1. Regarding the discussions of the size distributions of NO+ and NO2+ ions. It is good the authors have clarified that this is in fact UMR m/z 30 and m/z 46. Consequently, all denotations of those should be changed to m/z 30 and m/z 46 as NOx+ ions should only be used to indicate HR-resolved ions.

However, the discussions/conclusions regarding those size distributions are still a bit under-supported/overstated. While it is stated that <10% of those ions were from CH2Ox+ ions, on average for the HR-MS data, there are 3 reasons that does not suffice along to then go on and make a strong argument that the size-dependent trends in m/z30 / m/z46 demonstrated organic nitrates dominate at small sizes and are not present at large sizes:

1) The bulk MS data may be dominated by concentrations at larger sizes, thus the CH2O+ ions may in fact comprise much larger fractions than 10% compared to either NOx+ ion at the smaller sizes. In fact, for biogenic SOA, it would be surprising if that were not the case. See published spectra of biogenic SOA. For example, in a comparison of UMR and HR nitrate quantification, Fry et al. [2018] showed that on average for a biogenically-influenced region, CH2O+ was half of the signal at m/z 30. The author could estimate some rough upper limits that the presence of interfering ions could have on the actual NOx ratio at lower sizes. At minimum, this aspect should be acknowledged.

2) The average contributions shown in Fig. S10 as HR spectra, are season averages. It is not clear to a reader if they are representative of the nighttime periods of interest. An analysis using the time-dependent relative contributions could have been more useful.

3) Just because the contribution to nitrate at lower sizes appears to be more from organic nitrates, does not mean they are not present at larger sizes. There seems to be some faulty logic there. This was the reason I suggested in the past review to calculate size distributions of organic and inorganic rather than only framing the discussions in terms of the inorganic/organic relative apportionment which is less relevant to the scientific arguments being made in this paper about organic nitrate production. Maybe the inorganic nitrate is just less present at smaller sizes.

REPLY:

We have changed all relevant NO⁺/NO₂⁺ to m/z 30/m/z 46 in section 3.3. And the time variations of contributions of CH₂O⁺ in m/z 30 and CH₂O₂⁺ in m/z 46 in the HR data of PM₁ for the four seasons are shown in Figure S10. We further checked the size distributions of m/z 30/m/z 46 ratio under the highest (>15%) and lowest interferences (<5%) CH₂O_X⁺ interferences in spring, summer and autumn (Figure S12), the results show that m/z 30/m/z 46 variation patterns are not significantly affected by the interferences of CH₂O_X⁺. Additionally, we used the size distributions of the m/z 30/m/z 46 ratio to separate the size distributions of inorganic and organic nitrates, as shown in Figure S13 according to the suggestion. The statements about organic nitrates are not present at larger sizes are deleted and we only address that organic nitrates were relatively more concentrated at small sizes compared to inorganic nitrates. The relevant changes in section 3.3 are as follow:

"In this section, we attempt to use the NO⁺/NO₂⁺ ratio as an indicator to investigate the size distribution characteristics of organic nitrates. Unfortunately, due to the lack of HR-PToF data, our analyses used the UMR-PToF data of m/z 30 and 46, which might contain the interferences of $CH_2O_X^+$ (Fry et al., 2018). In our case, the time variations of contributions of CH_2O^+ in m/z 30 and $CH_2O_2^+$ in m/z 46 in the HR data of PM₁ for the four seasons are shown in Figure S10. For all the four seasons, the average contributions of $CH_2O_X^+$ in m/z 30 and 46 in the HR data of PM₁ were less than 10%, suggesting that the m/z 30/m/z 46 ratio could mostly represent the NO⁺/NO₂⁺ ratio. The average size distributions of m/z 30 and m/z 46 for the four seasons are shown in Figure S11, and Figure 4a shows the average size distributions of different aerosol species and the m/z 30/m/z 46 ratio in the four seasons. It is clearly found that the m/z 30/m/z 46 ratio exhibited a decreasing trend in spring, summer and autumn, while it kept constant in winter, similar to the value of R_{NH4NO3} (red dotted line in Figure 4a). In addition, in spring, summer and autumn, the lowest values of the m/z 30/m/z 46 ratio, occurring at ~1 m, were approximate to the corresponding seasonal values of R_{NH4NO3} . It should be noted that the similar size distribution patterns of the m/z 30/m/z 46 ratio under the highest interferences (>15%) and lowest interferences (<5%) of $CH_2O_X^+$, indicated by the HR data of PM_1 , for spring, summer and autumn (Figure S12) imply that the size distribution patterns of the m/z 30/m/z 46 ratio were not affected significantly by the interferences of $CH_2O_X^+$. We also used the size distributions of the m/z 30/m/z 46 ratio to separate the size distributions of inorganic and organic nitrates, as shown in Figure S13, and the results indicate that organic nitrates were relatively more concentrated at small sizes compared to inorganic nitrates."

2. SOA yield is dependent on organic aerosol mass. When using the SOA yields in literature to estimate SOA from VOC+NO3 (Table 3), please ensure that the yields used are from laboratory experiments that covered the relevant range of aerosol mass in the field campaigns. Please clarify this in the revised manuscript.

<u>REPLY:</u>

We have double checked the literature to make sure the chamber conditions to obtain the yields covered the range of aerosol mass loading in the spring campaign. The relevant clarification is added in the revised manuscript.

3. There are a number of grammatical mistakes / typos, e.g., line 303 should be "associated with", etc. Please correct them.

REPLY:

We have corrected them.

A list of all relevant changes

1. Line 197-202: Changed to "Unfortunately, due to the lack of HR-PToF data, our analyses used the UMR-PToF data of m/z 30 and 46, which might contain the interferences of $CH_2O_X^+$ (Fry et al., 2018). In our case, the time variations of contributions of CH_2O^+ in m/z 30 and $CH_2O_2^+$ in m/z 46 in the HR data of PM₁ for the four seasons are shown in Figure S10. For all the four seasons, the average contributions of $CH_2O_X^+$ in m/z 30 and 46 in the HR data of PM₁ were less than 10%, suggesting that the m/z 30/m/z 46 ratio could mostly represent the NO⁺/NO₂⁺ ratio. The average size distributions of m/z 30 and m/z 46 for the four seasons are shown in Figure S11".

2. Line 206-211: Added "It should be noted that the similar size distribution patterns of the m/z 30/m/z 46 ratio under the highest interferences (>15%) and lowest interferences (<5%) of CH₂O_X⁺, indicated by the HR data of PM₁, for spring, summer and autumn (Figure S12) imply that the size distribution patterns of the m/z 30/m/z 46 ratio were not affected significantly by the interferences of CH₂O_X⁺. We also used the size distributions of the m/z 30/m/z 46 ratio to separate the size distributions of inorganic and organic nitrates, as shown in Figure S13, and the results indicate that organic nitrates were relatively more concentrated at small sizes compared to inorganic nitrates".

3. Line 249-250: Added "where the chamber conditions to obtain the yields covered the range of aerosol mass loading in the spring campaign".

4. Line 305: Changed to "associated".

Line 383-387: Added "Fry, J. L., Brown, S. S., Middlebrook, A. M., Edwards, P. M., Campuzano-Jost, P., Day, D. A., Jimenez, J. L., Allen, H. M., Ryerson, T. B., Pollack, I., Graus, M., Warneke, C., de Gouw, J. A., Brock, C. A., Gilman, J., Lerner, B. M., Dubé, W. P., Liao, J., and Welti, A.: Secondary organic aerosol (SOA) yields from NO3 radical + isoprene based on nighttime aircraft power plant plume transects, Atmos. Chem. Phys., 18, 11663-11682, https://doi.org/10.5194/acp-18-11663-2018, 2018".
 Line 333-335: Added "Author contributions.Xiao-Feng Huang designed the research. Kuangyou Yu

and Qiao Zhu conducted data analysis and wrote the paper. Ke Du contributed to modelling and writing".

Characterization of nighttime formation of particulate organic nitrates based on high-resolution aerosol mass spectrometry in an urban atmosphere in China

4 Kuangyou Yu^{1,2,*}, Qiao Zhu^{1,*}, Ke Du², Xiao-Feng Huang¹

¹Key Laboratory for Urban Habitat Environmental Science and Technology, School of Environment and Energy, Peking
 University Shenzhen Graduate School, Shenzhen, 518055, China.

⁷ ²Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Canada.

8 * Authors have equal contribution.

9

10 Abstract. Organic nitrates are important atmospheric species that significantly affect the cycling of NOx and ozone production. 11 However, characterization of particulate organic nitrates and their sources in polluted atmosphere is a big challenge and has 12 not been comprehensively studied in Asia. In this study, an Aerodyne high-resolution time-of-flight aerosol mass spectrometer 13 (HR-ToF-AMS) was deployed at an urban site in China from 2015 to 2016 to characterize particulate organic nitrates in total 14 nitrates with high time resolution. Based on the cross validation of two different data processing methods, organic nitrates 15 were effectively quantified to contribute a notable fraction of organic aerosol (OA): 9-21% in spring, 11-25% in summer, 9-16 20% in autumn, while very small fraction in winter. The good correlation between organic nitrates and fresh secondary organic 17 aerosol (SOA) at night, as well as the diurnal trend of size distribution of organic nitrates, indicated a key role of nighttime 18 local secondary formation of organic nitrates in Shenzhen. Furthermore, theoretical calculations of nighttime SOA production 19 of NO₃ reactions with volatile organic compounds (VOCs) measured during the spring campaign were performed, resulting in 20 three biogenic VOCs (α -pinene, limonene, and camphene) and one anthropogenic VOC (styrene) identified as the possible 21 key VOC precursors for particulate organic nitrates. The comparison with similar studies in the literature implied that nighttime 22 particulate organic nitrates formation is highly relevant with NOx levels. This study proposes that unlike the documented cases 23 in the United States and Europe, modeling nighttime particulate organic nitrate formation in China should incorporate not only 24 biogenic VOCs but also anthropogenic VOCs for urban air pollution, which needs the support of relevant smog chamber 25 studies in the future.

- 26
- 27 *Correspondence to*: X.-F. Huang (<u>huangxf@pku.edu.cn</u>)
- 28

29 **1. Introduction**

Organic nitrates (ON) in aerosols have an important impact on the fate of NO_X and ozone production (Lelieveld et al., 2016), which can be formed in a minor channel of the reaction between peroxy radicals and NO (R1 and R2) (usually, an increased fraction of this reaction leads to the formation of alkoxy radicals and NO₂ (R3)) or via the NO₃-induced oxidation of unsaturated hydrocarbons (R4). Even though some recent studies have suggested that the formation of organic nitrates from peroxy radicals and NO may play a larger role than previously recognized (Teng et al., 2015, 2017), yields of organic nitrates via NO₃ reacting with alkenes are generally much higher (Fry et al., 2009; Ayres et al., 2015; Boyd et al., 2015, 2017).

39

	2	2	2	
$RO_2 + NO -$	→ RONC) ₂		(R2)
$RO_2 + NO -$	$\rightarrow RO +$	NO_2		(R3)
$\mathbf{R} = R' + \mathbf{N}\mathbf{C}$	$D_3 \rightarrow R($	ONO,) <i>R'</i>	(R4)

Several methods have been developed to directly measure total organic nitrates (gas + particle) in the real atmosphere. For 40 41 example, Rollins et al.(2012) used a thermal-dissociation laser-induced fluorescence technique (TD-LIF) to observe organic 42 nitrates in the United States; Sobanski et al. (2017) measured organic nitrates in Germany using the thermal dissociation cavity 43 ring-down spectroscopy (TD-CRDS). Field and laboratory studies around the world indicated that particulate organic nitrates 44 could contribute a large portion of secondary organic aerosol (SOA) (Rollins et al., 2012; Xu et al., 2015a; Fry et al., 2013; 45 Avres et al., 2015; Boyd et al., 2015; Lee et al., 2016). Recently, researchers have proposed some estimation methods for 46 particle-phase organic nitrates based on aerosol mass spectrometry (AMS) with high time resolution (Farmer et al., 2010; Hao 47 et al., 2014; Xu et al., 2015a, 2015b). Ng et al. (2017) reviewed the nitrate radical chemistry and the abundance of particulate 48 organic nitrates in the United States and Europe, and further concluded that particulate organic nitrates are formed substantially 49 via NO₃+BVOC chemistry, which plays an important role in SOA formation. Unfortunately, relevant Chinese datasets are 50 scarce yet and not included in this review. This was because (1) the contributions of organic nitrates in SOA and total nitrates 51 in Chinese atmosphere remain poorly understood; (2) the anthropogenic and biogenic precursor emissions in China are 52 significantly different from those in the United States and Europe, and thus cannot be easily estimated. To our best knowledge, 53 few studies have investigated the concentrations and formation pathways of particulate organic nitrates in China. Xu et al. 54 (2017) estimated the mass concentration of organic nitrogen in Beijing using AMS, but in this study they ignored the 55 contribution of NO_{X^+} family, which are the major fragments of organic nitrates.

56 Shenzhen is a megacity of China in a subtropical region, where NOx involved photochemical reactions are very active, given 57 considerable biogenic and anthropogenic VOC emissions (Zhang et al., 2008). To assess the evolution of particulate organic 58 nitrates in a polluted urban atmosphere, we deployed an Aerodyne high-resolution time-of-flight aerosol mass spectrometer 59 (HR-ToF-AMS) and other instruments in Shenzhen from 2015 to 2016 in this study. Organic nitrates and their contributions 50 to OA in different seasons were estimated by different methods using the HR-ToF-AMS datasets, based on which, the 51 secondary formation pathway of particulate organic nitrates in Shenzhen was further explored.

62 **2. Experiment methods**

63 **2.1 Sampling site and period**

- 64 The sampling site (22.6°N, 113.9°E) was on the roof (20 m above ground) of an academic building on the campus of Peking
- 65 University Shenzhen Graduate School (PKUSZ), which is located in the western urban area in Shenzhen (Figure 1). This site
- is mostly surrounded by subtropical plants without significant anthropogenic emission sources nearby, except a local road that
- 67 is ~100 m from the site. In this study, we used the statistical data from the Meteorological Bureau of Shenzhen Municipality
- 68 (http://www.szmb.gov.cn/site/szmb/Esztq/index.html) as the reference data to determine the sampling periods for four
- 69 different seasons during 2015-2016, as shown in Table 1.

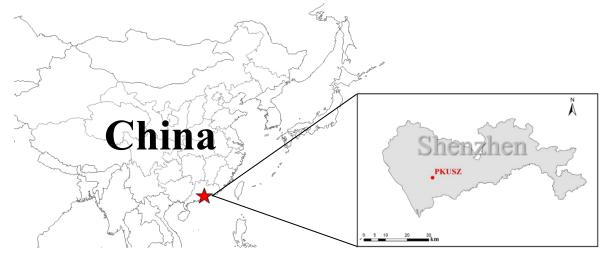


Figure 1. The location of the sampling site.

- Table 1.Meteorological conditions, PM₁ species concentrations and relevant parameters for different sampling periods in
- 73 Shenzhen.

	Sampling period	4.1-4.30, 2016	8.1-8.31, 2015	11.4-11.30,2015	1.21-2.3, 2016	
		Spring	Summer	Autumn	Winter	
Meteorology	T (°C)	24.5±2.5	29.0±3.0	23.6±3.7	10.7±4.7	
80	RH (%)	78.0±12.7	71.2±17.5	68.2±15.8	75.4±18.7	
	WS (m s^{-1})	1.4±0.8	1.0±0.7	1.2±0.7	1.5±0.8	
	Org	4.3±3.2	10.0±6.9	7.8±5.9	5.1±3.5	
S	SO_4^{2-}	3.2±1.8	5.8±3.3	2.3±1.5	1.9±1.2	
Species	Total NO ₃	0.96±1.4	0.91±0.90	1.3±1.4	1.6±1.0	

($\mathrm{NH_4}^+$	1.4±0.8	2.0±1.1	1.1±0.8	1.2±0.6	
(µg m ̈)	Cl	0.14±0.19	0.03±0.05	0.22±0.36	0.64±0.85	
	BC	1.9±2.1	2.4±1.6	3.5±2.6	2.4±1.5	
	Total	12.0±8.9	15.1±13.8	11.8±9.5	12.2±7.2	
	R _{NH4NO3}	2.80	3.20	3.32	3.48	
ON relevant -	R _{obs}	3.74	6.14	4.30	3.55	
parameters	Fraction of positive numbers of	99%	99%	84%	47%	
	Robs- RNH4NO3					

74 2.2 Instrumentation

75 2.2.1 High Resolution Time-of-Flight Aerosol Mass Spectrometer

76 During the sampling periods, chemical composition of non-refractory PM₁ was measured by an Aerodyne HR-ToF-AMS, and 77 detailed descriptions of this instrument are given in the literature (DeCarlo et al., 2006; Canagaratna et al., 2007). The setup 78 and operation of the HR-ToF-AMS can be found in our previous publications (Huang et al., 2010, 2012; Zhu et al., 2016). To 79 remove coarse particles, a PM_{2.5} cyclone inlet was installed before the sampling copper tube with a flow rate of 10 l min⁻¹. 80 Before entering the AMS, the sampled air was dried by a nafion dryer (MD-070-12S-4, Perma Pure Inc.) to eliminate the 81 potential influence of relative humidity on particle collection (Matthew et al., 2008). The ionization efficiency (IE) calibrations 82 were performed using pure ammonium nitrate every two weeks. The relative ionization efficiencies (RIEs) used in this study 83 were 1.2 for sulfate, 1.1 for nitrate, 1.3 for chloride, 1.4 for organics and 4.0 for ammonium, respectively (Jimenez et al., 2003). 84 Composition-dependent collection efficiencies (CEs) were applied to the data according to the method in Middlebrook et al. 85 (2012). The instrument was operated at two ion optical modes with a cycle of 4 min, including 2 min for the mass -sensitive 86 V-mode and 2 min for the high mass resolution W-mode. The HR-ToF-AMS data analysis was performed using the software 87 (version 1.57) and PIKA (version 1.16) written in Igor Pro 6.37 (Wave Metrics Inc.) SOUIRREL (http://cires1.colorado.edu/jimenezgroup/ToFAMSResources/ToFSoftware / index.html). 88

89 **2.2.2 Other co-located instruments**

In addition to the HR-ToF-AMS, other relevant instruments were deployed at the same sampling site. An aethalometer (AE-31, Magee) was used for measurement of refractory black carbon (BC) with a resolution of 5 min. An SMPS system (3775 CPC and 3080 DMA, TSI Inc.) was used to obtain the particle number size distribution in 15–615 nm (mobility diameter) with a time resolution of 5 min. Ozone and NO_X were measured by a 49i ozone analyzer and a 42i nitrogen oxide analyzer (Thermo Scientific), respectively. In the spring campaign, ambient VOC concentrations were also measured using an on-line VOC monitoring system (TH-300B, Tianhong Corp.), including an ultralow-temperature preconcentration cold trap and an

- 96 automated in-situ gas chromatograph (Agilent 7820A) equipped with a mass spectrometer (Agilent 5977E). The system had 97 both a flame ionization detector (FID) gas channel for C2-C5 hydrocarbons and a mass spectrometer (MS) gas channel for 98 C5–C12 hydrocarbons, halohydrocarbons and oxygenated VOCs. A complete working cycle of the system was one hour and 99 included six steps: sample collection, freeze-trapping, thermal desorption, GC-FID/MS analysis, heating and anti-blowing 100 purification. The sample collection time was 5 min. The sampling flow speed was 60 ml min⁻¹. The anti-blowing flow speed 101 was 200 ml min⁻¹. The calibration of over 100 VOCs was performed using mixed standard gas before and after the campaign. 102 Detection limits for most compounds were near 5 pptv. More description of this instrument can be found in Wang et al. (2014). 103 2.3 Organic nitrates estimation methods
- In this study, we used two independent methods to estimate particulate organic nitrates based on the AMS data, following the approaches in Xu et al. (2015b). The first method is based on the NO⁺/NO₂⁺ ratio (NO_X⁺ ratio) in the HR-AMS spectrum. Due to the very different NO_X⁺ ratios of organic nitrates and inorganic nitrate (i.e., R_{ON} and R_{NH4NO3}, respectively) (Farmer et al., 2010; Boyd et al., 2015; Fry et al., 2008; Bruns et al., 2010), the NO₂⁺ and NO⁺ concentrations of organic nitrates (*NO*_{2,ON} and *NO*_{ON}) can be quantified with the HR-AMS data via Eqs. (1) and (2), respectively (Farmer et al., 2010):

109
$$NO_{2}^{+}{}_{,ON} = \frac{NO_{2}^{+}{}_{,Obs} \times (R_{obs} - R_{NH4NO3})}{R_{ON} - R_{NH4NO3}}$$
(1)

$$NO^{+}_{ON} = R_{ON} \times NO_{2,ON}$$
(2)

- 111 where R_{obs} is the NOx⁺ ratio from the observation. The value of R_{ON} is difficult to determine because it varies between 112 instruments and precursor VOCs. However, R_{NH4NO3} was determined by IE calibration using pure NH₄NO₃ every two weeks 113 for each campaign and the results showed stable values: In spring, the average R_{NH4NO3} was 2.66 for the first IE calibration and 114 2.94 for the second one; in summer, the average $R_{\rm NH4NO}$ was 3.05 and 3.34 for the first and second IE calibrations, respectively; 115 in autumn, the average R_{NH4NO3} was 3.33 and 3.31 for the first and second IE calibrations, respectively; in winter, the average 116 RNH4NO3 was 3.45 and 3.51 for the first and second IE calibrations, respectively. We adopted the RON/RNH4NO3 estimation range 117 (from 2.08 to 3.99) for variation of precursor VOCs in the literature to determine R_{ON} (Farmer et al., 2010; Boyd et al., 2015; 118 Bruns et al., 2010; Sato et al., 2010; Xu et al., 2015b), and thus two R_{ON} values were calculated for each season to provide the 119 upper bound (NO_{3 org ratio 1}) and lower bound (NO_{3 org ratio 2}) of NO_{3,org} mass concentration.
- 120 The second method is based on the traditional positive matrix factorization (PMF) analysis of HR organic mass spectra, which 121 resolves different organic factors (Zhang et al., 2011; Ng et al., 2010; Huang et al., 2013). Combined with NO⁺ and NO₂⁺ ions, 122 the same analysis of HR organic mass spectra was performed to separate NO⁺ and NO₂⁺ ions into different organic factors and 123 an inorganic nitrate factor (Hao et al., 2014; Xu et al., 2015b). The PMF analysis procedures in this study can be found in our 124 previous publications (Huang et al., 2010; Zhu et al., 2016; He et al., 2011), resulting in three organic factors and one inorganic 125 factor in spring, summer and autumn: a hydrocarbon-like OA (HOA) characterized by $C_nH_{2n+1}^+$ and $C_nH_{2n-1}^+$ and O/C of 0.11 126 to 0.18, a less-oxidized oxygenated OA (LO-OOA) characterized by $C_xH_yO_z^+$ especially $C_2H_3O^+$ and O/C of 0.28 to 0.70, a 127 more-oxidized oxygenated OA (MO-OOA) also characterized by $C_xH_yO_z^+$ especially CO_2^+ and O/C of 0.78 to 1.24, and a

nitrate inorganic aerosol (NIA) characterized by overwhelming NO⁺ and NO₂⁺, as indicated in Fig S6. According to the diagnostic plots of the PMF analysis shown in Figure S2 to S4, the same organic factors as those in the traditional PMF analysis of only organic mass spectra were obtained. The NO⁺ and NO₂⁺ ions were distributed among different OA factors and the NIA factor; thus the concentrations of nitrate functionality (NO_{org}^+ and $NO_{2,org}^+$) in organic nitrates (NO_{3, org}) are equal to the sum of NO₂⁺ and NO⁺ via Eqs. (3) and (4), respectively (Xu et al., 2015b):

- 133 $NO_{2,org}^{+} = \sum ([OA \ factor]_{i} \times f_{NO2,i}) \quad (3)$
 - 134

$$NO_{org}^{+} = \sum ([OA \ factor]_{i} \times f_{NO,i}) \tag{4}$$

where $[OA \ factor]_i$ represents the mass concentration of OA factor *i*, and $f_{NO2,i}$ and $f_{NO,i}$ represent the mass fractions of NO₂⁺ and NO⁺, respectively.

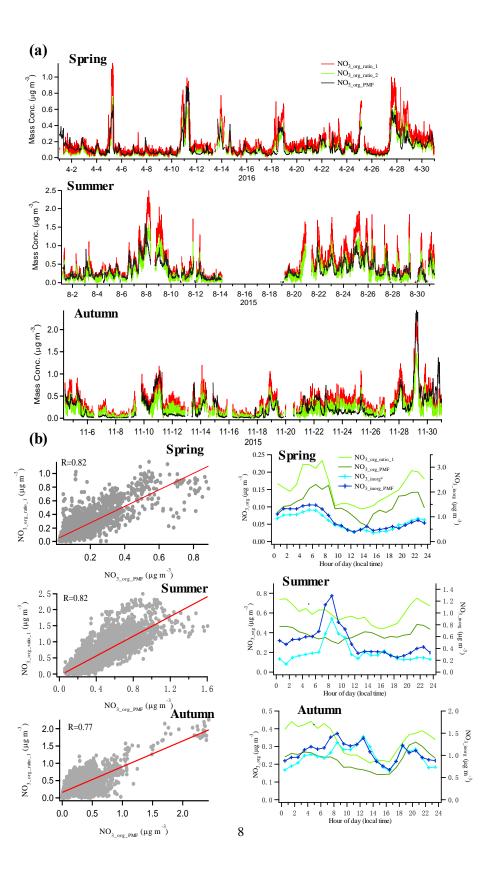
It should be noted that the 4-factor solution seemed to have a "mixed factor" problem to some extent (Zhu et al., 2018). For example, HOA mixed with COA (clear $C_3H_3O^+$ in m/z 55 for spring, summer and autumn) (Mohr et al., 2012), and BBOA mixed with LO-OOA (clear m/z 60 and 73 signals in LO-OOA in autumn) (Cubison et al., 2011). However, running PMF with more factors would produce unexplained factors but less influence on the apportionment of NO⁺ and NO₂⁺ ions between organic nitrates and inorganic nitrate (Table S1). In addition, the standard deviations of NO⁺ and NO₂⁺ ions in the OA factors across different FPEAK values (from -1.0 to 1.0) were very small (Table S2). Therefore, the 4-factor solution was used for quantifying organic nitrates in spring, summer and autumn.

144 **3. Results and discussion**

145 **3.1 Organic nitrates estimation**

146 Table 2 shows the concentrations of nitrate functionality in organic nitrates (i.e., $NO_{3, org}$), estimated by both the NO^+/NO_2^+ 147 ratio method and PMF method, as well as their contributions to the total measured nitrate. It should be noted that the small 148 difference between the average R_{obs} and R_{NH4NO3} in winter leads to a large portion of negative data using the NO⁺/NO₂⁺ ratio 149 method (Table 1). The result from the PMF method shows that the contribution of organic nitrates in total nitrates is only 4.2% 150 in winter (Figure S6), suggesting a negligible contribution of organic nitrates. Thus, we will only discuss organic nitrate 151 estimation results in spring, summer and autumn. The analytical outcomes by the NO⁺/NO₂⁺ ratio method and by the PMF 152 method consistently suggest that organic nitrates had the highest ambient concentration (0.34-0.53 $\mu g m^3$) and proportion in 153 total nitrates (41-64%) in summer among the different seasons. This finding agrees with the finding in (Ng et al., 2017) and it 154 implies a seasonal trend in comparison with that of total nitrates in Table 1. Assuming the average molecular weight of organic 155 nitrates of 200 to 300 g mol⁻¹ (Rollins et al., 2012), we found that organic nitrates contributed 9-21% to OA in spring, 11-25% 156 in summer, and 9-20% in autumn.

In the PMF method, the mass fractions of organic nitrates in HOA, LO-OOA and MO-OOA were 31%, 49% and 20%, respectively, in spring; 28%, 52% and 20%, respectively, in summer; 30%, 46% and 24%, respectively, in autumn. The major

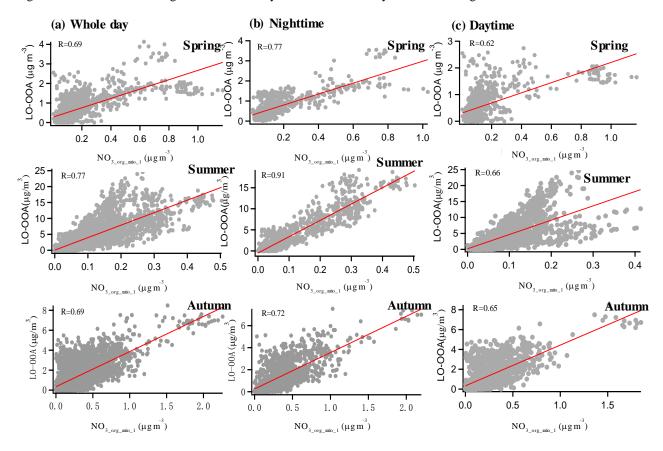

159	fraction of organic nitrates occurring in LO-OOA for the three seasons implied that organic nitrates were mostly related to
160	fresher secondary OA formation. The NIA factors in all seasons were dominated by but are not limited to NO^+ and NO_2^+ .
161	Some organic fragments, such as CO_2^+ and $C_2H_3O^+$, are also part of these factors, which agreed with the findings in the
162	literature (Hao et al., 2014; Xu et al., 2015b; Sun et al., 2012). This indicated the potential interference of organics in the NIA
163	factor. It is also worth to be noted that the NO^+/NO_2^+ ratios in NIA (2.93 for spring, 3.53 for summer and 3.54 for autumn)
164	were higher than that for pure NH4NO3 (Table 1), indicating an underestimation of NO3.org concentration by the PMF method.
165	This finding may also explain the reason that the concentration of $NO_{3.org}$ estimated using the PMF method was always close
166	to the lower estimation bound of $NO_{3.org}$ concentration estimated using the NO^+/NO_2^+ ratio method in each season (Table 2).
167	Table 2.Summary of organic nitrates estimations using the NO ⁺ /NO ₂ ⁺ ratio method and the PMF method

Sampling period		NO ⁺ /NO ₂ ⁺ rat	io method	PMF method			
	<i>NO</i> _{3,org} (μg m ⁻³) ^a		NO _{3,org} /NO ₃		<i>NO</i> _{3,org} (μg m ⁻³) ^b	NO _{3,org} /NO ₃	
	lower	upper	lower	upper			
Spring	0.12	0.19	13%	21%	0.12	12%	
Summer	0.34	0.53	41%	64%	0.39	43%	
Autumn	0.21	0.33	16%	25%	0.21	16%	
Winter	/	/	/	/	0.07	4.2%	

^a NO_{3, org} for upper bound is denoted as NO_{3_org_ratio_1}, and NO_{3, org} for lower bound is denoted as NO_{3_org_ratio_2}.

169 b NO_{3, org} estimated using the PMF method is denoted as NO_{3_org_PMF}.

170 To further verify the reliability of the estimated results of organic nitrates, the NO_{3, org} concentration time series calculated by 171 the two methods in each season are shown in Figure 2a. The computed correlation coefficients (R) are good (0.82 for spring, 172 0.82 for summer and 0.77 for autumn), indicating that similar results were achieved. The inorganic nitrate (NO_{3 inorg}*) obtained 173 by subtracting NO_{3 org ratio 1} from total measured nitrates also correlated well with the inorganic nitrate estimated using the 174 PMF method (R=0.92 for spring, 0.87 for summer and 0.86 for autumn). While they were distinctive from those of inorganic 175 nitrate (Figure 2b), which indicates that organic nitrates had been well separated from inorganic nitrate in this study, the diurnal 176 trends of organic nitrates obtained by the two methods were similar in each season, with lower concentrations in the daytime 177 and higher concentrations at night.


179 **Figure 2.** (a) Time series of $NO_{3, org}$ concentration estimated by the NO^+/NO_2^+ ratio method and PMF method for each

180 season; (b) correlations between $NO_{3_{org_ratio_1}}$ and $NO_{3_{org_PMF}}$ (left panel); diurnal trends of organic nitrates and $NO_{3_{org}}$

181 estimated by the different methods (right panel).

182 **3.2** Correlation between organic nitrates and OA factors

183 As indicated by the results in the PMF method, the majority of organic nitrates were associated with LO-OOA in spring, 184 summer and autumn in the urban atmosphere in Shenzhen, implying a dominant secondary origin of organic nitrates. To further 185 confirm this relationship, we made the correlation analysis between organic nitrates estimated by the NO⁺/NO₂⁺ ratio method 186 and the three factors resolved by the PMF analysis with only organic mass spectra in the three seasons. Generally, organic 187 nitrates were found better-correlated with LO-OOA (R=0.69-0.77 in Figure 3) than with HOA and MO-OOA (R=0.03-0.69 in 188 Figures S6-S8), which is consistent with the fact that the majority of organic nitrates were associated with LO-OOA in the 189 PMF method. However, the moderate correlation between organic nitrates and HOA implied possibility of direct emissions of 190 organic nitrates. Furthermore, we found a noticeably improved correlation between LO-OOA and organic nitrates at night 191 (19:00-6:00) and a reduced correlation during the daytime (7:00-18:00) in Figure 3, especially in summer, implying that 192 organic nitrates formation might be more closely related to secondary formation at night.

194 **Figure 3.**Correlation of NO_{3_org_ratio_1} and LO-OOA in each season for the whole day (a), at night (b) and in the daytime (c).

195 **3.3 Size distribution characteristics of organic nitrates**

196 In this section, we attempt to use the NO^+/NO_2^+ ratio as an indicator to investigate the size distribution characteristics of organic nitrates. Unfortunately, due to the lack of HR-PToF data, our analyses used the UMR-PToF data of m/z 30 and 46, which 197 198 might contain the interferences of $CH_2O_X^+$ (Fry et al., 2018). In our case, the time variations of contributions of CH_2O^+ in m/z 199 30 and CH₂O₂⁺ in m/z 46 in the HR data of PM₁ for the four seasons are shown in Figure S10. For all the four seasons, the 200 average contributions of $CH_2O_X^+$ in m/z 30 and 46 in the HR data of PM₁ were less than 10%, suggesting that the m/z 30/m/z 46 ratio could mostly represent the NO⁺/NO₂⁺ ratio. The average size distributions of m/z 30 and m/z 46 for the four seasons 201 202 are shown in Figure S11, and Figure 4a shows the average size distributions of different aerosol species and the m/z 30/m/z 46 203 ratio in the four seasons. It is clearly found that the m/z 30/m/z 46 ratio exhibited a decreasing trend in spring, summer and 204 autumn, while it kept constant in winter, similar to the value of $R_{\rm NH4NO3}$ (red dotted line in Figure 4a). In addition, in spring, 205 summer and autumn, the lowest values of the m/z 30/m/z 46 ratio, occurring at ~1 µm, were approximate to the corresponding 206 seasonal values of R_{NH4NO3} . It should be noted that the similar size distribution patterns of the m/z 30/m/z 46 ratio under the highest interferences (>15%) and lowest interferences (<5%) of CH_2Ox^+ , indicated by the HR data of PM₁, for spring, summer 207 208 and autumn (Figure S12) imply that the size distribution patterns of the m/z = 30/m/z = 46 ratio were not affected significantly by 209 the interferences of $CH_2O_x^+$. We also used the size distributions of the m/z 30/m/z 46 ratio to separate the size distributions of 210 inorganic and organic nitrates, as shown in Figure S13, and the results indicate that organic nitrates were relatively more 211 concentrated at small sizes compared to inorganic nitrates. Furthermore, the diurnal trends of the size distribution of the m/z 212 30/m/z 46 ratio in spring, summer and autumn in Figure 4b show apparent higher values at small sizes at night, suggesting an 213 important nighttime local origin of organic nitrates. Combining with the analysis in section 3.2, the local nighttime secondary 214 formation of organic nitrates in warmer seasons in the urban polluted atmosphere in Shenzhen is highlighted. This is consistent 215 with the previous findings in the US and Europe that the nighttime NO₃+VOCs reactions serve as an important source for 216 particulate organic nitrates (Rollins et al., 2012; Xu et al., 2015a, 2015b; Fry et al., 2013; Lee et al., 2016). We will then 217 explore the nighttime NO₃+VOCs reactions in Shenzhen in more detail in the following section.

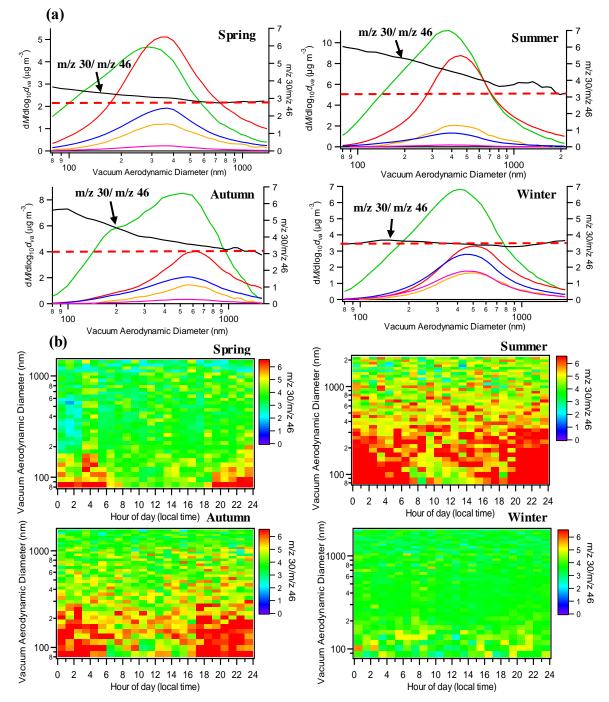


Figure 4.(a) Average size distributions of aerosol species and m/z 30/m/z 46 ratio (red dotted line represents R_{NH4NO3}); (b) diurnal trends of size distribution of m/z 30/m/z 46 ratio.

221 **3.4** Nighttime particulate organic nitrates formation via NO₃+VOCs

Since on-line VOCs measurement was only performed during the spring campaign (described in section 2.2), the following theoretical analysis of NO₃+VOCs reactions applies only to the spring case. NO₃+VOCs reactions would yield a large mass of gas- and particle-phase organic nitrates (Rollins et al., 2012; Nah et al., 2016; Boyd et al., 2015, 2017; Xu et al., 2015a, 2015b; Lee et al., 2016). We used Eq. (9) to roughly judge the production potential (PP) of organic nitrates from a NO₃+VOC reaction: [Production Potential]_{NO3+VOCi} = $K_i \cdot [VOC_i] \cdot [NO_3]$ (9)

Where K_i represents the reaction rate coefficient for NO₃ radical and a VOC; $[VOC_i]$ is the concentration of the specific VOC: 227 228 $[NO_3]$ is the concentration of NO₃ radical. It should be noted that no organic nitrates yield parameter was introduced in Eq. 229 (9), because only a few organic nitrate yields for BVOCs were available in the literature (Fry et al., 2014; Ng et al., 2017). However, given the fact that the values of $K_i \cdot [VOC_i] \cdot [NO_3]$ for different VOC species can differ by orders of magnitude, not 230 231 multiplying the organic nitrate yields (ranging from 0 to 1) would not significantly affect the PP ranking of VOCs. In the spring 232 campaign, the diurnal variations of NO₂, O₃ and estimated NO₃ radical concentrations are shown in Figure S14. It was found 233 that as a comparison to the nighttime NO₃ radical concentration reported in literature in the United States (Rollins et al., 2012; 234 Xu et al., 2015a), high concentration of NO₂ (19.93 \pm 2.31 ppb) at night leaded to high yield of NO₃ radical (1.24 \pm 0.76 ppt) 235 in Shenzhen, as calculated in Text S1.

The reaction rate coefficients of typical measured nighttime VOC concentrations with NO₃ radical and the production potentials are listed in Table S3 and shown in Figure 5. These VOCs were considered based on their higher ambient concentrations and availability for reaction kinetics with NO₃ radical. According to the distribution of production potential, five biogenic VOCs (BVOCs) (i.e., α -pinene, limonene, camphene, β -pinene and isoprene) and one anthropogenic VOC (styrene) were identified as notable VOC precursors with high production potential, while the sum of production potential from the other VOCs was negligible as shown in Figure 5b.

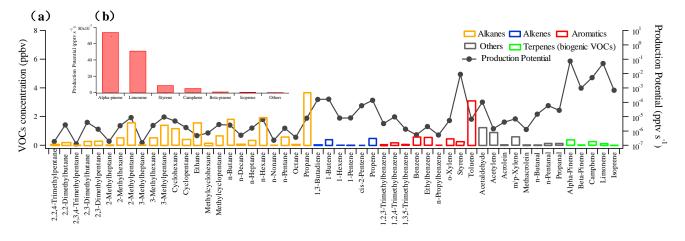


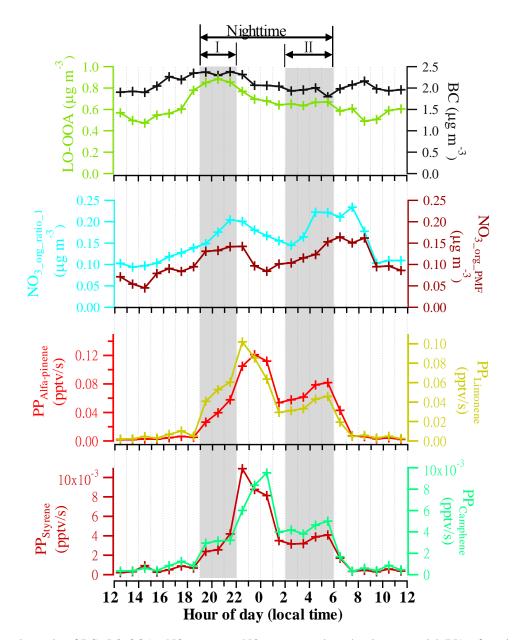
Figure 5. (a) Mean concentrations of VOCs and the corresponding calculated production potential of NO₃+VOC at night during the spring campaign; (b) production potential ranking of VOCs at night during the spring campaign.

Based on the production potential evaluation above, we further explore SOA yield of NO₃+the six notable VOC precursors according to the analysis method of particulate organic nitrate formation in Xu et al. (2015a). Briefly, NO₃ and ozone are two main oxidants for SOA formation from VOCs at night. Based on the concentrations of oxidants and the reaction rate constants for VOCs with NO₃ and ozone, the branching ratio of each VOC that reacts with NO₃ can be estimated as in Eq. (10). By combining the estimated branching ratios and SOA yields from chamber studies (Table 3, where the chamber conditions to obtain the yields covered the range of aerosol mass loading in the spring campaign), potential SOA production from these VOCs can be calculated as in Eq. (11) (Xu et al., 2015a):

252

253

branching ratio_{species i+N03} =
$$\frac{k_{[species i+N03]} \times [N0_3]}{k_{[species i+N03]} \times [N0_3] + k_{[species i+03]} \times [0_3]}$$
(10)


 $[SOA]_{species,oxidant} = [species] \times branching \ ratio_{species,oxidant} \times yield_{species,oxidant}$ (11)

254 The results in Table 3 show that all six notable VOC species were prone to react with NO₃ radical instead of O_3 at night, and 255 the estimated potential SOA production from NO₃+VOCs reactions using SOA mass yields in the literature was 0-0.33 µg m ³ for α -pinene, 0.09-1.28 µg m⁻³ for limonene, 0.24 µg m⁻³ for styrene, 0.004-0.06 µg m⁻³ for β -pinene and 0.002-0.02 µg m⁻³ 256 257 for isoprene. The SOA yield from camphene is currently unknown in the literature. It is seen that the average observed 258 nighttime concentration of particulate organic nitrates during the spring campaign (0.39-0.83µg m³, converting NO_{3.org ratio 1}, 259 NO_{3.org PMF} in Figure 6 into organic nitrates assuming the average molecular weight of organic nitrates of 200 to 300 g mol⁻¹) 260 was well within the estimated SOA concentration ranges produced by α -pinene, limonene and styrene in Table 3, indicating 261 that these three VOCs were the key VOC precursors in urban atmosphere in Shenzhen. Considering both the production 262 potentials and SOA yields, the contributions of β -pinene and isoprene to nighttime formation of particulate organic nitrates 263 could be negligible.

- **Table 3.** Average concentrations, reaction branching and SOA production of α -pinene, limonene, styrene, camphene, β -
- 265 pinene and isoprene with respect to different oxidants at night in the spring campaign.

Species	Concentration	Rate coefficient ^a		Branching ratio		SOA yield from	SOA from	
	(ppbv)					the literature	$VOCs + NO_3$	
	-	NO ₃	O ₃	NO ₃	O ₃	(with NO_3)	(µg m ⁻³)	
α-pinene	0.39	6.64E-12	7.2E-17	0.962	0.038	0-0.16 ^b	0-0.33	
Limonene	0.14	1.22E-11	1.54E-16	0.957	0.043	0.12-1.74 ^c	0.09-1.28	
Styrene	0.19	1.50E-12	1.70E-17	0.941	0.059	0.23 ^d	0.24	
Camphene	0.28	6.20E-13	9.0E-19	0.992	0.008	/	/	
β-pinene	0.01	2.51E-12	1.50E-17	0.968	0.032	0.07-1.04 ^e	0.004-0.06	
Isoprene	0.032	6.96E-13	1.27E-17	0.908	0.091	0.02-0.24 f	0.002-0.02	

- ^a Rate coefficients for all species except camphene are from the Master Chemical Mechanism model
- 267 (http://mcm.leeds.ac.uk/MCM/; under 25 °C), rate coefficients for camphene are from Martínez et al. (1999) and Atkinson et
- 268 al. (1990).
- ^b Hallquist et al. (1999); Spittler et al. (2006); Perraud et al. (2010); Fry et al. (2014).
- ^c Fry et al. (2011, 2014); Spittler et al. (2006); Boyd et al. (2017).
- ^d Cabrera-Perez et al. (2017).
- ^e Griffin et al. (1999); Fry et al. (2009); Fry et al. (2014); Boyd et al. (2015).
- ^f Rollins al. (2009); Ng et al. (2008).
- 274 The estimation of potential SOA production above suggests significant contributions of α -pinene, limonene, and styrene to 275 SOA, and the significant contribution of camphene is also possible. Thus, we further explore the diurnal variations of the PPs 276 of these four VOCs. Figure 6 shows the diurnal trends of BC, LO-OOA, NO_{3.org ratio 1}, NO_{3.org PMF}, and the PPs of the four 277 VOCs during the spring campaign. There were two apparent nighttime growth periods (i.e., I: 19:00–22:00 and II: 2:00–6:00) 278 for both NO_{3.org ratio 1} and NO_{3.org PMF}. During Period I, BC maintained a relatively higher level, suggesting stable anthropogenic 279 emissions. In contrast, the increases of all the PPs during Period I indicated that these precursors contributed to the organic 280 nitrate growth. After 22:00, while the PPs still showed a rapid growth, BC and organic nitrates began to decrease, implying 281 possible existence of other important anthropogenic VOC precursors, which were not identified by the GC-FID/MS analysis 282 but would dominate the formation of organic nitrates at this stage. During Period II, the anthropogenic emissions remained at 283 a stable lower level, as indicated by BC, while all the PPs increased with organic nitrates again, indicating that these four 284 precursors also contributed to, or could dominate, this organic nitrate growth. As shown in Figure S15, organic nitrates 285 correlated better with the PPs (R=0.63-0.74) than with LO-OOA (R=0.19-0.31) or BC (R=0.02-0.05) during Period II at the spring campaign, suggesting the significant contributions of the NO₃ reactions with these precursors. 286

287

Figure 6. Diurnal trends of BC, LO-OOA, NO_{3.org_ratio_1}, NO_{3.org_PMF} and production potential (PP) of α-pinene, limonene,
 styrene, and camphene during the spring campaign.

It should be noted that, all previous studies on nighttime organic nitrates formation in the US and Europe focused on mechanisms of NO₃ reactions with BVOCs (Hallquist et al., 1999; Spittler et al., 2006; Perraud et al., 2010; Fry et al., 2014; Nah et al., 2016; Boyd et al., 2015, 2017). In this study, however, we found that anthropogenic VOCs could also play significant roles in particulate organic nitrate formation at night. Besides styrene, one of major aromatics (Cabrera-Perez et al., 2016), there were also other important anthropogenic VOC precursors that we did not identify in the spring campaign. In China, styrene has been actually identified as an important VOC of non-methane hydrocarbons (NMHCs) in urban areas, and has a notable contribution to ozone formation and SOA production (An et al., 2009; Yuan et al., 2013; Zhu et al., 2019). This study highlights the possible key roles of anthropogenic VOC precursors in nighttime particulate organic nitrate formation in urban atmosphere in China, and relevant smog chamber studies for anthropogenic VOCs+NO₃ reactions are needed to support parameterization in modeling.

300 **3.5** Comparison with other similar studies and implications

Table 4 shows the average ambient temperatures, average concentrations of NO, NO₂, monoterpenes, NO_{3,org}, the ratio of 301 302 NO_{3 org} to NO_{3 total} and the ratio of organic nitrates to total organics in several similar field campaigns available in the literature, 303 which implies the key role of NO₃+VOCs reactions for nighttime particulate organic nitrate formation. In general, the variation 304 of the particulate organic nitrates concentration is within an order of magnitude (0.06-0.98 µg/m³) among the different sites. 305 Higher concentrations of particulate organic nitrates generally are associated with higher NOx concentrations rather than 306 BVOC concentrations. On the other hand, although the BVOCs concentrations in Bakersfield were far less than that in other 307 campaigns, the concentration of particulate organic nitrates there showed an intermediate level among all the campaigns. 308 Therefore, it is suggested that the formation of particulate organic nitrates may be more relevant with NOx than BVOCs, which 309 is consistent with the finding that the organic nitrate production was dominated by NOx in the southeastern US (Edwards et 310 al., 2017). In the spring campaign of this study, we examined the correlation between organic nitrates and NO_2 or VOCs (by 311 the sum of α pinene, limonene, camphene and styrene) at night (Figure S16) and found a significant correlation of organic 312 nitrates with NO₂ (R=0.40-0.47) rather than with VOCs (R=0.22-0.23), which further suggests that the organic nitrates 313 formation was driven by the NOx-involved NO₃ chemistry.

Table 4. Average ambient temperatures, average concentrations of monoterpenes, NO_{3,total}, NO_{3,org}, NO_{3,org}/ NO_{3,total} and the ratio of organic nitrates to total organics (ON/Org) for different

316	field campaigns around the world. The ON results at the European and US sites are from Kiendler-Scharr et al. (2016) and N	lg et al. (2017).
-----	--	-------------------

Sampling site	Site	Sampling	Temperature	NO	NO ₂	Monoterpenes	NO _{3,org}	NO _{3,org} /	ON/Org	Reference/Note
	type	period	(°C)	(ppbv)	(ppbv)	(ppbv)	(µg m ⁻³)	NO _{3,total}		
Bakersfield, US	rural	May-June, 2010	23.0		8.2	0.045 (α-pinene)	0.16	0.28	0.23	Rollins et al. (2012)/ NO3,org measured by
						0.004 (β-pinene)				TD-LIF
						0.034 (limonene)				
Woodland Park,	high	July-August,	15.0		1.2	0.25 (monoterpene)	0.06	0.86	0.09	Fry et al. (2013)/
US	attitude	2011								Use AMS data to estimate NO3,org
Centreville, US	rural	June-July, 2013	24.7	0.1	1.1	0.350 (α-pinene)*	0.08	1.00	0.10	Xu et al. (2015a)
						0.312 (β-pinene)*				Xu et al. (2015b)/
						0.050 (limonene)*				Use AMS data to
						0.050 (miloitene)				estimate NO3,org
Barcelona,	urban	March, 2009	13.3	11.0	23.6	0.423	0.48	0.13	0.13	Mohr et al. (2012)
Spain						(monoterpene)				Pandolfi et al. (2014)
										Use AMS data to
										estimate NO3,org
Shenzhen,	urban	April, 2016	24.5	8.0	19.4	0.391 (α-pinene)*	0.16	0.17	0.11	This study/
China						0.013 (β-pinene)*				Use AMS data to
						0.137 (limonene)*				estimate NO3,org
						0.157 (IIII0IIeIIe).				

317 *BVOC concentration at night.

318 4. Conclusions

319 An Aerodyne HR-ToF-AMS was deployed in urban Shenzhen for about one month per season during 2015–2016 to 320 characterize particulate organic nitrates with high time resolution. We discovered high mass fractions of organic nitrates in 321 total organics during warmer seasons, including spring (9-21%), summer (11-25%) and autumn (9-20%), while particulate 322 organic nitrates were negligible in winter. The correlation analysis between organic nitrates and each OA factor showed high 323 correlation (R=0.77 in spring, 0.91 in summer and 0.72 in autumn) between organic nitrates and LO-OOA at night. The diurnal 324 trend analysis of size distribution of m/z 30/m/z 46 ratio further suggested that organic nitrates formation mainly occurred at 325 night. It also suggested that organic nitrates concentrated at smaller sizes, indicating that they were mostly local products. The 326 calculated theoretical nighttime production potential of NO₃ reacting with VOCs measured in spring showed that six VOC 327 species (i.e., α -pinene, limonene, styrene, camphene, β -pinene and isoprene) were prominent precursors. The SOA yield 328 analysis and the nighttime variation of production potential further indicated that α -pinene, limonene, camphene and styrene 329 could contribute significantly to nighttime formation of particulate organic nitrates in spring in Shenzhen, highlighting the 330 unique contribution of anthropogenic VOCs as a comparison to that documented in previous studies in the US and Europe. 331 Finally, the comparison of the results in this study with other similar studies implied that nighttime formation of particulate 332 organic nitrates is more relevant with NOx levels.

333 **Author contributions.**

Xiao-Feng Huang designed the research. Kuangyou Yu and Qiao Zhu conducted data analysis and wrote the paper. Ke Du
 contributed to modelling and writing.

336 Acknowledgments

This work was supported by National Key R&D Program of China (2018YFC0213901), National Natural Science Foundation
 of China (91544215; 41622304) and Science and Technology Plan of Shenzhen Municipality (JCYJ20170412150626172).

339 References

- An, J. L., Wang, Y. S., Sun, Y.: Effects of nonmethane hydrocarbons on ozone formation in Beijing. Ecology & Environmental
 Sciences.
- Atkinson, R., Aschmann, S. M., Arey, J.: Rate constants for the gas-phase reactions of OH and NO3 radicals and O3 with
 sabinene and camphene at 296±2 K. Atmospheric Environment. Part A. General Topics, 24, (10), 2647-2654,
 https://doi.org/10.1016/0960-1686(90)90144-C, 1990

- Ayres, B.R., Allen, H.M., Draper, D.C., Brown, S.S., Wild, R.J., Jimenez, J.L., Day, D.A., Campuzano-Jost, P., Hu, W., De
 Gouw, J.A., Koss, A., Cohen, R.C., Duffey, K.C., Romer, P., Baumann, K., Edgerton, E., Takahama, S., Thornton, J.A.,
- 347 Lee, B.H., Lopez-Hilfiker, F.D., Mohr, C., Wennberg, P.O., Nguyen, T.B., Teng, A.P., Goldstein, A.H., Olson, K., Fry,
- J.L.: Organic nitrate aerosol formation via NO3+ biogenic volatile organic compounds in the southeastern United States.
 Atmos. Chem. Phys. 15, 13377-13392. https://doi.org/10.5194/acp-15-13377-2015, 2015.
- Boyd, C.M., Nah, T., Xu, L., Berkemeier, T., Ng, N.L.: Secondary Organic Aerosol(SOA) from Nitrate Radical Oxidation of
 Monoterpenes: Effects of Temperature, Dilution, and Humidity on Aerosol Formation, Mixing, and Evaporation. Environ.
 Sci. Technol. 51, 7831–7841. https://doi.org/10.1021/acs.est.7b01460, 2017.
- Boyd, C.M., Sanchez, J., Xu, L., Eugene, A.J., Nah, T., Tuet, W.Y., Guzman, M.I., Ng, N.L.: Secondary organic aerosol
 formation from the β-pinene+NO3 system: effect of humidity and peroxy radical fate. Atmos. Chem. Phys. 15, 74977522. https://doi.org/10.5194/acp-15-7497-2015, 2015.
- Bruns, E.A., Perraud, V., Zelenyuk, A., Ezell, M.J., Johnson, S.N., Yu, Y., Imre, D., Finlayson-Pitts, B.J., Alexander, M.L.:
 Comparison of FTIR and particle mass spectrometry for the measurement of particulate organic nitrates. Environ. Sci.
 Technol. 44, 1056-1061. <u>https://doi.org/10.1021/es9029864</u>, 2010.
- Cabrera-Perez, D., Taraborrelli, D., Sander, R., and Pozzer, A.: Global atmospheric budget of simple monocyclic aromatic
 compounds, Atmos. Chem. Phys., 16, 6931-6947, <u>https://doi.org/10.5194/acp-16-6931-2016</u>, 2016.
- Cabrera-Perez, D., Taraborrelli, D., Lelieveld, J., Hoffmann, T., and Pozzer, A.: Global impact of monocyclic aromatics on
 tropospheric composition, Atmos. Chem. Phys. Discuss., <u>https://doi.org/10.5194/acp-2017-928</u>, 2017.
- Canagaratna, M.R., Jayne, J.T., Jimenez, J.L., Allan, J.D., Alfarra, M.R., Zhang, Q., Onasch, T.B., Drewnick, F., Coe, H.,
 Middlebrook, A., Delia, A., Williams, L.R., Trimborn, A.M., Northway, M.J., DeCarlo, P.F., Kolb, C.E., Davidovits, P.,
 Worsnop, D.R.: Chemical and microphysical characterization of ambient aerosols with the aerodyne aerosol mass
 spectrometer. Mass Spectrom. Rev. 26, 185-222. https://doi.org/10.1002/mas.20115, 2007.
- Cubison, M. J., Ortega, A. M., Hayes, P. L., Farmer, D. K., Day, D., Lechner, M. J., Brune, W. H., Apel, E., Diskin, G. S.,
 Fisher, J. A., Fuelberg, H. E., Hecobian, A., Knapp, D. J., Mikoviny, T., Riemer, D., Sachse, G. W., Sessions, W., Weber,
 R. J., Weinheimer, A. J., Wisthaler, A., and Jimenez, J. L.: Effects of aging on organic aerosol from open biomass burning
 smoke in aircraft and laboratory studies, Atmos. Chem. Phys., 11, 12049-12064, https://doi.org/10.5194/acp-11-12049-2011, 2011, 2011.
- 372 Day, D. A., Liu, S., Russell, L. M., and Ziemann, P. J.: Organonitrate group concentrations in submicron particles with high
 - and organic fractions in coastal southern California, Atmos. Environ., 44, 1970–1979,
 <u>https://doi.org/10.1016/j.atmosenv.2010.02.045</u>, 2010.
 - DeCarlo, P.F., Kimmel, J.R., Trimborn, A., Northway, M.J., Jayne, J.T., Aiken, A.C., Gonin, M., Fuhrer, K., Horvath, T.,
 Docherty, K.S., Worsnop, D.R., Jimenez, J.L.: Field-deployable, high-resolution, time-of-flight aerosol mass
 spectrometer. Anal. Chem. 78, 8281-8289. <u>https://doi.org/10.1021/ac061249n</u>, 2006.

- Edwards, P. M.; Aikin, K. C.; Dube, W. P.; Fry, J. L.; Gilman, J. B.; de Gouw, J. A.; Graus, M. G.; Hanisco, T. F.; Holloway,
 J.; Hübler, G.; Kaiser, J.; Keutsch, F. N.; Lerner, B. M.; Neuman, J. A.; Parrish, D. D.; Peischl, J.; Pollack, I. B.;
 Ravishankara, A. R.; Roberts, J. M.; Ryerson, T. B.; Trainer, M.; Veres, P. R.; Wolfe, G. M.; Warneke, C.; Brown, S. S.:
 Transition from high- to low-NOx control of night-time oxidation in the southeastern US. Nature Geoscienc, 10, (7), 490https://doi.org/10.1038/ngeo2976, 2017.
- Farmer, D.K., Matsunaga, A., Docherty, K.S., Surratt, J.D., Seinfeld, J.H., Ziemann, P.J., Jimenez, J.L.: Response of an aerosol
 mass spectrometer to organonitrates and organosulfates and implications for atmospheric chemistry. Proc. Natl. Acad.
 Sci. 107, 6670-6675. https://doi.org/10.1073/pnas.0912340107, 2010.
- Fry, J. L., Brown, S. S., Middlebrook, A. M., Edwards, P. M., Campuzano-Jost, P., Day, D. A., Jimenez, J. L., Allen, H. M.,
 Ryerson, T. B., Pollack, I., Graus, M., Warneke, C., de Gouw, J. A., Brock, C. A., Gilman, J., Lerner, B. M., Dubé, W.
 P., Liao, J., and Welti, A.: Secondary organic aerosol (SOA) yields from NO3 radical + isoprene based on nighttime
 aircraft power plant plume transects, Atmos. Chem. Phys., 18, 11663-11682, https://doi.org/10.5194/acp-18-11663-2018.
 2018.
- Fry, J.L., Draper, D.C., Barsanti, K.C., Smith, J.N., Ortega, J., Winkler, P.M., Lawler, M.J., Brown, S.S., Edwards, P.M.,
 Cohen, R.C.: Secondary Organic Aerosol Formation and Organic Nitrate Yield from NO3 Oxidation of Biogenic
 Hydrocarbons. Environ. Sci. Technol. 48, 11944–11953. https://doi.org/10.1021/es502204x, 2014.
- Fry, J.L., Draper, D.C., Zarzana, K.J., Campuzano-Jost, P., Day, D.A., Jimenez, J.L., Brown, S.S., Cohen, R.C., Kaser, L.,
 Hansel, A., Cappellin, L., Karl, T., Hodzic Roux, A., Turnipseed, A., Cantrell, C., Lefer, B.L., Grossberg, N.:
 Observations of gas- and aerosol-phase organic nitrates at BEACHON-RoMBAS 2011. Atmos. Chem. Phys. 13, 85858605. https://doi.org/10.5194/acp-13-8585-2013, 2013.
- Fry, J.L., Kiendler-Scharr, A., Rollins, A.W., Brauers, T., Brown, S.S., Dorn, H.P., Dubé, W.P., Fuchs, H., Mensah, A., Rohrer,
 F., Tillmann, R., Wahner, A., Wooldridge, P.J., Cohen, R. C.: SOA from limonene: Role of NO3 in its generation and
 degradation. Atmos. Chem. Phys. 11, 3879-3894. <u>https://doi.org/10.5194/acp-11-3879-2011</u>, 2011.
- 401 Fry, J.L., Kiendlerscharr, A., Rollins, A.W., Wooldridge, P.J., Brown, S.S., Fuchs, H., Dube, W.P., Mensah, A., Dal Maso,
 402 M., Tillmann, R.: Organic nitrate and secondary organic aerosol yield from NO 3 oxidation of β-pinene evaluated using
 403 a gas-phase kinetics/aerosol partitioning model. Atmos. Chem. Phys. 9, 1431–1449. <u>https://doi.org/10.5194/acp-9-1431-</u>
 404 2009, 2009.
- Griffin, R. J., Cocker, D. R., III, Flagan, R. C., and Seinfeld, J. H.: Organic aerosol formation from the oxidation of biogenic
 hydrocarbons. J. Geophys. Res., 104, 3555–3567, https://doi.org/10.1029/1998jd100049, 1999.
- Hallquist, M., Wängberg, I., Ljungström, E., Barnes, I., Becker, K.H.: Aerosol and product yields from NO3radical-initiated
 oxidation of selected monoterpenes. Environ. Sci. Technol. 33, 553-559. <u>https://doi.org/10.1021/es980292s</u>, 1999.
- 409 Hao, L.Q., Kortelainen, A., Romakkaniemi, S., Portin, H., Jaatinen, A., Leskinen, A., Komppula, M., Miettinen, P., Sueper,
- 410 D., Pajunoja, A., Smith, J.N., Lehtinen, K.E.J., Worsnop, D.R., Laaksonen, A., Virtanen, A.: Atmospheric submicron

- 411 aerosol composition and particulate organic nitrate formation in a boreal forestland-urban mixed region. Atmos. Chem.
 412 Phys. 14, 13483-13495. <u>https://doi.org/10.5194/acp-14-13483-2014</u>, 2014.
- He, L.Y., Huang, X.F., Xue, L., Hu, M., Lin, Y., Zheng, J., Zhang, R., Zhang, Y.H.: Submicron aerosol analysis and organic
 source apportionment in an urban atmosphere in Pearl River Delta of China using high-resolution aerosol mass
 spectrometry. J. Geophys. Res. Atmos. 116, D12. <u>https://doi.org/10.1029/2010JD014566</u>, 2011.
- Huang, X.F., He, L.Y., Hu, M., Canagaratna, M.R., Sun, Y., Zhang, Q., Zhu, T., Xue, L., Zeng, L.W., Liu, X.G., Zhang, Y.H.,
 Jayne, J.T., Ng, N.L., Worsnop, D.R.: Highly time-resolved chemical characterization of atmospheric submicron particles
 during 2008 Beijing Olympic games using an aerodyne high-resolution aerosol mass spectrometer. Atmos. Chem. Phys.
 10, 8933-8945. https://doi.org/10.5194/acp-10-8933-2010, 2010.
- Huang, X.F., He, L.Y., Xue, L., Sun, T.L., Zeng, L.W., Gong, Z.H., Hu, M., Zhu, T.: Highly time-resolved chemical
 characterization of atmospheric fine particles during 2010 Shanghai World Expo. Atmos. Chem. Phys. 12, 4897-4907.
 https://doi.org/10.5194/acp-12-4897-2012, 2012.
- Huang, X.F., Xue, L., Tian, X.D., Shao, W.W., Sun, T. Le, Gong, Z.H., Ju, W.W., Jiang, B., Hu, M., He, L.Y.: Highly timeresolved carbonaceous aerosol characterization in Yangtze River Delta of China: Composition, mixing state and
 secondary formation. Atmos. Environ. 64, 200-207. https://doi.org/10.1016/j.atmosenv.2012.09.059, 2013.
- Jimenez, J. L., Jayne, J. T., Shi, Q., Kolb, C. E., Worsnop, D. R., Yourshaw, I., Seinfeld, J. H., Flagan, R. C., Zhang, X. F.,
 Smith, K. A., Morris, J. W., and Davidovits, P.: Ambient aerosol sampling using the aerodyne aerosol mass spectrometer,
 J. Geophys. Res.-Atmos., 108, 447–457, <u>https://doi.org/10.1029/2001JD001213, 2003</u>.
- Kiendler-Scharr, A., Mensah, A. A., Friese, E., Topping, D., Nemitz, E., Prevot, A. S. H., Äijälä, M., Allan, J., Canonaco, F.,
 Canagaratna, M., Carbone, S., Crippa, M., Dall Osto, M., Day, D. A., De Carlo, P., Di Marco, C. F., Elbern, H., Eriksson,
 A., Freney, E., Hao, L., Herrmann, H., Hildebrandt, L., Hillamo, R., Jimenez, J. L., Laaksonen, A., McFiggans, G., Mohr,
 C., O'Dowd, C., Otjes, R., Ovadnevaite, J., Pandis, S. N., Poulain, L., Schlag, P., Sellegri, K., Swietlicki, E., Tiitta, P.,
- Vermeulen, A., Wahner, A., Worsnop, D., and Wu, H. C.: Organic nitrates from night-time chemistry are ubiquitous in
 the European submicron aerosol, Geophys. Res. Lett., 43, 7735–7744, <u>https://doi:10.1002/2016GL069239, 2016.</u>
- Lee, B.H., Mohr, C., Lopez-Hilfiker, F.D., Lutz, A., Hallquist, M., Lee, L., Romer, P., Cohen, R.C., Iyer, S., Kurten, T., Hu,
 W., Day, D.A., Campuzano-Jost, P., Jimenez, J.L., Xu, L., Ng, N.L., Guo, H., Weber, R.J., Wild, R.J., Brown, S.S., Koss,
 A., de Gouw, J., Olson, K., Goldstein, A.H., Seco, R., Kim, S., McAvey, K., Shepson, P.B., Starn, T., Baumann, K.,
 Edgerton, E.S., Liu, J., Shilling, J.E., Miller, D.O., Brune, W., Schobesberger, S., D'Ambro, E.L., Thornton, J.A.: Highly
 functionalized organic nitrates in the southeast United States: Contribution to secondary organic aerosol and reactive
 nitrogen budgets. Proc. Natl. Acad. Sci. 113, 1516-1521. https://doi.org/10.1073/pnas.1508108113, 2016.
- Lelieveld, J., Gromov, S., Pozzer, A., Taraborrelli, D.: Global tropospheric hydroxyl distribution, budget and reactivity. Atmos.
 Chem. Phys. 16, 12477-12493. https://doi.org/10.5194/acp-16-12477-2016, 2016.

- Martínez, E.; Cabañas, B.; Aranda, A.; Martín, P.; Salgado, S.: Absolute Rate Coefficients for the Gas-Phase Reactions of
 NO3 Radical with a Series of Monoterpenes at T = 298 to 433 K. Journal of Atmospheric Chemistry, 33, (3), 265-282.
 https://doi.org/10.1023/A:1006178530211, 1999.
- Middlebrook, A.M., Bahreini, R., Jimenez, J.L., Canagaratna, M.R.: Evaluation of composition-dependent collection
 efficiencies for the Aerodyne aerosol mass spectrometer using field data. Aerosol Sci. Technol. 46, 258-271.
 https://doi.org/10.1080/02786826.2011.620041, 2012.
- Mohr, C., DeCarlo, P. F., Heringa, M. F., Chirico, R., Slowik, J. G., Richter, R., Reche, C., Alastuey, A., Querol, X., Seco, R.,
 Peñuelas, J., Jiménez, J. L., Crippa, M., Zimmermann, R., Baltensperger, U., and Prévôt, A. S. H.: Identification and
 quantification of organic aerosol from cooking and other sources in Barcelona using aerosol mass spectrometer data,
 Atmos. Chem.Phys., 12, 1649–1665, https://doi.org/10.5194/acp-12-1649-2012, 2012.
- Nah, T., Sanchez, J., Boyd, C. M., and Ng, N. L.: Photochemical Aging of α-pinene and β-pinene Secondary Organic
 Aerosol formed from Nitrate Radical Oxidation, Environ. Sci. Technol., 50, 222–231,
 https://doi:10.1021/acs.est.5b04594 , 2016.
- Ng, N. L., Brown, S. S., Archibald, A. T., Atlas, E., Cohen, R. C., Crowley, J. N., Day, D. A., Donahue, N. M., Fry, J. L.,
 Fuchs, H., Griffin, R. J., Guzman, M. I., Herrmann, H., Hodzic, A., Iinuma, Y., Jimenez, J. L., Kiendler-Scharr, A., Lee,
- 458 B. H., Luecken, D. J., Mao, J., McLaren, R., Mutzel, A., Osthoff, H. D., Ouyang, B., Picquet-Varrault, B., Platt, U., Pye,
- H. O. T., Rudich, Y., Schwantes, R. H., Shiraiwa, M., Stutz, J., Thornton, J. A., Tilgner, A., Williams, B. J., and Zaveri,
 R. A.: Nitrate radicals and biogenic volatile organic compounds: oxidation, mechanisms, and organic aerosol, Atmos.
 Chem. Phys., 17, 2103-2162, <u>https://doi.org/10.5194/acp-17-2103-2017</u>, 2017.
- Ng, N. L., Canagaratna, M. R., Zhang, Q., Jimenez, J. L., Tian, J., Ulbrich, I. M., Kroll, J. H., Docherty, K.S., Chhabra, P.S.,
 Bahreini, R., Murphy, S.M., Seinfeld, J.H., Hildebrandt, L., Donahue, N.M., Decarlo, P.F., Lanz, V.A., Prévôt, A.S.H.,
 Dinar, E., Rudich, Y., Worsnop, D.R.: Organic aerosol components observed in Northern Hemispheric datasets from
 Aerosol Mass Spectrometry. Atmos. Chem. Phys. 10, 4625-4641. <u>https://doi.org/10.5194/acp-10-4625-2010, 2010.</u>
- Ng, N. L., Kwan, A. J., Surratt, J. D., Chan, A. W. H., Chhabra, P. S., Sorooshian, A., Pye, H. O. T., Crounse, J. D., Wennberg,
 P. O., Flagan, R. C., and Seinfeld, J. H.: Secondary organic aerosol (SOA) formation from reaction of isoprene with
 nitrate radicals (NO3), Atmos. Chem. Phys., 8, 4117–4140, https://doi.org/10.5194/acp-8-4117-2008, 2008.
- Pandolfi, M.; Querol, X.; Alastuey, A.; Jimenez, J. L.; Jorba, O.; Day, D.; Ortega, A.; Cubison, M. J.; Comerón, A.; Sicard,
 M.; Mohr, C.; Prévôt, A. S. H.; Minguillón, M. C.; Pey, J.; Baldasano, J. M.; Burkhart, J. F.; Seco, R.; Peñuelas, J.; van
 Drooge, B. L.; Artiñano, B.; Di Marco, C.; Nemitz, E.; Schallhart, S.; Metzger, A.; Hansel, A.; Lorente, J.; Ng, S.; Jayne,
 J.; Szidat, S.: Effects of sources and meteorology on particulate matter in the Western Mediterranean Basin: An overview
- 473
 of the DAURE campaign. Journal of Geophysical Research: Atmospheres, 119, (8), 4978-5010.

 474
 https://10.1002/2013JD021079, 2014.

- 475 Perraud, V., Bruns, E. A., Ezell, M. J., Johnson, S. N., Greaves, J.,and Finlayson-Pitts, B. J.: Identification of organic nitrates
 476 in the NO3 radical initiated oxidation of α-pinene by atmospheric pressure chemical ionization mass spectrometry,
 477 Environ. Sci. Technol., 44, 5887–5893. https://doi.org/10.1021/es1005658, 2010.
- 478 Rollins, A.W., Browne, E.C., Min, K.-E., Pusede, S.E., Wooldridge, P.J., Gentner, D.R., Goldstein, A.H., Liu, S., Day, D.A.,
 479 Russell, L.M., Cohen, R.C.: Evidence for NOx Control over Nighttime SOA Formation. Science. 337, 1210-1212.
 480 https://doi.org/10.1126/science.1221520, 2012.
- Rollins, A. W., Kiendler-Scharr, A., Fry, J. L., Brauers, T., Brown, S. S., Dorn, H.-P., Dubé, W. P., Fuchs, H., Mensah, A.,
 Mentel, T. F., Rohrer, F., Tilmann, R., Wegener, R., Wooldridge, P. J., and Cohen, R. C.: Isoprene oxidation by nitrate
 radical: alkyl nitrate and secondary organic aerosol yields, Atmos. Chem. Phys., 9, 6685–6703,
 https://doi.org/10.5194/acp-9-6685-2009, 2009.
- 485 Sato, K., Takami, A., Isozaki, T., Hikida, T., Shimono, A., Imamura, T.: Mass spectrometric study of secondary organic aerosol 486 formed from the photo-oxidation of aromatic hydrocarbons. Atmos. Environ. 44. 1080-1087. 487 https://doi.org/10.1016/j.atmosenv.2009.12.013, 2010.
- Sobanski, N., Thieser, J., Schuladen, J., Sauvage, C., Song, W., Williams, J., Lelieveld, J., Crowley, J.N.: Day and night-time
 formation of organic nitrates at a forested mountain site in south-west Germany. Atmos. Chem. Phys. 17, 4115-4130.
 https://doi.org/10.5194/acp-17-4115-2017, 2017.
- 491 Spittler, M., Barnes, I., Bejan, I., Brockmann, K.J., Benter, T., Wirtz, K.: Reactions of NO3 radicals with limonene and α 492 pinene : Product and SOA formation. Atmos. Environ. 40, 116–127. <u>https://doi.org/10.1016/j.atmosenv.2005.09.093</u>,
 493 2006.
- Sun, Y., Zhang, Q., Schwab, J.J., Yang, T., Ng, N.L., Demerjian, K.L.: Factor analysis of combined organic and inorganic
 aerosol mass spectra from high resolution aerosol mass spectrometer measurements. Atmos. Chem. Phys. 12, 8537–8551.
 https://doi.org/10.5194/acp-12-8537-2012, 2012.
- 497 Teng, A.P., Crounse, J.D., Lee, L., St. Clair, J.M., Cohen, R.C., Wennberg, P.O.: Hydroxy nitrate production in the OH498 initiated oxidation of alkenes. Atmos. Chem. Phys. 139, 5367-5377. <u>https://doi.org/10.5194/acp-15-4297-2015</u>, 2015.
- Teng, A.P., Crounse, J.D., Wennberg, P.O.: Isoprene Peroxy Radical Dynamics. J. Am. Chem. Soc. 15, 4297-4316.
 https://doi.org/10.1021/jacs.6b12838, 2017.
- 501 Wang, H.; Lu, K.; Chen, X.; Zhu, Q.; Chen, Q.; Guo, S.; Jiang, M.; Li, X.; Shang, D.; Tan, Z.; Wu, Y.; Wu, Z.; Zou, Q.; Zheng, 502 Y.; Zeng, L.; Zhu, T.; Hu, M.; Zhang, Y.: High N₂O₅ Concentrations Observed in Urban Beijing: Implications of a Large 503 Science Nitrate Formation Pathway. Environmental & Technology Letters, 4. (10), 416-420. 504 https://doi.10.1021/acs.estlett.7b00341. 2018.
- Wang, M.; Zeng, L.; Lu, S.; Shao, M.; Liu, X.; Yu, X.; Chen, W.; Yuan, B.; Zhang, Q.; Hu, M.; Zhang, Z.: Development and
 validation of a cryogen-free automatic gas chromatograph system (GC-MS/FID) for online measurements of volatile
 organic compounds, 6, (23), 9424-9434. Analytical Methods, <u>https://doi.10.1039/C4A Y01855A</u>, 2014.

- Xu, L., Guo, H., Boyd, C.M., Klein, M., Bougiatioti, A., Cerully, K.M., Hite, J.R., Isaacman-VanWertz, G., Kreisberg, N.M.,
 Knote, C., Olson, K., Koss, A., Goldstein, A.H., Hering, S. V., de Gouw, J., Baumann, K., Lee, S.-H., Nenes, A., Weber,
 R.J., Ng, N.L.: Effects of anthropogenic emissions on aerosol formation from isoprene and monoterpenes in the
 southeastern United States. Proc. Natl. Acad. Sci. 112, 37-42. https://doi.org/10.1073/pnas.1417609112, 2015a.
- Xu, L., Suresh, S., Guo, H., Weber, R.J., Ng, N.L.: Aerosol characterization over the southeastern United States using high resolution aerosol mass spectrometry: Spatial and seasonal variation of aerosol composition and sources with a focus on
 organic nitrates. Atmos. Chem. Phys. 15, 7307-7336. <u>https://doi.org/10.5194/acp-15-7307-2015</u>, 2015b.
- Xu, W., Sun, Y., Wang, Q., Du, W., Zhao, J., Ge, X., Han, T., Zhang, Y., Zhou, W., Li, J., Fu, P., Wang, Z., Worsnop, D.R.:
 Seasonal Characterization of Organic Nitrogen in Atmospheric Aerosols Using High Resolution Aerosol Mass
 Spectrometry in Beijing, China. ACS Earth Sp. Chem. 1, 673–682. <u>https://doi.org/10.1021/acsearthspacechem.7b00106</u>,
 2017.
- Yan, C., Nie, W., Äijälä, M., Rissanen, M.P., Canagaratna, M.R., Massoli, P., Junninen, H., Jokinen, T., Sarnela, N., Häme,
 S.A.K., Schobesberger, S., Canonaco, F., Yao, L., Prévôt, A.S.H., Petäjä, T., Kulmala, M., Sipilä, M., Worsnop, D.R.,
 Ehn, M.: Source characterization of highly oxidized multifunctional compounds in a boreal forest environment using
 positive matrix factorization. Atmos. Chem. Phys. 16, 12715-12731. https://doi.org/10.5194/acp-16-12715-2016, 2016.
- Yuan, B., Hu, W. W., Shao, M., Wang, M., Chen, W. T., Lu, S. H., Zeng, L. M., and Hu, M.: VOC emissions, evolutions and
 contributions to SOA formation at a receptor site in eastern China, Atmos. Chem. Phys., 13, 8815-8832,
 https://doi.org/10.5194/acp-13-8815-2013,2013.
- Zhang, Q., Jimenez, J.L., Canagaratna, M.R., Ulbrich, I.M., Ng, N.L., Worsnop, D.R., Sun, Y.: Understanding atmospheric
 organic aerosols via factor analysis of aerosol mass spectrometry: A review. Anal. Bioanal. Chem. 401, 3045-3067.
 https://doi.org/10.1007/s00216-011-5355-y, 2011.
- Zhang, Y.H., Su, H., Zhong, L.J., Cheng, Y.F., Zeng, L.M., Wang, X.S., Xiang, Y.R., Wang, J.L., Gao, D.F., Shao, M., Fan,
 S.J., Liu, S.C.: Regional ozone pollution and observation-based approach for analyzing ozone-precursor relationship
 during the PRIDE-PRD2004 campaign. Atmos. Environ. 42, 6203-6218. <u>https://doi.org/10.1016/j.atmosenv.2008.05.002</u>,
 2008.
- Zhu, B., Han, Y., Wang, C., Huang, X. F., Xia, S. Y., Niu, Y. B., Yin, Z. X, He, L.Y. :Understanding primary and secondary
 sources of ambient oxygenated volatile organic compounds in Shenzhen utilizing photochemical age-based
 parameterization method. Journal of Environmental Sciences, 75, 105-114. <u>https://doi.org/10.1016/j.jes.2018.03.008</u>,
 2019.
- Zhu, Q., He, L.Y., Huang, X.F., Cao, L.M., Gong, Z.H., Wang, C., Zhuang, X., Hu, M.: Atmospheric aerosol compositions
 and sources at two national background sites in northern and southern China. Atmos. Chem. Phys. 16, 10283-10297.
 https://doi.org/10.5194/acp-16-10283-2016, 2016.

- 540 Zhu, Q., Huang, X.-F., Cao, L.-M., Wei, L.-T., Zhang, B., He, L.-Y., Elser, M., Canonaco, F., Slowik, J. G., Bozzetti, C., El-
- 541 Haddad, I., and Prévôt, A. S. H.: Improved source apportionment of organic aerosols in complex urban air pollution using
- 542 the multilinear engine (ME-2), Atmos. Meas. Tech., 11, 1049-1060. <u>https://doi.org/10.5194/amt-11-1049-2018</u>, 2018.