from top to bottom: road transport, agricultural soils, metal processes, shipping, fossil fire, energy industry, biomass burning, oil production, transformation non-energy, ground transport, chemical processes, solid waste, residential, fugitive soils, mineral processes, aviation and combustion manufacturing.

S.5. CO_2 modelled at TAC using the EDGAR emissions inventory in NAME compared to CO_2 calculated using the observed CO at TAC minus the MHD background CO all divided by the CO factor (4.39 for all data without the November peak derived in Table 2) (green).

