
 

Answers to Reviewer#1’s comments on pre-discussion version 

Thanks a lot for your time and comments. Our point-to-point answers are listed below the 

comments in blue italic. 

Review of the paper entitled “Anomalous holiday precipitation over southern China” by Zhang 

et al. 

 

This manuscript presents follow-up results of the authors’ previous study (Gong et al. 2014, 

JGR), concerning aerosol reduction and weather changes around the Chinese Spring Festival 

(CSF). It used extensive station data and the ERA-Interim reanalysis data, and revealed that 

human activities associated with the holiday could cause a precipitation reduction in days 

following the CSF. The topic is very interesting and worth pursuing, especially when 

considering the large impact of the CSF on temperature and precipitation as shown in this 

manuscript and the JGR paper. The approach for identifying changes of aerosols and 

precipitation around the CSF is sound to me.  

[Answer] Thanks for your encouragement. 

 

My main concern is about the relationship between aerosol changes and the precipitation 

reduction. The authors stated that the aerosol reduction caused by the economic slowdown 

causes the surface cooling and an anomalous cyclone, which subsequently yields anomalous 

northerlies to the southern China and reduces the surface precipitation. I don’t think the 10% 

reduction of aerosols can yield a cooling of about 0.8°C to the surface via aerosol-

(cloud-)radiation interactions in such a short time period, where feedbacks of the large-scale 

meteorology are ignorable.  

The aerosol reduction and the cooling occur concurrently, but this does not warranty they 

have cause-effect relationships. The authors stated the reduced downward longwave flux was 

responsible for the cooling, which I don’t agree to. Aerosol effects on the longwave is 

considered to be small compared with their effects on the shortwave, and the aerosol 

reduction should increase solar radiation reaching the surface, warming the surface and near-

surface air. I think the reduced longwave is caused by the cooling rather than causing the 

cooling. I suggest the authors either provide more persuading proofs for the cause-effect 

relationship, or weaken their points on this aspect. By the way, aerosol effects on the 

shortwave and longwave fluxes can be evaluated using the MERRA2 reanalysis data, which 

have radiation fluxes over full sky, clear sky and no-aerosol sky separately. 

[Answer] We agree that this is a critical question i.e. what factors have caused such cooling of 

-0.8oC and how. The possible roles played by aerosol direct, indirect, and atmospheric feedback 

all may be important. When considering the simultaneous temperature changes in association 

with short period aerosol anomaly, the atmospheric feedback would be ignorable. During a 

moderate period such as >3 days to one week, the atmospheric feedback is likely discernible. 

This is evident in Figure 13 where the cyclone-temperature correlation peak lags that for PM10 



a couple of days. In addition, we should point out that the gradual economic slowdown and 

the emission reduction actually begin long before the New Year’s Day, though the largest 

reduction occurs around the holidays. If this is true, the negative minima of PM10 and 

temperature during days [-3, -1] would not be totally explained as an instant effect of holiday 

aerosol. In addition, although aerosol itself is less efficient than moisture and cloud in radiating 

long-waves, the accompanying northerly, as well as the related clear-sky/less moisture 

atmosphere/less cloud (Figures 4-9) would help strengthen the temperature anomalies 

through longwave radiation. In a word, the holiday cooling might be partly due to the instant 

response of the radiation, partly due to short-term circulation response, and partly due to the 

response of the preceding emissions. Unfortunately, in our observational analysis we can 

neither quantitatively confirm any or all of their roles, nor rule out any of them, though our 

diagnostics and correlations are indicative of their links.  

As you suggested, we analysed the changes of atmospheric radiative forcing around the 

holidays by comparing MERRA2 reanalysis productions with/without assimilation aerosols.   

The top-of-atmosphere (TOA) net radiation anomalies show that significant negative 

anomalies appear on days [-4, -1] and [+3, +6] in both the MERRA2 products with/without 

assimilation aerosols (Figure A1). We compared the changes in the net shortwave and 

longwave radiation, and found that the net radiation anomalies can be largely attributed to 

the longwave radiations. The means longwave anomalies for these two short periods are 

respectively -1.77 and -1.57 Wm-2 in no aerosol MERRA2 dataset. Meanwhile, the means for 

these two periods are -1.79 and -1.58 Wm-2 in MERRA2 with aerosols. The differences between 

with and without aerosol are not evident. ERA-Interim has similar results (Figure A1). The 

analysed radiation datasets in MERRA2 and ERA-Interim are both under clear sky condition. 

TOA longwave radiation reflects equivalent temperature of air column, smaller TOA upwelling 

longwave radiation means a cooler beneath atmosphere. The negative TOA longwave 

radiation and temperature after the New Year's Day would be related to the cooling in 

association with the anomalous cyclone, whereas the simultaneous influence of atmospheric 

circulation on the cooling and negative TOA longwave radiation in days [-4, -1] should be small 

since there is no significant anomalous circulation. Generally, the TOA net radiation and 

longwave anomalies seem reasonably consistent with the observed temperature changes.  

Note the aerosol type information in MERRA2 is not available. It seems that the assimilation 

of AOD ignores the daily aerosol type changes, while the pollutants such as SO2, NOx changes 

evidently during holidays (e.g., Lin and McElroy 2011; Gong et al., 2014). Without aerosol type 

information, it is still hard to understand MERRA2 radiation effects by absorbing or by 

scattering. In the revised version, following the composites of PM10/AOD we have added the 

analysis of MERRA2 radiation with a short discussion (Section4.1, the last paragraph).  

Finally, as you suggested, we have weakened our statement in the revised version by modifying 

the text to simply indicate that there are negative temperature anomalies are found around 

the holidays in observation, and avoid to directly attribute the 0.80C cooling to the aerosol 

radiation. Section 4 has been re-organized. In the revision, we first show there is a significant 

reduction in air pollution during holidays, and then show that the year-to-year variations of 

atmospheric circulation after the New Year’s Day is statistically correlated with the preceding 



PM10 concentration with a stable lag time of approximate 6-9 days. Although we avoided to 

address the cause-and-effect mechanism, these observed correlations and diagnostics should 

shed lights on their links. This critical issue surely requires further in-depth analysis including 

modelling in future studies.  

 

 

Figure A1. Top-of-atmosphere (TOA) longwave radiation (a, b) and net radiation (c, d) 

anomalies around holidays from MERRA2 and ERA-Interim. 

 

-THE END- 
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Abstract: The Chinese Spring Festival (CSF) is the most important festival in China. Officially, this holiday lasts 

approximately one week. Based on the long-term station observations from 1979 to 2012, this manuscript reports that during 10 

the holidays, the precipitation over southern China (108°E-123°E and 21°N-33°N, 155 stations) has been significantly 

reduced. The precipitation frequency anomalies from the fourth day to the sixth day after Lunar New Year’s Day (i.e., days 

[+4, +6]) were found to decrease by -7.4%. At the same time, the daily precipitation amounts experienced a reduction of -

0.62 mm d-1 during days +2 to +5. The holiday precipitation anomalies are strongly linked to the relative humidity (RH) 

and cloud cover. The station observations of the RH showed an evident decrease from day +2 to +7, and a minimum 15 

appeared on days [+4, +6], with a mean of -3.9%. The RH vertical profile displays a significant drying below 

approximately 800 hPa. Between 800 hPa and 1000 hPa, the mean RH is -3.9%. The observed station daytime low cloud 

cover (LCC) evidently decreased by -6.1% during days [+4, +6]. Meanwhile, the ERA-Interim daily LCC also shows a 

comparable reduction of -5.0%. The anomalous relative humidity is mainly caused by the decreasedlower water vapor in the 

lower-middle troposphere. Evident negative specific humidity anomalies persist from day -3 to day +7 in the station 20 

observations. The average specific humidity anomaly for days [+4, +6] is -0.73 g kg-1. When the precipitation days are 

excluded the mean, the anomaly remains significant, being -0.46 g kg-1. A significant deficit of water vapor is observed in 

the lower troposphere below 700 hPa. Between 800 hPa and 1000 hPa, the mean specific humidity dropped by -0.70 g kg-1. 

This drier lower-middle troposphere is due to anomalous northerly winds, which are tightly related to the . cyclonic 

circulation anomaly over northwestern Pacific. Authors have analyzed proposed that the  concurrent holiday aerosol anomaly 25 

and their time-lag correlations with the atmospheric circulation. anomalous atmospheric circulation is likely related to the 

holiday aerosol anomaly. Station and satellite observations show And it is found that the East Asian aerosol concentrations 

during the CSF decrease evidently, the largest reduction occurring on days [-3, -1]. At the same time, a concurrent cooling is 

observed in the lower troposphere, which enhances the cold advection over East Asia. In addition, an anomalous low 

pressure tilting westward occurs in the troposphere over East Asia. The anomalous cold advection seems to help 30 

trigger/strengthen a cyclonic circulation anomaly The strength of the anomalous cyclone on days [+4,+6], which is 

statistically correlated with PM10 concentration over East China. Their strongest correlations occur when the PM10 leads by - 带格式的: 下标
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9 to -6 days, with correlation coefficients varying from +0.52 to +0.57responsible for the northerly winds and the less 

precipitation around the holidays. Theis possible mechanism needs further clarification by elaborate observation analysis and 

modeling. 

 

 5 

1 Introduction 

Human activity has an important impacts on weather/climate at diverse spatial/temporal scales variability by causing 

changes in Earth’s atmosphere in the amounts of greenhouse gases, aerosols and cloudiness. The changes of these factors 

alter the energy balance of the Earth-atmosphere system.The role aerosols play in weather/climate variability is among the 

most important.  Particularly the large uncertainty involving the clouds, precipitation, and radiation makes it difficult to 10 

accurately estimate their contributions to the long-term climate changes (Boucher et al., 2013). Recent estimation indicates 

that in the fast-developing China, anthropogenic aerosolsemissions might have contributed 10%±4% of the current global 

radiative forcing (Li et al., 2016a). Recent studies have noted that short-term air pollution associated with intense 

economical/political/cultural events has discernablediscernible influences on local and/or regional weather worldwide, where 

air pollution caused by regular or occasional anthropogenic emissions significantly impacts atmospheric physics and 15 

chemistry (e.g., Zhao et al., 2006; Sanchez-Lorenzo et al., 2012; Williams et al., 2015). Recent estimation indicates that in 

the fast-developing China, anthropogenic aerosols might have contributed 10%±4% of the current global radiative forcing 

(Li et al., 2016a). However, the possible mechanismThe involveding the cloud-precipitation processes and interactions over 

monsoonal Asia remains among the most challenging topics (Li et al., 2016b).  

Alternating weekdays and weekends may be the most apparent regular activities of human beings. The so-called weekly 20 

cycle effects of aerosol concentrations and atmospheric parameters, which are strongly related to the aforementioned regular 

human activity, have been widely reported globally (Gordon, 1994; Cerveny and Balling, 1998; Bäumer et al., 2008). At first, 

these studies of the weekly cycles were focused on cities and industrialized areas. Later, it was reported that the weekly 

cycles of air pollution and atmospheric variables are not only local phenomena confined within urban areas but are also 

large-scale phenomena that are closely related to regular anthropogenic aerosol effectshuman activities (Gordon, 1994). Over 25 

developed Europe, for example, Bäumer et al. (2008) analyzed the station data from Aerosol Robotic Network over central 

Europe and reported that the aerosol optical thickness is higher midweek than on the weekend. In the rapidly industrializing 

Asia, there are also discernible weekly cycles. For example, Gong et al. (2007) found that the meteorological parameters in 

China experience significant weekly cycles. TPM10 (particulate matter with a diameter of less than 10 μm) values in China 

experience significant weekly cycles with ranges of approximately 2 μg m-3, where a peak appears on Thursday and a low 30 

appears on the weekend. Accompanying the weekly cycles of PM10, there are robust co-variations in the surface solar 

radiation, total cloud cover, maximum temperature, and relative humidity. During the weekdays, the total cloud cover and 
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relative humidity are lower, while the surface solar radiation and maximum temperature are higher. In contrast, the higher 

cloud cover and humidity and the lower radiation and maximum temperature appear on the weekends. Evident weekly cycles 

are also identified in other parameters, such as the diurnal temperature range (Gong et al., 2006) and thunderstorm frequency 

(Yang et al., 2016). In South Korea, Choi et al. (2008) found that the summertime cloudiness shows a bell-shaped curve 

between midweek and weekend. Meanwhile, the aerosol concentrations are higher midweek than on the weekend. The 5 

mechanisms of these weekly cycles are not yet fully understood, though their strong co-variations with human activities (e.g., 

air pollutants) are measured widely. For . Gong et al. (2006;2007) supposed that the phases of weekly cycle direct or indirect 

aerosol effects may play different rolesmay depending on the different climatological circumstances. Gong et al. (2007) 

suggested that during the boreal summer, the weekly cycles in eastern China are likely associated with aerosol-atmosphere 

interactions, where the accumulated aerosol concentrations play a key role in triggering the atmospheric instability on 10 

Thursday. Wang et al. (2012) emphasized that during the autumn, the semi-direct aerosol effects likely play a dominant role 

in the weekly cycle of cloud cover in southeastern China. Yang et al. (2016) proposed the importance of the human emission 

aerosol types. In central China, aerosol absorption is strong, which suppresses convection more on weekdays, whereas in 

southeast China, aerosols are more hygroscopic, which helps invigorate thunderstorms on weekdays.  

In addition, there are occasional intense human activities (e.g., societal and cultural events), which also change 15 

atmospheric environments (particularly the air quality).anthropogenic air pollution events (in clean as well as the dirty cases). 

For example, Xin et al. (2012) found that the concentrations of PM2.5 in Beijing-Tianjin-Hebei area were reduced by 

approximately 50% with the implementation of emission controls (including the reduction of factory emission and vehicle 

activity) by the government during the Beijing Olympic Games in the summer of 2008. Similar actions were also 

implemented when China hosted the Asia-Pacific Economic Cooperation meeting in 2014 and held the national military 20 

parade in 2015; as a result, the air quality was considerably improved over northern China (Chen et al., 2015; Wang et al., 

2015; Xu et al., 2015; Wen et al., 2016; Xu et al., 2017). In contrast, setting off fireworks during holiday celebrations can 

produce severe air pollution across the world; for example, on the Fourth of July holiday in America (Carranza et al., 2001), 

the New Year’s fireworks in Mainz (Drewnick et al., 2006), during the Diwali festival in India (Singh et al., 2014), during 

the Chinese Spring Festival (CSF) (Tang et al., 2016), etc. The emission and pollutant components may differ among these 25 

events (Wang et al., 2007; Zhang et al., 2010; Tang et al., 2016). Comparing with weekly cycles, the possible meteorological 

co-variations in association with these occasional intense events are less studied. 

Note that the CSF holiday repeatedly occurs every year in January-February across the whole country and is the most 

important holiday in China. The human emissions Gong et al. (2014) indicated that during the CSF holidays decreases 

evidently (, the PM10 concentrations were reduced by approximately 9.24% due to the economic slowdown. Lin and 30 

McElroy  (2011; Gong et al., 2014). ) also estimated that during the celebration of the CSF there is a notable reduction in 

anthropogenic emissions. According to their estimations for 2005, 2007, 2008, and 2010, the CSF contributes to an NOx 

emission reduction of 12%. In addition, the 2009 CSF contributes to a reduction of 10%. Some studies have tried to identify 
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the possible co-changes consequences forin atmospheric physics and weather anomalies resulting fromaccompanying with 

these local and regional occasional pollution society/cultural events. As an example, in the United States, the diurnal 

temperature range increased significantly during the three days after 11 September 2001 when civil aviation planes were 

grounded (Travis et al., 2002). Gong et al. (2014) analyzzed the temperature anomalies during the CSF holidays during 

2001-2012 and found that there are significant negative anomalies of approximately -0.81C in eastern China, wherein 5 

atmospheric feedbacks likely play important a roles in enhancing the cooling.  

The purpose of the present study is to investigate the possible changes of precipitation over southern China during the 

CSF holidays. The paper is organized as follows. The data and method are presented in Section 2. Results, including the 

anomalous precipitation frequency and amount, the relevant changes in humidity, cloud cover and temperature, and the 

anomalous atmospheric water vapor and circulation, are described in Section 3. The possible relevance of these results to the 10 

holiday aerosols is discussed in Section 4. In addition, Section 5 presents a summary. 

2 Data and methods 

2.1 Data and study area 

The daily precipitation data analyzzed in the present study were obtained from the China Meteorological Administration 

observation archives. The daily precipitation amounts as well as the precipitation types are recorded. There are six kinds of 15 

readings, namely, (a) no precipitation; (b) trace precipitation (daily precipitation readings of less than the measurable 

0.1 mm); (c) precipitation from fog, frost and dew; (d) precipitation from pure snow; (e) precipitation from snow and rain; 

and (f) precipitation from rainfall. Because the frequency of snowfall events is low in the warm area of southern China and 

the precipitation from fog and dew is considerably small (accounting for 0.14% of our data), in this study, we considered 

only the precipitation amounts and ignored the precipitation types. This dataset consists of 917 stations, and the earliest 20 

observations start in the 1950s. Here, we confine our analysis period to 1979-2012, during which China experienced a rapid 

development and massive emissions of air pollutants. Since we aim to investigate the precipitation around the Lunar New 

Year’s Day, in this study, only the daily precipitation from January to February is employed. After excluding the 319 stations 

with missing values, we retained the 598 stations without missing data during 1979-2012.  

Prior to this analysis, we have to determine the target area based on the precipitation climatology. Because the Chinese 25 

Lunar New Year occurs in January or February, here, we investigated the climatological means of the precipitation amounts 

as well as the precipitation frequencies based on the observations from 598 stations. As shown in Figure 1a, in the boreal 

winter, the number of precipitation days is much greater in southern China than in the north. A maximum of >35 days occurs 

between approximately 25-30N and 102-115E, while the precipitation frequency is less than 15 days north of 35N. At the 

same time, the major precipitation belt, with precipitation amounts > 50 mm, also appears over the southeast of mainland 30 

China, being generally consistent with the spatial features of the frequency patterns (Figure 1a). Although the number of 

precipitation days in the Sichuan Basin is high, the precipitation amounts are not such large. In addition, Sichuan Basin has a 
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unique climate due to its special basin topography. Therefore, we did not include it in our study area. In addition, for 319 

stations north of 33°N the average precipitation days and amount are 12.8 days and 9.9 mm. Too small precipitation 

frequency and amount in northern China would be difficult to statistically yield a meaningful signal. Finally, we confined 

our study area to 108°E-123°E and 21°N-33°N (as indicated by the black dashed rectangle in Figure 1). Within this area, 

there are 155 available meteorological stations. Among these stations, the minimum number of precipitation day (15.7 days) 5 

appeared at the Zhumadian station (33°N, 114°E), and the minimum precipitation amount (15.3 mm) appeared at the Ankang 

station (32°N, 109°E). Meanwhile, the maximum precipitation days (41.6 days) and maximum precipitation amount 

(214.5 mm) were found at Wugang (26°N, 110°E) and Nanyue (27°N, 112°E), respectively. On average, the precipitation 

frequencies and amounts during the period of 1979-2012 are 30.3 days and 124 mm. In addition to the daily precipitation, we 

also analyzed other meteorological variables, including the mean temperature and relative humidity. 10 

The atmospheric circulation and moisture in the troposphere were taken from the ERA-Interim reanalysis datasets (Dee 

et al., 2011), which have a 1.5° spatial resolution and span the period of 1979-2012. We utilized surface parameters, such as 

the cloud cover and total column water vapor. In addition, the impacts of the air temperature, relative humidity, and 

horizontal winds on pressure levels were also investigated. Only the data at step 0 for 00:00, 06:00, 12:00, and 18:00 UTC 

were obtained and subjected to analysis. Averaging these 4 times yields the daily mean.  15 

2.2 Analysis method 

We employed a temporal composite analysis to investigate the possible changes in the daily precipitation and the statistical 

significance. This was carried out via the following steps. First, we identified all Lunar New Year’s Days (LNYD) from 

1979 to 2012. As listed in Table 1, the New Year’s Days all fall within late January to mid-February. During our analysis 

period, the earliest New Year’s Day is on 22 January, and the latest occurs on 20 February. These LNYDs are denoted as day 20 

0. The days before and the day after the LNYD are denoted as day -1 and day +1, respectively. Accordingly, two days before 

and after the LNYD are denoted as day -2 and day +2, etc.  

Second, we estimated the anomalies from the climate means. When dealing with continuous variables (such as the 

temperature, humidity, atmospheric circulation, and water vapor), we calculated the long-term means for each calendar day 

from 1 January to 28 February. Then, the means were subtracted from the daily observations to determine the corresponding 25 

anomalies. This process is same as that used in Gong et al. (2014). In contrast to these continuous variables, precipitation 

occurs quite randomly. For a specific day, say day 0, we counted the number of precipitation days (N) during the whole data 

period from 1979-2012. Thus, the precipitation frequency (hereafter denoted to as F) is deduced by: 

𝐹 =
N

34
× 100% ,            (1) 

The climatic means of F were calculated based on Gregorian calendar days. Taking day 0 as an example, after reading 30 

all 34 corresponding Gregorian calendar dates we computed their mean precipitation frequencies. Their averages represent 

the climatic means. Note that when computing the climatic means, we used a 7-day window because the typical synoptic 
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time scale is approximately 7 days. We expect this process to serve as a filter to suppress the random synoptic   noise. The 

departure of F from the climatic mean is the anomalous frequency (F). To determine a more robust signal, we used a 3-day 

window. In other words, when computing the F for day 0. We used all data from day -1 to day +1.To remove the 

randomness of precipitation, we used a 3-day window. For example, precipitation occurring on the previous day (day -1) and 

the day after (day +1) is considered to occur on day 0. Above method was also used to calculate the climatic values of F 5 

which are based on Gregorian calendar days. For a station from 1st January to 31st March, everyday has a precipitation 

frequency. Then to this climatic sequence, we used a 7-day window filter to reserve the changes more than 7 days because 

the typical synoptic time scale is approximately 7 days. For a station, in a specific day, like day 0, all precipitation 

frequencies whose lunar date is day 0 were found from the climatic sequence and calculated the average. The departure of F 

from the average is the anomalous frequency (F). Final result is the average of all stations’ anomalies. 10 

3 Results 

3.1 Significant reduction of precipitation 

We computed the daily anomalies of the precipitation frequencies for each of the stations. To determine how the 

precipitation might change before and after New Year’s Day, we considered days from -12 to +12. This method is similar to 

that of the work of Gong et al. (2014). We also tried to use a longer time window and found that the conclusions remain the 15 

same. To focus on southern China, we computed the means for all 155 stations within the target area (Figure 1). The regional 

mean F is shown in Figure 2a. Although the F before the LNYD is generally positive, the salient feature is the F 

reduction after the LNYD. The mean for day +3 to +7 is -5.5%, and a minimum of -9.4% occurs on day +5. Note that the 

largest reductions occur on days [+4, +6], where the averaged anomalies are as low as -7.4%. Precipitation is a natural 

phenomenon. Thus, its frequency anomaly should be spatiotemporally random for a certain day from 1979-2012 among all 20 

the stations over this large region. The standard deviation of the stations’ F would provide information concerning further 

uncertainties. A smaller standard deviation suggests that similar anomalies tend to be observed, thus indicating a robust 

signal, whereas a larger standard deviation implies diverse changes. We found that the standard deviation of the days [+3, +7] 

is approximately ±3.7%, being smaller than most days before the LNYD. Note that the means may be biased by outliers or 

skewness. Thus, to determine the diverseness of these frequency anomalies among the 155 stations, we also computed the 25 

medians and the lower and upper percentiles. In Figure 2a, the ranges of the 10th and 90th percentiles are plotted as the error 

bars and are shown with the medians. The 90th percentiles for the days [+4, +6] are clearly -0.9%, -3.9%, and -1.7% 

respectively, all being significantly below 0. At the same time, the medians are generally similar to the means; for example, 

on days [+3, +7], the means (-3.1%, -6.5%, -9.4%, -6.3%, and -2.2%) and medians (-3.6%, -7.0%, -9.8%, -7.0%, and -1.8%) 

are almost identical, likely suggesting that the majority of the anomalies tend to be negative and that the means are not 30 

skewed by large departures or outliers. 
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We further investigated the statistical significances of the precipitation anomalies by employing a Monte-Carlo 

approach (e.g., Stjern, 2011; Wang et al., 2012). Here, the Monte-Carlo test was performed by randomly rearranging the 

sequences of the lunar calendar days. For each experiment, we first generated the random sequence and then estimated the 

frequencies for each lunara specific day station by station. In addition, the regional anomaly mean was calculated as 

described above. We repeated these steps 1000 times and obtained the 10th and 90th percentiles of these experiments. By 5 

comparing observations with these Monte-Carlo-yielded percentiles, we might estimate whether the frequency anomalies are 

beyond those of random chance. If the original observations are lower than the 10th percentile, these measurements are 

significant at the 0.1 level.  

For the regional mean frequency anomalies, there are few cases where the simulated anomaly is smaller than the 

observations during the holidays. Only 1 of 1000 random Monte-Carlo experiments is below the observation on day +5. On 10 

days +4 and +6, there are 10 and 14 cases with values smaller than the observation. On days +3 and +7, there are slightly 

more (135 and 190, respectively). We found that the 10th percentiles during days +4 to +6 are -3.6%, -3.4% and -3.5%, 

respectively. Note that the observations (-6.5%, -9.4% and -6.3%) are all below the corresponding 10th percentiles of the 

Monte-Carlo experiments. Therefore, we may conclude that the observed F is significant at the 0.1 level from days +4 to 

+6. We also examined the medians of the 155 stations and found a similar result. From day +4 to +6, there are only 9, 1 and 15 

7 cases with values below the observations. The observed medians during days +4 to +6 are -7.0%, -9.8% and -7.0%, which 

are all below the Monte-Carlo 10th percentiles (-3.7%, -3.6% and -3.6%, respectively).  

We further investigated the possible changes of daily precipitation amounts. Here, all trace precipitation records are 

excluded. The composite method is similar to that for frequency. In other words, for a specific lunar calendar day, the 

anomalous amount is calculated as the mean daily precipitation amount minus the climate reference, where the climate 20 

reference is estimated based on the Gregorian calendar. Then, we averaged the anomalies for all stations to obtain a regional 

mean. Figure 2b shows the result. Unlike the precipitation frequency, the amount shows no evident departures before the 

LNYD. Interestingly, from day +2 to day +5, the amounts experience continuously negative anomalies with a mean of -

0.62 mm d-1. In particular, a minimum of -1.0 mm d-1 occurs on day +3. During days +2, +4, and +5 the anomalies are 

similar (being -0.54, 0.52, and -0.48 mm d-1, respectively). Differing from the precipitation frequency, the amount ranges 25 

from the 10th-90th percentiles are obviously larger. In addition, during days [+2, +5], the upper bounds all exceed zero and 

imply larger uncertainties. Thus, the gradual decrease in the amount after the LNYD is likely consistent with the significant 

reduction in precipitation frequency. Note that the Monte-Carlo test suggests a high confidence of the negative amount 

anomalies during the holidays. Of 1000 Monte-Carlo experiments, there are 83, 14, 75 and 70 cases with values smaller than 

the observations during days [+2, +5]. The Monte-Carlo 10th percentiles for days [+2, +5] are -0.47, -0.45, -0.42 and -30 

0.40 mm d-1, respectively, whereas the corresponding observations of -0.54, -0.95, -0.52 and -0.48 mm d-1 are all smaller. 

We also examined the median of the 155 stations by employing the Monte-Carlo test. The result is similar. There are 70, 16, 

66 and 43 experimental values that are smaller than those observed. The medians of the observation for these days (-0.63, -

0.97, -0.65 and -0.70 mm d-1, respectively) are all smaller than the corresponding Monte-Carlo 10th percentiles (-0.56, -0.54, 
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-0.52 and -0.47, respectively). Therefore, the means and medians of the amount anomalies during days [+2, +5] are 

significant at the 0.1 level. Note that the large error bars in Figure 2b may imply somewhat larger diversities/differences of 

the daily precipitation amounts among the 155 stations. The Monte-Carlo test likely provides a more reasonable estimation 

of the significance. With the above analysis, we may conclude that there is a significant reduction in the precipitation 

frequency and a decrease in the daily precipitation amount after the LNYD. 5 

3.2 Spatial distribution of the holiday precipitation anomalies 

Although the precipitation reduction after the LNYD is evident in the composite analysis based on the regional means 

(Figure 2), this feature might differ among stations. In this subsection, we investigate the spatial distribution of the 

precipitation anomalies. A significant frequency reduction occurs on days [+4, +6], and a significant amount reduction 

appears on days [+2, +5]. Here, we computed the mean frequency anomalies during days [+4, +6] and the mean amount 10 

anomalies during [+2, +5] for each station. The statistical significance is also estimated using the Monte-Carlo test at each 

station. The method used is similar to that described in Section 3.1. Here, the Monte-Carlo test was performed for every 

station by randomly rearranging the lunar calendar, and the simulation was repeated 1000 times. The 10th (90th) and 20th (80th) 

percentiles were taken as the criteria. For the precipitation frequency, the mean value is regarded as significant at the 0.1 (or 

the 0.2) level only when the anomalies in all three days (i.e., days +4, +5 and +6) were significant at the 0.1 (or 0.2) level. 15 

Similarly, when the daily precipitation amounts on all four individual days (from day +2 to +5) are significant, their mean is 

regarded as a significant anomaly. The results are shown in Figure 3.  

Figure 3a shows that the majority of the F have negative signs. Among the 155 stations, only 7 stations have positive 

signs, and none of these positive anomalies are significant. Of the 148 stations with F reductions, 57 stations are significant 

at the 0.1 level, and 108 are significant at the 0.2 level. Most stations located in the north and east of study area have the 20 

significant F reduction. The F reduction center is mainly located over the central region (approximately 108°E-115°E and 

28°N-32°N). The F minimum reaches -13.5% at the Sansui station (27°N, 108°E). Looking at the anomaly’s magnitude, 

there are 55 stations with F reductions exceeding -9%. Among these 55 stations, the anomalies for 45 stations are 

significant at the 0.1 level, and those at the other 10 stations are significant at the 0.2 level.  

Unlike the frequency, the spatial features of the amount anomalies differ among stations (Figure 3b), which is 25 

consistent with the relatively larger span of the 10th-90th percentiles, as shown in Figure 2b. Nevertheless, there are still 117 

stations with decreased amounts during days [+2, +5]. Among these, 27 stations showed decreases significant at the 0.2 level, 

and 8 stations showed those significant at the 0.1 level. The largest reduction is -2.41 mm d-1, which appeared at the 

Shouxian station (32°N, 116°E).  

Based on the above analysis of the temporal composites and spatial distributions, we found that the significant 30 

reductions of precipitation frequency and daily precipitation amount occur regionally within an approximate one-week 

period after the LNYD. 
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3.3 Relative humidity and cloud anomalies 

Relative humidity (RH) is the most important factors that directly controls/influences precipitation. In this subsection, we 

investigate the possible changes in the relative humidities associated with the holiday precipitation decreases. Here, we 

examined the station data to analyze the relative humidity by making composites. Note that the method of estimating the 

anomalies is different from that for precipitation frequencies. The composites of the relative humidity (as well as those of 5 

other meteorological parameters analyzed in the following sections) are based on anomalies (RH), which are obtained by 

subtracting the 1979-2012 long-term mean from the daily relative humidity values.  

For each lunar calendar day, all 34 daily anomalies are collected and subjected to a t-test with the null hypothesis of 

their mean being not significantly different from zero at the 0.05 (or 0.1) level. In Figure 4, we plotted the means during days 

[-12, +12]. To facilitate a comparison, the range of one standard error estimated from the 34 anomalies is shown via error 10 

bars. The RH experiences an evident decrease from day +2 to +7, with a mean value of -2.5%. The driest value is -4.6% at 

day +5. The mean RH of the lowest anomalies for days [+4, +6] is -3.9%, which is significant at the 0.1 level as estimated 

from a left-tail t-test. Note that the drying (wetting) may be the result of less (more) precipitation, as demonstrated in the 

previous sections. For clarity, we also computed the RH using only the data from no-rain days. We found that the RH for 

no-rain cases shows a similar temporal feature (figure not shown). The lowest values still occur on days [+4, +6], with 15 

anomalies of -0.97%, -0.69% and -0.38%, respectively. However, these anomalies are not statistically significant. This result 

could be caused by the relatively smaller data sample and excluding the precipitation days. The sample numbers of no rain 

days is 48.9% of that of all days. In any case, the similar drying features on no-rain days may provide support for the theory 

that the lower RH could be a cause of the precipitation reduction and may even help enhance the drying.  

We also examined the spatial distribution of the RH. The station means of the RH during days [+4, +6] are plotted in 20 

Figure 5. All 155 stations show negative anomalies, with a maximum and a minimum of -0.6% and -8.1%, respectively. 

When estimating the statistical significance, we consider the mean for days [+4, +6]. Thus, we did not consider the 

significance of each of the three days. If the resulting anomaly is significant at the 0.05 (or 0.1) level as calculated by a t-test, 

this station is regarded as significant during days [+4, +6]. As shown in Figure 5, there are 70 (98) stations that are 

significant at the 0.05 (0.1) level. Additionally, we investigated the spatial features of no-rain days and found that most RH 25 

during days [+4, +6] were also negative (the number of days is 136, accounting for approximately 88% of the total stations), 

and the lowest anomaly is -7.6% (figure not shown). Again, this result suggests a drying atmosphere near the surface during 

the New Year’s holiday. 

For the precipitationstratification of stratusprecipitation during the winter season, the relative humidity in the middle-

lower troposphere is more important than the surface humidity. The precipitation reduction could occur with a drier and 30 

upperhigher atmosphere. We then investigated the RH in the low-middle level troposphere using the ERA-Interim 

reanalysis datasets of the pressure levels from 1979 to 2012. Here, we selected 99 grid points between 21°N-33°N and 

108°E-123°E. We examined the RH values at each level from 1000 hPa to 500 hPa. Generally, the results are similar, 
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showing drying tendencies throughout, as expected. Note that the RH values in the low levels are more evident. At 1000 

hPa, the RH has a continuous reduction during days [+3, +6], with a mean decrease of -3.8%. The negative anomalies on 

these days are significant at the 0.1 level. The largest reduction occurs on day +5, being -5.2% (figure not shown). In Figure 

4, we plot the regional mean RH at 850 hPa. A similar reduction is observed during days [+2, +6], where the lowest 

anomalies are still found on days [+4, +6]. In addition, the values on days +4 and +5 (-4.0% and -5.7%) are both significant 5 

at the 0.1 level. In the middle-upper troposphere, the RH during the holidays is not evident.  

The spatial distributions of RH at 1000 and 850 hPa during days [+4, +6] were also analyzed. At 1000 hPa, the 

majority of the significantly negative RH values were located over southern China and the neighboring western Pacific, 

with a northeast-southwest distribution. The results at 850 hPa are plotted in Figure 5, and only the significant values (above 

the 0.1 level) are shown. At 850 hPa, the significant region is smaller spatially but has a greater magnitude than that at 1000 10 

hPa. Over the land, the majority of the anomalies are between -4% and -6% at 1000 hPa, whereas the values are between -6% 

and -10% at 850 hPa. The minimum grid point value at 1000 hPa is -6.5%, while the minimum is as low as -9.7% at 850 hPa. 

The drying in the lower troposphere can be more clearly seen in the relative humidity profiles. The vertical profile of 

the RH during days +4 to +6, as averaged over all 99 grids in southern China, is shown in Figure 6. Because the meaningful 

changes occurred in the lower troposphere, here we plotted only the RH values below the 500 hPa level. Below 500 hPa, 15 

the anomalies all have negative signs. In addition, the significant RH values appear below approximately the 800 hPa level 

(Figure 6a). The negative anomaly at 850 hPa is -3.9%, and that at 1000 hPa is -4.2%. The mean for these layers (below 800 

hPa) is -3.9%. Generally, the significant drying of the relative humidity appears in the low-middle level, which physically 

agrees with the precipitation reduction.  

As the relative humidity at the low-middle level decreases, consistent changes in clouds should occur, particularly in the 20 

low-level cloud coverage (LCC). To confirm this, we first analyzed the surface-observed cloud data, which are from the 

Global Surface Weather Dataset obtained from the China Meteorological Administration. In this dataset, the observations are 

taken 4 times per day (00:00, 06:00, 12:00, 18:00 UTC) during the years 1980-2012, except for during 2000, which is not 

available. Only those days with all 4 records are included. Of the 304 stations in our study area, we selected 137 stations 

with overall data availabilities above 30%. When deriving the anomalies, we applied the same method as that used for RH. 25 

The results show that both the total cloud cover showed no evident changesand LCC reduces, especially the LCC 

experiences a significant decrease during the New Year’s holiday. It seems the reduction of total cloud cover is contributed 

by the decrease of low cloud cover, whereas the LCC experiences a significant decrease during the New Year’s holiday. The 

mean anomaly of LCC during days [+1, +5] is -2.6%. In addition, a minimum of -3.1% appears on day +5, which is 

significant at the 0.1 level. We should note that sometimes the LCC cannot be completely distinguished from the 30 

middleedium cloud cover in the station observations. Moreover, the cloud cover changes rapidly and might depend on the 

observer. At nighttime, the uncertainty of the observations is much greater. We would expect more reliable observations 

during the daytime. The mean LCC of 00:00 and 06:00 UTC is computed and regarded as the daytime observation. As 
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shown in Figure 4b, the daytime LCC shows an evident reduction during days [+4, +6]. The values of each of three days are 

all significant at the 0.1 level, as estimated using a left-tail t-test. The mean for the three days is -6.1%, and a minimum of -

9.7% occurs on day +5. Compared to the climate daytime cloud cover of 78% during January to March in southern China, 

the LCC reduction during the New Year’s holiday has a considerably large magnitude. Figure 5b shows the spatial 

distribution of the daytime LCC values during days [+4, +6]. For a total of 137 stations, 119 (86.9%) stations showed 5 

negative signs. In addition, there are 8 (27) stations with values significant at the 0.05 (0.1) level, as estimated via a both-tail 

t-test. A minimum of -16.8% occurs at the Fuyang station (33°N, 115°E). 

To assess the robustness of the cloud cover changes, the cloud cover of the ERA-Interim data was investigated. We 

found that the high cloud cover and the middleedium cloud cover showed no significant changes (figure not shown). 

Interestingly, there is a significant reduction in the LCC during the New Year’s holidays. Figure 4d shows the temporal 10 

variations of the ERA-Interim LCC. The LCC clearly shows an outstanding reduction during days [+4, +6]. The largest 

reduction, i.e., -5.9%, appears on day +5. The values from day +4 to day +5 are all significant at the 0.1 level, as calculated 

by a left-tail t-test. Averaging over days [+4, +6], the mean value is -5.0%. This magnitude is comparable to the station-

based daytime LCC anomaly (-6.1%). The spatial distribution of the LCC anomalies for the ERA-Interim data during days 

[+4, +6] is shown in Figure 5d. The LCC reduction center is located in the eastern region and has a magnitude between 15 

approximately -8% and -12%. This reduction is almost identical to that of the station observation (c.f., Figure 5b, d). Note 

that in the ERA-Interim data, the cloud height is defined according to the corresponding sigma level. The low clouds 

correspond to sigma 0.8-1.0. A significant decrease of the relative humidity occurs below 800 hPa (Figure 6a), which 

physically agrees with the negative LCC anomalies. 

3.4 Temperature and water vapor anomalies 20 

The negative RH during the holidays might be caused by anomalous temperatures, by the water vapor or both, depending 

on certain conditions. In this subsection, we analyze the changes of the temperature and water vapor associated with the 

holiday precipitation reduction. First, we examined the temporal changes of the temperature over southern China using the 

same composite analysis as that used for the relative humidity. We found that there is a continuous cooling of the daily mean 

temperatures from day -3 to day +6, which are all significant at the 0.1 level, as estimated by a left-tail t-test (figure not 25 

shown). The mean temperature anomaly of these days is -1.12C. The maximum and minimum temperature anomalies are -

0.70C and -1.42C for days +6 and +3, respectively. Precipitation often causes a low temperature. To exclude the possible 

influence of precipitation on temperature, we also examined the daily temperatures for no-rain days and found a similar 

temperature anomaly of -1.22C for days +1 to +6. In addition, there is a similar minimum of -1.48C. These values for the 

no-rain days are significant at the 0.05 level.  30 

Note that Gong et al. (2014) have reported negative temperature anomalies over the whole of eastern China around the 

LNYD when analyzing the shorter data period of 2001-2012. They found that the most significant decrease appears on days -
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3 to +2, with a mean value of -0.81C. The temperature beyond this period over the southern China, however, was not 

addressed in their analysis. As demonstrated in the previous sections, the most significant reductions of the F and RH are 

observed on days [+4, +6]. Thus, we further computed the mean of the temperature anomalies (T) for days [+4, +6] and 

estimated their statistical significances using a t-test for each of the stations. The results show that all 155 stations have 

negative anomalies (figure not shown). The maximum T of -0.28C occurs at the Fengjie station (31°N, 109°E), and a 5 

minimum of -2.14C appears at the Jiuxian station (25°N, 118°E). The anomalies for 116 stations are statistically significant 

at the 0.1 level, and those for 95 stations are significant at the 0.05 level. We also investigated the temperature anomalies 

during days [+4, +6] using no-rain days and found similar results. All stations continue to show negative anomalies, and 

more stations are significant (134 stations exceed the 0.1 level, 117 stations exceed the 0.05 level). 

The above spatial distribution suggests that temperature anomalies are unlikely at the local scale. For clarity, we also 10 

investigated the vertical profiles and the spatial distributions of T using the ERA-Interim pressure level data. The mean T 

values below the 500 hPa level during days [+4, +6] are averaged for all 99 grid points over southern China and plotted in  

Figure 6b. The significant negative temperature anomalies below 700 hPa are evident, where all values are as low as < -1C. 

The mean for these layers is -1.37C. To determine whether the cooling of lower-middle troposphere is a regional-scale 

phenomenon, we further analyzed the T’s spatial distribution. Note that the minimum of -1.56C occurs at the 850 hPa 15 

level in Figure 6b. Here, we computed the 850 hPa T during days [+4,+6] for each of the grid points (figure not shown), 

revealing that the majority of the study area experiences a significant cooling (exceeding -1C) that is almost identical to that 

from the surface station observations. Based on these analyses, we may conclude that during the holidays (particularly, days 

[+4, +6]), there is an anomalous temperature cooling over southern China from the surface to the middle troposphere (below 

500 hPa).  20 

Cooling favors condensation and precipitation. If the water vapor content remains a constant, a cooler temperature 

should result in a higher RH. During the period of 1979-2012, over southern China, the climatic mean temperatures for 

days [+4, +6] at 1000 hPa and 850 hPa are 9.3C and 3.3C, respectively. Meanwhile, the specific humidities at 1000 hPa 

and 850 hPa are 5.5 g kg-1 and 4.4 g kg-1. According to the Clausius-Clapeyron equation (Murray, 1967), the climatological 

relative humidities are, respectively, 75.4% at 1000 hPa and 77.5% at 850 hPa. The observed coolings of -1.15C at 1000 25 

hPa and -1.56C at 850 hPa (Figure 6b) could cause corresponding RH increases of +6.0% and +9.1%, respectively. This 

contradicts the observed negative RH anomalies (c.f., Figure 5). Therefore, the cooling temperature is not a direct factor 

causing the drier RH and the precipitation reduction.  

Alternatively, the water vapor should be responsible for the anomalous RH. We analyzed the station specific humidity 

(SH). Here, the SH is estimated from the surface pressure, relative humidity and temperature, where the Tetens formula is 30 

employed to estimate the saturated vapor pressure over water (Murray, 1967). Figure 7a shows the specific humidity 

anomalies (SH) before and after the LNYD. Evident negative anomalies persist from days -3 to +7. The lowest values 
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appear at approximately days [+4, +5]. Note that the negative SHs during days +2 to +6 are significant at the 0.05 level, 

with a mean of -0.71 g kg-1. A minimum of -0.82 g kg-1 occurs on day +4. In addition, the average SH for days [+4, +6] is -

0.73 g kg-1. We repeated the composite analyses for no-rain days and found that the SH have similar continuous reductions 

after New Year’s Day (Figure 7b). The SHs of days [+2, +5] are significant at the 0.1 level, and their mean is -0.43 g kg-1. 

The minimum of -0.54 g kg-1 also appears on day +4, while the mean from day +4 to +6 is -0.46 g kg-1, being smaller than 5 

the values estimated for all days. At the same time, the spatial distribution of SH during days [+4, +6] reveals a regional-

scale reduction over the study area (Figure 8). All stations clearly show negative anomalies, both when all days are analyzed 

and when only no-rain days are analyzed. In the former instance, the SH values for the 140 stations is statistically 

significant at the 0.05 level, and in the latter case, the number of stations with statistically significant values is 102. 

We further investigated the SH values in the low-middle troposphere using the ERA-Interim reanalysis data. The SH 10 

at 1000 hPa (850 hPa) during days [+2, +6] are all significant at the 0.05 (0.1) level, with a mean of -0.75 (-0.65) g kg-1. It is 

clear that the SH at 1000 hPa and 850 hPa display features similar to those of the surface observations in both their 

temporal variations and the magnitudes of the negative anomalies during the holidays (c.f., Figure 7). Furthermore, we 

investigated the spatial distributions of SH on days [+4, +6]. The evident SH reduction covers almost the whole of 

southern China, with minimums extending from southeastern China to the western North Pacific, south of approximately 15 

30N (Figure 8). The anomaly center lies between 110°E-130°E and 20°N-30°N.  

The drying of the SH in the low-middle troposphere is more obvious, as seen in the vertical profile (Figure 6c). The 

significant negative SH values appear in the levels below 700 hPa. Below 800 hPa, the SH values are all below -0.50 g 

kg-1. The mean for these layers (800 hPa to 1000 hPa) is -0.70 g kg-1. Similarly, we also estimated the variations of the 

relative humidity corresponding to these SHs. The SHs at 1000 hPa and 850 hPa are -0.78 g kg-1 and -0.69 g kg-1, 20 

respectively (Figure 6c). If the temperature remains unchanged, these values would reduce the relative humidity by -10.9% 

and -12.3%, respectively. Obviously, the reduction of the water vapor in the lower-middle troposphere plays the dominant 

role in causing anomalous relative humidities, low-level clouds and precipitations.  

The total column water vapor (TCWV), or the precipitable water, is also a large-scale factor that correlates well with 

precipitation (e.g., Qian et al., 2009). The drying from the surface to the mid-troposphere is suggestive of the reduction in the 25 

TCWV. For clarification, we performed a composite analysis of the ERA-Interim TCWV. Unsurprisingly, the TCWV 

experiences a continuous reduction from day +1 to day +5 (Figure 9a). The TCWV are significant at the 0.05 level during 

days [+2, +5], with a mean of -1.93 kg m-2. In addition, the largest negative TCWV values are observed on days +4 and +5 

(2.43 kg m-2 and 2.36 kg m-2, respectively). The spatial distribution of the TCWV values during days [+4, +6] is shown in 

Figure 9b. The TCWV decreases by approximately -1.00 kg m-2 or more over most of the southern China. The minimum is 30 

located over the neighboring western North Pacific, between 120°E-130°E and 20°N-30°N. Meanwhile, positive TCWVs 

with somewhat smaller magnitudes appear to the east (over approximately 150°E-175°E and 20°N-30°N). Generally, the 

reduction in the TCWV over the western North Pacific and eastern China is physically consistent with the negative 
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anomalies of the SH over southern China. The observed decrease in precipitable water during the holidays is unfavorable for 

precipitation. 

Based on the above analysis, we may conclude that, although the relative humidity (as well as the relevant cloud cover 

and precipitation) would benefit from the cooling temperatures, its reduction during days [+4, +6] is strongly dominated by 

the drying water vapor in the lower troposphere. Therefore, the reduction of the SH is likely to contribute to the decrease of 5 

precipitation during the New Year’s holiday. 

3.5 Water vapor budget and atmospheric circulation 

Our analysis demonstrates that in association with the significant precipitation reduction over southern China, anomalous 

negative departure of the SH occurs. One further question is that what causes such water vapor deficits during the New 

Year’s holiday. Here, we discuss the possible factors relevant to the atmospheric column water vapor balance as well as their 10 

individual contributions. Regional changes of the column water vapor are essentially related to two components. One is the 

budget between evaporation and precipitation, the other is the budget of moisture inflow and outflow from the horizontal air 

motion crossing the four lateral boundaries. We investigate the corresponding anomalies separately during the holidays.  

First, we computed the differences between the evaporation and the total precipitation (evaporation minus precipitation, 

i.e., E-P) using the ERA-Interim data from 00:00 and 12:00 UTC. Note that both evaporation and precipitation are forecasted, 15 

and the accumulated variables are collected at step 12. We analyzed the E-P anomaly (mm, equivalent to kg m-2) during the 

holidays (figure not shown). From days +1 to +5, the E-P anomalies were all positive values with a mean of 0.85 mm. In 

addition, the anomalies on days +3, +4 and +5 were all significant at the 0.05 level. The maximum of the E-P anomaly 

(+1.25 mm) appeared on day +4. We also investigated the evaporation independently and found that the evaporation is 

enhanced during holidays, with the mean of the evaporation anomalies reaching +0.39 mm (figure not shown). We should 20 

note that the positive E-P anomalies occur concurrently with precipitation reductions. The E-P anomalies are likely 

dominated by precipitation changes. Although the positive E-P anomaly implies a net gain, this effect cannot account for the 

total net loss of the column water vapor. 

Second, we investigated the column water vapor budget contributed by horizontal transport. Here, we simply estimated 

the moisture flux across the borders (i.e., the box in Figure 1). The vertically integrated moisture transport (Q) crossing the 25 

border is defined as follows: 

𝒬 = ∫ [
1

𝑔
∫ 𝑞 · 𝑉𝑑𝑝
1000ℎ𝑃𝑎

500ℎ𝑃𝑎
] 𝑑𝑙

𝐿
 ,              (2) 

where V is the horizontal wind vector, g is the gravitational acceleration, q is the SH and L is the length of the border. 

Moisture transport above 500 hPa is ignored as its contribution to the total column moisture transport is relatively small, and 

large winds tend to cause errors in the upper troposphere where the SH is quite small (Qian et al., 2009). Along the northern 30 

and southern borders, we computed the meridional transport, while along the eastern and western borders, we computed only 

the zonal transport. The summation of the meridional and zonal transports yields the net budget. The result shows the net 
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water budgets are negative from day +1 to day +5 (figure not shown), with a mean of -2.9×107 kg s-1. Note that the anomalies 

of days +1, +3 and +4 are all significant at the 0.05 level. The lowest water vapor budget is -4.4×107 kg s-1 (about -1.96 kg m-

2
 day-1), occurring on day +4. This simple calculation suggests that the horizontal moisture transport dominates the 

anomalous variations of the total net water vapor budget.  

Because the negative anomaly in the water vapor budget may be caused by a reduced inflowing water vapor transport or 5 

by an increased outflowing transport, we investigated the transport crossing of each of the boundaries during the holidays. 

We found that the zonal transports crossing the eastern and western borders are negligible (figure not shown). In contrast, the 

water vapor transport at the southern boundary has the greatest magnitude (Figure 9). The southern border shows continuous 

negative anomalies from day +1 to day +5, and the largest departure, of -5.5×107 kg s-1, occurs on day +4. The anomalies 

during days +2 to +5 are significant at the 0.05 level and have a mean of -4.4×107 kg s-1. Thus, the negative transport 10 

crossing the southern border implies an enhanced outflow, and is largely responsible for the net loss of the column water 

vapor during holidays.  

The water vapor transport over this large area should be closely related to the regional atmospheric circulation. Previous 

studies have emphasized the importance of the anomalous atmospheric circulation over the western Pacific in modulating the 

precipitation over southern China by influencing the moisture transport and convergence (e.g., He et al. 2007; Li et al., 2013; 15 

among others). To elaborate on the details of the regional atmospheric circulation around the New Year’s holiday, we 

investigated the tropospheric horizontal winds over eastern Asia. The vertical mean horizontal winds averaged from 1000 

hPa to 700 hPa are plotted in Figure 9b. Over southeastern China, there are clear dominant northerly wind anomalies. The 

northerly winds flow toward the east over the western Pacific, south of approximate 25N, and then turn northward. 

Consistent with this cyclonic circulation anomaly, eastern China and the neighboring western Pacific experience remarkable 20 

reductions in the column water vapor. This pattern remains stable when looking at each of the pressure levels in the mid-

troposphere. For example, at the 850 hPa level, the anomalous cyclone is more evident and the strong northerly winds over 

southeastern China are greater than the vertical means (Figure 9c). Interestingly, the precipitation reduction in the southern 

China is well captured in the ERA-Interim reanalysis, and such a reduction is physically consistent with the large-scale 

atmospheric circulation change. We repeated the composite analysis of the atmospheric circulation using the NCEP/NCAR 25 

Reanalysis I and NCEP–DOE Reanalysis II datasets and found a similar pattern (figures not shown). Employing the same 

ERA-Interim data but a shorter data length (2001-2012), Gong et al. (2014) also reported a similarly anomalous circulation 

pattern over East Asia around the Chinese New Year. This anomalous cyclone is likely a robust signal of the holiday weather. 

Generally, this anomalous cyclone plays a dominant role in bringing stronger northerly wind, causing drier humidities and 

lower water vapor values, finally resulting in less precipitation over southeastern China. 30 
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4 Discussion on co-variations in holiday air pollution of possible aerosol effects 

4.1 Air pollution reduction over eastern China 

The CSF is a cultural tradition that is directly related to the daily activity of human beings, particularly economic activities. 

The concurrent phenomena observed in atmospheric physics and weather likely imply links between these systems. We 

suspect the holiday anthropogenic emission  aerosolsmay act as an intermediate connection. Aerosol concentrationsAir 5 

pollutants were widely reported to considerably decrease during this holiday. For example, Tan et al. (2009) investigated the 

1994-2006 observations from 13 monitoring sites around the Taipei metropolitan area and found that the concentrations of 

NOx, CO, nonmethane hydrocarbon, SO2 and PM10 were lower during the New Year period than during the non-New Year 

periods. Using three different approaches considering   the thermal power generation, satellite retrieval products and 

statistical and modeling attributing, Lin and McElroy (2011) estimated that the economic slowdown during the celebrations 10 

of CSF was responsible for a notable reduction in anthropogenic emission. According to their estimations for 2005, 2007 

2008 and 2010, the CSF contributes a NOx emission reduction of 12%. In addition, the 2009 CSF contributed a reduction of 

10%. These estimations are comparable to those given in the work of Gong et al., (2014), in which they reported a PM10 

reduction derived from 323 surface station measurements over eastern China and estimated the magnitude of the PM10 

concentration decrease to be approximately -9.24% for the days -4 to +5 (excluding day 0 to rule out the New Year’s Eve 15 

firework emissions).  

Note that the boreal winter is the season when the air pollution concentration reaches its peak over China. Thus, we 

investigated the climatic mean and holiday changes of the aerosol optical depth (AOD). Here, the AOD data were obtained 

from the Moderate Resolution Imaging Spectroradiometer (MODIS) data sets produced by using the AOD 550 Dark Target 

Deep Blue algorithm and combined by the MOD08_D3 and MYD08_D3 product (Platnick et al., 2015a; Platnick et al., 20 

2015b). These daily level-3 gridded atmospheric data are available from 2002 to 2012 at a 1-degree spatial resolution. As 

shown in Figure 1, the climatic mean AOD during January and February for eastern China is remarkably greater than those 

of the surrounding areas and has two maximum centers, one appearing to the north (i.e., the northern plains) and the other 

appearing to the west (namely, over Sichuan Basin). Concurrently, a considerably high AOD appears over southern China, 

ranging from 0.4 to 0.8. For comparison, the spatial distribution of PM10 concentrations in January-February is also provided. 25 

Generally, the PM10 concentration in the north is higher than that in the south. However, the pollution in southern China is 

also severe in the winter. 

To better understand the aerosol changes during the holidays, we simply investigated the frequency distribution of the 

AOD for days [+1, +5]. During this period, a significant net water vapor reduction is observed. Because frequent cloudy 

weather causes a smaller clear-day AOD sample, it is difficult to calculate a meaningful daily AOD anomaly. Alternatively, 30 

we randomly selected days [-15, -11] to compute the preholiday period AOD frequency distribution for comparison. We also 

tested other time period, like days [-12, -8], and the result is robust. The frequencies for the holiday and preholiday periods 

were both calculated based on the original AOD data using a bin width of 0.2 (Figure 10). The ambient atmosphere during 
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the holidays is much cleaner than that of the preholiday period. On average, the AOD means for days [-15, -11] and days [+1, 

+5] are 0.67 and 0.58 for southern China, respectively. During the holidays, the magnitude of AOD reduction is shown to be 

approximately -13.4%. The improvement of air quality is well demonstrated by the frequency changes shown in Figure 10. 

The frequencies of the cases in which AOD > 0.6 are 50.4% and 36.6% for days [-15, -11] and days [+1, +5], respectively. 

This result shows a decrease of 13.8%. Note that the largest frequency reduction (approximately -6.7%) occurs in the bin of 5 

0.6-0.8. Additionally, the daily PM10 data were also analyzed for comparison and were calculated from the daily air pollution 

index (API) (Gong et al., 2007). There are 113 stations in our study area. Similar to the AOD, the PM10 frequency 

distribution was calculated with a bin width of 20 μg m-3 for both the holidays and pre-holidays. The frequency of PM10 

concentrations greater than 100 μg m-3 during the holiday period is 19.8%, while the frequency for the same bin during the 

preholiday period is 41.7%. There is a 21.9% reduction in the high-PM10 concentration cases during the CSF holidays. Not 10 

only do the frequencies change but the mean PM10 concentrations also evidently decrease. The mean PM10 concentrations for 

days [-15, -11] and days [+1, +5] are 98.9 μg m-3 and 71.5 μg m-3, respectively.  

In addition to southern China, eastern Asia shows a marked drop in air pollution concentrations (figure not shown). We 

investigated the mean AOD and PM10 values of eastern China (108°E-123°E and 21°N -42°N). The AOD values decrease 

from 0.60 during days [-15, -11] to 0.58 during days [+1, +5]. The frequency of cases with AOD > 0.6 is 33.3% during the 15 

holiday period, while the frequency for the preholiday period is 38.1%. Additionally, the mean PM10 concentrations for days 

[-15, -11] and days [+1, +5] are 112.7 μg m-3 and 85.2 μg m-3, respectively. The reduction in high-pollution cases is notable. 

The proportion of PM10 >100 μg m-3 records declined from 47.9% to 30.1%. The simultaneous and anomalous variations of 

the pollution concentrations of PM10 in southern and eastern China can be clearly seen in their temporal composites, as 

shown in Figure 10c. The significant negative anomalies around the LNYD clearly appear in both eastern and southern 20 

China, and their lowest departures both occur a couple of days before New Year’s Day. For eastern China, the mean value 

for days [-4, -1] is -12.26 μg m-3, which is approximately 14.71% smaller than the climatic background concentration (83.35 

μg m-3). In southern China, the mean of the anomalies during days [-4, -1] is -9.07 μg m-3, being 12.63% lower than that of 

the background (71.84 μg m-3). These robust AOD and PM10 signals clearly demonstrate that around the LNYD, eastern 

China experiences a relatively cleaner ambient atmospheric environment although the climatic background air pollution level 25 

in January and February is the highest of all seasons. 

Note the PM10 composites might be biased by their trends and outliers. To address this question, we repeated the 

analysis based on yearly normalized data. Here all PM10 data are rescaled according to maximum minus minimum range year 

by year. The normalized data show that the frequency of PM10 greater than 0.2 during days [-152, -118] is 44.1% while the 

frequency for the same bin during days [+1, +5] is 23.9%. The mean value for days [-4, -1] is 16% lower than climate mean. 30 

This agrees well with above analysis.  

We further investigated the radiation from MERRA2. Here we employed two MERRA2 products, one runs with 

assimilation aerosols and the other without (Gelaro et al., 2017). We analysed the longwave radiation at top-of-atmosphere 

by making composites same as that for temperature. Results are shown in Figure 11. It is clear that significant negative 
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anomalies appear on days [-4, -1] and [+3, +6] in both the MERRA2 products with/without assimilation aerosols. The means 

for these two short periods are respectively -1.77 and -1.57 Wm-2 in no aerosol MERRA2 dataset. Meanwhile, the mean 

longwave radiation anomalies are -1.79 and -1.58 Wm-2 in MERRA2 with aerosols. ERA-Interim has similar results (Figure 

11). The analysed radiation datasets in MERRA2 and ERA-Interim are both under clear sky condition. Top-of-atmosphere 

longwave radiation reflects equivalent temperature of air column, smaller top-of-atmosphere upwelling longwave radiation 5 

means a cooler beneath atmosphere. Top-of-atmosphere net radiation anomalies during holidays are also negative due to 

longwave radiation (figure not shown). The negative longwave and net radiation at top-of-atmosphere and temperature after 

the New Year's Day would be related to the cooling in association with the anomalous cyclone, whereas the simultaneous 

influence of atmospheric circulation on the cooling and negative longwave/net radiation in days [-4, -1] should be small 

since there is no significantly anomalous circulation. Generally, the radiation anomalies seem reasonably consistent with the 10 

observed temperature changes. 

4.2 Time-lag correlation between PM10 concentration and the anomalous cyclone  

Generally, aerosols might influence regional precipitation in two aspects. The first is via the indirect effects. Secondly, 

aerosols may also influence regional precipitation by altering the thermal features and further modulating the regional 

atmospheric circulations. The involved aerosol-cloud-precipitation and aerosol-circulation-precipitation 15 

interactions/feedbacks make it hard to clearly identify aerosol impacts on precipitation. There are increasing numbers of 

works addressing theis issueclimate consequences and feedbacks of human air pollutions with focus on precipitation. For 

example, Zhao et al. (2006) analyzed 40-years’ observations of   precipitation, satellite aerosol data and meteorological 

sounding data over eastern China and suggested a positive feedback mechanism (i.e., more aerosols cause less precipitation, 

which in turn leads to more aerosols) that will induce an acceleration of the reduction of precipitation in eastern China. 20 

Particularly, the observed changes of light rains are likely related to aerosols. Qian et al. (2009) employed long-term 

observational data from 1956-2005 and found that both the frequency and amount of light rain have decreased over eastern 

China. Their numerical simulations suggest that the light precipitation tends to be suppressed due to a higher cloud droplet 

number condensation and smaller droplet sizes under polluted conditions. Some studies suggested that aerosols induce 

surface cooling and weaken land-sea thermal contrast, thereby weakening monsoon circulations and the resultant 25 

precipitation changes (e.g., Wang et al., 2013; Ye et al., 2013; Guo et al., 2013; among others). The above studies and 

mechanisms put an emphasis on climatic scale processesNevertheless, we note . We note a a few studies addresseding the 

synoptic scale circulation anomalies caused by aerosol radiative effects. For example, Jones et al. (2004) suggested the dust 

aerosol heating in northern Africa plays an important role in changing the amplitudes of the downstream easterly waves over 

a couple of days. Based on observational data, Ding et al. (2013) reported that the pollution caused by agricultural burning 30 

and fossil fuel combustion in some provinces over East China results in significant modification of regional daily 

temperature and precipitation through pollution-boundary layer dynamics and aerosol-radiation-cloud feedbacks. In addition 

to the direct and semi-direct radiation impacts on meteorology, nNumerical experiments with cloud microphysical processes 
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show that Asian pollution invigorates weather activities along the North Pacific storm tracks (Zhang et al., 2007; Wang et al., 

2014).  

NIs there physical linkage between the holiday aerosol reduction and anomalous precipitation (as well as the 

precipitation-relevant variables, such as the humidity, cloud, and temperature)? With respect to the indirect effects, the 

increases of anthropogenic aerosol concentration may enhance cloud lifetime and delay precipitation (e.g., Albrecht, 1989). 5 

Meanwhile, the cloud droplet size might be smaller, which tends to lead to ineffective coagulation precipitation (e.g., 

Rosenfeld et al., 2008). During the CSF holidays, however, the observed aerosol reduction accompanies a cloud cover 

reduction, a lower precipitation frequency and smaller precipitation amount. Identifying each role played by these cloud 

microphysical processes remains difficult. More importantly, note that in the observations, the holiday precipitation 

reduction is strongly related to the significant dry of the SH, which is caused by anomalous northerly winds. In fact, an 10 

anomalous cyclone dominates East Asia and the western Pacific region during the CSF holidays (Figure 9). The anomalous 

northerly winds over southern China are just located in the rear side of the anomalous cyclonic circulation. We speculate that 

tThe anomalous cyclone is likely correlated related to the air pollutionaerosol reduction around the holiday period. With 

respect to this issues, two facts are likely indicative of their relationship.  

Firstly, Note that there is a time lag between the PM10 reduction and the anomalous cyclone. Gong et al. (2014) reported 15 

that during days [-4, 0], there is no anomalous cyclone over East Asia, but at the same time, the temperature cools 

significantly. These phenomena can be observed in both the long-term (1979-2012) and short-term (2001-2012) data periods. 

The anomalous cyclone appears after New Year’s Day in the troposphere, moves eastward, and disappears after 

approximately 12 days. This result is highly consistent with our analysis, as demonstrated in Figure 9. The largest aerosol 

reduction occurs on days [-3, -1]. At the same time, the greatest temperature cooling in eastern China was observed (c.f., 20 

Gong et al., 2014, figures 2 and 4). As shown in Figure 12/11?, the lower-middle troposphere shows no evident northerly 

wind anomaly over East Asia and the western Pacific before New Year’s Day. However, there is a significant cooling in the 

lower-middle troposphere, as indicated by the negative 1000-500 hPa thickness anomalies during days [-4, 0].  The cooling 

center is located between 100°E-130°E and 30°N-40°N. In this case, the negative temperature anomalies can result in 

anomalous cold advection due to the climatic northerly winds. This The anomalous cyclone is likely triggered/enhanced by 25 

the cooling of the low-middle troposphere, whichcondition is helpful favorfors constructive baroclinic interaction between 

the upper and lower troposphere and favouring enhances the development of the midlatitude cyclone system (Hakim et al., 

2003).. We would expect a mature cyclone anomaly approximate one week later, if it is true that the cyclone develops from 

days [-3, -1].   

 30 

The aerosols are likely to cause the circulation anomalies by affecting the atmospheric thermodynamics. We further 

computed the cross-correlations of the regional mean temperatures with the anomalous cyclone on day +5. In eastern China, 

there are 394 available meteorological stations. We averaged these stations’ daily temperature anomalies to derive a regional 

mean time series and then computed its correlation with that of the 500 hPa height on day +5. The results show that the 
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cyclone is closely related to the temperature anomalies that occurred approximate 5 days previously. A maximum correlation 

of 0.52 was observed when temperature leads the pressure by 4 to 5 days. We also computed the cross-correlations using the 

31 PM10 collocate stations. The features are almost identical (Figure 1113). Similar to the PM10 reduction, the holiday 

temperatures cool over eastern China. Therefore, the regional temperature over southern China experiences a similar cross-

correlation with the following cyclone (figure not shown). It should be pointed out that these time-lag correlations should not 5 

be explained by the natural 1-2 week processes. Because the natural synoptic system’s occurrence and phases are randomly 

in time. Here we prepared the atmospheric correlation/temperatures time series according to the lunar calendar dates. If there 

is a natural cyclone around the New Year’s Day, its random phase should be offset by other cyclones when put all years 

together. Anyway,  Tthese results demonstrate that a stronger cyclone over the western Pacific on days [+4, +6] is often 

accompanied by a lower preceding PM10 concentration and cooler temperatures over eastern China that occurred 10 

approximate one week previously.  

5 Summary 

Briefly, the major findings of our analysis are summarized as follows: 

The long-term station precipitation data from 1979 to 2012 were analyzed with a focus on the possible changes during 

the CSF holidays. We found that the precipitation frequency over southern China experiences a significant holiday reduction. 15 

The largest reduction occurs on days [+4, +6], with a mean anomaly of -7.4% and a minimum anomaly of -9.4% on day +5. 

At the same time, the daily precipitation amounts from day +2 to day +5 show continuous negative anomalies, and their 

mean is -0.62 mm d-1. The Monte-Carlo test implies that the holiday-related frequency and amount anomalies are 

significantly different from random occurrences. The spatial distributions of the mean frequency anomalies for days [+4, +6] 

clearly show that a reduction appears across the whole southern China. Among the 155 stations, negative anomalies were 20 

observed at 148 stations.  

The holiday precipitation anomalies are strongly linked to the relative humidity and cloud cover. The station RH 

shows an evident decrease from day +2 to +7, and the lowest anomalies appear on days [+4, +6], with a mean of -3.9%. 

When all precipitation days excluded the RH shows similar decreases, the lowest values also occur on days [+4, +6], with 

anomalies of -0.97%, -0.69% and -0.38%, respectively. The RH vertical profile demonstrates a significantly drying under 25 

approximately 800 hPa. The ERA-Interim reanalysis data revealed that the negative anomaly at 850 hPa is -3.9% and that at 

1000 hPa is -4.2%. The mean RH of layers between 850 hPa and 1000 hPa is -3.9%. The negative anomalies in the lower 

troposphere are consistent with the significant decreases in the LCC. The daytime station LCC shows an evident reduction 

during days [+4, +6], with a mean of -6.1%. Meanwhile, the daily ERA-Interim LCC also displays a notable reduction 

during days [+4, +6]. The corresponding mean is -5.0%, and a minimum of -5.9% appears on day +5. This magnitude as well 30 

as its spatial distribution are comparable to that of the station-based daytime LCC anomaly. 
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The anomalous relative humidity is found to be mainly caused by a drying of the water vapor in the lower-mid 

troposphere over southern China during the holidays. Evident negative SH anomalies persist from days -3 to +7 in the station 

observations. The lowest values appear on approximately days [+4, +5]. The average SH for days [+4, +6] is -0.73 g kg-1. 

When the precipitation days are excluded, the SH shows a similar continuous reduction after New Year’s Day. A minimum 

of -0.54 g kg-1 appears on day +4, while the mean for days [+4, +6] is -0.46 g kg-1. Significant drying of the water vapor is 5 

observed for the whole low troposphere below 700 hPa. Below 800 hPa, the SH values are all below -0.50 g kg-1. The mean 

value between 800 hPa and 1000 hPa is -0.70 g kg-1. The reduction of the water vapor in the lower-middle troposphere likely 

plays the dominant role in causing anomalous relative humidities, low-level clouds and precipitation. This water vapor 

deficit results from the anomalous meridional horizontal moisture transport. During the holidays, a large-scale cyclonic 

circulation appears over the western Pacific, which brings anomalous northerly winds to East Asia and leads to negative 10 

water vapor flux in the troposphere. 

We calculated the correlations suppose thatbetween holiday aerosol and is likely to play a role in generating the 

anomalous cyclones. As the observation PM10 and satellite AOD demonstrated, the aerosol concentrations around the CSF 

decrease evidently. In eEastern ChinaAsia, the largest reduction of PM10 occurs on days [-3, -1]. A simultaneous cooling was 

observed (e.g., Gong et al., 2014). Cross-correlation demonstrates that approximately one week after a lower PM10 15 

concentration and a cooler temperature over eastern China, a stronger cyclone is observed over the western Pacific. The 

cooling is likely to lead to anomalous cold advection, which enforces the constructive baroclinic interactions between the 

upper and lower troposphere, thus triggering or enhancing provides a favourable condition for  the development of a 

midlatitude cyclone system. The cyclone brings anomalous northerly wind to East Asia, reduces the atmospheric SH, and 

consequently results in less precipitation over southern China. The mechanisms To what extent the cooling is contributed by 20 

the direct/indirect effects of aerosol and the role played by the atmospheric feedback are still unclear. Whether these 

physical/chemistry processes depend on the aerosol emission region and the aerosol types, needs further clarification by 

elaborate observation analysis and modeling. 
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Table 1: The Lunar New Year’s Days from 1979 to 2012 

Year Date Year Date 

1979 28 January 1996 19 February 
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1980 16 February 1997 7 February 

1981 5 February 1998 28 January 

1982 25 January 1999 16 February 

1983 13 February 2000 5 February 

1984 2 February 2001 24 January 

1985 20 February 2002 12 February 

1986 9 February 2003 1 February 

1987 29 January 2004 22 January 

1988 17 February 2005 9 February 

1989 6 February 2006 29 January 

1990 27 January 2007 18 February 

1991 15 February 2008 7 February 

1992 4 February 2009 26 January 

1993 23 January 2010 14 February 

1994 10 February 2011 3 February 

1995 31 January 2012 23 January 
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Figure 1: Spatial distribution of January- February precipitation days (a) and precipitation amount (b) for the period of 1979-2012. Spatial 

distribution of the January- February averaged Aerosol Optical Depth (AOD) for the period of 2002-2012 (c) and PM10 concentration for 

the period of 2001-2012 (d) over eastern Asia. The study area is shown in a black dashed rectangle. 
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Figure 2: The anomalies of precipitation frequency (a) and amount (b) computed based on 155 stations. The means are shown as gray bars, 

and the median; and the range of the 10-90th percentiles are also plotted for comparison. 

 

 5 

 

 

 

 

 10 

 

 

 

 

 15 

 

 

 

 



30 

 

 

 

Figure 3: Anomalies of the precipitation frequency (a) and amount (b). The significances are estimated using a Monte-Carlo approach; 

stations with circles and dots denote that all days have values significant at the 0.1 and 0.2 levels, respectively. 

 5 

 

 

 

 

 10 

 

 

 

 

 15 

 

 



31 

 

 

Figure 4: Station observational relative humidity anomalies (RH) estimated from all available days (a) and the daytime low cloud cover 

(LCC) anomalies (b) during the holidays from 1979-2012. ERA-Interim RH at 850 hPa (c) and the daily LCC anomalies (d) during the 

holidays. Standard error is shown as error bars. 
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Figure 5: Station anomalies of relative humidity estimated from all available days (a) and daytime low cloud cover (b) during days +4 to 

+6. The significance is estimated using a t-test; stations with circles and dots denote values are significant at the 0.05 and 0.1 level, 

respectively. Spatial distribution of ERA-Interim RH at 850 hPa (c) and the daily LCC anomalies (d) during days +4 to +6. Only the 

significant values (at the 0.1 level) are plotted. 5 
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Figure 6: The vertical profiles of the relative humidity (a), temperature (b) and specific humidity (c) anomalies below 500 hPa. The 

significance level is estimated using a left-tail t-test, and the values significant at the 0.05 level are indicated with red dots. 
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Figure 7: Means of station-specific humidity anomalies (SH) during the holidays from 1979-2012 as estimated from all available days (a) 

and no-rain days (b). The corresponding ERA-Interim SH at 1000 hPa (c) and 850 hPa (d) are also plotted. 
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Figure 8: Spatial distribution of the observational specific humidity anomalies (SH) during days [+4, +6] as estimated from all available 

days (a) and no-rain days (b). The spatial distributions of the ERA-Interim SH at 1000 hPa (c) and 850 hPa (d) during days [+4, +6]. 

Only the significant values (above the 0.05 level) are plotted. 
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Figure 9: (a) Temporal anomalies of the total column water vapor (TCWV) during the holidays. (b) Spatial distribution of the TCWV 

(in color shading with unit of kg m-2) and the 700-1000 hPa mean horizontal wind anomaliess (in vectors with unit of m s-1) during days 

[+4, +6]. Stipples denote significant TCWV (at the 0.05 level). Only the anomalous wind vectors significant at the 0.05 level are plotted. 5 
(c) Spatial distribution of the mean anomalies of the total precipitation(TP) (in color shading with unit of mm) and the significant (at the 

0.05 level) 850 hPa mean horizontal wind anomaliess (in vectors with unit of m s-1) during days [+1, +5].  
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Figure 10: Frequency distributions for the AOD (a) and PM10 concentration (b) during days [-15, -11] (red dashed line) and days [+1, +5] 

(blue solid line) over southern China. (c) The temporal anomalies of the PM10 concentration in eastern and southern China. Only years 

with more than 50% PM10 station data available are employed for anomalous composites. 5 
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Figure 11: Top-of-atmosphere (TOA) longwave radiation anomalies around holidays from MERRA2 (a) and ERA-Interim (b) under clear 

sky condition. 

 

 5 

Figure 12: The mean horizontal wind anomalies at 1000-500 hPa (in vectors with unit of m s-1) and the 1000-500 hPa thickness anomalies 

(in color shading) during days [-4, 0]. Only significant (at the 0.1 level) winds and thickness are plotted. The long-term mean horizontal 

winds between 1000-500 hPa during days [-4, 0] are shown together as the streamlines for comparison. A red dashed rectangle (140°E-

145°E and 25°N-35°N) indicates the central location of the anomalous cyclone which is manifest in day+5.  
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Figure 13: (a) Correlations of the 500 hPa geopotential heights over the anomalous cyclone center (140°E-145°E and 25°N-35°N) on 

day+5 with the PM10 concentration in varying lead/lag days. PM10 for eastern and southern China are computed separately. (b) Same as in 

(a) but for the regional mean temperature over eastern China. Temperatures from all available 394 stations and that from 31 PM10 5 
collocated stations are plotted together for comparison. 

 

 

 

 10 

 

 

 

 


	Answers to Initial Reviewer-v1-20180811
	ACP-zjh-20180803_gong-zjh

